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General introduction

The goal of these lectures is to give an introduction to disordered systems. But first, let us give in this informal
introduction a vague idea of what is a disordered systems and what questions one may try to answer.

Disordered systems: the recipe

The general recipe for constructing disordered systems is very simple (we give examples below):
(i) Take a physical system with “homogeneous” interactions, i.e. with physical parameters (such as temperature,

external field, etc.) that are fixed throughout the system. If the system exhibits a phase transition with
respect to one of the parameter, this is even better.

(ii) Sprinkle some disorder, that is add a (tiny) bit of randomness into the system. There are several ways to do
it, but essentially, this means that the physical parameters are not constant throughout the system but have
some (random) fluctuations.

The question of disorder relevance
You now have a disordered system and you are left with many questions. The main one is whether the addition
of disorder has changed the properties of your initial system. More precisely, the question of disorder relevance is
to determine whether an arbitrarily small quantity of disorder modifies drastically the properties of the system. In
other words, one wonders whether the homogeneous system remains stable if one adds a grain of sand...

For instance, if the homogeneous system had a phase transition, the question my be asked in two steps: First,
does the disordered system still exhibit a phase transition? Second, are the characteristics of the disordered phase
transition similar to that of the homogeneous one? The question of the influence of disorder can then be framed
(informally) as follows: if one denotes by ε the “intensity” of disorder, one says that

• disorder is irrelevant if there is some ε0 > 0 such that, for ε ≤ ε0, the disordered and homogeneous systems
behave similarly;

• disorder is relevant if for any ε > 0 the disordered and homogeneous systems have different behaviors.
This question is disorder relevance/irrelevance is central in the literature on disordered systems, and the physicist
A.B. Harris [Har74] has devised a criterion to predict whether disorder should be relevant or irrelevant. We will
come back to this later on.

Some examples
Let us now give a few examples of disordered systems that have been studies in the literature. We will review
briefly the first two examples in Chapter 1, which will also serve as an introduction to the general framework of the
question of disorder relevance. The two following examples will be at the center of the lecture notes, in Part I and
Part II respectively.
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The Ising model
The Ising model is a simplified model to describe a magnetic material: spins take value in {+1,−1} and the
interactions are nearest-neighbor and ferromagnetic (i.e. attractive).

Figure 1: Realizations of the Ising model on a grid, with ‘+’ spins in red and ‘−’ spins in blue. Three
different temperatures are represented, with from left to right: below the critical temperature, at the
critical temperature, above the critical temperature.

It is a famous result by R. Peierls [Pei36] that the (homogeneous) Ising model on Zd undergoes a phase transition
in dimension d ≥ 2. One can then ask what is the effect of adding a random external field, with which the spins
have a tendency to align. We discuss this in Chapter 1 (Section 1.2).

Models of random interfaces
Random surfaces models have been considered in the literature, for instance as effective interfaces models. An
important class that has been extensively studied are the so-called ∇φ-interfaces, where a surface is penalized by
a function of its gradient, see [Vel06] for an overview; two important examples are the lattice Gaussian Free Field
and the Solid-On-Solid model.

Figure 2: Two examples of random interfaces: on the left, a realization of the Gaussian Free Field; on
the right, a realization of the Solid-On-Solid model.

Again, one can then wonder about the effect of adding a random external field, which “pulls” the interface in a
given direction. We discuss this in Chapter 1 (Section 1.3).
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The (polymer) pinning model
Polymer pinning models describe a polymer interacting with a defect line. The model has been studied in a slightly
different form in the ’60s to model the DNA denaturation phenomenon, see [PS66], or in the physics literature
in [Fis84]. The model is very well understood when the interactions are homogeneous (see e.g. [Gia07, Ch. 2]), and
one may wonder about the effect of making the interactions inhomogeneous, for instance if the polymer is made of
different types of monomers.

Figure 3: Illustration of the pinning model: a directed polymer (a random walk path) interacts with a
defect line when it comes into contact with it, i.e. when the random walk returns to 0.

Let us mention that the question of disorder relevance has seen a very intense activity for the pinning model,
first in the physics literature and then in the mathematics literature over the past decades, which finally managed
to put the Harris predictions on rigorous ground. This is the main model of interest of Part I: the disordered
pinning model will be introduced in Chapter ??; the question of disorder relevance for this model will be addressed
in Chapter ??.

The directed polymer model
The directed polymer model can be used to describe a polymer placed in some heterogeneous medium. In that case,
the homogeneous model is simply a random walk on Zd, which is indeed very well understood. Then, the question
is to understand the effect of placing this random walk in some heterogeneous solvent.

Figure 4: An illustration of the directed polymer model: a directed polymer (a random walk path)
which is placed in some heterogeneous medium.
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This model has been introduced in the 80’s in the physics literature [HH85], and has since then been studied
in depth, see [Com17] for a recent mathematical reference. This will be at the center of Part II: we introduce the
directed polymer model and we give its first properties in Chapter ??; the question of disorder relevance and some
features of its phase transition will be discussed in chapter ??; we will also study its scaling limit and its relation
to the Stochastic Heat Equation (SHE) in Chapter ??.
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Chapter 1

First examples of disordered systems

1.1 The general statistical mechanics setting
In this section, we start by giving a somehow general framework in which we will study the question of the role of
disorder in physical systems: we will mostly study disordered systems that arise as small perturbations of Gibbs
measures.

Gibbs measures with homogeneous parameters
First of all, we introduce a class of models that are defined through Gibbs measures. For this, we need to introduce
a few notations. We let N ∈ N be a parameter that determines the “size” of the system.

