EXERCISE SHEET 5

Galois theory

Exercice 1. Show that if a and b are two nonzero elements of a field K of characteristic different than 2 , then $K(\sqrt{a})$ is equal to $K(\sqrt{b})$ if and only if b / a is a square in K.

Exercice 2. Let $K=\mathbb{Q}(i+\sqrt{2})$. Show that K is Galois over \mathbb{Q}. Compute the degree of K over \mathbb{Q} and the Galois group of K / \mathbb{Q}. Give the list of subfields of K.

Exercice 3. Let $L=\mathbb{Q}(\sqrt{5})$ and $M=\mathbb{Q}(\sqrt{2+\sqrt{5}})$. Determine the degrees of the extensions $L / \mathbb{Q}, M / \mathbb{Q}$ and M / L. Which of those extensions are Galois? Give the minimal polynomial of $\sqrt{2+\sqrt{5}}$ over \mathbb{Q} and over L.
Exercice 4. Let a and b be two rational numbers. Give a sufficient condition for the polynomial $X^{4}+a X^{2}+b$ to be irreducible over \mathbb{Q}. Give a necessary and sufficient condition for a rupture field to be Galois over \mathbb{Q}. What happens in the case where b is nonpositive and $a^{2}-4 b$ is nonnegative, but not a rational square?

Exercice 5. Let $K=\mathbb{Q}(\sqrt[3]{2})$ and L be its Galois closure over \mathbb{Q}. Compute the degree of L over \mathbb{Q} and the Galois group of L / K. Give the list of subfields of L.

Exercice 6. Let G be the Galois group of $X^{5}-2$ over \mathbb{Q}. What is the cardinality of G ? Is it abelian, solvable?

Exercice 7. What is the degree of the splitting field of the polynomial $\left(X^{3}-5\right)\left(X^{3}-7\right)$ over \mathbb{Q} ?

Exercice 8. Compute the Galois group of $X^{6}-5$ over \mathbb{Q} and over \mathbb{R}.
Exercice 9. Find a primitive element of $\mathbb{Q}(\sqrt{3}, \sqrt{7})$.
Exercice 10. Let G be the Galois group of $\left(X^{3}-5\right)\left(X^{4}-2\right)$ over \mathbb{Q}.
(1) Give a presentation of G by generators and relations.
(2) Is G cyclic, dihedral, symmetric?

Exercice 11. Find a primitive element of the splitting field of $\left(X^{2}-2\right)\left(X^{2}-5\right)\left(X^{2}-7\right)$.
Exercice 12. Let ζ be a primitive 12-nth root of unity. How many extensions are there between $\mathbb{Q}\left(\zeta^{3}\right)$ and $\mathbb{Q}(\zeta)$?

Exercice 13. Let ζ be a primitive 5 -nth root of unity.
(1) Describe the Galois group of $K=\mathbb{Q}(\zeta) / \mathbb{Q}$ and show that K a unique degree 2 subfield over \mathbb{Q}, namely $\mathbb{Q}\left(\zeta+\zeta^{4}\right)$.
(2) Give the minimal polynomial of $\zeta+\zeta^{4}$ over \mathbb{Q}.
(3) Give the Galois group of $\left(X^{2}-5\right)\left(X^{5}-1\right)$.
(4) Give the Galois group of $\left(X^{2}+3\right)\left(X^{5}-1\right)$.

Exercice 14. Let $K=\mathbb{Q}(\sqrt{-15}), f$ its non-trivial automorphism and α an element of K such that the polynomial $X^{3}-\alpha$ is irreducible over K.
(1) Why does such an α exist?

We let L denote the splitting field of this polynomial, and $\theta, j \theta, j^{2} \theta$ its roots in L.
(2) Why are there of this form?
(3) Show that L is a Galois extension of K of degree 6 and that L contains $\sqrt{5}$.
(4) Show that there exists two K-automorphisms σ and τ of L such that

$$
\sigma(\sqrt{5})=\sqrt{5}, \quad \sigma(\theta)=j \theta, \quad \tau(\sqrt{5})=-\sqrt{5}, \quad \tau(\theta)=\theta
$$

(5) Determiner the order of the elements σ and τ of the group $\operatorname{Gal}(L / K)$ and compute $\tau \sigma \tau^{-1}$. Give the list of the extensions of K contained in L.
(6) We now suppose that $N_{K / \mathbb{Q}}(\alpha)$ is the cube of a rational number b. Determine the different conjugates of θ over \mathbb{Q}. Show that the extension L / \mathbb{Q} is Galois of degree 12 . Show that it is possible to extend the automorphism f of K to an automorphism ϕ of L such that $\phi(\sqrt{5})=\sqrt{5}$ and $\phi(\theta)=b / \theta$. Compute $\phi^{2}, \phi \sigma \phi^{-1}$ and $\phi \tau \phi^{-1}$. Show that $\mathbb{Q}(\sqrt{5})$ admits an extension of degree 3 contained in L and Galois over \mathbb{Q}.

Exercice 15. By reducing modulo 2 and 3 , show that the Galois gropu of $X^{5}-X-1$ is the symmetric group S_{5}.

