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Introduction

The origin of Milnor’s conjecture is a famous and very nice paper [Mil] published
in Inventiones in 1970. In this paper, Milnor studies the relation between three
graded rings, namely

1



2 A. QUÉGUINER-MATHIEU

• Milnor K-theory modulo 2, kM? F ,
• The graded Witt ring of quadratic forms GW?F = ⊕n≥0I

nF/In+1F ,
• Galois cohomology H?(F ) with coefficients in Z/2Z,

where the base field F has characteristic different from 2. There exist non-trivial
homomorphisms, which we will describe later,

GW?F

kM? F

s?

::

h?

##
H?(F )

The definition of both maps is explained in Milnor’s paper; the second is due
to Bass-Tate. The statement that they are isomorphisms is known as Milnor’s
conjecture. Milnor does not formally state this as a conjecture in his paper. But he
asks in question 4.3 whether the first map is an isomorphism in every degree; and
he writes in the introduction that “Section 6 describes the conjecture that kM? F
is canonically isomorphic to H?(F )”. He also gives several examples of fields for
which both maps are isomorphisms.

In 2003, Voevodsky [Voe] published a proof of the second statement, that is the
map h? : kM? F → H?(F ) is an isomorphism. The result was already known in
degree 1 (we will see a proof in these lectures), in degree 2 by Merkurjev [Me],
and in degree 3 by Merkurjev-Suslin[MS], and independently, Rost [R]. One of
the aim of the summer school is to explain Voevodsky’s proof. It actually extends
to a more general result, known as the Bloch-Kato conjecture, which states that
K-theory modulo ` is isomorphic to Galois cohomology with coefficients in µ`, for
every prime ` and every field of characteristic different from `.

Using Voevodsky’s result, several authors provided proofs that the other map
also is an isomorphism, or equivalently that we actually have a commutative triangle
of isomorphisms

GW?F

'

��

kM? F

s?

'

::

h?

'
##
H?(F )

(see Orlov-Vishik-Voevodsky [OVV], Morel [Mo1] and [Mo2] and Kahn-Sujatha [KS]).
Note that even though they use different approaches, they all rely heavily on Vo-
evodsky’s theorem.

1. Definition of Milnor’s K-theory

Throughout these notes, the base field F has characteristic different from 2. The
main reference for this section is Milnor’s paper [Mil]. His definition is motivated by
Matsumoto’s theorem, which gives a description of K2F by generator and relations.
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1.1. The graded ring KM
? F . In this subsection, the base field F is arbitrary.

Its multiplicative group is denoted by F×. To the field F , we associate a graded
ring KM

? F := ⊕n≥0KnF defined as follows. First, we define K1F to be the group
F×, written additively. Its elements are denoted by {a}, for a ∈ F×; they satisfy
{ab} = {a}+ {b}. In particular, {1} = 0.

Definition 1.1. Milnor’s K ring KM
? F is the quotient of the tensor algebra

⊕n≥0(K1F )⊗n

by the ideal generated by the elements {a} ⊗ {1− a}, for all a ∈ F×, a 6= 1.

In other words, KM
? F is the associative ring with unit generated by the elements

{a}, for all a ∈ F×, subject to the relations

(1) {ab} = {a}+ {b} for all a, b ∈ F×,
(2) {a}{1− a} = 0 for all a ∈ F×, a 6= 1.

The ring KM
? F is graded. Its nth part KM

n F is generated by the tensor products
{a1}⊗{a2}⊗ . . .⊗{an}, for a1, . . . , an ∈ F×. Such an element is called an n-symbol
and will be denoted by

{a1, . . . , an} = {a1} ⊗ . . .⊗ {an}.
Note in particular that {a1, . . . , an} = 0 if ai = 1 for some i. The defining relations
for the group KnF are the following : for all a1, . . . , an, bi ∈ F×,

(1) {a1, . . . , aibi, . . . an} = {a1, . . . , ai, . . . an}+ {a1, . . . , bi, . . . an},
(2) {a1, . . . , ai, 1− ai, . . . , an} = 0 if ai 6= 1.

1.2. Relations on symbols. We now describe other relations on symbols, follow-
ing easily from the relations (1) and (2).

Lemma 1.2. For all a ∈ F×, we have {a,−a} = 0.

Proof. This is obvious if a = 1. Otherwise, we have −a = 1−a
1−a−1 . Hence {−a} =

{1− a} − {1− a−1} and multiplying on the left by {a}, we get

{a,−a} = {a, 1− a} − {a, 1− a−1} = {a−1, 1− a−1} = 0.

�

Remark 1.3. Combining this with the relation (2), we get

{a, b} = 0 if a+ b = 0 or 1.

Lemma 1.4. For all a, b ∈ F×, we have {a, b} = −{b, a}.

Proof. By bilinearity, we have

{ab,−ab} = {a,−a}+ {a, b}+ {b, a}+ {b,−b} = {a, b}+ {b, a},
which is trivial by the previous lemma. �

More generally, the following holds, proving that KM
? F is graded-commutative:

Lemma 1.5. For all α ∈ KnF and β ∈ KmF , we have

βα = (−1)mnαβ.