• ΩN = set of all possible configurations of the system (this comes with a σ-algebra GN );
• µref

N = a reference measure on ΩN (the most “natural” one, if possible);
• θ = some fixed parameter(s), which may include the temperature, the external field, etc.;
• HN,θ = a Hamiltonian, i.e. a function ΩN → R, which determines the energy of any configuration.
Then, we define a Gibbs probability measure PN,θ on ΩN with Hamiltonian HN,θ as a modification of the

reference measure µref
N , as follows:

dPN,θ(σ) =
1

ZN,θ
e−HN,θ(σ) dµref

N (σ) . (1.1)

Here, the quantity ZN,θ is used to normalize PN,θ to a probability measure: it is called the partition function, and
can be written explicitly as

ZN,θ =

∫
ΩN

e−HN,θ(σ) dµref
N (σ) . (1.2)

The intuition behind (1.1) is that PN,θ gives more weights to configurations σ ∈ ΩN with lower energy∗. The
specific form (1.1) is in fact very natural, since Gibbs measures are the probability measure that maximize the
entropy at a given energy.

Example 1 (Maxwell–Boltzmann distribution: Gaussian velocities). Consider a system of N non-interacting par-
ticles, that are described by their velocities v1, . . . , vN ∈ R3. In this case, the configuration space is ΩN = (R3)N ,
the reference measure µref

N is the Lebesgue measure on ΩN . The parameters are the mass m of the particles
and the temperature T (we write θ = (m,T )), and the Hamiltonian is defined by the sum of the kinetic energy
of the particles, HN,θ = 1

kBT

∑N
i=1

1
2m∥vi∥2. (Note that we have included the temperature in the Hamiltonian,

∗Usually, one finds in the literature that the Gibbs measure is of the form ∝ e
− 1

kBT
H(σ)

dµref
N (σ), with T the inverse temperature

and kB the Boltzmann constant, but we have chosen in this presentation to include the term 1/kBT in the definition of the Hamiltonian,
more precisely in the parameter θ.
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see footnote ∗.) In that case, the Gibbs measure (1.1) is known as the Maxwell–Boltzmann distribution: for
(v1, . . . , vN ) ∈ ΩN = (R3)N , we have

PN,m,T (d(v1, . . . , vN )) =
( m

2πkBT

)3N/2

exp
(
− m

2kBT

N∑
i=1

∥vi∥2
)
dv1 · · · dvN .

In particular, the velocities of the particles are independent Gaussian† random variables N (0, kBT
m I3).

Example 2 (Some polymer models). Let us give other examples, more in relation with the polymer models that we
will consider afterwards. One may consider as a configuration space the set of all possible (nearest-neighbor) simple
random walk trajectories of length N on Zd, i.e. ΩN := {(s0, s1, . . . , sN ) ∈ (Zd)N+1, s0 = 0, ∥si − si−1∥1 = 1}.
Such a trajectory can be interpreted as a polymer configuration, where si ∈ Zd can be thought as the position of
the i-th monomer. It is then natural to take µref

N as the uniform measure on ΩN , i.e. µref
N (s) = 1

(2d)N
1ΩN

(s) since
|ΩN | = (2d)N .

One can then consider several polymer models, depending on how the polymer interact with its environment or
with itself. Let us simply give two “simple” models that can be considered:

• If the polymer is placed in a confining potential: this corresponds to considering the Hamiltonian HV
N,β(s) =

β
∑N

i=0 V (si) for s = (s0, s1, . . . , sN ) ∈ ΩN , where V : Rd → R+ is symmetric and diverging as ∥x∥ → ∞ (a
classical example is the quadratic potential V (x) = ∥x∥2) and β ≥ 0 is some parameter tuning the strength
of the potential V (·).

• If the polymer is self-repellent (or weakly self-avoiding): this corresponds to considering the Hamiltonian
HN,γ(s) = γ

∑
0≤i<j≤N 1{si=sj} for s = (s1, . . . , sN ) ∈ ΩN , where γ ≥ 0 tunes the strength of the self-

interactions.
We can in fact consider both models simultaneously, by considering the Gibbs measure: for β, γ ≥ 0.

PV
N,β,γ(s0, . . . , sN ) =

1

ZV
N,β,γ

exp
(
− γ

∑
0≤i<j≤N

1{si=sj} − β

N∑
i=0

V (si)
) 1

(2d)N
1ΩN

(s) . (1.3)

In particular, the potential V (·) has the effect to penalize trajectories that wander to far from the origin, whereas
the term γ1{si=sj} penalizes (or rewards if γ ≤ 0) monomers that sit on the same site. We refer to [dH07] for an
overview of different related polymer models.

There are already many questions that one may ask about the “homogeneous” Gibbs measure (1.1). In general,
one wishes to understand the properties of typical configurations drawn under PN,θ, and how they differ from
the reference measure µref

N depending on the parameter(s) θ. For instance, one may ask whether there is some
infinite volume limit of the Gibbs measure: in the case where ΩN ↑ Ω as N → ∞, can one make sense of a limit
limN→∞ PN,θ? Another important question is that of the phase transition: informally, can one show that some of
the properties of the system drastically change when the parameter(s) θ crosses some critical threshold?

