
Tits Algebras
Anne Quéguiner-Mathieu

Those are preparation notes for a serie of two talks given in Lausanne in July 2005.

They are quite informal and not intended for publication.

Part I

1. Introduction and examples of Tits algebras

The main purpose of these talks is to make some advertisement for Tits paper

Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque,

J. Reine Angew. Math. 247 (1971), 196-220.

We won’t give any proof. We will only try and describe the situation and study

some examples. Proofs and details may be found in Tits original paper as well as in

[MPW98, §2] and [KMRT98, §27].
As the title of the paper shows, Tits algebras appear in the study of representations

of algebraic groups.

Let G be a semi-simple algebraic group over an arbitrary base field F .

Definition 1.1. — A representation of G is a morphism of algebraic groups

ρ : G→ GL(V ) for some vector space V over F .

It is said to be irreducible if V does not contain any non trivial G-submodule.

If G is split (that is G contains a split maximal torus defined over F ), irreducible

representations of G are classified and this classification does not depend on the base

field (see section 6.3).

Assume now that G is non split. Denote by Fsep a separable closure of F . The group

Gsep := GFsep
is split and irreducible representations of Gsep are classified.

Consider any such representation ρs : Gsep → GL(V ) for some vector space V

over Fsep, and assume it is invariant under the action of the Galois group ΓF =

Gal(Fsep/F ) up to isomorphism. Then, Tits proves it admits a descent to the base

field, but this descent need not in general be a representation in the usual sense.

It is what we call here an algebra representation, ie a morphism of algebraic groups

ρ : G → GL1(A) for some central simple algebra A over F , which is called a Tits

algebra for the group G.

The fact ρ is a descent of ρs means that there exists an isomorphism A ⊗F Fsep ≃
EndFsep

(V ) such that after scalar extension to Fsep, the representation ρ gives rise to

a morphism ρFsep
: Gsep → GL1(A ⊗F Fsep) ≃ GL1(EndFsep

(V )) = GL(V ) which is

ρs.
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Example 1.2. — Consider a quadratic space (V, q) over a field F of characteristic

different from 2.

We denote by C(V, q) the Clifford algebra of (V, q). It can be defined as the quotient

of the tensor algebra T (V ) = ⊕i≥0V
⊗i by the ideal generated by v⊗ v− q(v) for any

vector v ∈ V . The Z-grading of T (V ) induces a Z/2Z-grading on C(V, q) and we let

C0(V, q) be the even part.

The structure of the Clifford algebra is well known and depends on the parity of

the dimension of V and the value of the signed discriminant d(q) ∈ F×/F×2 of the

quadratic form (see [Sch85, chap.9, thm 2.10]). In particular, if dim(V ) is odd, then

the even Clifford algebra C0(V, q) is a central simple algebra over F . If now dim(V ) is

even, the center of C0(V, q) is F [X ]/(X2 − d(q)). When d(q) is trivial, C0(V, q) splits
into a direct product of two central simple algebras over F , C0(V, q) = C+ × C−.
Clearly, there is a natural embedding V ⊂ C(V, q). The quadratic form on V extends

to a norm on C(V, q), which we denote by N . For any v1, . . . , vr ∈ V , the norm of the

image in C(V, q) of v1 ⊗ · · · ⊗ vr is q(v1) . . . q(vr).

Consider now any invertible element s in C0(V, q)×. If sV s−1 ⊂ V , it can be shown

that the map V → V given by v 7→ svs−1 actually is in the group SO(V, q) of special

isometries of (V, q). We then define the Spin group as follows:

Spin(V, q) := {s ∈ C0(V, q)×, sV s−1 ⊂ V and N(s) = 1}

There is an exact sequence of algebraic groups 1 → µ2 → Spin(V, q) → SO(V, q) → 1,

in which the map Spin(V, q) → SO(V, q) ⊂ GL(V ) is given by s 7→ (v 7→ svs−1). This

map is a representation of Spin(V, q), called the vector representation.

We also have, from the definition of the Spin group, a canonical embedding

Spin(V, q) 7→ GL1(C0(V, q)). If dim(V ) is odd, this map is an algebra representation

of the Spin group, and C0(V, q) is a Tits algebra for Spin(V, q). In the split case, that

is when V contains a totally isotropic subspace of dimension [dim(V )
2 ], this map is the

so-called spinor representation.

Assume now that dim(V ) is even and d(q) is trivial. We get two natural maps

Spin(V, q) → GL1(C0(V, q)) → GL1(C±(V, q)) which are algebra representations of

the Spin group. The algebras C+(V, q) and C−(V, q) are Tits algebras for Spin(V, q).