Proof. Clearly, it is enough to check the relation on symbols. Since {a1, . . . , an} =
{a1} . . . {an}, the result follows from the previous lemma. �
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The fundamental relations {a,−a} = 0 and {a, 1 − a} = 0 extend in two ways.
Consider a1, . . . , an ∈ F×.

Lemma 1.6. If ai + aj is 0 or 1 for two distinct indices 1 ≤ i, j ≤ n, then
{a1, . . . , an} = 0.

Proof. Rearranging the factors using lemma 1.4, we get

{a1, . . . , an} = ±{ai}{aj}{a1} . . . {an} = 0.

�

Lemma 1.7. If the sum a1 + · · ·+ an is 0 or 1, then {a1, . . . , an} = 0.

Proof. We argue by induction on the number n of factors. The result is known if
n = 2. For n ≥ 3, consider {a1, . . . , an} with a1 +· · ·+an = 0 or a1 +· · ·+an = 1. If
a1+a2 = 0, then {a1, a2} = 0, and we are done. Otherwise, we have a1

a1+a2
+ a2
a1+a2

=
1, so (

{a1} − {a1 + a2}
)(
{a2} − {a1 + a2}

)
= 0,

that is

{a1, a2} − {a1, a1 + a2}+ {a2, a1 + a2}+ {a1 + a2, a1 + a2} = 0.

Multiplying on the right by {a3, . . . , an}, we get a sum of four terms. The last
three terms are multiples of {a1 + a2, a3, . . . , an}, which is trivial by the induction
hypothesis. So the first term {a1, . . . , an} also is trivial. �

We finish with a result that proves useful in computations:

Lemma 1.8. For all a ∈ F×, we have {a}2 = {a,−1} = {−1, a}.

Proof. Again, this follows from lemma 1.2. Indeed, we have

{a, a} = {a, (−1)(−a)} = {a,−1}.
The second equality can be proven similarly. It does not contradict lemma 1.4 since
{−1, a} has order 2,

{−1, a}+ {−1, a} = {(−1)2, a} = 0.

�

1.3. Milnor’s K-theory modulo 2. In these lectures, we are mostly interested
in K-theory modulo 2.

Definition 1.9. The K-theory modulo 2 of F is the quotient

kM? F = KM
? F/2KM

? F.

In particular, we have k0F = Z/2Z, k1F ' F×/F×2, and more generally, knF =
KnF/2KnF . Note that by Lemma 1.5, the product is commutative in kM? F . The
structure of graded ring of kM? F induces a structure of graded Z/2Z-algebra on
kM? F .

We use the same notation {a1, . . . , an} for a symbol in KM
n F and its class modulo

2KM
n F . The presentation of KM

? F by generators and relations extends to Milnor’s
K-theory modulo 2 as follows. The classes {a}, with a ∈ F×, generate the graded
ring kM? F ; they are subject to the following relations:

(1) {ab} = {a}+ {b};
(2) {a, 1− a} = 0 if a 6= 1;
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(3) 2{a} = 0.

In particular, we have

{a1, . . . , aib
2, . . . an} = {a1, . . . , an}+ 2{a1, . . . , b, . . . , an} = {a1, . . . , an} ∈ kMn F,

so that symbols {a1, . . . , an} with ai ∈ F×/F×2 are well defined in Milnor’s K-
theory modulo 2. Moreover, for all a, b, c with b2−ac2 6= 0, the symbol {a, b2−ac2}
vanishes in kM2 F . This is clear if b = 0; if b 6= 0, it follows from the following:

{a, b2 − ac2} = {a, 1− a
(
c/b
)2} = {a

(
c/b
)2
, 1− a

(
c/b
)2} = 0 ∈ kM2 F.

In particular, if a 6∈ F×2, we have

{a, b} = 0 ∈ kM2 F if b ∈ NF (
√
a)/F

(
F (
√
a)×

)
.

2. Connections with quadratic forms

2.1. The Witt ring W (F ). In this subsection, we recall the definition of the Witt
ring, introduced by E. Witt in 1937 [W]. He endows the set of isometry classes of
anisotropic quadratic forms over a given field F with a ring structure, using direct
orthogonal sum and tensor product. We do not include proofs, and refer the reader
to [Kahn], [Lam] or [Sch] for a detailed exposition.

All the quadratic forms considered here are assumed to be non-degenerate. For
every such form ϕ : V → F , we let 〈a1, . . . , an〉 be a diagonalization. The vector
v ∈ V is isotropic if v 6= 0 and ϕ(v) = 0. The quadratic form ϕ is said to be
isotropic if it admits an isotropic vector and anisotropic otherwise. Recall the
following classical and elementary result on quadratic forms:

Proposition 2.1. Let ϕ : V → F be a non degenerate quadratic form over F .

(1) There exists v ∈ V such that ϕ(v) = a ∈ F× if and only if ϕ admits a
diagonalization ϕ ' 〈a, a2, . . . , an〉. When these two assertions hold, we
say that ϕ represents the value a.