Remark 1.1. Let us mention that, as we will see in these lecture notes, a lot of information is contained in the
partition function (1.2). For instance, if A ⊂ ΩN is measurable, we have that

PN,θ(A) :=
1

ZN,θ

∫
A

e−HN,θ(σ) dµref
N (σ) =:

ZN,θ(A)

ZN,θ
,

where ZN,θ(A) is the partition function restricted to A. In other words, the probabilities PN,θ(A) are ratios are
partition functions (or of integrals), and understanding the behavior of the partition functions turns out to be a
central issue in statistical mechanics.

†Let us also refer to [BCDP21, Ex. 6.34] for an exercise that shows that the normal distribution is the one that maximizes the
entropy with a given variance.
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Adding a random external field
Let us now turn to the definition of (one possible version of) a disordered system, by introducing some additional
source of randomness in the Gibbs measure PN,θ in (1.1). We do this by adding a random external field, which is
a very common way in the literature of introducing some disorder (but there are various other ways).

To simplify, let us consider the following framework:
• Let ΛN ⋐ Zd for some d ≥ 3, where B ⋐ Zd means that B is a finite subset of Zd;
• Assume that ΩN ⊆ RΛN .
For instance, in the examples of Sections 1.2 and 1.3 below, we will consider ΛN = {−N, . . . , N}d and either

ΩN = {−1,+1}ΛN (in which case a configuration σ ∈ ΩN is interpreted as a spin configuration, where σx gives
the value of the spin at position x ∈ ΛN ) or ΩN = RΛN (in which case a configuration φ ∈ ΩN is interpreted as
an interface, where φx represents the height of the interface above the point x ∈ ΛN ). Example 2 also fall in this
framework, since the Hamiltonian only depends on the local time‡ ℓNx (s) =

∑N
i=0 1{si=x} of the trajectory s at

point x after time N (note that ℓNx (s) = 0 if x /∈ ΛN ). Thus the Gibbs measure (1.3) can be interpreted as a Gibbs
measure on the local time field (ℓNx )x∈ΛN

∈ Ω̂N := NΛN , but the reference measure µref
N is then of course much more

involved.
We are now ready to add a random external field. Let us introduce some field of i.i.d. random variables

η = (ηx)x∈Zd , whose law we denote by P. Assume that E[η0] = 1 and V(η0) = 1; in fact, one can think of
η0 ∼ N (0, 1) in the following. Let us also introduce some parameter ε ≥ 0 that will play the role of disorder
intensity. We can then consider a Gibbs measure on ΩN with some ε-disordered Hamiltonian Hε,η

N,θ, where in th
case of a random external field is most commonly written as

Hε,η
N,θ(σ) := HN,θ(σ)− ε

∑
x∈ΛN

ηxσx , for σ ∈ ΩN ⊆ RΛN .

Then, the disordered system is given by this new Gibbs measure: for a given realization of η = (ηx)x∈Zd

dPε,η
N,θ(σ) =

1

Zε,η
N,θ

e−Hε,η
N,θ(σ) dµref

N (σ) =
1

Z̃ε,η
N,θ

exp
(
ε

∑
x∈ΛN

ηxσx

)
dPN,θ(σ) , (1.4)

where in the second identity we simply have used the form of the Hamiltonian and of the Gibbs measure PN,θ, and
used a different partition function.

Quenched vs. annealed. Notice that there are two sources of randomness:
• the external field η = (ηx)x∈Zd , also called environment, is random, with law denoted by P;
• given an environment η, a configuration σ ∈ ΩN is drawn randomly under Pε,η

N,θ (which is a probability
measure on ΩN which depends on η!).

The quenched setting consists in studying the measure Pε,η
N,θ from (1.4) with a fixed (quenched), typical, envi-

ronment. In other words, one studies the behavior of configurations under Pε,η
N,θ conditionally on the environment η.

For instance, the goal is to show statements with the following flavor: P-a.s. in the environment η, Pε,η
N,θ exhibits

some given behavior in the large N limit.
The annealed setting consists in considering the joint law of (σ, η), which, when only considering the marginal

law of the configuration σ, amounts to averaging over η. The annealed law§ is given by

dPε,ann
N,θ (σ, η) =

1

Zε,ann
N,θ

e−Hε,η
N,θ(σ) dµref

N (σ)dP(η) . (1.5)

In particular, the annealed partition function is Zε,ann
N,θ = E[Zε,η

N,θ].

‡More precisely, we can rewrite
∑N

i=0 V (si) =
∑

x∈ΛN
ℓ
(N)
x (s)V (x) and also

∑
0≤i<j≤N 1{si=sj} = 1

2

∑
x∈ΛN

ℓNx (s)(ℓNx (s)− 1).
§As mentioned above, in practice, one often considers only the first marginal in (1.5).
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Disorder relevance and Harris criterion

The quenched and annealed models may have very different behaviors, since the quenched measure Pε,η
N,θ is studied

only for “typical” environments η, whereas it is possible that atypical environment contribute to typical events under
the annealed measure Pε,ann

N,θ , which may help make the Hamiltonian Hε,η
N,θ much smaller. One of the main question

is therefore to compare the quenched and annealed model, to understand whether they have similar properties, at
least for ε small enough.

This is a very broad subject, and A.B. Harris [Har74] proposed some criterion to predict whether disorder
should be relevant or irrelevant. The criterion is in fact based only on the understanding of the homogeneous model
(i.e. from (1.1)). If the homogeneous model undergoes a phase transition around some critical point, then if one
“knows” the behavior near criticality one can predict whether disorder is relevant or not, that is whether adding
some disorder with an arbitrarily small intensity modifies the characteristics of the phase transition.