In the split case (that is when (V, q) is hyperbolic), these maps are known as half-spin

representations.

Example 1.3. — Let us go a little bit further is the non split direction, and consider

now a central simple algebra A over F endowed with an orthogonal involution σ.

If the degree of A is odd, then the algebra A is split, A =Mn(F ), and the involution is

given by X 7→ B−1XtB, where B is a symmetric matrix, ie the matrix of a quadratic

form. The Spin group in that case is the Spin group of the underlying quadratic

space, and there is nothing more than in the previous example.
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Asume now that the degree of the algebra is even. We can associate to (A, σ) an or-

thogonal group, a Special orthogonal group, an even Clifford algebra and a Spin group

as we did before for quadratic spaces (see for instance [KMRT98]). In particular, we

define O(A, σ) = {a ∈ A, σ(a)a = 1}, and SO(A, σ) = {a ∈ O(A, σ), NrdA(a) = 1}.
The group Spin(A, σ) is the corresponding simply connected cover. It satisfies

1 → µ2 → Spin(A, σ) → SO(A, σ) → 1.

Hence the ’vector representation’ for the group Spin(A, σ) now is a map

Spin(A, σ) → SO(A, σ) ⊂ GL1(A).

The algebra A itself is a Tits algebra for the group Spin(A, σ).

In the second talk, we will see that using the Brauer classes of Tits algebras, one

can define a morphism α : (Λ/Λr)
ΓF → Br(F ), where Λ and Λr are the weight and

root lattices of G (see sections 5 and 6.2 for a definition of Λ/Λr and section 7.2 for

a definition of α). This quotient C = Λ/Λr is a finite group, which Tits calls the

cocenter of the group G. In particular, this implies that there are only finitely many

possibilities for the Brauer class of a Tits algebra of a given algebraic group. For

Spin group, we have described all of them. We will come back to this example at the

end of the second lecture, and see how some well known relations on Brauer classes

of Clifford algebras follow at once from some obvious relations in the cocenter of the

Spin group, using this morphism α.

Before that, we give some motivation for studying Tits algebras by presenting two

important and recent papers in which they are used.

2. Motivation 1 : Index Reduction Formulas

2.1. Basic facts on central simple algebras. — All the algebras we consider

are supposed to be finite dimensional. Recall an F -algebra A is called central simple

if the center of A is F and A admits no non-trivial two-sided ideal.

Example 2.1. — Split algebra : A = EndF (V ) =Mn(F )

Quaternion algebra : (a, b)F = F ⊕ Fi⊕ Fj ⊕ Fij, with i2 = a, j2 = b and ij = −ji.

The structure of central simple algebras is described in the following theorem, essen-

tially due to Wedderburn :

Theorem 2.2. — The following are equivalent :

(i) A is central simple over F ;

(ii) AFsep
:= A ⊗F Fsep is isomorphic to EndFsep

(V ) for some vector space V over

Fsep;

(iii) AFsep
is isomorphic to Mn(Fsep) for some integer n;

(iv) A is isomorphic toMr(D) for some integer r and some division algebra D, central

over F .
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(Note that D is uniquely determined by A ; D ≃ EndA(M) for any simple left A-

module M ; D is division by Schur’s lemma).

From this, we get the following definition :

Definition 2.3. — The degree of A is deg(A) :=
√

dimF (A)(= n).

The index of A is ind(A) := deg(D)(= n/r).

Example 2.4. — The degree of (a, b)F is 2 and its index is either 1 in which case

(a, b)F ≃M2(F ) or 2 in which case (a, b)F is division.

Example 2.5. — It is known that the tensor product of two central simple algebras

is again central simple. A famous example are the so called biquaternion algebras

which are tensor products of two quaternions, A = (a, b)F ⊗F (c, d)F . It has degree

4. Its index, depending on the base field F and the values of a, b, c and d can be 1, 2

or 4. In the first case, A is isomorphic to M4(F ). In the last one it is division. And

if ind(A) = 2, A ≃M2(Q) for some division quaternion algebra Q.

The Brauer group. — On the set of isomorphism classes of central simple algebras

over F , we define an equivalence relation called ’Brauer equivalence’ by A ∼ A′ if and

only if D ≃ D′, where D and D′ are division algebras respectively associated to A

and A′ by Wedderburn’s theorem.

The tensor product induces a product on the set of Brauer classes of algebras, and

endow this set with a group structure : the Brauer group.

Br(F ) = {[A], A central simple over F}
= {isom. classes of division algebras central over F}.
To have an idea of the group structure, note that if A is central simple over F , then

the map A ⊗F Aop → EndF (A), a ⊗ b 7→ (x 7→ axb) is an isomorphism. Hence

[A]−1 = [Aop].