(2) The form ϕ is isotropic if and only if it admits a diagonalization ϕ '
〈1,−1, a3, . . . , an〉.

The 2-dimensional subspace H = 〈1,−1〉 is called a hyperbolic plane. A qua-
dratic form is said to be hyperbolic if it is an orthogonal sum of hyperbolic planes.
Using this proposition, one may easily split a quadratic form ϕ as a hyperbolic part
and an anisotropic part. It is a remarkable fact that this decomposition is unique,
that is:

Theorem and Definition 2.2. Let ϕ be a non-degenerate quadratic form over
F . There exist a unique integer i and an anisotropic quadratic form ϕan over
F , uniquely defined up to isomorphism, such that ϕ is the direct orthogonal sum
ϕ ' iH+ϕan. The integer i is the Witt index of ϕ and the form ϕan is its anisotropic
part.

The Witt-index can be computed as follows: it is the maximal dimension of
totally isotropic subspaces, that is subspaces over which ϕ is identically zero. The
uniqueness part of the statement is a straightforward consequence of the following
result, known as Witt-cancellation theorem:

Theorem 2.3. Let ϕ1, ϕ2 and ϕ3 be three quadratic forms over F . If the orthogonal
sums ϕ1 + ϕ3 and ϕ2 + ϕ3 are isometric, then so are ϕ1 and ϕ2.
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With this in hand, we may now consider the following equivalence relation on
quadratic forms:

Definition 2.4. The quadratic forms ϕ and ψ are Witt equivalent if their anisotropic
parts ϕan and ψan are isomorphic.

If the forms ϕ and ψ are Witt-equivalent, their dimensions differ by some even
integer, say dim(ϕ) = dim(ψ) + 2r. By Witt cancellation theorem, we then have
ϕ ' ψ+rH. Using this, one may easily check that direct sum and tensor product are
compatible with the Witt-equivalence relation. Note in particular that the tensor
product of a hyperbolic plane with any quadratic form is hyperbolic. Hence we get

Theorem and Definition 2.5. The direct orthogonal sum and the tensor product
induce well-defined operations on the set W (F ) of equivalence classes of quadratic
forms for Witt-equivalence. With these operations, W (F ) is a ring called the Witt
ring of the field F .

Remark 2.6. Alternately, one may define the Witt group as the quotient of the
Grothendieck group of the category of quadratic forms, with direct orthogonal sum,
by the classes of hyperbolic forms.

Remark 2.7. Since quadratic forms are diagonalizable, the group W (F ) is gener-
ated by the one-dimensional forms 〈a〉. Moreover, they satisfy the following rela-
tions1

(1) 〈ab2〉 = 〈a〉,
(2) 〈a〉+ 〈−a〉 = 0.

In particular, we have the following equality in W (F ):

(1) 〈a, b〉 = 〈1, a〉 − 〈1,−b〉.

2.2. Augmentation ideal and the graded Witt ring GW?F . The dimension
modulo 2 is an augmentation map for W (F ):

dim : W (F )→ Z/2Z.

We let IF = ker(dim) be the augmentation ideal, that is the ideal of Witt-classes
of even dimensional quadratic forms. It is called the fundamental ideal. The Witt
ring W (F ) is filtered by powers of IF ,

W (F ) = I0F ⊃ IF ⊃ I2F · · · ⊃ InF ⊃ . . . .
Moreover, by the celebrated Arason-Pfister Hauptsatz, which asserts that an anisotropic
quadratic form with Witt class in InF has dimension at least 2n, we have

∞⋂
n=1

InF = {0}.

Definition 2.8. The graded Witt-ring GW?F is the graded ring associated to this
filtration,

GW?F = ⊕n≥0I
nF/In+1F.

In particular, GW0F = W (F )/IF ' Z/2Z. In general, the fundamental ideal
and its powers have the following set of generators:

1This is not a presentation of W (F ); see [Kahn, 1.3.5] for a description of all required relations.
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Lemma 2.9. (1) The fundamental ideal IF is generated by the binary forms
representing 1,

〈〈a〉〉 = 〈1,−a〉, a ∈ F×;

(2) The nth power InF is generated by the so-called n-fold Pfister forms

〈〈a1, . . . , an〉〉 = ⊗1≤i≤n〈〈ai〉〉 = ⊗1≤i≤n〈1,−ai〉, a1, . . . , an ∈ F×.

Proof. Clearly, it suffices to prove the first assertion, which follows easily from
equation (1). �

Among quadratic forms, Pfister forms have exceptional properties, as we shall
now recall.

2.3. Properties of Pfister forms. Let π = 〈〈a1, . . . , an〉〉 be an n-fold Pfister
form. Clearly, it decomposes as π = 〈1〉 ⊕ π′ for some quadratic form π′, uniquely
defined up to isomorphism, and called the pure subform of π. Since the form π′

diagonalizes as

π′ = 〈−a1,−a2, . . . ,−an, a1a2, . . . , (−1)na1 . . . an〉,
it represents the value −a1. By induction, one may prove that, conversely, the
following holds (see for instance [Kahn, 2.1.7]):

Proposition 2.10. Let π be an n-fold Pfister form, and consider a ∈ F× such that
−a is represented by the pure subform π′ of π. Then, there exists a2, . . . , an ∈ F×
such that π = 〈〈a, a2, . . . , an〉〉.

