EXERCISE SHEET 3

Prime numbers

Exercice 1. Let $P\left(X_{1}, \ldots, X_{r}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{r}\right]$ be a polynomial in r variables that takes only prime values on \mathbb{N}^{r}.
(1) Using Lagrange's interpolation polynomials with respect to the points $\{0,1, \ldots, n\}$, show that P has rational coefficients.
(2) Let $p=P(1, \ldots, 1)$. Show that there exists infinitely many r-tuples of integers $\left(m_{1}, \ldots, m_{r}\right)$ such that $P\left(m_{1}, \ldots, m_{r}\right)=p$.
(3) Deduce that P is constant.

Exercice 2 (Wilson's theorem). Let $n \geqslant 2$ be an integer. Show that n is prime if and only if n divides $(n-1)!+1$.

Probabilistic Primality TESTS

Let n be an odd natural number. Write $n-1=q 2^{s}$ with q odd and define the sets

$$
\begin{aligned}
A_{n} & =\left\{a \in(\mathbb{Z} / n \mathbb{Z})^{\times} \mid a^{n-1}=1\right\} \\
B_{n} & =\left\{a \in A_{n} \mid a^{q 2^{j+1}}=1 \Longrightarrow a^{q 2^{j}}= \pm 1 \quad \text { for } \quad j=0, \ldots, s-1\right\} \\
C_{n} & =\left\{a \in(\mathbb{Z} / n \mathbb{Z})^{\times} \left\lvert\, a^{(n-1) / 2}=\left(\frac{a}{n}\right)\right.\right\}
\end{aligned}
$$

Exercice 3. (1) Show that if n is prime, then $A_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(2) Show that if n is composite and $A_{n} \neq(\mathbb{Z} / n \mathbb{Z})^{\times}$, then $\left|A_{n}\right| \leqslant \frac{n-1}{2}$.

Exercice 4. A Carmichael number is an odd natural number n that is composite and verifies that $A_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Show that every Carmichael number is of the form $n=p_{1} \ldots p_{r}$ for some distinct primes p_{1}, \ldots, p_{r}, with $r \geqslant 3$ and such that $\left(p_{i}-1\right)$ divides $(n-1)$ for all i.

Exercice 5. Show that n is prime if and only if $C_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Exercice 6. (1) Show that if n is prime, then $B_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(2) $(*)$ Show that if n is composite, then $\left|B_{n}\right| \leqslant \frac{n-1}{4}$.

Exercice 7. Implement the Rabin-Miller and Solovay-Strassen primality tests, which are respectively based on the sets B_{n} and C_{n}. Compare them in terms of probability of error and complexity. Can we use the set A_{n} to give a primality test?