Though Harris’ criterion dates back to the 1970’s, there does not seem to be a (rigorous) general theory that
indeed proves disorder relevance or irrelevance. The literature consists more of case by case studies. We give two
examples in the rest of this chapter, and then focus on two other (class of) examples in the bulk of these lecture
notes.

1.2 The Ising model (with random external field)
We now go a bit more into the details of the Ising model, in order to illustrate better how the question of the
influence of disorder haa been addressed in this setting. For an introduction to the Ising model, we refer to the
excellent book of Friedli and Velenik [FV17, Chapter 3].

1.2.1 The standard Ising model on Zd

Let ΛN := {−N, . . . , N}d be the box of radius N in Zd, and let us denote x ∼ y if x, y are neighbor in Zd. The set
of all spin configurations is ΩN := {−1,+1}ΛN .

Definition 1.2 (Ising model). The Ising model in ΛN with coupling constant J > 0 and boundary conditions ζ is
given by the Gibbs measure

Pζ
N,J(σ) :=

1

Zζ
N,J

e−Hζ
N,J (σ) ∀σ ∈ ΩN = {−1,+1}ΛN , (1.6)

where the Hamiltonian is given by

Hζ
N,J(σ) = −J

( ∑
x,y∈ΛN
x∼y

σxσy +
∑

x∈ΛN ,y /∈ΛN
x∼y

σxζy

)
. (1.7)

In other words, this is the definition (1.1) with reference measure µref
N the counting measure on ΩN . The Ising

measure (1.6) then favors configurations where spins are aligned (i.e. such that σx = σy so that σxσy = +1), and
the intensity of interactions is tuned by the coupling constant J (this is usually written J′

kBT , but here we have
included the term 1/kBT in the definition of J).

The boundary condition ζ, in view of the Hamiltonian (1.7), has some influence on the spins inside Λ. There
are three central examples:

• Free boundary conditions: ζ ≡ 0. This is equivalent to removing the second term in (1.7), and corresponds
to removing the effect of the boundary¶. We simply denote by PN,J (resp. ZN,J) the corresponding measure
(resp. partition function).

¶We could also consider periodic boundary conditions by considering the torus TN = (Z/NZ)d instead of a box, but we do not
develop on this.
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Note that under this free boundary condition, there are two configurations with minimal energy, called ground
states: the configurations σ+ ≡ +1 and σ− ≡ −1 in ΛN .

• Plus boundary condition: ζ ≡ +1. This corresponds to setting all spins outside of the box ΛN to be equal
to +1. We denote by P+

N,J (resp. Z+
N,J) the corresponding measure (resp. partition function).

Here, the only ground state is σ+ ≡ +1.
• Minus boundary condition: ζ ≡ +1. This corresponds to setting all spins outside of the box ΛN to be equal

to −1. We denote by P−
N,J (resp. Z−

N,J) the corresponding measure (resp. partition function).
Here, the only ground state is σ− ≡ −1.

There are now a series of questions that one may ask. For instance: can one let N → ∞ and obtain some infinite
volume limit? what does a typical spin configuration look like under PN,J , P+/−

N,J or PN,J,h? How does this depend
on the coupling constant J (which we recall includes the inverse temperature)?

Remark 1.3 (With an external field). We can also consider Ising model with coupling constant J and external
field of strength h ∈ R, whose Hamiltonian is given by the following:

HN,J,h(σ) := −J
∑

x,y∈ΛN ,x∼y

σxσy − h
∑

x∈ΛN

σx .

We also let PN,J,h denote the corresponding Gibbs measure on ΩN = {−1,+1}ΛN (we could also add some boundary
condition, but that will not be necessary for our purpose). We have the same heuristic picture as above: spins are
favored when then align with each other and with the external field, in such a way that hσx > 0.

Some important physicial quantities

In order to answer some of the previous questions, let us introduce some physical quantities that are of interest.

The magnetization. For a boundary condition ζ, we introduce the magnetization of the central spin of ΛN :

mζ
N (J) := Eζ

N,J [σ0] .

Note that, with free boundary conditions we have mN (J) = 0 by symmetry, but for any N ≥ 1 and J > 0 we have
m+

N (J) > 0, and m−
N (J) = −m+

N (J) < 0 by symmetry. We can then define (using some monotonicity properties)
the so-called spontaneous magnetization as

m∗(J) = lim
N→∞

m+
N (J) ≥ 0 ,

which also turns out to the the asymptotic magnetization of the whole system, that is

m∗(J) = lim
N→∞

E+
N,J

[ 1

|ΛN |
∑

x∈ΛN

σx

]
.

The question is then to determine whether one has m∗(J) = 0, which means that there is no spontaneous magne-
tization and that the influence of the boundary vanishes in the large N limit, or whether one has m∗(J) > 0,

Remark 1.4. Alternatively, the spontaneous magnetization can also be defined by adding some external field with
strength h > 0, consider the limiting magnetization and then let h ↓ 0. In other words, recalling Remark 1.3 which
defines the Ising model with coupling constant J > 0 and external field h > 0, we have

m∗(J) = lim
h↓0

m(J, h) with m(J, h) = lim
N→∞

EN,J,h[σ0] = lim
N→∞

EN,J,h

[ 1

|ΛN |
∑

x∈ΛN

σx

]
.
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The pressure or free energy. The pressure, or free energy, of the Ising model with coupling constant J and
external field h is given by the following limit:

f(J, h) := lim
N→∞

1

|ΛN |
logZN,J,h ,

where ZN,J,h is the partition function of the Ising model with free boundary condition. Note that the limit above
does not depend on the boundary condition, so that one could replace ZN,J,h by Z

+/−
N,J,h.

