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Préambule

Nous avons rassemblé dans ce document des exemples (ou exercices) qui n’apparaissent
dans notre livre. Ils peuvent être vus soit comme des illustrations de notions importantes
en probabilités, soit comme des résultats rarement abordés dans un cours standard mais qui
mériteraient d’être connus, soit simplement comme des exemples que nous trouvons originaux
et/ou amusants. Soulignons qu’il s’agit d’un document de travail : certaines parties sont peut-
être incomplètes et il contient sûrement un certain nombre de coquilles. Nous avons néanmoins
décidé de rédiger ces quelques notes et de les proposer en ligne afin qu’elles puissent être utiles
au plus grand nombre. D’ailleurs, n’hésitez pas à nous contacter si vous avez des commentaires
ou des suggestions d’autres problèmes amusants ! En vous souhaitant bonne lecture.

Nous ferons régulièrement référence aux définitions, théorèmes, propositions, équations,
etc. de la version publié de notre livre, en gardant la même numérotation que dans celui-ci ;
les équations et figures du document présent seront précédées de la lettre « E » (par exemple,
l’équation (E-1.1)).



Ex. 1
Un exercice sur l’approximation de Poisson

Problème 1.1. On attribue à n personnes, de manière aléatoire (et indépendante), un réel
choisi de manière uniforme dans [0,1]. Le but du jeu est de trouver la personne qui possède le
nombre le plus petit. Cependant, le seul outil que l’on possède est celui de faire un sondage :
on pose une question aux n personnes (la même pour tout le monde) à laquelle les seules
réponses possibles sont oui ou non. Comment poser la question, et quel est dans ce cas la
probabilité de trouver la personne qui possède le nombre le plus petit ?

Solution. On va fixer xn ∈ ]0,1[ et poser la question suivante :

« Votre nombre est-il plus petit que xn ? »

Si une seule personne répond « Oui », il s’agit de la personne qui possède le plus petit
nombre. L’approximation de Poisson (Section 4.1) nous dit que si xn = λ

n , la probabilité
qu’il y ait exactement une personne qui réponde oui vaut approximativement P(X = 1) où
X ∼ Poi(λ ), c’est-à-dire λe−λ . On remarque alors que la fonction λ 7→ λe−λ est maximale
en λ = 1 : on peut donc prendre xn =

1
n et la probabilité qu’il y ait exactement une personne

qui réponde oui (et donc que l’on trouve la personne qui possède le plus petit nombre) vaut
approximativement e−1 ≈ 0,36788.

Mais on peut en fait améliorer un peu cette stratégie. En effet, si k personnes répondent
« Oui », on pourra choisir une de ces personnes au hasard et on aura une chance sur k d’avoir
trouvé la personne au plus petit nombre. Il reste à choisir proprement le nombre x = xn.

On note A j = A j(x) l’événement « la j-ème personne répond oui » et N = N(x) = ∑
n
i=11A j

le nombre de personnes qui répondent oui à la question. Ainsi, N ∼ Bin(n,x), car les événe-
ments A j sont indépendants et de probabilité P(U ≤ x) = x pour une variable U ∼ U(0,1).
Alors, la probabilité de trouver la personne avec le plus petit nombre est

pn(x) :=
∞

∑
k=1

1
k

P(N = k) .

Il reste à optimiser sur le choix de x.
On va supposer que n est très grand et utiliser l’approximation de Poisson : on va choisir

x = λ

n où λ > 0 est fixé (à optimiser), de sorte que N soit proche d’une loi Poi(λ ). Plus
précisément, si X ∼ Poi(λ ), alors grâce au Théorème 4.8, on obtient∣∣∣ ∞

∑
k=1

1
k

P(N = k)−
∞

∑
k=1

1
k

P(X = k)
∣∣∣≤ ∞

∑
k=1

1
k

∣∣P(N = k)−P(X = k)
∣∣

≤
n

∑
k=1

∣∣P(N = k)−P(X = k)
∣∣≤ λ 2

n
−−−→
n→∞

0 .

Ainsi, la probabilité recherchée est proche de

p̂(λ ) :=
∞

∑
k=1

1
k

P(X = k) =
n

∑
k=1

1
k

λ k

k!
e−λ .
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2 1 Un exercice sur l’approximation de Poisson

Il s’avère qu’il n’existe pas de forme fermée pour cette formule : il est possible de montrer
qu’il existe un unique maximum en un point λ0 ∈ ]0,+∞[ , mais la valeur de λ0 n’est pas
explicite. On peut par contre étudier la dépendance en λ de manière numérique : on trouve
que le maximum est max p̂(λ ) ≈ 0,51735, atteint pour λ0 ≈ 1,50286. On présente dans la
Figure E-1.1 le graphe de la fonction λ 7→ p̂(λ ) : d’abord sur [0,20], puis sur [1,2] où est
atteint le maximum.
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FIG. E-1.1 Graphe de la fonction λ 7→ p̂(λ ), à deux échelles différentes. Dans le deuxième graphe, on a noté
le maximum qui vaut ≈ 0,51735, atteint pour λ0 ≈ 1,50286.

En conclusion, il faut poser la question « Votre nombre est-il plus petit que λ0
n ? », et

choisir l’une des personnes au hasard parmi celles qui répondent « oui » (il y en a un nombre
aléatoire N de loi proche d’une loi Poi(λ0)). Dans ce cas, la probabilité de trouver la personne
qui possède le plus petit nombre est environ 0,51735, soit un peu plus d’une chance sur
deux ! ⊓⊔



Ex. 2
Aiguille de Buffon et théorème de Barbier

Considérons le problème de l’Aiguille de Buffon de l’Exercice 6.47 : on lance une aiguille
sur un parquet composé de planches parallèles et on se demande quelle est la probabilité que
l’aiguille tombe à cheval sur (au moins) une rainure du parquet. On va maintenant résoudre
ce problème d’une manière différente, qui ne requiert quasiment aucun calcul mais repose
sur la propriété de linéarité de l’espérance. Il s’agit d’une méthode donnée par Barbier en
1860 pour démontrer un théorème qui porte son nom (voir le Théorème 2.1 ci-dessous) ; la
démonstration qu’on donne ici est grandement inspirée de l’exposé « ma preuve préférée »
d’Alexandre Gaudillière ‡.

Supposons que les rainures du parquet sont à une distance d les unes des autres et que l’on
lance une aiguille de longueur ℓ. Cette fois, plutôt que s’intéresser à l’événement « l’aiguille
tombe à cheval sur une rainure », on va étudier la variable aléatoire Nℓ =« nombre de rainures
rencontrées par l’aiguille ». Évidemment, on aura Nℓ ≤ 1 dans le cas où ℓ < d, mais on peut
avoir Nℓ ≥ 2 si ℓ≥ d ; de manière générale, Nℓ est à valeurs dans {0, . . . ,⌊ℓ/d⌋}.