One may also prove that A⊗n is split. Hence [A⊗n] = [A]n = 1 ∈ Br(F ).

Definition 2.6. — The exponent of A is the order of [A] in Br(F ).

As we just noticed, exp(A)| deg(A).

2.2. Index reduction formulas. — (See Merkurjev, Panin andWadsworth [MPW98]).

The index of a central simple algebra gives a measure of the size of the division part

of the algebra. Hence it is an important invariant, hard to compute in general. We

are interested here in the following natural question :

Question : How does ind(A) behave under scalar extension?

Example 2.7. — ind(AFsep
) = 1;

It is known that if F (t) is a purely transcendental extension of F , then ind(AF (t)) =

ind(A).



5

Remark 2.8. — Note that the index necessarily decreases under scalar extension.

We even have ind(AL)| ind(A), and this is where the name ’index reduction formulas’

comes from.

We do not have a general answer to this question, but we do know the answer for some

particular fields. The first result on this question deals with the field FB :=function

field of the Severi-Brauer variety of a central simple algebra B over F (this is the

variety of minimal right ideals in the algebra B, that is right ideals of dimension

deg(B), corresponding to lines when B is split). It is known that FB is a generic

splitting field for B. Hence ind(BFB
) = 1, whatever ind(B) is. Also ind(B⊗i

FB
) =

ind((BFB
)⊗i) = 1.

Amitsur proved in the 50’s that the kernel of the natural map Br(F ) → Br(FB) is

the subgroup of Br(F ) generated by the class of B. In other words, ind(AFB
) = 1 if

and only if A ∼ B⊗i for some i, i ≤ exp(B).

This result was generalized Schofield and van den Bergh in 1992. They proved that

ind(AFB
) = gcd1≤i≤exp(B) ind(A ⊗ B⊗i). This answers completely the question for

such a field FB .

After this very nice paper, some other computations were made by various people,

until Merkurjev Panin and Wadsworth proved a general formula wich includes the

previous ones, in a serie of two papers called ’Index Reduction Formulas for Twisted

Flag Varieties’ I and II. This is where Tits algebras come into the picture.

A twisted flag variety is a projective variety X endowed with an action of a semi-

simple adjoint algebraic group, satisfying certain properties. Essentially, we want the

group G(Fsep) to act transitively on X(Fsep).

Example 2.9. — Take G = PGL1(B), defined by the exact sequence 1 → Gm →
GL1(B) → PGL1(B) → 1. It is the group of automorphisms of B, and it acts

naturally on the Severi-Brauer variety SB(B), which is a twisted flag variety.

Let us now assume for simplicity that G is of inner type, so that the Galois group ΓF
acts trivially on the group C = Λ/Λr (see sections 5 and 6.2 for a definition of Λ/Λr).

The index reduction formula can be written, in that case, as follows:

ind(A⊗F F (X)) = gcdψ∈C(nψ,P,F ind(A⊗F AG(ψ)),

where, for any ψ ∈ C, AG(ψ) is a Tits algebra for G whose Brauer class is α(ψ).

Example 2.10. — Take again G = PGL1(B) and X = SB(B). In that case, the

group C is Z/nZ and the morphism C → Br(F ) is given by ī 7→ [A⊗i]. Hence, one

recovers Schofield and van den Bergh formula in that case.
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3. Motivation 2 : Central part of the Rost invariant

For any algebraic group G over F , the Galois group ΓF = Gal(Fsep/F ) acts on the

group of Fsep points G(Fsep). We will denote by H1(F,G) the corresponding Galois

cohomology set H1(F,G) = H1(ΓF , G(Fsep)). In general, it is only a pointed set.

But if G is abelian, then it is a group.

In this section, we assume for simplicity char(F ) = 0. Let G be an absolutely simple

simply connected algebraic group. We call a morphism of pointed sets H1(F,G) →
H3(F,Q/Z(2)) a degree 3 invariant of G. It has been proven by Rost that the set of

such invariants is a cyclic group of finite order. This group has a canonical generator

called the Rost invariant (See [KMRT98, chap. VII] or [GMS03]).

For instance, the group H1(F, Spin(q0)) classifies isomorphism classes of quadratic

forms over F having same dimension, discriminant and Hasse invariant as q0, ie such

that the difference q − q0 belongs to the third power of the fundamental ideal I(F ).

The Rost invariant for this group maps the class of q to the Arason invariant e3(q−q0).
But in general, we do not have such a nice description of the Rost invariant.

