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Invariants of topological spaces

Problem. Two topological spaces can have the same homology
groups, without being weakly homotopy equivalent.

Solution. Construct more refined algebraic structures.

Mandell, 2006
Let X and Y be two nilpotent spaces of finite type. Then

X ' Y ⇐⇒ C∗(X ,Z) 'E∞ C∗(Y ,Z).

 Need the language of operads.
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Operads

Operads encode multiplicative algebraic structures.

An operad O has
I a space O(k) = {operations with k inputs in an O-algebra}
I composition maps.

Examples: Com,Ass,Lie, . . .

I O = Com encodes commutative algebras: Com(k) = ∗.
I O = Ass encodes associative algebras: Ass(k) = Σk .

E1: associativity up to homotopy

E1(5) =

 1 4 3 5 2

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Little disks operad En

En: more commutativity as n→∞

En(k) = {configurations of k disjoint disks in Dn}
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Composition of little disks
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String topology

For X a closed oriented manifold, the free loop space of X is

LX = Map(S1,X ).

Theorem (Chas–Sullivan)
The homology H∗(LX ) is a BV-algebra.

As operads,
BV ∼= H∗(Efr

2 )

where Efr
2 (k) ' E2(k)× SO(2)k .

Remark
The operad Efr

2 is not reduced, ie Efr
2 (1) ' SO(2) 6' ∗.
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Brane topology at chain level

Question: what about Map(Sn−1,X )?

Conjecture (after Sullivan–Voronov)
For X a closed oriented manifold,

C∗(Map(Sn−1,X )) is an Efr
n -algebra.

[Ginot–Tradler–Zeinalian] construct the underlying En-algebra,
for X an (n − 1)-connected Poincaré duality space.

New approach

The previous structure comes from a general operadic
phenomenon: the brane action.
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Brane action: a first look
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The brane action for E2

The E2-structure in string topology comes from cobordisms

qkS1 Σ S1

parametrized by configurations of disks σ ∈ E2(k).
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The brane action for E2

The E2-structure in string topology comes from cobordisms

qkS1 Σ S1

parametrized by configurations of disks σ ∈ E2(k).

The span
(LX )k f←− Map(Σ,X ) g−→ LX

yields
g∗f ! : H∗(LX )⊗k −→ H∗−(k−1)d (LX ).
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Extensions

Operads  ∞-operads

Assume O⊗ is unital, ie O(0) ' {ι}.

Definition (Extensions)
Let σ be an operation in O⊗ of arity k. An extension of σ is an
operation σ+ of arity k + 1 that restricts to σ on the first k
inputs:

σ+ ◦ (id, . . . , id, ι) ' σ.

Functoriality
Every composite h : X f→ Y g→ Z yields a cospan

Ext(f ) Ext(h) Ext(g)in out
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Coherent ∞-operads

Definition
We say that O⊗ is coherent if
I every unary operation is invertible, and
I for every composite h : X f→ Y g→ Z , the square

Ext(idY ) Ext(g)

Ext(f ) Ext(h).

is cocartesian.
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The brane action

Theorem (Toën, 2013)
Let O⊗ be a coherent reduced ∞-operad with unique color c.
Then the space

O(2) ' Ext(idc)

is canonically an O-algebra in Cospan(S):

σ Ext(idc)qk Ext(σ) Ext(idc)in out
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Example 1: little disks
O = En is coherent, with

Ext(σ) '
k∨

Sn−1.

 cobordisms from before:

Framed little disks
O = Efr

n is not reduced, so cannot apply Toën’s result.
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Example 2: Gromov–Witten invariants

X smooth projective variety over C
Mg ,n moduli of stable curves of genus g with n marked points

GW invariants [Kontsevich–Manin]:

H∗(X ) is an H∗(Mg ,·)-algebra.

Theorem (Mann–Robalo, 2018)
X is a lax M0,·-algebra in spans of derived stacks:

M0,n+1(X )

M0,n+1 × Xn X

p,ev1,...,n evn+1
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Brane action: behind the scene
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Constructions of the brane action

I Toën’s approach: relies on strictification arguments.
I Mann–Robalo’s approach: more synthetic.

Key idea: producing the brane action

O⊗ −→ Cospan(S)⊗

is equivalent to constructing a certain right fibration

π : BO −→ Tw(Env(O))⊗

with fibers BOσ ' Ext(σ).

Problem: [MR] gave a construction of BO but incomplete proof.
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Brane action: generalization

Theorem (P.)
Let O⊗ be a coherent ∞-operad. Then the collection of spaces
{Ext(idX )}X∈O carries a canonical O-algebra structure in
Cospan(S).

New examples

I Efr
n framed little disks

I EM for M a manifold
I More generally, ∞-operad EB of B-framed little disks, for

B → BTop(n)
I SCn,m Swiss–Cheese ∞-operad
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Computing spaces of extensions

Problem: how to compute BOσ ' Ext(σ)?

Solution: follow Toën’s original approach.

Definition (non-colored situation)
For σ ∈ O(n), define Extσ as the pullback

Extσ O(n + 1)

∗ O(n).

y
forget=i∗

σ
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But Ext(σ) ' Extσ?

Claimed in Higher Algebra for a unital ∞-operad, without proof.

However, the equivalence does not hold in this generality.

Theorem (P.)
There is an equivalence

Ext(σ) ' (Extσ)hO(1).

Corollary
If O(1) ' ∗, then Extσ ' Ext(σ) for every σ ∈ O(n).

This corollary is used
I by Lurie to prove coherence of the ∞-operad En,
I by Mann–Robalo to compute the homotopy types of Ext(σ).
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Applications to brane topology
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Operations on spaces of branes

Corollary
Let X be an ∞-topos and X ∈ X. Then the space

Map(Sn−1,X )

of EB-branes internal to X has a canonical EB-algebra structure
in Span(X):

Map(Sn−1,X )m Map(Ext(σ),X ) Map(Sn−1,X ).
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Inverting spans - algebraic geometry

Using the universal property of spans [Stefanich], we obtain:

Corollary (Toën, Ben-Zvi–Francis–Nadler, P.)
Let X be a perfect stack. Then

QCoh(Map(Sn−1,X ))

carries a canonical EB-algebra structure in dgCatL
k .

24 / 26



Inverting spans - algebraic topology

(Work in progress)

Problem. Difficult to functoriality construct in! for the
non-locally compact space Map(Sn−1,X ).

Partial solution (towards Sullivan–Voronov conjecture).
Considering the 6 functors formalism of local
systems/parametrized spectra:

 Efr
n -monoidal dg-category Loc(XSn−1).

For X a Poincaré duality space, one can identify the
endomorphism of the unit as

mapLoc(XSn−1 )(1, 1) ' C∗(XSn
, k)[−d ].

which then inherits an Efr
n⊗E1-structure.
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