FIG. E-2.1 Illustration du parquet et de la position de 40 aiguilles de longueur 2d lancées au hasard.

1ère étape : linéarité de E(Nℓ). La première observation que l’on peut faire est la suivante : si
l’on découpe une aiguille de longueur ℓ en deux parties de longueurs respectives ℓ1, ℓ2 (avec
ℓ1 + ℓ2 = ℓ), alors on peut écrire Nℓ = Ñℓ1 + Ñℓ2 , où Ñℓ1 est le nombre de rainures rencontrées
par la première partie de l’aiguille (de longueur ℓ1) et Ñℓ2 est le nombre de rainures rencontrées
par la deuxième partie de l’aiguille (de longueur ℓ2).

ℓ

ℓ1

ℓ2

Évidemment, Ñℓ1 et Ñℓ2 ne sont pas indépendantes (pourquoi?), mais on peut utiliser la
linéarité de l’espérance pour obtenir

E(Nℓ) = E(Ñℓ1)+E(Ñℓ2) = E(Nℓ1)+E(Nℓ2) ,

où on a utilisé le fait que Ñℓ1 a la même loi que Nℓ1 (de même pour Ñℓ2 ).
Ainsi, si l’on pose g(ℓ) := E(Nℓ), on a montré que la fonction g : R+ → R+ vérifie : pour

tous x,y ≥ 0, g(x+ y) = g(x)+g(y). Il s’agit ensuite d’un exercice classique de montrer que

‡. Voici le lien : https://video.math.cnrs.fr/ma-preuve-preferee/.
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4 2 Aiguille de Buffon et théorème de Barbier

la fonction g est linéaire † sur R+, et on en conclut donc qu’il existe α ∈ R+ tel que

pour tout ℓ > 0 E(Nℓ) = αℓ . (E-2.1)

Il reste maintenant à déterminer la constante α .

2ème étape : aiguilles polygonales. La deuxième observation est que le point précédent reste
vrai si l’on considère une aiguille polygonale, constituée de segments de longueurs ℓ1, . . . , ℓk.

ℓ1
ℓ2 ℓ3

ℓ4

En effet, notons Na le nombre de rainures rencontrées par une aiguille polygonale a
constituée des segments de longueur ℓ1, . . . , ℓk, lancée au hasard sur le parquet. On peut alors
écrire Na = Ñℓ1 + · · ·+ Ñℓk , où Ñℓi est le nombre de rainures rencontrées par le i-ème segment
(de longueur ℓi). Encore une fois, les (Ñℓi)1≤i≤k ne sont pas indépendants, mais par linéarité
de l’espérance, on obtient encore

E(Na) = E(Ñℓ1)+ · · ·+E(Ñℓk) = αℓ1 + · · ·+αℓk = αℓ(a) , (E-2.2)

où ℓ(a) := ℓ1 + · · ·+ℓk est la longueur totale de l’aiguille ; noter que l’on a utilisé (E-2.1) pour
obtenir E(Ñℓi) = αℓi.

3ème étape : approximation du cercle et conclusion. Maintenant, on peut encore généraliser
la formule (E-2.2) au cas d’aiguilles courbes, au moins dans le cas d’aiguilles que l’on peut
approcher par une suite de lignes polygonales.

Prenons l’exemple d’un cercle Cr de rayon r, et notons NCr le nombre de rainures rencon-
trées par une aiguille de forme Cr que l’on lance au hasard sur le parquet. Pour tout n ≥ 1, on
peut alors encadrer le cercle Cr par deux polygones à n côtés, le premier ǎn inscrit dans le
cercle, le deuxième ân circonscrit au cercle.

ǎn

ân

Dans ce cas, les nombres de rainures rencontrées par les aiguilles correspondantes vérifient
clairement Nǎn ≤ NCr ≤ Nân , et donc par monotonie de l’espérance,

αℓ(ǎn) = E(Nǎn)≤ E(NCr)≤ E(Nân) = αℓ(ân) .

Maintenant, en prenant la limite quand n → ∞ et comme les longueurs des polygones ℓ(ǎn),
ℓ(ân) convergent vers la périmètre du cercle ℓ(Cr) = 2πr, on en conclut que, pour tout r > 0

E(NCr) = α × ℓ(Cr) = 2πrα .

†. Donnons ici les étapes : (i) par récurrence, on a g(n) = ng(1) pour tout n ∈ N ; (ii) par récurrence (sur m,
à n fixé), on a g( n

m ) = n
m g(1) pour tout n

m ∈Q ; (iii) comme g : R+ → R+ est croissante, par approximation on
obtient que g(x) = xg(1) pour tout x ∈ R+.
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Cette identité permet alors de déterminer la valeur de α . En effet, si on considère un cercle
de diamètre d (autrement dit de rayon r = d/2), où on rappelle que d est la distance entre deux
rainures de parquet, alors on se rend compte que ce cercle rencontrera exactement 2 rainures,
quelle que soit sa position sur le parquet. On a donc NCd/2 = 2, et

2 = E(NCd/2) = πdα =⇒ α =
2

πd
.

En conclusion, on a montré que pour toute aiguille A (droite, polygonale ou courbe †)
de longueur ℓ(A), si on note NA le nombre de rainures rencontrées par l’aiguille A lancée
aléatoirement sur le parquet, alors

E(NA) =
2

πd
ℓ(A) . (E-2.3)

Cette relation est aussi connue sous le nom de formule de Crofton dans le domaine de la
géométrie intégrale et possède des généralisations en dimension plus grande ‡.

En particulier, si l’on considère une aiguille droite de longueur ℓ < d, alors Nℓ vaut soit 0
soit 1, et E(Nℓ) = P(Nℓ = 1) = 2ℓ

πd , où l’événement « Nℓ = 1 » est exactement l’événement
« l’aiguille tombe à cheval sur (au moins) une rainure du parquet ».

Conséquence : le théorème de Barbier. Le même raisonnement s’applique aux courbes de
largueur constante, qui sont des courbes avec la propriété suivante : pour n’importe quelle
paire de droites parallèles tangentes à la courbe en des points opposés (appelées aussi lignes
d’appui), la distance entre ces deux droites est constante ; cette distance est alors appelée
diamètre de la courbe, voir la Figure E-2.2. Le cercle est clairement un exemple de courbe de
largeur constante, mais il existe tout un tas de courbes de ce type, par exemple les polygones
dit de Reuleaux.

d

d

d

FIG. E-2.2 Une courbe de largeur constante : le triangle de Reuleaux. Des lignes d’appui y sont représentées.