The main properties of Pfister forms follow quite easily from this proposition.
Indeed, we have:

Theorem 2.11. An isotropic Pfister form is hyperbolic.

Proof. Let π = 〈1〉 ⊕ π′ be an n-fold Pfister form, with pure subform π′. Assume
the form π is isotropic; we claim its pure subform π′ represents −1. Indeed, there
exists a non trivial pair (x, v) ∈ F × F 2n−1 such that x2 + π′(v) = 0. If x is non
trivial, we get π′(x−1v) = −1. Otherwise, π′ is isotropic, so it clearly represents
−1. Applying Prop 2.10, we now get

π = 〈〈1, a2, . . . an〉〉 = 〈1,−1〉 ⊗ 〈〈a2, . . . , an〉〉
is hyperbolic. �

The second result concerns similarity factors of Pfister forms, that is scalars
λ ∈ F× such that π ' 〈λ〉 ⊗ π. A quadratic form representing the value 1 also
represents its similarity factors. For Pfister forms, the converse also holds:

Theorem 2.12. Let π be a Pfister form, and let α ∈ F×. The following are
equivalent:

(1) λ is represented by π;
(2) λ is a similarity factor for π, that is π ' 〈λ〉 ⊗ π.

Proof. As already mentioned, one direction is clear since the form π represents 1.
To prove the converse, assume λ is represented by π, that is λ = x2 − a for some
elements x ∈ F× and −a represented by the pure subform π′ of π. If a is zero, the
result is obvious. Otherwise, we can write π = 〈〈a, a2, . . . , an〉〉 = 〈〈a〉〉〈〈a2, . . . , an〉〉
for some a2, . . . , an ∈ F×. Note that the form π1 = 〈〈a〉〉 = 〈1,−a〉 is the norm
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form of the quadratic étale extension F [x]/(x2 − a). Hence it is multiplicative,
that is it satisfies π1(vw) = π1(v)π1(w) for all vectors v, w ∈ F [x]/(x2 − a). So,
in particular, for every vector v with π1(v) 6= 0, we have π1 ' 〈π1(v)〉 ⊗ π1, that
is every non trivial element represented by π1 is a similarity factor for π1. This
applies in particular to λ = x2 − a, so that

〈λ〉 ⊗ π = 〈λ〉 ⊗ π1 ⊗ 〈〈a2, . . . , an〉〉 = π1 ⊗ 〈〈a2, . . . , an〉〉 = π.

�

Corollary 2.13. The set of non trivial values represented by a Pfister form is a
group.

Proof. It coincides with the set of similarity factors of π, which is a subgroup of
F×. �

2.4. K-theory modulo 2 and quadratic forms. We are now in position to prove

Theorem 2.14 ([Mil]). There is a homomorphism

s? : k?F → GW?F,

mapping the symbol {a} to the 1-fold Pfister form 〈〈a〉〉. Moreover, the map s? is
surjective.

Proof. If such a homomorphism exists, it maps the n-symbol {a1, . . . , an} to the
n-fold Pfister form 〈〈a1, . . . , an〉〉. Since InF is generated by n-fold Pfister forms,
surjectivity is clear and we only have to prove that the map s? is well defined.
In view of the presentation of kM? F by generators and relations, it is enough to
check that the relations (1), (2) and (3) of § 1.3 also hold in the graded Witt ring.
Consider a, b ∈ F×. If a 6= 1, the form

〈〈a, 1− a〉〉 = 〈1,−a,−(1− a), a(1− a)〉

is isotropic, hence hyperbolic by Theorem 2.11. So we have 〈〈a, 1− a〉〉 = 0 in the
Witt ring W (F ). The other relations do not hold in the Witt ring, but they are
valid in GW?F . Indeed, one may easily check that

〈〈a〉〉+ 〈〈b〉〉 = 〈〈ab〉〉+ 〈〈a, b〉〉 ∈W (F ).

Since 〈〈a, b〉〉 ∈ I2F , we get 〈〈a〉〉+ 〈〈b〉〉 = 〈〈ab〉〉 ∈ IF/I2F as required. Similarly,
one has 2〈〈a〉〉 = 〈〈a,−1〉〉 ∈ I2F , so that 2〈〈a〉〉 = 0 ∈ IF/I2F . �

In his paper, Milnor proves that s1 and s2 are bijective. In fact, using an ad-hoc
version of Stiefel-Whitney invariant, he constructs a ’stable’ section for sn, which is
a section if n = 1, 2. Using properties of Pfister forms, one can prove the following
partial injectivity result, which says that sn induces a bijection between n-symbols
modulo 2 and n-fold Pfister forms modulo In+1F (see [Kahn, §9.4]):

Proposition 2.15. Restricted to symbols, the map sn is injective.