Let Z be the center of G. Clearly, the Rost invariant induces a degree 3 invariant of

Z, denoted RZ , namely :

H1(F,Z) → H1(F,G) → H3(F,Q/Z(2))

This map RZ , which factors through the pointed set H1(F,G), actually is a group

homomorphism. This follows from Gille’s result that the Rost invariant is compatible

with twisting (see [Gil00]), and was noticed by Garibaldi in [Gar01]. In [MPT02],

Merkurjev Parimala and Tignol compute this invariant for classical groups. For each

type of group, they give a precise formula, which involves corestriction morphisms

and some cup products with Brauer classes of some Tits algebras of G.
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Part II

We begin with well known facts on algebraic groups, representations and root sys-

tems. More details and proofs will be found for instance in Waterhouse [Wat79] for

the group scheme point of view, Humphreys [Hum75] for classical algebraic groups

theory, as well as chapter VI of [KMRT98].

4. Generalities on affine group schemes and their representations

4.1. Affine group schemes. — In this talk, we call algebraic group a smooth

algebraic affine group scheme. This means, in particular, that we think of an algebraic

group as a functor from the category AlgF of unital commutative F -algebras to the

category of groups.

Example 4.1. — (i) Gm : R 7→ R×.

(ii) For any central simple F -algebra A, we define GL1(A) : R 7→ (A⊗F R)×;
If A = F , we get Gm.

If A = EndF (V ), we get GL(V ) : R 7→ GLR(VR).

If A =Mn(F ), we get GLn : R 7→ GLn(R).

(iii) T : R 7→ {diagonal matrices in GLn(R)} ≃ R× × · · · ×R×;

Thus T is a product of n copies of Gm. It is a split torus.

(iv) The reduced norm of A induces a group scheme morphism GL1(A) → Gm. We

define SL1(A) as the kernel of this morphism. Hence for any R,

SL1(A)(R) = {a ∈ A×
R, NrdAR

(a) = 1}.
(v) We have already seen O(A, σ) := {a ∈ A, σ(a)a = 1}. The corresponding

algebraic group is given by O(A, σ)(R) = {a ∈ AR, σR(a)a = 1}.
(vi) The same way, we deduce from the definitions of the groups Spin(V, q) (resp.

Spin(A, σ)) as a subgroup of C0(V, q)× (resp. C(A, σ)×) the definition of the corre-

sponding group scheme, which is contained in GL1(C0(V, q)) (resp. GL1(C(A, σ))).

Definition 4.2. — Let G be an algebraic group over F and L/F a field extension.

For any R ∈ AlgL, R can also be viewed as an F -algebra and we define the group

scheme GL by GL(R) := G(R).

Definition 4.3. — Let L/F be a finite separable field extension, and G over L an

algebraic group. The corestriction RL/F (G) is the group scheme over F defined by

RL/F (G)(R) = G(R ⊗F L) for any R ∈ AlgF .

Example 4.4. — By definition, a torus is an algebraic group T which is isomorphic

to a product of Gm after scalar extension to a separable closure of the base field.

The group T/F defined by T = RL/F (Gm) is an example of a non split torus. Indeed,

T (F ) = L× which is not isomorphic to a product of n copies of F×. While after scalar
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extension to Fsep, we have for any Fsep algebra R,

TFsep
(R) = T (R) = Gm(R⊗F L) = (R⊗F L)×.

But since R contains Fsep, this is isomorphic to R× × · · · × R×. This proves that

TFsep
is a split torus.

4.2. Representations. — Let ρ be a representation of the algebraic group G over

F , that is a morphism of algebraic groups G→ GL(V ) for some vector space V over

F . Hence, we have for any F -algebra R a group morphism G(R) 7→ GL(V ⊗F R).
If dim(V ) = 1, then GL(V ) = Gm. Hence one-dimensional representations of G are

morphisms G → Gm. They are called characters of the group G. The multiplication

of Gm, viewed as a morphism Gm×Gm → Gm induces a law on the set of characters

of G, and endow this set with an abelian group structure.

Notation: We will denote by G⋆ the abelian group of characters of G.

Example 4.5. — The character group of Gm is Z (x 7→ xr).

The character group of the split torus Gm × · · · × Gm is Zr. (The character corre-

sponding to (n1, . . . nr) ∈ Zr is given by χ(n1,...,nr)(t1, . . . , tr) = tn1

1 . . . tnr
r .)

We will also use the adjoint representation of G, Ad : G→ GL(Lie(G)).

Example 4.6. — If G = GL(V ), then Lie(G) = EndF (V ) and the adjoint represen-

tation is given by Ad(α)(β) = αβα−1.

4.3. Representations of a split torus. — Let T be a split torus T = (Gm)r, and

let ρ : T → GL(V ) be a representation of T over F .