On peut montrer un certain nombre de propriétés de ces courbes : par exemple, il s’agit
de courbes strictement convexes. Si on se donne C une courbe de largeur constante égale à
d, alors on se rend aussi compte que, de la même manière que pour le cercle, la courbe C
rencontrera exactement 2 rainures, quelle que soit sa position sur le parquet. Ainsi, grâce à
la formule (E-2.3), on obtient 2 = E(NC) =

2
πd ℓ(C), où ℓ(C) est la longueur de la courbe C,

c’est-à-dire son périmètre. On en déduit alors le théorème suivant, obtenu par Joseph Émile
Barbier en 1860.

†. Il faut que la courbe soit suffisamment lisse, par exemple une courbe différentiable et régulière, pour être
approchable par une ligne polygonale ; une aiguille courbe est parfois appelée « nouille de Buffon ».

‡. On peut renvoyer à la vidéo suivante de 3blue1brown : https://www.youtube.com/watch?v=ltLUadnCyi0

https://www.youtube.com/watch?v=ltLUadnCyi0
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Théorème 2.1 (de Barbier). Une courbe de largeur constante de diamètre d a pour
périmètre π d.

FIG. E-2.3 Quelques autres courbes de largeur constante : un triangle, un pentagone et un heptagone de
Reuleaux (dont la pièce de 50 cents britannique est un exemple), et une autre courbe de largeur constante non
régulière.



Ex. 3
Nombre de cycles d’une permutation aléatoire

Pour n ∈ N∗, on note Sn le groupe des permutations de {1, . . . ,n}. On choisit une permuta-
tion aléatoirement de manière uniforme sur Sn, et on note Xn le nombre de cycles disjoints
que cette permutation contient. On montre le résultat suivant.

Proposition 3.1. La variable aléatoire Xn a la même loi que Y1 + · · ·+Yn, où les variables
aléatoires (Y1, . . . ,Yn) sont indépendantes et de lois Yi ∼ Bern( 1

i ).

En particulier, on en déduit que Xn
lnn converge en probabilité vers 1 quand n → ∞, voir la

Section 3.3.6.

Démonstration. Une preuve possible passe par le calcul de la fonction génératrice de Xn. On
va montrer que Xn et Y1 + · · ·+Yn ont la même fonction génératrice.
Étape 1. Combinatoire. Pour k ∈ N on pose Cn,k l’ensemble des permutations σ ∈Sn qui ont
exactement k cycles à support disjoint et on note Cn,k le cardinal de cet ensemble.
Lemme 3.2. On a Cn+1,k = nCn,k +Cn,k−1 pour tout n,k ≥ 0.

Démonstration. On a Cn,k = 0 si k > n ou si k < 1. De plus, Cn,n = 1 car la seule permutation
avec n cycles distincts (n points fixes) est l’identité. Le nombre Cn,1 de permutations avec un
seul cycle vaut (n−1)!, car il faut choisir l’image de 1 (il y a n−1 possibilités), puis l’image
du nombre choisi (il y a n−2 possibilités), etc.

Pour obtenir la formule, notons que l’on peut séparer l’ensemble des permutations de
longueur n+1 avec exactement k cycles en deux sous-ensembles : soit n+1 apparaît dans un
cycle de longueur au moins 2, soit n+1 est un point fixe.

Le premier ensemble est de cardinal nCn,k. En effet, étant donné une permutation σ ∈Sn
avec exactement k cycles, on peut placer l’indice n + 1 après n’importe quel indice i ∈
{1, . . . ,n} dans la décomposition en cycles de σ : cela donne une permutation σ ′ ∈Sn+1 avec
exactement k cycles (où n+1 apparaît dans un cycle de longueur au moins 2).

Le deuxième ensemble est de cardinal Cn,k−1. En effet, si on a une permutation σ ∈Sn
avec exactement k− 1 cycles, on peut définir σ ′ ∈ Sn+1 en définissant σ ′(i) = σ(i) pour
i ∈ {1, . . . ,n} et σ ′(n+1) = n+1 : cela donne une permutation σ ′ ∈Sn+1 avec exactement k
cycles (où n+1 apparaît dans un cycle de longueur 1). ⊓⊔

Étape 2. Calcul de la fonction génératrice de Xn. Notons que l’on a P(Xn = k) = 1
n!Cn,k. Ainsi,

si on note Gn la fonction génératrice de Xn, on a pour z ∈ R

GXn(z) = E[zXn ] =
1
n!

n

∑
k=0

Cn,kzk .

Posons fn(z) = ∑
n
k=0 Cn,kzk et utilisons la formule de la question précédente. On a

7



8 3 Nombre de cycles d’une permutation aléatoire

fn+1(z) =
n+1

∑
k=1

Cn+1,kzk = zn+1 +n
n

∑
k=1

Cn,kzk +
n

∑
k=1

Cn,k−1zk

= zn+1 +n
n

∑
k=1

Cn,kzk + z
n−1

∑
k=0

Cn,k−1zk = (n+ z)
n

∑
k=1

Cn,kzk = (n+ z) fn(z) .

Comme f1(z) =C1,1z = z, on en conclut facilement par récurrence que

fn(z) =
n−1

∏
i=0

z+ i , ∀z ∈ C .

Donc

GXn(z) =
1
n!

n−1

∏
i=0

(z+ i) .

Étape 3. Comparaison avec la fonction génératrice de Y1 + · · ·+Yn. Par indépendance, la
fonction génératrice de Y1 + · · ·+Yn vaut

GY1+···+Yn(z) = GY1(z) · · ·GYn(z)

où GYi(z) = 1− 1
i +

1
i z = 1

i (z+ i−1). On en conclut que

GY1+···+Yn(z) =
n

∏
i=1

1
i
(z+ i−1) =

1
n!

n−1

∏
i=0

(z+ i) = GXn(z) ,

ce qui signifie que Xn a la même loi que Y1 + · · ·+Yn. ⊓⊔



Ex. 4
Une caractérisation de la gaussienne : le théorème de
Bernstein

Considérons X ,Y deux variables aléatoires indépendantes et de même loi, admettant un
moment d’ordre deux fini. On suppose pour simplifier que E(X) = E(Y ) = 0 et E(X2) =
E(Y 2) = 1. On va montrer la caractérisation suivante de la loi N(0,1), due à Bernstein.

Proposition 4.1. Si X ,Y sont deux variables aléatoires indépendantes et de même loi,
admettant des moments de tous ordres finis et telles que E(X) = E(Y ) = 0 et E(X2) =
E(Y 2) = 1, alors on a

X ,Y ∼ N(0,1) si et seulement si X +Y et X −Y sont indépendantes.

À noter que la caractérisation reste valable si on suppose simplement que X ,Y ont des
moments d’ordre 2 fini (avec des outils qui n’ont pas été introduits ici). Noter aussi que dans
tous les cas, on a par bilinéarité et symétrie de la covariance,

Cov(X +Y,X −Y ) = Var(X)+Cov(Y,X)−Cov(X ,Y )−Var(Y ) = 0 ,

où on a utilisé que Var(X) = Var(Y ) et Cov(X ,Y ) = Cov(Y,X). Ainsi, si X ,Y sont indépen-
dantes (et centrées réduites), même si on a toujours bien Cov(X +Y,X −Y ) = 0, le seul cas
où X +Y et X −Y sont indépendantes est si X ,Y ∼ N(0,1).

