EXERCISE SHEET 4

p-ADIC NUMBERS

Exercise 1. Let p be an odd prime.
(1) Using the Hensel lemma, show that any element $v \in \mathbb{Q}_{p}^{\times}$, written in the form $v=p^{r} u$ with $r \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$, is a square if and only if r is prime and u is a square modulo p.
(2) Deduce an isomorphism $\mathbb{Q}_{p}^{\times} / \mathbb{Q}_{p}^{\times 2} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
(3) Show that $\mathbb{Q}_{2}^{\times} / \mathbb{Q}_{2}^{\times 2} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{3}$.
(4) What are the quadratic extensions of \mathbb{Q}_{p} ?

Exercise 2. Let p be an odd prime. Show that the roots of units of \mathbb{Q}_{p} are the $p-1$ roots of the polynomial $X^{p-1}-1$.

Finite fields

Exercise 3. (1) Show that $X^{2}+X+1$ is irreducible over \mathbb{F}_{5}.
(2) Let $P \in \mathbb{F}_{5}[X]$ be a unitary irreducible polynomial of degree 2 . Show that the quotient ring $\mathbb{F}_{5}[X] /(P)$ is isomorphic to the field \mathbb{F}_{25} and that P has two roots in \mathbb{F}_{25}.
(3) Let α be a root of $X^{2}+X+1$ in \mathbb{F}_{25}. Show that every element of \mathbb{F}_{25} is of the form $x \alpha+y$ with $x, y \in \mathbb{F}_{5}$.
(4) Let $P=X^{5}-X+1$. Show that P is irreducible over \mathbb{F}_{5}. Is it irreducible over \mathbb{Q} ?

Exercise 4. Consider the polynomials $Q(X)=X^{9}-X+1$ and $P(X)=X^{3}-X-1$ with coefficients in \mathbb{F}_{3}.
(1) Show that Q has no root in \mathbb{F}_{3}, nor in \mathbb{F}_{9}.
(2) Show that $\mathbb{F}_{3}[X] /(P)$ is isomorphic to \mathbb{F}_{27}.
(3) Show that every root $\alpha \in \mathbb{F}_{27}$ of P is also a root of Q.
(4) Determine all the roots of Q in \mathbb{F}_{27}.
(5) Factor the polynomial Q over \mathbb{F}_{3}.

Exercise 5. (1) Give all the polynomials over \mathbb{F}_{2} of degree at most 4.
(2) What is the factorization over \mathbb{F}_{4} of an irreducible polynomial $\mathbb{F}_{2}[X]$ of degree 4 ?
(3) Deduce the number of unitary irreducible polynomials of degree 2 over \mathbb{F}_{4}. Then list them all.

Exercise 6. Let $n \in \mathbb{N}$ be a nonzero natural number.
(1) Let $P \in \mathbb{F}_{p}[X]$ be a polynomial of degree n and let m be a natural number. Give a necessary and sufficient condition for P to be irreducible over $\mathbb{F}_{p^{m}}$. In the case where P is irreducible over \mathbb{F}_{p}, precise the possible degrees of the irreducible factors of P over $\mathbb{F}_{p^{m}}$.
(2) What is the minimal m such that every polynomial of degree n with coefficients in \mathbb{F}_{p} splits over (respectively admits a root in) $\mathbb{F}_{p^{m}}$.
Exercise 7. Show that $X^{4}+1$ is irreducible over \mathbb{Z} and reducible modulo all primes.

Exercise 8. Consider the polynomial $P=X^{3}+2 X+1$ and the ring $K=\mathbb{F}_{3}[X] /(P)$. Show that K is a field of cardinal 27 and that X is a generator of the multiplicative group K^{\times}. Find an integer k such that $X^{2}+X=X^{k}$.

Exercise 9 (Cyclotomic polynomials). Let p be a prime number and $n \in \mathbb{N}^{*}$ be an integer coprime with p. Let d denote the order of p in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(1) Show that $\Phi_{n, \mathbb{F}_{p}}$ is the product of $\varphi(n) / d$ irreducible factors of degree d.
(2) Deduce that this polynomial is irreducible if and only if p generates $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(3) Assume that $(\mathbb{Z} / n \mathbb{Z})^{\times}$is cyclic. Show that there exists infinitely many primes ℓ such that $\Phi_{n, \mathbb{F}_{\ell}}$ is irreducible.
Hint. You can use Dirichlet's theorem on arithmetic progressions : for every positive coprime integers n and a, there exists infinitely primes congruent to a modulo n.

Exercise 10 (Eisenstein's criterion). Let $P(X)=a_{n} X^{n}+\cdots+a_{0}$ be a polynomial with coefficients in \mathbb{Z} and let p be a prime number such that
(1) p does not divide a_{n},
(2) for all $i \in\{0, \ldots, n-1\}$, p divide a_{i},
(3) p^{2} does not divide a_{0}.

Show that P is irreducible over \mathbb{Q}.
Application. For q prime, show that Φ_{q} is irreducible over \mathbb{Q}.