This result is of course much weaker than the injectivity of sn. In these notes,
we prove an even weaker result, which is enough for the norm quadric proposition
below:

Lemma 2.16. If the Pfister form 〈〈a1, . . . , an〉〉 belongs to In+1F , then the corre-
sponding symbol {a1, . . . , an} = 0 ∈ kMn F .
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Proof. By the Arason-Pfister Haupsatz mentioned above, every anisotropic form
with Witt class in In+1F has dimension at least 2n+1. Hence, if the Pfister form
〈〈a1, . . . , an〉〉 belongs to In+1F , then it is hyperbolic. So we want to prove that
{a1, . . . , an} = 0 ∈ kMn F if the form 〈〈a1, . . . , an〉〉 is hyperbolic. We proceed by
induction on n, and we let πn = 〈〈a1, . . . , an〉〉. If n = 1, and if the Pfister form
π1 = 〈〈a1〉〉 is hyperbolic then a1 ∈ F×2, so we get {a1} = 0 ∈ kM1 F . In general,
let us assume that πn is hyperbolic. Since πn = πn−1−〈an〉⊗πn−1, the hypothesis
says that an is a similarity factor for πn−1. So by theorem 2.12, an is represented
by πn−1; hence it decomposes as an = x− an−1y for some x and y represented by
πn−2.

If y = 0, then an = x is represented by πn−2, so the Pfister form

πn−2 ⊗ 〈〈an〉〉 = πn−2 ⊕ 〈−an〉πn−2

is isotropic, hence hyperbolic by Theorem 2.11. By the induction hypothesis we get
{a1, . . . , an−2, an} = 0 ∈ kMn−1F which implies the conclusion. If x = 0, the same

argument shows that {a1, . . . , an−2,−an−1an} = 0 ∈ kMn−1F . Multiplying on the

right by {an}, and using the fact that {−an, an} = 0 ∈ kM2 F , we get

{a1, . . . , an−2,−an−1an, an} = {a1, . . . , an} = 0 ∈ kMn F.

In general, one may write an = x − an−1y = x(1 − an−1z), where z = y/x also is
represented by πn−2 by corollary 2.13. So we have

{a1, . . . , an} = {a1, . . . , an−1, x}+ {a1, . . . , an−1, 1− an−1z}.

The same argument as before shows that {a1, . . . , an−2, x} and {a1, . . . , an−2, z}
are both trivial in kMn F . In particular, we have

{a1, . . . , an−1} = {a1, . . . , an−1z},

so that {a1, . . . , an−1, 1− an−1z} = {a1, . . . , an−1z, 1− an−1z} = 0 ∈ kMn F . �

Finally, we get the following:

Proposition 2.17 (Norm quadric). Let a1, . . . , an be non trivial elements of F .
The following assertions are equivalent:

(1) The quadratic form ϕ = 〈〈a1, . . . , an−1〉〉+ 〈−an〉 is isotropic.
(2) The Pfister form π = 〈〈a1, . . . , an〉〉 is isotropic.
(3) The Pfister form π = 〈〈a1, . . . , an〉〉 is hyperbolic.
(4) The symbol {a1, . . . , an} = 0 ∈ kMn F .

Proof. Clearly, (1) implies (2) and (2) implies (3) by 2.11. Assume now that (3)
holds. Then, the form ϕ, which is a subform of π of dimension strictly larger than
half the dimension of π has to be isotropic. The equivalence between (3) and (4) is
given by lemma 2.16. �

Remark 2.18. Let Xϕ be the projective quadric associated to the quadratic form
ϕ. Rephrasing the previous proposition, we get that the symbol {a1, . . . , an} van-
ishes in Milnor’s K-theory modulo 2 if and only if Xϕ has a rational point. We say
that Xϕ is a splitting variety for this symbol.



10 A. QUÉGUINER-MATHIEU

3. Functorial properties of K-theory

3.1. Restriction map. It is clear from the definition that K-theory is functorial.
That is, for every field extension L/F , the inclusion F → L induces morphisms
resL/F : KM

? F → KM
? L, and kM? F → kM? L, mapping a symbol {a1, . . . , an} to

itself, viewed as an element of KM
? L or kM? L. We will use the notation αL =

resL/F (α), for every α ∈ KM
? F or kM? F . Via this restriction map, one may endow

KM
? L with a structure of KM

? F -module.

3.2. Residue map. Assume F has a discrete valuation v : F× → Z. Since v is a
group homomorphism, it can be thought of as a morphism

KM
1 F 7→ KM

0 F̄ ,

where F̄ is the residue field. This map extends to a residue homomorphism

∂v : KnF 7→ KM
n−1F̄

as we now proceed to show. Let O be the valuation ring, O× the set of units, and
π ∈ O a prime element, that is v(π) = 1. For every unit u ∈ O, we let ū be its
image in the residue field F̄ .

Proposition 3.1. For all n ≥ 1, there is a unique morphism, called the residue
map,

∂v : KM
n F 7→ KM

n−1F̄ ,

satisfying

∂v({a, u2, . . . , un}) = v(a){ū2, . . . , ūn},
for all a ∈ F× and units u2, . . . , un ∈ O×.