Démonstration. Le sens direct est facile. Si X ,Y ∼ N(0,1) sont indépendantes, alors (X ,Y )
est un vecteur gaussien. On déduit que (X +Y,X −Y ) est aussi un vecteur gaussien, et
comme Cov(X +Y,X −Y ) = 0, cela montre que X +Y et X −Y sont indépendantes, voir la
Proposition 6.73.

Supposons maintenant que X ,Y sont indépendantes (centrées réduites) et que X +Y et
X −Y sont indépendantes. Notons M(t) := MX (t) = E(etX ) pour t ∈R la fonction génératrice
des moments de X : il suffit de montrer que M(t) = e

1
2 t2

.

a) Si on suppose M(t) < +∞ pour t ∈ R. Cette hypothèse est plus forte que celle de la
proposition, mais la preuve dans ce cas est un peu moins technique ‡. Rappelons que dans ce
cas la fonction t 7→ M(t) est indéfiniment dérivable et on a notamment M′(t) = E(XetX ) et
M′′(t) = E(X2etX ).

Calculons de deux manières E
(
(X −Y )2et(X+Y )

)
. D’une part, en développant le carré et

par linéarité de l’espérance, on obtient

E
(
(X −Y )2et(X+Y ))= E

(
X2etX etY )−2E

(
XetXY etY )+E

(
Y 2etX etY )

= 2E
(
X2etX)E

(
etY )−2E

(
XetX)2

= 2M′′(t)M(t)−2M′(t)2 ,

où on a aussi utilisé le fait que X ,Y sont indépendantes et de même loi. D’autre part, en
utilisant l’indépendance de X +Y et X −Y , on a

‡. Et elle s’adapte bien au cas de la fonction caractéristique (qui n’a pas été introduite ici), pour donner
une preuve générale.

9
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E
(
(X −Y )2et(X+Y ))= E

(
(X −Y )2)E

(
et(X+Y ))= 2E

(
etX)2

= 2M(t)2 ,

où on a utilisé l’indépendance de X ,Y , et le fait que E(X) = E(Y ) = 0 et E(X2) = E(Y 2) = 1
pour avoir E((X −Y )2) = E(X2)−2E(XY )+E(Y 2) = 2. En combinant les deux égalités, on
en conclut que

M′′(t)M(t)−M′(t)2 = M(t)2 .

Ainsi, si l’on pose ψ(t) := logM(t) (rappelons que M(t)> 0 pour tout t > 0), on obtient

ψ
′(t) =

M′(t)
M(t)

, ψ
′′(t) =

M′′(t)M(t)−M′(t)2

M(t)2 = 1 , pour tout t ∈ R .

En notant que ψ ′(0) = E(X) = 0, on en déduit que ψ ′(t) = t pour tout t ∈ R. De même,
comme ψ(0) = log1 = 0, on en conclut que ψ(t) := logM(t) = 1

2 t2 pour tout t ∈ R. On a

donc montré que M(t) = e
1
2 t2

pour tout t ∈ R, ce qui conclut la démonstration.

b) Si on suppose que E(Xn) =E(Y n)<+∞ pour tout n∈N. On va montrer que E(Xn) =E(Zn)
pour tout n ∈ N, où Z ∼ N(0,1) : cela montre alors que la série

∞

∑
n=0

E(Xn)
tn

n!
=

∞

∑
n=0

E(Zn)
tn

n!

converge et est égale à M(t), d’où M(t) = MZ(t) = e
1
2 t2

.
Montrons donc que E(Xn) = E(Zn) pour tout n ∈ N, par une récurrence forte. C’est évi-

demment vérifié pour n = 0,1,2. Soit n ≥ 2 et supposons que E(Xk) = E(Zk) pour tout
k ∈ {0, . . . ,n}.

Calculons maintenant E((X +Y )n−1(X −Y )2) de deux manières. D’une part, en dévelop-
pant (X +Y )n−1(X −Y )2 et en utilisant la linéarité de l’espérance (toutes les espérances sont
finies par hypothèse), on obtient

E
(
(X +Y )n−1(X −Y )2)= E

(
Xn+1 +Y n+1)+ n

∑
i, j=0

ci, j E(X iY j)

= 2E
(
Xn+1)+ n

∑
i, j=0

ci, j E(X i)E(Y j) ,

(E-4.1)

où ci, j sont des coefficients donnés (dont la valeur importe peu). De la même manière, si
Z1,Z2 ∼ N(0,1) sont indépendantes, on a

E
(
(Z1 +Z2)

n−1(Z1 −Z2)
2)= 2E

(
Zn+1

1
)
+

n

∑
i, j=0

ci, j E(Zi
1)E(Z j

2) .

En utilisant l’hypothèse de récurrence, on a E(X i) = E(Zi
1), E(Y j) = E(Z j

2) pour tous i, j ≤ n,
donc en faisant la différence des deux dernières identités, on obtient

2E
(
Xn+1)−2E

(
Zn+1

1
)
= E

(
(X +Y )n−1(X −Y )2)−E

(
(Z1 +Z2)

n−1(Z1 −Z2)
2)

= E
(
(X +Y )n−1)E

(
(X −Y )2)−E

(
(Z1 +Z2)

n−1)E
(
(Z1 −Z2)

2)
= 2

(
E
(
(X +Y )n−1)−E

(
(Z1 +Z2)

n−1))
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où on a utilisé l’indépendance de X+Y , X−Y (par hypothèse) et de Z1+Z2, Z1−Z2 (car Z1,Z2
indépendantes de loi N(0,1)). On a aussi utilisé le fait que E((X −Y )2) = E((Z1 −Z2)

2) = 2,
par un calcul direct (les variables impliquées sont indépendantes, centrées et réduites).

Il reste simplement à voir que E((X +Y )n−1) =−E((Z1 +Z2)
n−1) pour conclure. En effet,

en développant (X +Y )n−1, en utilisant la linéarité de l’espérance et le fait que X et Y sont
indépendantes (de même pour (Z1 +Z2)

n−1), on obtient

E
(
(X +Y )n−1)= n

∑
i=1

(
n−1

i

)
E(X i)E(Y j) , E

(
(Z1 +Z2)

n−1)= n

∑
i=1

(
n−1

i

)
E(Zi

1)E(Z j
2) .