In practice, the pressure contains important physical information on the system. Indeed, let us denote

fN (J, h) :=
1

|ΛN |
logZN,J,h .

Then, recalling that

ZN,J,h =
∑

σ∈{−1,+1}ΛN

e−HN,J,h with HN,J,h = −J
∑

x,y∈ΛN ,x∼y

σxσy − h
∑

x∈ΛN

σx ,

we get that

∂

∂J
fN (J, h) =

∑
σ∈{−1,+1}ΛN

1

|ΛN |
∑

x,y∈ΛN ,x∼y

σxσy
1

ZN,J,h
e−HN,J,h = EN,J,h

[
1

|ΛN |
∑

x,y∈ΛN ,x∼y

σxσy

]
,

so that it corresponds to (minus) the internal energy of the system under PN,J,h. A similar calculation gives that

∂

∂h
fN (J, h) = EN,J,h

[
1

|ΛN |
∑

x∈ΛN

σx

]
= mN (J, h) ,

which corresponds to the magnetization under PN,J,h. After some justification, one can then pass to the limit
N → ∞, and the derivatives of F (if they exist) all have some physical interpretation:

−J ∂
∂J f is the internal energy ;

J2 ∂2

∂J2 f is called the specific heat ;
∂
∂h f is the magnetization;
∂2

∂h2 f is called the susceptibility.

Phase transition
We are now ready to state results on the phase transition for the Ising model. The case of dimension d = 1 is in
fact solvable, and exact calculations are possible; this is the content of Ising’s thesis [Isi25].

Theorem 1.5 (Dimension d = 1). For any J ≥ 0 and any h ∈ R, we have

f(J, h) = log

(
eJ cosh(h) +

√
e2J cosh2(h)− 2 sinh(2J)

)
.

In particular, there is no phase transition and m∗(J) = limh↓0
∂
∂h f(J, h) = 0 for all J > 0.

The case of dimension d ≥ 2 is much richer, and the existence of a phase transition has been shown by
Peierls [Pei36]. We refer to Figure 1 on p.2 for an illustration.

Theorem 1.6 (Phase transition in dimension d ≥ 2). There exists some Jc = Jc(d) such that:
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• m∗(J) = 0 if J < Jc (this is called a disordered phase, and correlations decay exponentially);
• m∗(J) > 0 if J > Jc (this is called an ordered phase, with long-range correlations).

Let us mention that the dimension d = 2 also turned out to be exactly solvable, notably thanks to transfer-
matrix techniques. Let us state for completeness the famous Onsager solution [Ons44] for the free energy when
h = 0, and who also stated a formula for the spontaneous magnetization without a proof, given a few years later
by Yang [Yan52].

Theorem 1.7 (Dimension d = 2). For the Ising model with coupling constant J > 0 and no external field (h = 0),
one has

f(J, 0) = log 2 +
1

8π2

∫
[0,2π)2

log
(
cosh2(2J)− sinh(2J)(cos θ1 + cos θ2)

)
dθ1dθ2 .

Additionally, we have

m∗(J) =
(
1− sinh(2J)−4

)1/8
+

.

In particular, we have that Jc = 1
2 log(1 +

√
2) and m∗(J) ∼ (8

√
2)1/8(J − Jc)

1/8 as J ↓ Jc.

Jc J

m∗(J)

Figure 1.1: Schematic view of the spontaneous magnetization m∗(J) as a function of J in d = 2, where
the exact formula for m∗(J) is known. The question in higher dimensions are whether one still have a
similar picture: do we have continuity at J = Jc? can we describe the critical behavior as J ↓ Jc?

There are of course many interesting questions for the Ising model, which remains a very active field of investi-
gation. We refer to [DC23] for an overview of the history of the model and of recent results, in particular regarding
its properties at criticality.

1.2.2 The random field Ising model (RFIM)
We now introduce some random external field to the model. Let η = (ηx)x∈Zd be a field of i.i.d. random variables,
with law denoted by P. We assume that E[ηx] = 0 and E[η2x] = 1 and that the ηx have all their exponential moments.
For simplicity, let us in fact assume that ηx ∼ N (0, 1).

Then, we consider the Ising model with coupling constant J > 0 with + boundary condition and random external
field εη, where ε > 0 is the intensity of the external field. The Hamiltonian is

H+;ε,η
N,J (σ) = −J

( ∑
x,y∈ΛN
x∼y

σxσy +
∑

x∈ΛN ,y /∈ΛN
x∼y

σx

)
− ε

∑
x∈ΛN

ηxσx ,

and so

P+;ε,η
N,J (σ) =

1

Z+;ε,η
N,J

exp

(
J
( ∑

x,y∈ΛN
x∼y

σxσy +
∑

x∈ΛN ,y /∈ΛN
x∼y

σx

)
+ ε

∑
x∈ΛN

ηxσx

)

Then, there are two competing effects: (i) the interaction Jσxσy makes σx trying to align with its neighboring
spins; (ii) the external field εηxσx makes σx trying to align with the external field at site x.
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The Imry-Ma argument
The first question is whether this random field Ising model still has a phase transition in dimension d ≥ 2, at least
when ε is fixed small enough. The physicists Imry and Ma [IM75] made the following prediction, which amounts
to considering the question of disorder relevance.

