DM Nº 2. Propriétés des lois exponentielles

À rendre au plus tard le lundi 16 décembre (en TD)

On rappelle que, pour $\lambda > 0$, on note $\mathcal{E}(\lambda)$ la loi exponentielle de paramètre λ , c'est-à-dire la loi de densité

$$f_{\lambda}: x \mapsto f_{\lambda}(x) = \lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}_{+}}(x).$$

Exercice 1 - Absence de mémoire.

1. Soit X une variable aléatoire de loi $\mathcal{E}(\lambda)$, où $\lambda > 0$. Montrer que pour tous s,t>0 on a $\mathbb{P}(X>s)>0$ et

$$\mathbb{P}(X > t + s \mid X > s) = \mathbb{P}(X > t).$$

- **2.** Réciproquement, supposons que X est une variable aléatoire réelle telle que X>0 p.s., et X satisfait la propriété d'absence de mémoire : pour tous s,t>0, $\mathbb{P}(X>s)>0$ et $\mathbb{P}(X>t+s\,|\,X>s)=\mathbb{P}(X>t)$.
 - a) On définit la fonction $G: t \mapsto -\ln \mathbb{P}(X > t)$. Donner une relation vérifiée par la fonction G.
- b) On pose $\lambda = G(1)$. Calculer en fonction de λ la valeur de G(n) pour tout $n \in \mathbb{N}$, puis de G(q) pour tout rationnel $q \geq 0$.
 - c) Justifier la croissance de G, et en déduire que $G(x) = \lambda x$ pour tout $x \ge 0$.
 - d) Quelle est la loi de X?
- **3.** Soit X une variable aléatoire à valeurs dans \mathbb{N}^* telle que, pour tous $m,n\in\mathbb{N}, \mathbb{P}(X>m)>0$ et

$$\mathbb{P}(X > m + n \mid X > m) = \mathbb{P}(X > n).$$

Déterminer la loi de X. On pourra poser $p = 1 - \mathbb{P}(X > 1)$.

Exercice 2 – Lien exponentielle/géométrique.

- 1. Soit X une variable aléatoire de loi $\mathcal{E}(\lambda)$ où $\lambda > 0$. On pose $Y = \lceil X \rceil$ (partie entière supérieure de X: autrement dit, Y est l'unique entier tel que $Y 1 < X \le Y$). Déterminer la loi de Y. Identifier une loi classique et donner son paramètre.
- **2.** Soit $\lambda > 0$. Pour tout $n \ge 1$, on considère une variable aléatoire X_n suivant une loi géométrique de paramètre $\frac{\lambda}{n}$ et on définit $Y_n = \frac{X_n}{n}$.
 - a) Soit $n \geq 1$. Calculer la fonction de répartition F_{Y_n} de Y_n .
 - **b)** Soit $n \geq 1$. Calculer la fonction caractéristique Φ_{Y_n} de Y_n .
- c) Montrer que, pour tout t > 0, quand $n \to \infty$, $F_{Y_n}(t) \to F_Y(t)$ et $\Phi_{Y_n}(t) \to \Phi_Y(t)$, où Y suit la loi $\mathcal{E}(\lambda)$. On dit que la loi de Y_n converge vers la loi $\mathcal{E}(\lambda)$.

Exercice 3 – Vers le processus de Poisson. Soit $\lambda > 0$. Soit $(X_n)_{n \geq 1}$ une suite de v.a. indépendantes, toutes de loi $\mathcal{E}(\lambda)$. On définit $T_0 = 0$ et, pour tout $n \geq 1$,

$$T_n = X_1 + \dots + X_n.$$

On interprète par exemple les X_n comme les durées d'attente entre deux tremblements de terre successifs; la v.a. T_n représente alors l'instant du n-ème tremblement de terre.

1. Démontrer que, pour tout $n \geq 1$, la loi de T_n a pour densité

$$f_n: x \mapsto f_n(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x} \mathbf{1}_{\mathbb{R}_+}(x).$$

Cette loi est appelée loi gamma de paramètres n et λ , notée $\Gamma(n,\lambda)$.

Indication : On pourra procéder par récurrence pour se ramener à la loi de la somme de 2 variables aléatoires, et utiliser alors la méthode de la fonction test.

2. Pour tout t > 0, on note

$$N_t = \max\{n \ge 0 \mid T_n \le t\},\,$$

qui correspond au nombre de tremblements de terre survenus pendant l'intervalle de temps [0,t].

a) Soit t > 0, $n \in \mathbb{N}^*$. Réécrire l'événement $\{N_t \le n\}$ en utilisant uniquement la variable aléatoire T_n . On pensera à utiliser cette relation pour les questions suivantes.

- **b)** Soit $n \in \mathbb{N}^*$. On définit la fonction $\varphi_n : t \mapsto \varphi_n(t) = \mathbb{P}(N_t \leq n)$.
- i) Que vaut $\lim_{t\to 0^+} \varphi_n(t)$?
- ii) Justifier que φ_n est de classe \mathcal{C}^1 sur $]0,\infty[$ et donner l'expression de sa dérivée.
- c) Pour tout t > 0, on considère une v.a. M_t qui suit la loi de Poisson de paramètre λt . Soit $n \in \mathbb{N}^*$. On définit la fonction $\psi_n : t \mapsto \mathbb{P}(M_t \leq n)$.
 - i) Donner une expression de ψ_n (sous forme de somme). Que vaut $\lim_{t\to 0^+} \psi_n(t)$?
 - ii) Justifier que ψ_n est de classe \mathcal{C}^1 sur $]0,\infty[$ et calculer sa dérivée.

Remarquer que l'on obtient une somme télescopique et la simplifier.

d) À l'aide des questions précédentes, démontrer que, pour tout t > 0, N_t suit la loi de Poisson de paramètre λt .