En utilisant l’hypothèse de récurrence, qui donne E(X i) = E(Zi
1), E(Y j) = E(Z j

2), on obtient
que les deux termes sont égaux. On en déduit que E(Xn+1) = E(Zn+1

1 ) avec Z ∼ N(0,1), ce
qui conclut la récurrence et donc la démonstration de la Proposition 4.1. ⊓⊔



Ex. 5
Vecteur aléatoire uniforme dans une boule de grande
dimension

Soit Zn := (X1, . . . ,Xn) un vecteur aléatoire de Rn, de loi uniforme dans la boule de
rayon

√
n, notée Bn(

√
n) = {(x1, . . . ,xn) ∈ Rn,∑n

i=1 x2
i ≤ n}. Autrement dit, Zn est un vecteur

aléatoire de Rn de densité donnée par

fZn(x1, . . . ,xn) =
1

Vn(
√

n)
1Bn(

√
n)(x1, . . . ,xn) .

Pour tout k ≤ n, on note f (n)X1,...,Xk
(x1, . . . ,xn) la densité marginale de (X1, . . . ,Xk) dans le

vecteur Zn. On a alors le résultat suivant.

Proposition 5.1. Pour tout k ∈ N fixé, on a pour tous (x1, . . . ,xk) ∈ Rk

lim
n→∞

f (n)k (x1, . . . ,xn) =
k

∏
i=1

1√
2π

e−
1
2 x2

i .

Autrement dit, quand n → ∞, la densité marginale du vecteur (X1, . . . ,Xk) converge vers
celle de k variables N(0,1) indépendantes.

Commençons par le lemme suivant.
Lemme 5.2. Soit Vn(r) le volume d’une boule de rayon r > 0 en dimension n. Pour tout n ≥ 1
et tout r > 0, on a la formule

Vn(r) =
πn/2

Γ ( n
2 +1)

rn .

Démonstration. Notons Bn(r) = {(x1, . . . ,xn)∈Rn,∑n
i=1 x2

i ≤ r2} la boule de rayon r dans Rn.
On va démontrer la relation ci-dessus par récurrence. La formule est vérifiée en dimension
n = 1 car V1(r) = 2r (noter que Γ ( 3

2 ) =
1
2Γ ( 1

2 ) =
1
2
√

π , voir (6.37)) et en dimension n = 2
car V2(r) = πr2 (noter que Γ (2) = 1).

En utilisant le théorème de Fubini–Tonelli, on a la relation de récurrence suivante : pour
n ≥ 1

Vn+1(r) =
∫
Rn
1Bn+1(r)(x1, . . . ,xn+1)dx1 . . .dxn+1

=
∫ r

−r

(∫
Rn
1{∑

n
i=1 x2

i ≤r2−x2
n+1}

dx1 . . .dxn

)
dxn+1 =

∫ r

−r
Vn
(√

r2 − x2
)
dx .

Ainsi, en appliquant l’hypothèse de récurrence et par symétrie, on obtient

Vn+1(r) =
πn/2

Γ ( n
2 +1)

2
∫ r

0
(r2 − x2)n/2dx =

πn/2

Γ ( n
2 +1)

rn+1
∫ 1

0
(1− v)n/2v−

1
2 dv

où on a utilisé le changement de variable u = x2

r2 pour la deuxième égalité (on laisse les calculs
en exercice). Maintenant, la dernière intégrale a déjà été calculée, voir la relation (6.93) : on a

12
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∫ 1

0
(1− v)n/2v−

1
2 dv = β

(n
2
+1,

1
2

)
=

Γ ( n
2 +1)Γ ( 1

2 )

Γ ( n+1
2 +1)

.

Comme Γ ( 1
2 ) = π1/2, on obtient bien la formule Vn+1(r) = π(n+1)/2

Γ ( n+1
2 +1)

rn+1, ce qui conclut la

récurrence. ⊓⊔

Démonstration (de la Proposition 5.1). D’après la Proposition (6.49), la densité marginale est
donnée par l’intégrale suivante : pour x1, . . . ,xk fixés, on a

f (n)k (x1, . . . ,xk) =
∫
Rn−k

fZn(x1, . . . ,xn)dxk+1 . . .dxn

=
1

Vn(
√

n)
1{∑

k
i=1 x2

i ≤n}

∫
Rn−k

1{∑
n
i=k+1 x2

i ≤n−∑
k
i=1 x2

i }
dxk+1 . . . ,dxn ,

de sorte que

f (n)k (x1, . . . ,xk) =
Vn−k

(√
n−θx

)
Vn(

√
n)

1{θx≤n} , avec θx :=
k

∑
i=1

x2
i .

On peut maintenant utiliser le Lemme 5.2 : on obtient

f (n)k (x1, . . . ,xk) =
Γ ( n

2 +1)
πn/2nn/2

π(n−k)/2(n−θx)
(n−k)/2

Γ ( n−k
2 +1)

1{θx≤n}

=
Γ ( n

2 +1)

Γ ( n−k
2 +1)

1
nk/2

1
πk/2

(
1− θx

n

) n
2−

k
2
1{θx≤n} .

Il reste maintenant à prendre la limite quand n → ∞. Pour k fixé et θx ∈ R+ fixé, on a

lim
n→∞

(
1− θx

n

) n
2
= e−

1
2 θx , lim

n→∞

(
1− θx

n

)− k
2
= 1 , lim

n→∞
1{θx≤n} = 1

Pour le terme restant, on montrera plus bas (à l’aide des propriétés de la fonction Gamma
données dans la Section 6.3.2) que pour ℓ ∈ N,

lim
ℓ→∞

Γ ( 1
2ℓ+1)

Γ ( 1
2ℓ+

1
2 )
√
ℓ
=

1√
2
. (E-5.1)

Alors, en écrivant le produit télescopique :

1
nk/2

Γ ( n
2 +1)

Γ ( n−k
2 +1)

=
1

nk/2

k−1

∏
j=0

Γ ( n− j
2 +1)

Γ ( n− j
2 + 1

2 )
=

k−1

∏
j=0

(n− j
n

)1/2 k−1

∏
j=0

Γ ( n− j
2 +1)

Γ ( n− j
2 + 1

2 )
√

n− j
,

et pour chaque j ∈ {0, . . . ,k−1}, en utilisant (E-5.1), on a

lim
n→∞

(n− j
n

)1/2
= 1 , lim

n→∞

Γ ( n− j
2 +1)

Γ ( n− j
2 + 1

2 )
√

n− j
=

1√
2
.

Ainsi, pour k ∈ N et (x1, . . . ,xk) ∈ Rk fixés, on en déduit que

lim
n→∞

f (n)k (x1, . . . ,xk) =
1

(
√

2π)k
e−

1
2 θx =

1
(
√

2π)k
e−

1
2 ∑

k
i=1 x2

i ,
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qui est la conclusion désirée.
Pour montrer (E-5.1), on peut utiliser les formules (6.36)-(6.38) de la Section 6.3.2. Notons

que l’on peut réécrire la formule (6.37) pour les demi-entiers de la façon suivante : pour m ∈N,

Γ

(
m+

1
2

)
=

√
π

2m

m−1

∏
i=0

(2i+1) =
√

π

2m
(2m)!

