EXERCISE SHEET 1

Arithmetics in \mathbb{Z} and $\mathbb{Z} / n \mathbb{Z}$

Exercice 1. Find all the Bézout relation between 650 and 66 .
Exercice 2. Prove that 429 is invertible modulo $\mathbb{Z} / 700 \mathbb{Z}$ and compute its inverse.
Exercice 3. Compute the gcd $\left(n^{3}+n^{2}+1\right) \wedge\left(n^{2}+2 n-1\right)$ in terms of $n \in \mathbb{N}$. Similarly, compute the $\operatorname{gcd}\left(n^{3}+n^{2}-6 n+2\right) \wedge\left(2 n^{2}+5 n-3\right)$.

Exercice 4. Solve the following congruences, for $x \in \mathbb{Z}$:
(1) $3 x \equiv 4(\bmod 7)$,
(2) $9 x \equiv 12(\bmod 21)$,
(3) $103 x \equiv 612(\bmod 676)$.

Exercice 5. Compute the following congruences:
(1) 135463^{2315} modulo 19 ,
(2) 763^{234} modulo 20 ,
(3) 2222^{321} modulo 20 .

Exercice 6 (Egyptian fractions). Egyptian fractions are those of the form $\frac{1}{n}$ for $n \in \mathbb{N}^{*}$. We are interested in the problem of writing a positive rational number $\frac{a}{b}$ as a sum of distinct Egyptian fractions.
(1) Using the identity $\frac{1}{b}=\frac{1}{b+1}+\frac{1}{b(b+1)}$, show that every fraction $\frac{a}{b}$ with $a, b \in \mathbb{N}^{*}$ can be written as a sum of a finite number of distinct Egyptian fractions by providing an algorithm that outputs such a decomposition. Give the number of terms in the sum as a function of a. Give an bound on the largest denominator appearing in the decomposition.
(2) Assume $\frac{a}{b}<1$ and $a \wedge b=1$. Using Bézout's theorem, give another algorithm of decomposition into a sum of Egyptian fractions, that uses at most a terms and for which all denominators are at most $b(b-1)$.

Exercice 7. (1) Show that 7 divide $3^{105}+4^{105}$.
(2) Given integers a, b, c, show that $6 \mid a+b+c$ if and only if $6 \mid a^{3}+b^{3}+c^{3}$.
(3) Show that for every integer n, one has $n^{7} \equiv n(\bmod 42)$.

Exercice 8. Give all group homomorphisms $\mathbb{Z} / 3 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z}$, then all of the form $\mathbb{Z} / 12 \mathbb{Z} \rightarrow$ $\mathbb{Z} / 15 \mathbb{Z}$. Give a necessary and sufficient condition m and n for every morphism $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ to be zero.

Exercice 9 (Game of the merchant). Assume we are given only coins with two values a and b, with a and b coprime positive integers.
(1) If the merchant gives back change, what amounts can be paid (using only the coins a and b) ?
(2) Supposons maintenant qu'on ne puisse pas nous rendre la monnaie. On pose $N=a b-a-b$. From now on, assume that the merchant does not give back change. Let $N=a b-a-b$ and let n and m be two integers such that $n+m=N$. Show that if N is payable, then exactly one amount among n and m is payable. Deduce that if $n>N$, then the amount n is payable.
(3) We generalize the problem to several coins of values a_{1}, \ldots, a_{n}. Show that for every integer $n \geqslant 2$, if $a_{1}, \ldots, a_{n} \in \mathbb{Z}_{*}$ are pairwise coprime, then

$$
M_{n}=a_{1} \cdots \cdots a_{n}\left(n-1-\sum_{i=1}^{n} \frac{1}{a_{i}}\right)
$$

is the largest integer that cannot be written in the form $\sum_{i=1}^{n} x_{i} \prod_{j \neq i} a_{j}$ with $x_{i} \in \mathbb{N}$.
Exercice 10. Let $n \in \mathbb{N}^{*}$. For $k \in \mathbb{Z} / n \mathbb{Z}$, show that $\langle k\rangle$ is the subgroup generated by $k \wedge n$. Deduce that $n=\sum_{d \mid n} \varphi(d)$.

