EXERCISE SHEET 4

p-ADIC NUMBERS

Exercise 1. Let p be an odd prime.

- (1) Using the Hensel lemma, show that any element $v \in \mathbb{Q}_p^{\times}$, written in the form $v = p^r u$ with $r \in \mathbb{Z}$ and $u \in \mathbb{Z}_p^{\times}$, is a square if and only if r is prime and u is a square modulo p.
- (2) Deduce an isomorphism $\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times 2} \simeq (\mathbb{Z}/2\mathbb{Z})^2$.
- (3) Show that $\mathbb{Q}_2^{\times}/\mathbb{Q}_2^{\times 2} \simeq (\mathbb{Z}/2\mathbb{Z})^3$.
- (4) What are the quadratic extensions of \mathbb{Q}_p ?

Exercise 2. Let p be an odd prime. Show that the roots of units of \mathbb{Q}_p are the p-1 roots of the polynomial $X^{p-1}-1$.

FINITE FIELDS

Exercise 3. (1) Show that $X^2 + X + 1$ is irreducible over \mathbb{F}_5 .

- (2) Let $P \in \mathbb{F}_5[X]$ be a unitary irreducible polynomial of degree 2. Show that the quotient ring $\mathbb{F}_5[X]/(P)$ is isomorphic to the field \mathbb{F}_{25} and that P has two roots in \mathbb{F}_{25} .
- (3) Let α be a root of $X^2 + X + 1$ in \mathbb{F}_{25} . Show that every element of \mathbb{F}_{25} is of the form $x\alpha + y$ with $x, y \in \mathbb{F}_5$.
- (4) Let $P = X^5 X + 1$. Show that P is irreducible over \mathbb{F}_5 . Is it irreducible over \mathbb{Q} ?

Exercise 4. Consider the polynomials $Q(X) = X^9 - X + 1$ and $P(X) = X^3 - X - 1$ with coefficients in \mathbb{F}_3 .

- (1) Show that Q has no root in \mathbb{F}_3 , nor in \mathbb{F}_9 .
- (2) Show that $\mathbb{F}_3[X]/(P)$ is isomorphic to \mathbb{F}_{27} .
- (3) Show that every root $\alpha \in \mathbb{F}_{27}$ of P is also a root of Q.
- (4) Determine all the roots of Q in \mathbb{F}_{27} .
- (5) Factor the polynomial Q over \mathbb{F}_3 .

Exercise 5. (1) Give all the polynomials over \mathbb{F}_2 of degree at most 4.

- (2) What is the factorization over \mathbb{F}_4 of an irreducible polynomial $\mathbb{F}_2[X]$ of degree 4?
- (3) Deduce the number of unitary irreducible polynomials of degree 2 over \mathbb{F}_4 . Then list them all.

Exercise 6. Let $n \in \mathbb{N}$ be a nonzero natural number.

- (1) Let $P \in \mathbb{F}_p[X]$ be a polynomial of degree n and let m be a natural number. Give a necessary and sufficient condition for P to be irreducible over \mathbb{F}_{p^m} . In the case where P is irreducible over \mathbb{F}_p , precise the possible degrees of the irreducible factors of P over \mathbb{F}_{p^m} .
- (2) What is the minimal m such that every polynomial of degree n with coefficients in \mathbb{F}_p splits over (respectively admits a root in) \mathbb{F}_{p^m} .

Exercise 7. Show that $X^4 + 1$ is irreducible over \mathbb{Z} and reducible modulo all primes.

Exercise 8. Consider the polynomial $P = X^3 + 2X + 1$ and the ring $K = \mathbb{F}_3[X]/(P)$. Show that K is a field of cardinal 27 and that X is a generator of the multiplicative group K^{\times} . Find an integer k such that $X^2 + X = X^k$.

Exercise 9 (Cyclotomic polynomials). Let p be a prime number and $n \in \mathbb{N}^*$ be an integer coprime with p. Let d denote the order of p in $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

- (1) Show that Φ_{n,\mathbb{F}_p} is the product of $\varphi(n)/d$ irreducible factors of degree d.
- (2) Deduce that this polynomial is irreducible if and only if p generates $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- (3) Assume that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic. Show that there exists infinitely many primes ℓ such that $\Phi_{n,\mathbb{F}_{\ell}}$ is irreducible.

Hint. You can use Dirichlet's theorem on arithmetic progressions : for every positive coprime integers n and a, there exists infinitely primes congruent to a modulo n.

Exercise 10 (Eisenstein's criterion). Let $P(X) = a_n X^n + \cdots + a_0$ be a polynomial with coefficients in \mathbb{Z} and let p be a prime number such that

- (1) p does not divide a_n ,
- (2) for all $i \in \{0, \ldots, n-1\}$, p divide a_i ,
- (3) p^2 does not divide a_0 .

Show that P is irreducible over \mathbb{Q} .

Application. For q prime, show that Φ_q is irreducible over \mathbb{Q} .