∏
m
i=1(2i)

=

√
π

4m
(2m)!

m!
.

Ainsi, en utilisant la formule de Stirling, on obtient

√
mΓ

(
m+ 1

2

)
Γ (m+1)

=

√
πm

4m
(2m)!
(m!)2 −−−→

n→∞
1 , (E-5.2)

de manière analogue à (2.13).
On peut maintenant montrer (E-5.1). Dans le cas où ℓ est pair, en considérant l’entier

m := 1
2ℓ, on obtient

Γ ( 1
2ℓ+1)

Γ ( 1
2ℓ+

1
2 )
√
ℓ
=

Γ (m+1)
Γ (m+ 1

2 )
√

2m
−−−→
m→∞

1√
2
,

en utilisant (E-5.2). Dans le cas où ℓ est impair, en considérant l’entier m := ℓ
2 −

1
2 , on obtient

Γ ( 1
2ℓ+1)

Γ ( 1
2ℓ+

1
2 )
√
ℓ
=

Γ (m+ 3
2 )

Γ (m+1)
√

2(m+ 1
2 )

=
1√
2

√
m+ 1

2Γ (m+ 1
2 )

Γ (m+1)
−−−→
m→∞

1√
2

où on a aussi utilisé que Γ (α + 1) = αΓ (α), voir (6.35), puis (E-5.2). Cela conclut la dé-
monstration de (E-5.1), donc de la proposition. ⊓⊔



Ex. 6
Minimum de variables exponentielles : le lemme des
réveils*

Soit n ≥ 1 un entier naturel fixé et soient X1, . . . ,Xn des variables aléatoires indépendantes.
On note

R := min{X1, . . . ,Xn} ,
et J le plus petit indice j tel que X j = min{X1, . . . ,Xn}. Autrement dit, s’il existe plusieurs
indices j1, . . . , jk tels que X j1 = · · ·= X jk = min{X1, . . . ,Xn}, on pose J = j1 ; si le minimum
est atteint de manière unique, J est défini de manière univoque comme l’indice pour lequel
XJ = min{X1, . . . ,Xn}.

On peut interpréter cette situation de la manière suivante : on dispose de n réveils, le k-ème
réveil sonnant à une heure aléatoire Xk, indépendamment des autres réveils. Alors, R est le
premier instant où un réveil sonne et J est l’indice du réveil qui a sonné. On a alors le résultat
suivant.
Proposition 6.1 (Lemme des réveils). Si les variables aléatoires X1, . . . ,Xn sont indépen-
dantes et de lois exponentielles de paramètres respectifs λ1 > 0, . . . ,λn > 0, alors :

• les variables aléatoires R et J sont indépendantes,

• leurs lois sont données par R ∼ Exp(θ), P(J = i) = λi
θ

pour tout j ∈ {1, . . . ,n} où on a
posé θ = ∑

n
i=1 λi.

En particulier, si tous les paramètres λi sont égaux (λi = λ pour tout i ∈ {1, . . . ,n}), alors J
est de loi uniforme sur {1, . . . ,n}.

Démonstration. Pour caractériser complètement la loi du vecteur (R,J), il faut calculer la
probabilité P(R ∈ A,J ∈ B) pour tous ensembles A,B. Comme R est à valeur dans R+ et J
est à valeur dans {1, . . . ,n}, on a P(R ∈ A,J ∈ B) = ∑ j∈B P(R ∈ A∩R+,J = j), de sorte qu’il
suffit de calculer P(R ∈ A,J = j) pour tout ensemble A ⊂ R+ et tout j ∈ {1, . . . ,n}, car cela
caractérise la loi du couple (R,J) à valeurs dans R+×{1, . . . ,n}.

Tout d’abord, notons que comme les variables aléatoires X1, . . . ,Xn sont à densité, on a
P(Xi ̸= X j pour tous i ̸= j) = 1 (voir l’Exercice 6.59). En particulier, le minimum est atteint
pour un unique indice j avec probabilité 1. Ainsi, pour tout j ∈ {1, . . . ,n} et tout A ⊂R+, on a

P
(
R ∈ A,J = j

)
= P

(
X j ∈ A,Xi > X j for all i ̸= j

)
.

Comme (X1, . . . ,Xn) est un vecteur aléatoire à densité, de densité donnée par le produit des
densités fXi , on obtient

P
(
R ≤ t,J = j

)
=

∫
Rn
1{x j∈A,xi>x j for all i̸= j}

n

∏
i=1

fXi(xi)dxi

=
∫

A

(∫
Rn−1

1{xi>x j for all i̸= j}

n

∏
i=1,i̸= j

fXi(xi)dxi

)
λ je−λ jx j dx j ,

où on a appliqué le théorème de Fubini–Tonelli pour la deuxième identité, ainsi que la forme
de la densité de fX j . Maintenant, pour x j ∈ R+ fixé, l’intégrale intérieure est égale à

15



16 6 Minimum de variables exponentielles : le lemme des réveils*

∫
Rn−1

1{xi>x j for all i̸= j}

n

∏
i=1,i̸= j

fXi(xi)dxi = P
(
Xi > x j for all i ̸= j

)
=

n

∏
i=1,i̸= j

P
(
Xi > x j

)
,

où on a utilisé le fait que les variables (Xi)i̸= j sont indépendantes. Comme Xi ∼ Exp(λi), on
obtient que P(Xi > x j) = e−λix j pour x j ≥ 0, voir (6.44). En combinant avec ce qui précède,
on obtient

P
(
R ∈ A,J = j

)
=

∫
A

λ je−θx j dx j =
λ j

θ

∫
A

θe−θxdx , (E-6.1)

où on a posé θ = ∑
n
i=1 λi.

Cette identité caractérise complètement la loi du vecteur aléatoire (R,J). En effet, on peut
retrouver la loi marginale de R et J. Tout d’abord, en sommant sur j ∈ {1, . . . ,n} et en prenant
A = [0, t] pour t ≥ 0, on a

P(R ≤ t) =
∫ t

0
θe−θxdx = 1− e−θ t .

On en déduit que P(R ≤ t) = (1−e−θ t)1R+(t), qui est la fonction de répartition d’une variable
aléatoire de loi Exp(θ) : ainsi, R ∼ Exp(θ). D’autre part, en prenant A = R dans (E-6.1), on
obtient

P(J = j) =
λ j

θ
pour tout j ∈ {1, . . . ,n} .