Definition 4.7. — A character λ ∈ T ⋆ is called a weight for ρ if there exist a non-

trivial vector v ∈ V such that for any t ∈ T (F ), ρ(t)(v) = λ(t).v. The multiplicity

mλ of a weight λ is the dimension of the corresponding weight subspace

Vλ = {v ∈ V, ∀t ∈ T (F ), ρ(t)(v) = λ(t).v}.

Example 4.8. — Look at the adjoint representation for G = GL(V ), and its re-

striction to the torus of diagonal matrices. We have ρ(t1, . . . , tn)(mij) = (tit
−1
j mij).

Hence the action is trivial on diagonal matrices, which means that 0 is a weight of mu-

tiplicity n. Any n-tuple of Zr of the form (. . . , 1, . . . ,−1, . . . ) or (. . . ,−1, . . . , 1, . . . )

is a weight of multiplicity 1.

Theorem 4.9. — For any representation ρ : T → GL(V ), the vector space V de-

composes as a direct sum of the weight subspaces V = ⊕λVλ.

Hence a representation of a split torus is entirely determined by its weights and their

multiplicities.
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5. Root systems

A root system is a geometric data. It is defined as follows:

Let V be a finite dimensional R vector space. For any α ∈ V , α 6= 0, a reflection of V

with respect to α is any endomorphism s of V satisfying s(α) = −α and s|W = IdW
for some hyperplane W ⊂ V . Hence, for any v ∈ V , we have s(v) − v = xα for some

x ∈ R, which we denote by s⋆(v).

Definition 5.1. — A root system in V is a finite subset Φ ⊂ V satisfying :

(i) 0 6∈ Φ and Φ spans V .

(ii) For any α ∈ Φ, Rα ∩ Φ = {α,−α}.
(iii) For any α ∈ Φ, there exists a reflection sα with respect to α such that sα(Φ) ⊂ Φ.

(iv) For each α, β ∈ Φ, s⋆α(β) ∈ Z.

Example 5.2. — Consider the set of vertices of a regular hexagon in R2. It is a

root system, reflections sα being orthogonal reflections with respect to some of the

symetry axis of the hexagon.

An automorphism of the root system Φ is any automorphism f of V which preserves Φ.

The automorphism group Aut(V,Φ) contains a subgroup generated by the reflections

sα for any α ∈ Φ, which is called the Weyl group of Φ.

Example 5.3. — In our situation, the automorphism group is the group of isome-

tries preserving the hexagon. It is isomorphic to the dihedral group D6. The Weyl

subgroup is a subgroup of index 2.

Given such a root system, we define two lattices in Rn :

The root lattice is the lattice generated by the roots, Λr = {∑α∈Φmαα, mα ∈ Z}.
The weight lattice is the dual lattice of Λr, Λ = {v ∈ V, s⋆α(v) ∈ Z ∀α ∈ Φ}.
Clearly, Λr ⊂ Λ. Moreover, it is known that the quotient Λ/Λr is a finite group.

Example 5.4. — In our situation, the weight lattice contains the centers of the

triangles of the root lattice. The quotient is isomorphic to Z/3Z.

Definition 5.5. — A subset Π ⊂ Φ is called a basis of Φ (or a set of simple roots)

if it is a basis of V and any α ∈ Φ is written α =
∑

γ∈Πmγγ with either mγ ≥ 0 for

all γ ∈ Π, or mγ ≤ 0 for all γ ∈ Π

Example 5.6. — Pick two vertices α and γ in the hexagon which are neither con-

secutive nore opposite. The other roots are α+ γ, −α, −γ and −α− γ. Hence {α, γ}
is a basis.

As one may easily check on this example, the Weyl group acts simply transitively on

the set of basis of Φ.
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Definition 5.7. — Given a basis Π ⊂ Φ, the cone of dominant weights is the subset

Λ+ ⊂ Λ defined by Λ+ = {v ∈ Λ, s⋆α(v) ≥ 0, ∀α ∈ Π}.

Example 5.8. — In our situation, the axis of the three reflections sα, sβ and sγ
divides R2 in six sectors. The cone of dominant weights with respect to the basis

{α, γ} consists of the points of Λ which belongs to the sector containing α+ γ.

Given a root system Φ and a base Π ⊂ Φ, we define the Dynkin diagram of Φ as

follows :

Π is the set of vertices ;

Two vertices α and β are connected by s⋆α(β)s
⋆
β(α) edges, with an orientation from α

to β if s⋆α(β) > s⋆β(α).

Example 5.9. — In our example, the diagram has two vertices connected with one

edge. This root system is denoted by A2 in the litterature.

One can prove that this diagram does not depend on the choice of a basis Π ⊂ Φ.

