FEUILLE DE TD 3

Nombres Premiers

Exercice 1. Soit $P(X_1, \ldots, X_r) \in \mathbb{C}[X_1, \ldots, X_r]$ un polynôme à r variables ne prenant que des valeurs premières sur \mathbb{N}^r .

- (1) En utilisant les polynômes de Lagrange associés aux points $\{0, 1, \dots, n\}$, montrer que P est à coefficients rationnels.
- (2) Soit p = P(1, ..., 1). Montrer qu'il existe une infinité de r-uplets d'entiers $(m_1, ..., m_r)$ tels que $P(m_1, ..., m_r) = p$.
- (3) En déduire que P est constant.

Exercice 2 (Théorème de Wilson). Soit $n \ge 2$ un entier. Montrer que n est premier si et seulement si n divise (n-1)! + 1.

Tests de primalité probabilistes

Soit n un entier naturel impair. On écrit $n-1=q2^s$ avec q impair et on définit les ensembles

$$A_n = \{a \in (\mathbb{Z}/n\mathbb{Z})^{\times} \mid a^{n-1} = 1\},$$

 $B_n = \{a \in A_n \mid a^{q2^{j+1}} = 1 \implies a^{q2^{j}} = \pm 1 \text{ pour } j = 0, \dots, s-1\},$
 $C_n = \{a \in (\mathbb{Z}/n\mathbb{Z})^{\times} \mid a^{(n-1)/2} = \left(\frac{a}{n}\right)\}.$

Exercice 3. (1) Montrer que si n est premier, alors $A_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(2) Montrer que si n est composé et que $A_n \neq (\mathbb{Z}/n\mathbb{Z})^{\times}$, alors $|A_n| \leqslant \frac{n-1}{2}$.

Exercice 4. On appelle nombre de Carmichael tout entier naturel n impair, composé et tel que $A_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Montrer que tout nombre de Carmichael n est de la forme $n = p_1 \dots p_r$ pour des nombres premiers distincts p_1, \dots, p_r , avec $r \ge 3$ et tels que $(p_i - 1)$ divise (n - 1) pour tout i.

Exercice 5. Montrer que n est premier si et seulement si $C_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Exercice 6. (1) Montrer que si n est premier, alors $B_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(2) (*) Montrer que si n est composé, alors $|B_n| \leq \frac{n-1}{4}$.

Exercice 7. Implémenter les tests de primalité de Rabin-Miller et de Solovay-Strassen, respectivement basés sur les tests d'appartenance aux ensembles B_n et C_n . Les comparer en termes de nombres d'erreurs et de temps de calcul. Que se passe-t-il si on implémente l'algorithme analogue en utilisant l'ensemble A_n (test de Fermat)?