Proof. If such a map exists, it satisfies in particular

∂v({π, u2, . . . , un}) = {ū2, . . . , ūn}, and
∂v
(
{u1, . . . , un}

)
= 0,

for all prime elements π and units u1, . . . , un. Moreover, since every a ∈ F× can
be written uniquely a = πiu, where i = v(a) ∈ Z, for some unit u ∈ O×, one may
check using linearity and the identity {π}{π} = {π}{−1} that KM

n F is generated
by symbols {π, u2, . . . , un}, and {u1, . . . , un} for units u1, . . . , un ∈ O×. Hence, if
such a morphism exists, the condition guarantees its uniqueness.

The residue map is constructed in Milnor’s paper. The argument presented here
is due to Serre. Consider the ring L(F̄ ) = KM

? F̄ [ξ], generated by KM
? F̄ and by an

additional element ξ satisfying:

ξ2 = {−1}ξ and ξα = −αξ for all α ∈ K1F̄ .

We let ξ be of degree 1, so that L is graded and satisfies

LnF̄ = KnF̄ ⊕ ξKn−1F̄ .

Let us fix a prime element π, and consider the map

dπ : KM
1 F 7→ L1(F̄ ), {πiu} 7→ {ū}+ ξi

It clearly induces a morphism KM
1 F⊗n → Ln(F̄ ). Moreover, we have:

Lemma 3.2. For all a ∈ F×, a 6= 1, the map d⊗2
π maps {a} ⊗ {1− a} to zero.
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Proof. The element a ∈ F× can be written a = πiu where i = v(a) ∈ Z and
u ∈ O×. If i > 0, then 1 − a = 1 − πiu is a unit with residue 1− a = 1̄. Hence
dπ(1− a) = {1̄} = 0 ∈ K1(F ), and the result follows in this case. Assume now that
i < 0. We have 1 − a = 1 − πiu = πi(π−i − u), where the second factor is a unit,

with residue π−i − u = −ū. Hence we have

d⊗2
π ({a} ⊗ {1− a}) = ({ū}+ ξi)({−ū}+ ξi).

Since {ū,−ū} = 0 and ξ{ū}+ {ū}ξ = 0, we get

d⊗2
π ({a} ⊗ {1− a}) = (i− i2)ξ{−1} = ξ{(−1)i−i

2

} = 0 ∈ L2(F̄ ).

The remaining case is i = 0, that is a = u is a unit. If so, 1− a has a non negative
valuation. If v(1 − a) > 0, the result follows from the first case, exchanging the
roles of a and 1− a. Finally, if both a and 1− a are units, we have

d⊗2
π ({a} ⊗ {1− a}) = {ū}{1− u} = {ū, 1− ū} = 0 ∈ KM

2 F̄ .

�

Therefore, the morphism d⊗nπ factors through KM
n F . Composing with the pro-

jection

Ln(F̄ ) = KM
n F̄ ⊕ ξKM

n−1F̄ 7→ KM
n−1F̄ ,

we get a well-defined morphism

∂π : KM
n F 7→ KM

n−1F̄ .

Moreover, since dπ({πiu1}) = {ū1}+ξi, and dπ({ui}) = {ūi} for all u1, . . . , un ∈
O×, an easy computation shows ∂π({a, u2, . . . , un}) = v(a){ū2, . . . , ūn}, for all
a ∈ F×. In particular, it follows from this formula that ∂π does not depend on the
choice of π, and can be denoted by ∂v. �

3.3. Norm map. Let L/F be a field extension, of finite degree [L : F ]. The norm
homomorphism L× → F× can be viewed as a morphism of additive groups

NL/F : KM
1 L→ KM

1 F.

Using the residue map that we just defined, and a theorem of Milnor computing
Milnor’s K-theory of a function field in one variable, one may extend this map to
a norm homomorphism defined in any degree

NL/F : KM
? L→ KM

? F.

The description of this map, at least for simple field extensions, is rather elementary;
as opposed to this, the fact the norm map is canonically defined, that is does not
depend on any choice is an important and rather technical result due to Kato. In
these notes, we only mention two properties of the norm map and refer the reader
to [FV] or [GS, Chap 7] for a detailed exposition.

Theorem 3.3. For every finite field extension L/F , there exists a norm map

NL/F : KM
? L→ KM

? F,

which is multiplication by [L : F ] in degree 0 and the usual norm in degree 1.
Moreover, it satisfies the following properties:

(1) If E/L and L/F are finite field extensions, then we have

NE/F = NL/F ◦NE/L.
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(2) Projection formula: for all α ∈ KM
? F and β ∈ KM

? L, we have

NL/F (αL · β) = α ·NL/F (β) ∈ KM
? F.

4. Galois cohomology

This section, included for the reader’s convenience, is purely expository.

4.1. Definition. Consider the absolute Galois group ΓF = Gal(Fsep/F ) of the field
F . A Galois module over F is a discrete ΓF -module, that is an abelian group M ,
endowed with a continuous action of the profinite group ΓF .

Example 4.1. (1) Every abelian group, endowed with the trivial ΓF action,
is a Galois-module. For instance, Z/2Z is a Galois-module.