Moreover, it contains all information on the root system, as the following theorem

shows :

Theorem 5.10. — Two root systems are isomorphic if and only if they have the

same Dynkin diagrams.

Root systems are classified and to describe this classification, it is enough to describe

the corresponding diagrams. A root system is called irreducible if its diagram is

connected. Any root system is a sum of irreducible ones (by this, we mean that we

take the sum of the underlying vector spaces and the union of the corresponding root

systems). The corresponding diagram is the union of the diagrams of the summands.

Hence we only have to describe irreducible root systems, or equivalently connected

Dynkin diagrams.

Theorem 5.11. — Any connected Dynkin diagram is one of the following: An, Bn,

Cn, Dn, E6, E7, E8, F4 and G2.

This classification is described in many books, and you may find there all information

about the corresponding root systems. For instance, a description of Λ, Λr, the value

of the finite group Λ/Λr... (See for instance [KMRT98]).

6. Split semi-simple algebraic groups

6.1. Definition. — Given an algebraic group G, the group GFalg
is an algebraic

group in the classical sense (that is an affine variety over an algebraically closed field

endowed with a group structure).

We say that G is semi-simple if this group GFalg
is semi-simple in the classical sense.

More precisely, this means that G is non trivial and connected, and GFalg
does not
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contain any non trivial normal connected solvable subgroup. (An algebraic group H

is said to be solvable if H(Falg) is solvable as an abstract group).

Example 6.1. — SL1(A), PGL1(A), SO(A, σ), Spin(A, σ) are examples of semi-

simple groups.

GL1(A) and O(A, σ) are not semi-simple.

A torus T ⊂ G is called maximal if it is not contained in a larger torus T ′ ⊂ G. It

is known that maximal tori remain maximal under any scalar extension. Moreover,

they are conjugate over Falg by elements of G(Falg).

Definition 6.2. — The semi-simple group G is said to be split if it contains a split

maximal torus T .

Example 6.3. — SL(V ), PGL(V ), SO(V, q) and Spin(V, q) for some hyperbolic

quadratic space (V, q) are examples of split semi-simple groups.

From now on, we assume G is a split semi-simple algebraic group and we fix a split

maximal torus T ⊂ G.

6.2. Classification by root systems. — To the data of a split semi-simple group

G and a split maximal torus T ⊂ G, we can associate a root system as follows.

Consider the adjoint representation Ad : G 7→ GL(Lie(G)), and its restriction Ad|T

to the torus T . Among the weights of Ad|T , there is

0 with a certain multiplicity (namely the dimension of the corresponding weight space

V0 = {v ∈ V, ∀t ∈ T (F ), ρ(t)(v) = v});
some characters of T which appear to have multiplicity 1.

Definition 6.4. — A root of G is a non trivial weight of the adjoint representation.

The roots of G form a finite set Φ(G) in T ⋆ = Zr.

Theorem 6.5. — (i) Φ(G) is a root system in T ⋆ ⊗Z R; we have Λr ⊂ T ⋆ ⊂ Λ.

(ii) The group G is uniquely determined, up to isomorphism by its root system Φ(G)

and the quotient T ⋆/Λr which is a finite subgroup of C = Λ/Λr.

Definition 6.6. — The group G is adjoint if T ⋆ = Λr and simply connected if

T ⋆ = Λ.

It follows from the theorem that simply-connected and adjoint groups are uniquely

determined by their root system.

Example 6.7. — (i) Groups of type An. For An, the quotient C = Λ/Λr is equal

to Z/(n + 1)Z. The subgroups of Z/(n + 1)Z are Z/kZ for any k dividing n +

1. The corresponding split semi-simple group is SLn+1 /µk. In particular, the split

simply connected group of type An is SLn+1 and the split adjoint group of type An
is SLn+1 /µn+1 ≃ PGLn+1.
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(ii) Groups of type Dn. Among the split semi-simple groups of type Dn, one finds

Spin(V, q)(simply connected), SO(V, q) and SO(V, q)/µ2 (adjoint), where (V, q) is a

hyperbolic quadratic space of dimension 2n.

If n is odd, then C = Z/4Z, which admits only one non trivial subgroup and the

classification is done in that case. If n is even, then C = Z/2Z ⊕ Z/2Z has three

different non trivial subgroups. The missing groups in this case are the images of the

half spin representations Spin(V, q) → GL1(C0(V, q)) → GL1(C±(V, q)).

6.3. Representations of a split semi-simple group. — This root system data

can also be used to classify irreducible representations of a split semi-simple group G.

Indeed, let us fix a base Π in the root system Φ(G). Remember that this determines

a subset of Λ called the cone of dominant weights.