Le fait que R et J sont des variables aléatoires indépendantes se voit aussi dans (E-6.1) :
on a P(R ∈ A,J = j) = P(R ∈ A)P(J = j) pour tous A ⊂ R+, j ∈ {1, . . . ,n}. Le fait que ces
probabilités caractérisent la loi suffit pour en déduire que les variables aléatories R et J sont
indépendantes. Il suffit en effet d’étendre cette relation à tous les ensembles A,B, en écrivant
comme plus haut

P(R∈A,J ∈B)= ∑
j∈B

P(R∈A∩R+,J = j)= ∑
j∈B

P(R∈A∩R+)P(J = j)=P(R∈A)P(J ∈B) ,

ce qui est la définition de l’indépendance de R et J. ⊓⊔



Ex. 7
Maximum de variables aléatoires géométriques et
log-périodicité

Soient (Xi)i≥1 des variables aléatoires indépendantes et de même loi Géom( 1
2 ). Pour n ≥ 1,

on considère l’événement

An = « le maximum max{X1, . . . ,Xn} est atteint de manière unique » ,

ou, formulé autrement, An =« il existe i ∈ {1, . . . ,n} tel que Xi = max{X1, . . . ,Xn} et X j <
max{X1, . . . ,Xn} pour tout j ̸= i ». On a alors le résultat suivant ‡.

Proposition 7.1. Il existe une fonction continue f : R→ ]0,1[ , périodique de période 1 et
non-constante, telle que

lim
n→∞

|P(An)− f (log2 n)|= 0 ,

où log2 x = logx
log2 désigne le logarithme en base 2.

Plusieurs commentaires s’imposent quant à ce résultat :

• Premièrement, la fonction f étant périodique et continue, elle atteint ses bornes et
0 < min f (x)< max f (x)< 1. Ainsi, la probabilité de l’événement An ne tend ni vers 0,
ni vers 1 ; on peut en fait le montrer assez facilement, voir les observations préliminaires
plus bas.

• Deuxièmement, la probabilité P(An) ne converge pas ! On a P(An)∼ f (log2 n) avec f
une fonction qui est périodique non constante (donc oscille) : on dit que P(An) est
asymptotiquement log2-périodique.

• La fonction f est explicite, voir le Lemme 7.2 plus bas. Avec un rapide programme
Python, on obtient que min f (x)≈ 0.72340 et max f (x)≈ 0.72355 pour tout x > 0, voir
la Figure E-7.1. Autrement dit, la fonction f est périodique, mais l’amplitude de ses
oscillations est de l’ordre de 1,5 ·10−5...

Observations préliminaires. Avant de montrer le résultat, observons que l’on peut obtenir
une borne inférieure et supérieure pour P(An) qui permettent de voir facilement que P(An) ne
tend ni vers 0 ni vers 1. Notons kn := ⌊log2 n⌋.

Pour la borne inférieure, notons que

P(An)≥ P
( n⋃

i=1

{Xi = kn +1,X j ≤ kn pour j ̸= i}
)
=

n

∑
i=1

P(Xi = kn +1)P(X j ≤ kn)
n−1 ,

où on a utilisé le fait que les événements de la première union sont disjoints et que les variables
X1, . . . ,Xn sont indépendantes. Comme P(X1 = j) = ( 1

2 )
j−1 1

2 = 2− j et P(X1 > j) = ( 1
2 )

j pour
j ≥ 1, on obtient

P(An)≥ n2−(kn+1)(1−2−kn
)n−1 ≥ 1

2

(
1− 2

n

)n−1
,

‡. Inspiré de discussions avec Thomas Duquesne.
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18 7 Maximum de variables aléatoires géométriques et log-périodicité

où on a utilisé le fait que 1
n ≤ 2−kn ≤ 2

n car log2 n−1 ≤ kn ≤ log2 n. Notons que cette borne
inférieure converge, vers 1

2 e−2 > 0.
Pour la borne supérieure, on procède de la même manière : on minore 1−P(An) = P(Ac

n)
en écrivant

P(Ac
n)≥ P

( ⋃
1≤i< j≤n

{Xi = X j = kn +1,Xℓ ≤ kn pour ℓ ̸= i, j}
)

= ∑
1≤i< j≤n

P(Xi = kn +1)P(X j = kn +1)P(X j ≤ kn)
n−2 .

De même que précédemment, on obtient

P(Ac
n)≥

n(n−1)
2

2−(kn+1)2−(kn+1)(1−2−kn
)n−2 ≥ n−1

8n

(
1− 2

n

)n−2
.

Notons que cette borne inférieure converge, vers 1
8 e−2 > 0.

Démonstration de la Proposition 7.1. Commençons par donner une formule explicite pour
P(An). En effet, en écrivant An = « il existe i ∈ {1, . . . ,n} tel que Xi > X j pour tout j ̸= i », on
obtient

P(An) = P
( n⋃

i=1

{
Xi > X j pour tout j ̸= i

})
=

n

∑
i=1

P
(
Xi > X j pour tout j ̸= i

)
= nP

(
X1 > X j pour tout j ∈ {2, . . . ,n}

)
,

où on a utilisé que (X1, . . . ,Xn) a la même loi que (Xi,X1, . . . ,Xi−1,Xi+1, . . . ,Xn) (dans les
deux cas, il s’agit de n variables aléatoires indépendantes de loi Géom( 1

2 )). Maintenant, en
décomposant suivant la valeur de X1 et en utilisant l’indépendance, on a

P
(
X1 > X j pour tout j ∈ {2, . . . ,n}

)
=

∞

∑
k=1

P
(
X1 = k+1,X j ≤ k pour j ∈ {2, . . . ,n}

)
=

∞

∑
k=1

P(X1 = k+1)
(
1−P(X1 > k)

)n−1
.

Comme on a P(X1 = j) = ( 1
2 )

j−1 1
2 = 2− j et P(X1 > j) = ( 1

2 )
j pour j ≥ 1, on en conclut que

P(An) =
∞

∑
k=1

n2−(k+1)(1−2−k)n−1
. (E-7.1)

On introduit maintenant une fonction g(x), dont on donne les propriétés dans le lemme suivant,
que l’on démontrera plus bas.
Lemme 7.2. On définit une fonction g : R∗

+ → R∗
+, en posant pour x > 0,

g(x) = ∑
j∈Z

x2 j−1e−x2 j
= ∑

k∈Z
x2−(k+1)e−x2−k

. (E-7.2)

Alors g est bien définie, elle est continue et non constante, et vérifie g(x2ℓ) = g(x) pour tous
x > 0 et ℓ ∈ Z.

Ce lemme montre que la fonction x 7→ f (x) := g(2x) est continue, 1-périodique et non-
constante ; on a f (log2 n) = g(n). On montre alors le résultat suivant :
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lim
n→∞

∣∣P(An)−g(n)
∣∣= 0 , (E-7.3)

ce qui conclura la démonstration.
On introduit ℓn := ⌊ 2

3 log2 n⌋. En partant de (E-7.1) et de (E-7.2), en appliquant l’inégalité
triangulaire, on obtient

∣∣P(An)−g(n)
∣∣≤ ℓn

∑
k=1

n2−(k+1)(1−2−k)n−1

+ ∑
k>ℓn

n2−(k+1)∣∣(1−2−k)n−1 − e−n2−k ∣∣+ ∑
k∈Z,k≤ℓn

n2−(k+1)e−n2−k
.