(2) Endowed with its natural ΓF -action, the multiplicative group F×sep is a
Galois-module.

We use the following notation for the cohomology groups of ΓF with coefficients
in M :

Hn(F,M) = Hn(ΓF ,M).

In degree 0, it consists of invariant elements H0(F,M) = MΓF . In particular,
we have H0(F,Z/2Z) = Z/2Z and H0(F, F×sep) = F×.

In degree 1, the group H1(F,M) can be explicitly described as follows. A 1-
cocycle is a continuous map ΓF → M , γ 7→ aγ satisfying aγτ = aγ + γ(aτ ).
Two cocycles a and b are cohomologous if they differ by a coboundary, that is
aγ = bγ + γ(m) − m for some m ∈ M . The group H1(F,M) is the group of
equivalence classes of 1-cocycles for this relation. In particular, if ΓF acts trivially
on M , then H1(F,M) is the group of continuous homomorphisms ΓF →M .

4.2. Long exact sequence. Let M , M ′ and M ′′ be Galois modules over F . We
assume that the exact sequence

0→M ′ →M →M ′′ → 0

is an exact sequence of Galois-modules, that is the maps are morphisms of ΓF -
groups. If so, this sequence induces an infinite long exact sequence of cohomology
groups

0→ H0(F,M ′)→ H0(F,M)→ H0(F,M ′′)→ H1(F,M ′)→ H1(F,M)→ . . .

4.3. Restriction and corestriction. Let M be a Galois module over F . For
every field extension L/F , we can choose separable closures so that Fsep ⊂ Lsep.
Hence, restricting automorphisms, we get a continuous morphism ΓL → ΓF , and
M also is a Galois module over L. Moreover, we have restriction morphisms

resL/F : Hn(F,M)→ Hn(L,M).

In degree 0, it coincides with the natural map MΓF → MΓL . We will frequently
use the notation αL = resL/F (α), for α ∈ Hn(F,M).

Assume now that L/F is finite separable, so that ΓL is an open subgroup of
finite index in ΓF . Every Galois module M over F also is a Galois module over L,
and there are natural corestriction morphisms

NL/F : Hn(L,M)→ Hn(F,M).

In degree 0, it is given by m ∈ MΓL 7→ Σγ(m), where γ runs over a complete set
of representatives of the quotient-set ΓF /ΓL.
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It is clear in degree 0, and it is true in general that the composition NL/F ◦resL/F
is multiplication by the degree [L : F ] of the extension L/F .

4.4. Cup-products and projection formula. Let M and N be two Galois-
modules over F . The tensor product M ⊗Z N , endowed with the diagonal action
of ΓF , also is a Galois module. Moreover, there is a bilinear map, called the cup-
product:

Hp(F,M)×Hq(F,N)→ Hp+q(M ⊗Z N), (α, β) 7→ α · β

If p = q = 0, it coincides with the natural map

MΓF ×NΓF → (M ⊗N)ΓF .

The cup product is associative, and graded commutative. Moreover, the follow-
ing projection formula holds:

NL/F (αL · β) = α ·NL/F (β) for all α ∈ Hp(F,M) and β ∈ Hq(L,N).

5. K-theory and Galois cohomology

5.1. Galois cohomology and Hilbert theorem 90. Originally, Hilbert 90 is the
following statement:

Theorem 5.1 (Hilbert). Let L/F be a finite cyclic Galois extension, and let θ be
a generator of its Galois group. For every element a ∈ L× such that NL/F (a) = 1,

there exists b ∈ L× such that a = b
θ(b) .

Proof. Let n be the degree of L/F , that is the order of θ. The norm map is given
by

NL/F (a) =

n−1∏
i=0

θi(a).

Therefore, the hypothesis on a gives a θ(a) . . . θn−1(a) = 1, and it follows that for
every λ ∈ F , the element

b = λ+ aθ(λ) + aθ(a)θ2(λ) + · · ·+ aθ(a) . . . θn−2(a)θn−1(λ)

satisfies aθ(b) = b. The theorem now follows from Artin’s theorem on characters,
which guarantees that b 6= 0 for a suitable choice of λ. �

This classical result has a very nice interpretation in Galois cohomology, also
known as Hilbert 90, as we now proceed to show:

Theorem 5.2. The Galois cohomology group H1(F, F×sep) is trivial.

Remark 5.3. More generally, one may prove that H1(F,GL1(A)) = 0 for every
separable and associative F -algebra A (see for instance [KMRT]).

Proof. Since H1(F, F×sep) is the direct limit of H1(Gal(L/F ), L×) for all finite Galois

extensions L/F , it is enough to prove that H1(Gal(L/F ), L×) = 0 (see [Se, Chap.
X, §3]). Consider a 1-cocycle a : Gal(L/F ) → L×. It satisfies aγσ = aγ γ(aσ) for
all γ, σ ∈ Gal(L/F ). Again by Artin’s theorem, there exist λ ∈ L? such that

b =
∑
σ∈G

aσσ(λ) 6= 0.
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For every γ ∈ Gal(L/F ), we have

γ(b) =
∑
σ∈G

γ(aσ) (γσ)(λ) =
∑
σ∈G

a−1
γ aγσ (γσ)(λ) = a−1

γ b.