We can define an ordering on Λ by λ ≥ µ if λ−µ is a non negative linear combination

of elements of Π. (Remember that Π is a basis of V , hence λ − µ is a unique linear

combination of elements of Π).

Now, let ρ : G → GL(V ) be an irreducible representation of V . The set of weights

of ρ is a finite subset in T ⋆ ⊂ Λ. It can be proven that it contains a maximal

element, which we call the highest weight of ρ, and which belongs to Λ+. This gives

a classification of irreducible representations of G:

Theorem 6.8. — The map which associates to any irreducible representation of G

its highest weight induces a 1-1 correspondance between isomorphism classes of irre-

ducible representations and T ⋆ ∩ Λ+.

Remark 6.9. — If G is simply connected, we get T ⋆ ∩ Λ+ = Λ+.

In fact, given a semi-simple group G, it can always be written as G = G̃/Z where

G̃ is the semi-simple simply connected group of the same type as G and Z is a

subgroup of the center of G̃. Any dominant weight then corresponds to an irreducible

representation ρ̃ : G̃ → GL(V ). This representation factors through G if and only if

its dominant weight actually belongs to T ⋆.

7. Tits algebras

We go back to the general situation. Hence, the group G now is a not necessarily split

semi-simple group over a field F , and we fix a maximal torus T ⊂ G. For simplicity,

we also assume that G is simply connected.

Clearly, the group Gsep is a split semi-simple algebraic group over F .

Definition 7.1. — We call root system of G the root system Φ(Gsep).

Hence irreducible representations of Gsep are classified by Λ+.
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7.1. Algebra representations. — We give the following definitions.

Definition 7.2. — An algebra representation of G is a morphism ρ : G→ GL1(A)

for some central simple algebra A over F .

Two such representations ρ : G → GL1(A) and ρ
′ : G → GL1(A

′) are called isomor-

phic if there exist an isomorphism φ : A→̃A′ such that ρ′ = φ ◦ ρ.
The algebra representation ρ is called irreducible if ρsep is irreducible (as an usual

representation).

If ρ is irreducible, the highest weight of ρ is the highest weight of ρsep.

Note that the Galois group ΓF acts naturally on T ⋆sep = Hom(Tsep, Gm,Fsep
). This

induces an action on Φ(G), Λr and Λ. But this action does not preserve Π and Λ+.

We define a new action of γ on T ⋆sep as follows. It is known that the Weyl group

permutes the bases of Φ(G). Hence, for any γ ∈ ΓF , there exists a unique element

wγ ∈ W (Φ(G)) such that w(γ(Π)) = Π. We let γ ⋆ v := wγ(γ(v)). This new action

preserves Π and hence Λ+.

Moreover, one can check that for any representation ρsep : Gsep → GL(V ) of dominant

weight λ ∈ Λ+, and any γ ∈ ΓF , the dominant weight of γρsep is γ ⋆ λ.

In his paper, Tits proves an analogue of the theorem of classification of irreducible

representations which is the following :

Theorem 7.3. — ([Tit71]) The map which associates to any irreducible algebra rep-

resentation of G its highest weight induces a 1-1 correspondance between isomorphism

classes of irreducible algebra representations and ΛΓF

+ .

Hence, given any λ ∈ ΛΓF

+ , there exists a central simple algebra A(λ) unique up to

isomorphism and a morphism ρ : G→ GL1(A(λ)) which is, after scalar extension to

Fsep the irreducible representation of Gsep of highest weight λ.

7.2. Brauer classes of Tits algebras. — Tits also proves that there are only very

few possibilities for the Brauer classes of those algebras. More precisely :

Proposition 7.4. — For any λ ∈ Λ+
ΓF ∩ Λr, the algebra A(λ) is split.

For any λ and µ ∈ ΛΓF

+ , we have [A(λ + µ)] = [A(λ)] + [A(µ)].

Combining those two results, we can extend the map ΛΓF

+ → Br(F ) to a group

morphism ΛΓF → Br(F ), and then

α : (Λ/Λr)
ΓF → Br(F ).

Remember that this group Λ/Λr is a finite group. Hence there are only finitely many

possibilities for the Brauer class of a Tits algebra for a given group.

Example 7.5. — (i) Consider the group of type An, G = SL1(A) for some central

simple algebra A over F of degree n+ 1. The morphism α is given by

α : Z/(n+ 1)Z → Br(F ), ī 7→ [A⊗i].
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(ii) Consider the group of type Dn (n 6= 4), G = Spin(A, σ) for some central simple

algebra A of degree 2n with orthogonal involution σ.

Let us write C = {0, λ, λ+, λ−}, where λ is the unique element of order 2 if n is odd

and C ≃ Z/4Z and λ = (1, 1) if n is even and C ≃ Z/2Z⊕ Z/2Z.