Prediction (Imry–Ma). For the random field Ising model:
• In dimension d = 2, there is no phase transition and there is no ordered phase: in particular, for any ε > 0,

the spontaneous magnetization is zero for any J > 0. This is an instance of disorder relevance, and one can
interpret the above as follows: “for any ε > 0, we have Jc(ε) = +∞”.

• In dimension d ≥ 3, there is still a phase transition. One can interpret this as having disorder irrelevance:
“there is some ε0 small enough such that for ε ≤ ε0 we have Jc(ε) < +∞”.

Let us briefly present some heuristic for the prediction. The idea is to compare two strategies and understand
which one is more likely: either align with the + boundary condition, or align with the external field.

Consider σ+ ≡ +1 in ΛN , which is the ground state (and align with the boundary condition), and σflip where
we have flipped all spins of σ+ inside a box BL of width L (in order to align with the external field, which may
be negative in this box). Then, we can compare the probabilities P+;ε,η

N,J (σ+) and P+;ε,η
N,J (σflip) by considering their

ratios: since the partition functions cancel out, we have

P+;ε,η
N,J (σflip)

P+;ε,η
N,J (σ+)

= exp
(
H+;ε,η

N,J (σ+)−H+;ε,η
N,J (σflip)

)
.

We easily have that
H+;ε,η

N,J (σ+)−H+;ε,η
N,J (σflip) = −2J |∂BL|+ 2ε

∑
x∈BL

ηx (1.8)

where: (i) the first term simply counts how many terms σxσy have been changed from +1 to −1 (i.e. |∂BL| with
∂BL = {x ∼ y, x ∈ BL, y /∈ BL}), which then contribute to the difference by 2J each; (ii) the second term accounts
to the swap that has occurred in the contribution of the external field inside BL (from ε

∑
x∈BL

ηx to −ε
∑

x∈BL
ηx).

There are therefore two competing effects: note that |∂BL| ≈ Ld−1 and that
∑

x∈BL
ηx ≈ Ld/2N (0, 1), so that

(i) If εLd/2N (0, 1) > JLd−1 (i.e. d < 2), then the external field “wins” and the second term in (1.8) is the
dominating one, so that P+;ε,η

N,J (σ+) ≪ P+;ε,η
N,J (σflip). The spins are favored if they flip in some large regions

to align with the external field, and there is no ordered phase.
(ii) If εLd/2N (0, 1) < JLd−1 (i.e. d > 2), then the interactions “win” and the first term in (1.8) is the dominating

one, so that P+;ε,η
N,J (σ+) ≫ P+;ε,η

N,J (σflip). The spins have no incentive to flip in order to align with the external
field, and an ordered phase still exists.

Let us stress that, in dimension d = 2, the two terms in (1.8) are of the same order, but the fluctuations of the
external field will make the second term dominant on several scales. Thus, one expects the external field to “win”
again, and there should be no ordered phase.

Mathematical results
It turns out that the Imry–Ma prediction is correct, and has been proved in several papers. There are in fact very
recent results on this subject giving for instance quantitative estimates on the decay of correlations in the disordered
phase. Let me give a brief overview of the literature.

In dimension d = 2. The absence of phase transition in the random field Ising model has first been proven by
Aizenman–Wehr [AW90]: they showed that, for any J > 0, we have that the magnetization of the central point
m+;ε

N (J) := E+;ε,η
N,J [σ0] converges to 0 in P-probability as N → ∞.

Let us now state some of the recent progress on this question, which estimates how fast m+;ε
N (J) goes to 0, and

also control the decay of the influence of the boundary conditions. The following (simplified) statements are taken
from [AHP20, DX21, DHP24].
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Theorem 1.8 (Absence of an ordered phase for the RFIM in d = 2). For any ε > 0 and any J > 0, there are some
constants c, C > 0 such that

0 ≤ EE+;ε,η
N,J [σ0] ≤

1

c
e−cN .

Additionally, if one considers M
+/−;ε,η
N,J = E

+/−;ε,η
N,J

[
1

|ΛN |
∑

x∈ΛN
σx

]
the system magnetization under P

+/−;ε,η
N,J , we

have that
E
[∣∣M+;ε,η

N,J −M−;ε,η
N,J

∣∣] ≤ C

(log logN)1/4
.

In dimension d ≥ 3. The fact that, for ε small enough, there is an ordered phase in dimension d ≥ 3 has been
proven by Imbrie [Imb85] (for J = +∞) and Bricmont–Kuppianen [BK88] (for J large enough). Again, there are
recent results on this question, see for instance [DZ24] which provides a simple proof. Let us state one the best
result up to date, from [DLX24], which proves that one has long-range order for any J > Jc (from Theorem 1.6),
provided that ε is small enough. This shows that “Jc(ε) → Jc(0) as ε ↓ 0”.

Theorem 1.9 (Ordered phase for the RFIM in d = 3). Let d = 3 and take J > Jc. Then, for any δ > 0 there is
some ε0 > 0 and s > 0 such that for all ε ≤ ε0

P
(
E+;ε,η

N,J [σ0] ≥ s
)
≥ 1− δ for all N ≥ 1 .

