EXERCISE SHEET 3

PRIME NUMBERS

Exercice 1. Let $P(X_1, \ldots, X_r) \in \mathbb{C}[X_1, \ldots, X_r]$ be a polynomial in r variables that takes only prime values on \mathbb{N}^r .

- (1) Using Lagrange's interpolation polynomials with respect to the points $\{0, 1, ..., n\}$, show that P has rational coefficients.
- (2) Let p = P(1, ..., 1). Show that there exists infinitely many *r*-tuples of integers $(m_1, ..., m_r)$ such that $P(m_1, ..., m_r) = p$.
- (3) Deduce that P is constant.

Exercice 2 (Wilson's theorem). Let $n \ge 2$ be an integer. Show that n is prime if and only if n divides (n-1)! + 1.

PROBABILISTIC PRIMALITY TESTS

Let n be an odd natural number. Write $n - 1 = q2^s$ with q odd and define the sets

$$A_n = \{a \in (\mathbb{Z}/n\mathbb{Z})^{\times} \mid a^{n-1} = 1\},\$$

$$B_n = \{a \in A_n \mid a^{q^{2^{j+1}}} = 1 \implies a^{q^{2^j}} = \pm 1 \text{ for } j = 0, \dots, s - 1\},\$$

$$C_n = \{a \in (\mathbb{Z}/n\mathbb{Z})^{\times} \mid a^{(n-1)/2} = \left(\frac{a}{n}\right)\}.$$

Exercice 3. (1) Show that if n is prime, then $A_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(2) Show that if n is composite and $A_n \neq (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $|A_n| \leq \frac{n-1}{2}$.

Exercice 4. A Carmichael number is an odd natural number n that is composite and verifies that $A_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Show that every Carmichael number is of the form $n = p_1 \dots p_r$ for some distinct primes p_1, \dots, p_r , with $r \ge 3$ and such that $(p_i - 1)$ divides (n - 1) for all *i*.

Exercice 5. Show that *n* is prime if and only if $C_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Exercice 6. (1) Show that if *n* is prime, then $B_n = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(2) (*) Show that if n is composite, then $|B_n| \leq \frac{n-1}{4}$.

Exercice 7. Implement the Rabin–Miller and Solovay–Strassen primality tests, which are respectively based on the sets B_n and C_n . Compare them in terms of probability of error and complexity. Can we use the set A_n to give a primality test?