We have seen in the very beginning of the first lecture that Spin(A, σ) → GL1(A), so

that A is a Tits algebra for G. One may prove that α(λ) = [A].

If d(σ) = 1 ∈ F×/F×2, then we have already seen that C(A, σ) = C+ × C−, and we

have α(λ±) = [C±].
Let us assume now that d(σ) 6= 1. In that case, one may prove that the elements λ+
and λ− are not invariant under ΓF . They are conjugate under the action of ΓF .

But if we extend scalars to E = F (
√
δ), the discriminant becomes trivial. Hence the

weights λ± belongs to CΓE and they are mapped under αE to some classes in Br(E).

Let us now compute these classes.

The Clifford algebra of (AE , σE) is C(AE , σE) = C(A, σ) ⊗F E. But since E is the

center of C(A, σ), we get C(AE , σE) = C(A, σ)×C(A, σ). Hence αE(λ+) = αE(λ−) =

[C(A, σ)] ∈ Br(E).

This morphism α has a nice behavior with respect to scalar extensions. In particular,

Tits proves that the following diagram is commutative for any field extension E/F :

CΓF → Br(F )

↓ ↓
CΓE → Br(E)

He also proves α commutes with corestriction. Let E/F be a finite Galois extension.

Let λ ∈ CΓE , and let NE/F (λ) ∈ CΓF be the sum of the conjugates of λ under the

action of Gal(E/F ).

We then have αF (NE/F (λ)) = NE/F (αE(λ)), where the second NE/F denotes the

corestriction morphism Br(E) → Br(F ).

7.3. Brauer classes of Clifford algebras. — Since α is a group morphism, any

relation in the group C induces an analogue relation for the Brauer classes of the

corresponding Tits algebras.

For instance, it is proven in [KMRT98, (9.12)] that :

If n is even, then

(i) [C(A, σ)]2 = 1 ∈ Br(E) and

(ii) NE/F ([C(A, σ)]) = [A] ∈ Br(F ).

If n is odd, then

(iii) [C(A, σ)]2 = [AE ] ∈ Br(E) and

(iv) NE/F ([C(A, σ)]) = 1 ∈ Br(F ).
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This theorem can be easily deduced from the properties of the morphism α described

above. Indeed, we have [C(A, σ)]2 = αE(2λ+). Hence (i) and (iii) follows from

2λ+ =

{

0 if n is even

λ if n is odd
.

Also, NE/F ([C(A, σ)]) = α(NE/F (λ+)) = αE(λ+ + λ−). Hence (ii) and (iv) follows

from λ+ + λ− =

{

λ if n is even

0 if n is odd
.

References

[Gar01] R. S. Garibaldi – “The rost invariant has trivial kernel for quasi-split groups
of low rank”, Commentarii Mathematici Helvetici (2001), no. 76, p. 684–711.

[Gil00] P. Gille – “Invariants cohomologiques de rost en caractristique positive”, K-

Theory 21 (2000), no. 1, p. 57–100.

[GMS03] S. Garibaldi, A. Merkurjev & J.-P. Serre – Cohomological invariants in

galois cohomology, University Lecture Series, vol. 28, Amer. Math. Soc., Provi-
dence, RI, 2003.

[Hum75] J. E. Humphreys – Linear algebraic groups, Graduate Texts in Mathematics,
vol. 21, Springer-Verlag, New York-Heidelberg, 1975.

[KMRT98] M.-A. Knus, S. A. Merkurjev, M. Rost & J.-P. Tignol – The book of

involutions, Colloquium Publ., vol. 44, Amer. Math. Soc., Providence, RI, 1998.

[MPT02] A. Merkurjev, R. Parimala & J.-P. Tignol – “Invariants of quasi-trivial tori
and the rost invariant”, Algebra i Analiz 14 (2002), no. 5, p. 110–151, Translation
in St Petersburg Math. J. 14 (2003), no 5, 791-821.

[MPW98] A. S. Merkurjev, I. A. Panin & A. R. Wadsworth – “Index reduction
formulas for twisted flag varieties, i”, K-Theory 14 (1998), no. 2, p. 101–196.

[Sch85] W. Scharlau – Quadratic and hermitian forms, Grundlehren der Mathematis-
chen Wissenschaften, vol. 270, Springer, Berlin, 1985.

[Tit71] J. Tits – “Reprsentations linaires irreductibles d’un groupe rductif sur un corps
quelconque”, J. Reine Angew. Math. 247 (1971), p. 196–220.

[Wat79] W. C. Waterhouse – Introduction to affine group schemes, Graduate Texts in
Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979.

October 3, 2005