Hence the cocycle a is a coboundary aγ = b
γ(b) , and its cohomology class is trivial.

�

Remark 5.4. The link between the two Hilbert 90 theorems mentioned here is
pretty obvious from the proof. It can be made even more explicit as follows. Assume
the extension L/F is cyclic of order n, and pick a generator θ of Gal(L/F ). A 1-
cocycle a : Gal(L/F ) 7→ L× is uniquely determined by aθ, which is a norm 1
element. Indeed, the cocycle relation shows that aθi = aθθ(aθ) . . . θ

i−1(aθ). In
particular a1 = aθn = NL/F (aθ) = 1. One may then easily check that if aθ = b

θ(b) ,

then the cocycle a is a coboundary.

5.2. The norm residue homomorphism. Recall that the base field F has char-
acteristic different from 2. We are now interested in the Galois cohomology groups
of F with coefficients in the Galois module Z/2Z = {0, 1}, with trivial action of
ΓF , for which we use the following notation:

Hn(F ) = Hn(F,Z/2Z).

In particular, H0(F ) = Z/2Z. The map F×sep → F×sep, x 7→ x2 has kernel µ2 ' Z/2Z.
So it induces an exact sequence of Galois modules

1 // Z/2Z // F×sep
2 // F×sep

// 1

The long exact sequence associated in Galois cohomology starts as follows

1 // Z/2Z // F×
2 // F× // H1(F ) // H1(F, F×sep).

By Hilbert 90, H1(F, F×sep) = 0, so that the coboundary map F× → H1(F ) is
surjective. Therefore, it induces an isomorphism

F×/F×2 → H1(F ).

Identifying F×/F×2 with kM1 F , we get an isomorphism

h1 : kM1 F = F×/F×2 → H1(F ).

For all a ∈ F×, we denote by

(a) = h1({a}) ∈ H1(F )

the corresponding element.
The element (a) can be explicitly described as follows: let δ ∈ F×sep be one of the

two square roots of a. The map ΓF → Z/2Z, γ 7→ εγ defined by (−1)εγ = γ(δ)
δ is a

1-cocycle. Its cohomology class precisely is (a). In particular, this cocycle is trivial
if a ∈ F×2, since we can choose δ ∈ F , so that γ(δ) = δ for all γ ∈ ΓF .

Since Z/2Z⊗ Z/2Z is canonically isomorphic to Z/2Z, the cup product induces
a map Hi(F ) × Hj(F ) → Hi+j(F ). This map defines a product on H?(F ) =
⊕n≥0H

n(F ), which now is a graded ring, and even a graded Z/2Z-algebra. We use
the notation

(a1, . . . , an) = (a1) · (a2) · · · · · (an) ∈ Hn(F );

such an element is called a symbol. With this in hand, we can define the norm
residue map (also called Galois symbol) as follows:
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Theorem 5.5 (Bass-Tate). The isomorphism h1 : kM1 F → H1(F ) extends uniquely
to a morphism of graded rings

h : kM? F → H?(F ),

called the norm residue homomorphism.

Proof. Clearly, the isomorphism h1 induces a map kM1 F⊗n → Hn(F ), satisfying
{a1, . . . , an} 7→ (a1, . . . , an). As before, we only have to check that the relations (1),
(2) and (3) of section 1.3 hold in Galois cohomology. Since h1 is an isomorphism,
we clearly have (ab) = (a) + (b) and 2(a) = (a2) = 0 in H1(F ), so that relations
(1) and (3) hold. It only remains to prove that (a) · (1− a) = 0 for all a ∈ F×. If
a ∈ F×2, this is clear. Otherwise, let δ ∈ F×sep be a square root of a and L = F (δ).

We have δ2 = a, and NL/F (1 − δ) = (1 − δ)(1 + δ) = 1 − a. Therefore, by the
projection formula,

(a) · (1− a) = (a) ·NL/F (1− δ) = NL/F ((a)L · (1− δ)) = NL/F ((δ2) · (1− δ)) = 0.

�

So we have constructed the norm residue map kM? F → H?(F ), and also proved,
using Hilbert 90 theorem, that it is an isomorphism in degree 1. This is the starting
point of Voevodsky’s proof, which is by induction on n.

References

[FV] Fesenko, I. B. and Vostokov, S. V. Local fields and their extensions. Second edition. Transla-

tions of Mathematical Monographs, 121. American Mathematical Society, Providence, RI, 2002.
[GS] Gille, P. and Szamuely, T. Central simple algebras and Galois cohomology. Cambridge Stud-

ies in Advanced Mathematics, 101. Cambridge University Press, Cambridge, 2006.

[Kahn] Kahn, B . Formes quadratiques sur un corps. (French) [Quadratic forms over fields] Cours
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burg, 1986.

[Sch] Scharlau, W. Quadratic and Hermitian forms. Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences], 270. Springer-Verlag, Berlin,
1985.
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