A few words on the dimension d = 1

In dimension d = 1, there is no phase transition, see Theorem 1.5. In fact, one has f(J, 0) = log(eJ + e−J) =
J + log(1+ e−2J), and one can think of having a “phase transition” when taking J → ∞. One can also consider the
disordered case in this setting, in the limit J → ∞; this is referred to the Random Field Ising Chain and has been
studied by a series of recent papers by Collin, Giacomin, Greenblatt and Hu (see e.g. [CGH24, CGGH25, Col25]
for the most recent references). We also refer to the lecture notes of Giacomin [Gia24] where a nice overview of
the techniques is given; in particular since the one-dimensional Ising model can be written in terms of a product of
2× 2 transfer matrices, the random field Ising model is intimately related to the products of random 2× 2 matrices
and has thus a lot of connections with dynamical systems.

It turns out that, in dimension d = 1, the random field Ising chain has some “explicit” ground state (i.e.
a configuration with minimal energy), called the Fisher configuration, where the spins align with ascending or
descending stretches of the cumulated external field (see [CGH24] for some discussion‖). This leads to a very
precise understanding of the large J limit for the one-dimensional random field Ising model. Let us state some
results obtained by Collin, Giacomin, Greenblatt and Hu, which quantify the effect of disorder on the model (we
assume that ηx ∼ N (0, 1) for the simplicity of exposition, but some moment conditions are important to obtain the
following).

Theorem 1.10 (Random field Ising model in d = 1). For any J > 0 and ε > 0, the quenched free energy∗∗

f(J, ε) := lim
N→∞

1

2N + 1
logZ+;ε,η

N,J P-a.s. and in L1(P) ,

exists and is constant P-a.s. Then, there is a constant κ ∈ R such that, as J → ∞, we have

f(J, ε) =
ε2

2J + κ
+O(e−2J) .

(Recall that in the homogeneous case we have f(J, 0) = J +O(e−2J) as J → ∞.)

‖The Fisher configuration turns out to be related to the so-called Γ-extrema of a random walk or Brownian motion, which are well
understood, see [NP89].

∗∗Also referred to as the Lyapunov exponent when using the interpretation in terms of products of random 2× 2 matrices.
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Let us add more informally that, if σF denotes the so-called Fisher configuration, [CGH24] proves that

1

2N + 1

N∑
x=−N

1{σx ̸=σF
x} −−−−−→

N→∞
DJ “in P+;ε,η

N,J probability”,

where DJ is a constant and verifies that DJ = O( log log J
J ) as J → ∞. In other words, under P+;ε,η

N,J , the configura-
tions agree with the Fisher configuration (i.e. with the ground state), with an error on at most a proportion DJ of
sites.

1.3 Random interfaces (with random external field)
Let us now turn to another class of models, which have been used as effective interface models. We refer to
[Fun05, Vel06] (or even [Ber, Ch. 1])for an overview of interface models, and [DHP23] for the version with a random
field.

1.3.1 The ∇φ-interface model
Let again ΛN := {−N, . . . , N}d be the box of radius N in Zd, and let ΩN = RΛN or ΩN = ZΛN be the configuration
space. An element φ ∈ ΩN is thought as a height function, where φx denotes the height of the interface above the
point x. When ΩN = RΛN , we refer to φ as being a continuous-height interface, whereas when ΩN = ZΛN , we refer
to φ as being a discrete-height interface.

Then, for V : R → R+ some symmetric convex function (with V (0) = 0), we consider the following Hamiltonian:

HN,V (φ) =
1

4d

∑
x,y∈ΛN
x∼y

V (φx − φy) +
β

2d

∑
x,y/∈ΛN
x∼y

V (φx − 0) (1.9)

which corresponds to giving higher energy to height functions with large gradients ∇φ. We then introduce the
Gibbs measure, which defines the ∇φ-interface with potential V (·):

dPN,V (φ) =
1

ZN,V
eHN,V (φ)dµref

N (φ) ,

where µref
N is the Lebesgue measure on RΛN for continuous heights interfaces and µref

N is the counting measure
on ZΛN for discrete heights interfaces.

Let us observe that, in (1.9), we only consider for simplicity:
• The case of 0-boundary condition, i.e. we have set φ ≡ 0 outside of ΛN ; one could also consider any given

boundary condition ζ, simply by replacing V (φx − 0) by V (φx − ζy) in the last sum.
• Nearest neighbor interactions; one could also consider longer-range interactions, simply by replacing in the

sums the terms 1
2d1{x∼y} by q(x− y) for some probability q(·).

Example 3 (GFF). The first and most studied example is that of the (lattice) Gaussian Free Field, which is a
continuous height interface (φ is R-valued), where one takes as a potential V (x) = 1

2x
2. One can think of springs

that pull closer to each other points with different heights. A large class of interfaces that fall into the same
“universality” are when V (·) is uniformly strictly convex, i.e. 0 < c1 ≤ V ′′(x) ≤ c2 < +∞ for all x.

Example 4 (SOS). Another important example that has been studied in the literature is the so-called Solid-On-
Solid model, which is used to model some interface in the Ising model. This is a discrete height interface (φ is
Z-valued), where one takes as a potential V (x) = 2J |x|, which amounts to the energy coming from disagreeing spins
along the interface. Note that the p-SOS model has also been considered in the literature, where the potential is
V (x) = β|x|p for some p ≥ 1.
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Localization vs. delocalization

For simplicity, in the rest of this section, we consider only the case of continuous height interfaces. The first
question that one asks about the interfaces concerns the fluctuations of the interface. For instance, one can consider
the height φ0 of the central point, which verifies EN,V [φ0] = 0 by symmetry, and ask about its fluctuations: in
particular, one wants to estimate EN,V [φ

2
0].

The case of dimension d = 1. In dimension d = 1, since the interactions are only nearest neighbor, one realizes
that PN,V is a product measure with the constraint that φ−(N+1) = φN+1 = 0. In particular, letting (Xi)i≥1

be i.i.d. random variables with density cst. e−V (x) and Sk :=
∑k

i=1 Xi the associated random walk one can see
that the law of (φx)−(N+1)≤x≤N+1 is the law of (Sk)0≤k≤2N+3 conditioned on having S2N+3 = 0. In other words,
(φx)−(N+1)≤x≤N+1 is a random walk bridge, and we get that the fluctuations of the interface are of order

√
N .

In particular, in dimension d = 1, we have EN,V [φ
2
0] ∼ cN as N → ∞, and the diffusively rescaled interface

converges to a Brownian bridge.

Dimension d = 2 vs. dimension d ≥ 3. The following result is proven in [BLL75] and [BL76], and somehow
describes a generic situation for continuous-height interfaces. We include the case of dimension d = 1 to collect all
results in a single statement.

Theorem 1.11 (Localization vs. Delocalization). Assume that V (·) is uniformly strictly convex, that is V : R → R
is twice differentiable and 0 < c1 ≤ V ′′(x) ≤ c2 < +∞ for all x.

(i) If d = 1, the interface has fluctuations of order
√
N : there is a constant c such that

EN,V [φ
2
0] ∼ cN as N → ∞ .

(ii) If d = 2, the interface has fluctuations of order
√
logN : there are constants c, C such that for all N ≥ 2

c logN ≤ EN,V [φ
2
0] ≤ C logN .

(iii) If d ≥ 3, the interface is rigid: there is a constant C such that for all N ≥ 2

EN,V [φ
2
0] ≤ C .

In fact, one can show that: (i) in dimension d = 1 the interface, rescaled by
√
N , converges to a Brownian

bridge; (ii) in dimension d = 2, the interface converges as a distribution towards the continuous GFF (which is a
random distribution); (iii) in dimension d ≥ 3,

Proof. Let us give the proof of Theorem 1.11 in the case of the (lattice) GFF, i.e. when V (x) = 1
2x

2 (let us drop
the dependence on V in the notation from now on). In that case, the interface (φx)x∈ΛN

is a Gaussian vector, with
covariance given by the Green function of the simple random walk killed when exiting ΛN :

CovN (φx, φy) = GN (x, y) := Ex

[ τN∑
k=0

1{Sk=y}

]
,

with Px the law of a simple random walk (Sk)k≥0 starting from x and τN := inf{k ≥ 0, Sk /∈ ΛN}.
To see this, one only need to make some algebraic manipulations:

2HN (φ) =
1

4d

∑
x,y∈ΛN
x∼y

(φx − φy)
2 +

1

2d

∑
x∈ΛN ,y /∈ΛN

x∼y

(φx)
2 =

∑
x∈ΛN

− 1

2d

∑
x,y∈ΛN
x∼y

φxφy .

15



Therefore, if we define the Laplacian ∆N on ΛN × ΛN by

∆N (x, y) :=


1
2d if x ∼ y ,

−1 if x = y ,

0 otherwise ,

we can rewrite HN (φ) = 1
2 ⟨φ, (−∆N )φ⟩. Thus, we indeed have that φ = (φx)x∈ΛN

is a Gaussian vector, with
covariance matrix (−∆N )−1. But writing −∆N = I − QN with QN (x, y) = 1

2d1{x∼y} for x, y ∈ ΛN (this is the
sub-stochastic matrix of the simple random walk killed when exiting ΛN ), it is standard to get that ((−∆N )−1) =∑∞

k=0 Q
k
N , which is exactly the Green function GN . (We refer to [FV17, Ch. 8] for details.)

We therefore have that EN,V [φ
2
0] = GN (0, 0) and we therefore need to estimate the Green function GN (0, 0),

i.e. the mean number of visits to 0 before exiting the box ΛN . Standard random walk estimates then provide the
following estimates: as N → ∞

EN,V [φ
2
0] = GN (0, 0) =


N + 1 if d = 1 ,
2
π logN +O(1) if d = 2 ,

G(0) +O(n2−d) if d ≥ 3 .

(The case d = 1 is proven in [Law96, Thm. 1.6.4], the case d = 2 is proven in [Law96, Thm. 1.6.6], the case d ≥ 3
is proven in [Law96, Prop. 1.5.9].) This concludes the proof of Theorem 1.11 in the case of the Gaussian Free
Field.

Remark 1.12 (The case of discrete height interfaces). The localization/delocalization picture is actually slightly
more subtle in the case of discrete height interfaces. Even though the localization of interfaces in dimension
d ≥ 3 seem to be quite general, in dimension d = 2 discrete interfaces undergo a localization/delocalization phase
transition, depending on the inverse temperature of the model. This has first been observed in [FS81], and has
then been proved in several other models, such as the discrete height GFF in [AHPS21] or a large class of models
including the SOS model in [LO24] (we refer to the introductions of these two articles for an overview of recent
results). For instance, for the SOS model with V (x) = 2J |x| (we denote PN,J the corresponding Gibbs measure),
we can summarize the results as follows: there exist some 0 < J0 ≤ J1 < +∞ such that

∀ t > 0, lim
N→∞

PN,J

(
|φ0| ≤ t

)
= 0 (delocalization) if J < J0 ,

lim sup
N→∞

EN,J [φ
2
0] < +∞ (localization) if J > J1 .

1.3.2 Random interfaces with a random external field
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Part I

The disordered pinning model
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Part II

Directed polymers in random environment
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