Pour le premier terme, en majorant 1−2−k ≤ 1 et 1−2−k ≤ e−2−k
pour k ≥ 1, on obtient

ℓn

∑
k=1

n2−(k+1)(1−2−k)n−1 ≤
ℓn

∑
k=1

n2−(k+1)e−n2−k ≤ ne−n2−ℓn
∞

∑
k=1

2−(k+1) ≤ 1
2

ne−n1/3
,

où on a utilisé que ℓn ≤ 2
3 log2 n d’où 2−ℓn ≥ n−2/3. Pour le troisième terme, on utilise la même

majoration 1−2−k ≤ e−2−k
pour k ≥ 1, et on obtient, pour n ≥ 2 :

∑
k≤0

n2−(k+1)e−n2−k
= n

1
2 ∑

j≥0
2− j22 je−n2 j ≤ 1

2
ne−n

∑
j≥0

2−( j+1) = ne−n .

Pour l’inégalité, on a utilisé que 22 je−n2 j ≤ e−n pour tout j ≥ 0, car la fonction t 7→ t2e−nt est
décroissante sur [1,+∞) pour n ≥ 2 (en effet, sa dérivée vaut −t(nt −2)e−nt ). On en conclut
que ∣∣P(An)−g(n)

∣∣≤ ne−n1/3
+ne−n + ∑

k>ℓn

n2−(k+1)∣∣(1−2−k)n−1 − e−n2−k ∣∣ .
Il est facile de montrer que, pour t suffisamment petit, on a 1− t ≥ e−t−t2

. Comme on a la
borne (1−2−k)n−1 ≤ e−n2−k

valable pour tout k ≥ 1, on obtient pour k ≥ ℓn et n suffisamment
grand,∣∣(1−2−k)n−1 − e−n2−k ∣∣≤ ∣∣e−(n−1)2−k−(n−1)2−2k − e−n2−k ∣∣= e−n2−k ∣∣e−2−k

e−(n−1)2−2k −1
∣∣ .

En utilisant maintenant que 1 ≥ e−2−k ≥ 1−2−k ≥ 1−2−ℓn ≥ 1− 1
2 n−2/3 (on rappelle que

l’on a ℓn ≥ 2
3 log2 n−1) et aussi 1 ≥ e−(n−1)2−2k ≥ 1− 1

4 (n−1)n−4/3 ≥ 1− 1
5 n−1/3 pour n ≥ 5,

on en conclut que

0 ≤ 1− e−2−k
e−(n−1)2−2k ≤ 1−

(
1− 1

2
n−1/3

)(
1− 1

5
n−1/3

)
≤ 7

10
n−1/3 ≤ n−1/3 .

En combinant toutes les estimées, on obtient∣∣P(An)−g(n)
∣∣≤ n

(
e−n1/3

+e−n)+n−1/3
∑

k>ℓn

n2−(k+1)e−n2−k ≤ n
(
e−n1/3

+e−n)+n1/3g(n) .

Comme g(n) est bornée (car x 7→ g(2x) est continue 1-périodique), la borne supérieure tend
vers 0 quand n → ∞, ce qui montre (E-7.3) et conclut la démonstration. ⊓⊔
Démonstration (du Lemme 7.2). Il est facile de voir que g(x) est bien définie, en tant que
somme de termes positifs. Elle est finie, car on a
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∑
j≤0

x2 j−1e−x2 j ≤ 1
2

x ∑
k≥0

2−k <+∞ ,

∑
j≥1

x2 j−1e−x2 j
=

1
2

x ∑
j≥1

2− j22 je−x2 j ≤ 1
2

xcx ∑
j≥1

2− j <+∞ ,

où cx = sup j≥1 22 je−x2 j
.

Notons de plus que par un simple changement d’indices dans la somme, on a

g(2ℓx) = ∑
j∈Z

x2ℓ+ j−1e−x2ℓ+ j
= ∑

j′∈Z
x2 j′−1e−x2 j′

= g(x) .

Montrons que x 7→ g(x) est continue †. On écrit g(x) = 1
2 x(h1(x)+h2(x)), où on a séparé

la somme en termes j ≥ 0 et j ≤−1, c’est-à-dire

h1(x) = ∑
j≥0

2 je−x2 j
, h2(x) = ∑

k≥1
2−ke−x2−k

,

et on va montrer que h1,h2 sont continues. On se concentre sur h1, le même type de raison-
nement pouvant être appliqué à h2. Pour x,y ∈ [a,+∞[ avec x < y, on a grâce à l’inégalité
triangulaire ∣∣h1(x)−h1(y)

∣∣≤ ∑
j≥0

2 je−x2 j ∣∣1− e−(y−x)2 j ∣∣≤ (x− y) ∑
j≥0

22 je−a2 j
,

où on a utilisé 0 ≤ 1− e−t ≤ t pour t ≥ 0. On a donc montré que pour tout a > 0, |h1(x)−
h1(y)| ≤Ca|x− y| pour tous x,y ∈ [a,+∞[ , et en particulier limy→x |h1(x)−h‘(y)|= 0, ce qui
montre la contuinuité de h1.

Le fait que g ne soit pas constante n’est pas si facile à voir, mais on présente dans la
Figure E-7.1 les graphes des fonctions g(x) sur [1,128] et f (x) = g(2x) pour x ∈ [0,7]. ⊓⊔

0 20 40 60 80 100 120
0.72130

0.72132

0.72134

0.72136

0.72138

0.72140

0 1 2 3 4 5 6 7
0.72130

0.72132

0.72134

0.72136

0.72138

0.72140

FIG. E-7.1 Graphes des fonctions x 7→ g(x) pour x ∈ [1,128] et x 7→ f (x) = g(2x) pour x ∈ [0,7]. On remarque
que f ,g sont non-constantes et ont une amplitude d’oscillation de l’ordre de 10−5 autour de la valeur ≈ 0.72135.

Probabilité que le maximum soit atteint par exactement ℓ variables. On peut refaire la
même démonstration pour obtenir une estimée de la probabilité que le maximum soit atteint
par exactement ℓ variables. Notons cet événement An(ℓ), c’est-à-dire

†. On peut en fait montrer que la fonction g est indéfiniment dérivable.
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An(ℓ) :=
{

il existe I ⊂ {1, . . . ,n} avec |I|= ℓ tel que :

∀ i ∈ I Xi = max{X1, . . . ,Xn} et ∀ j /∈ I X j < max{X1, . . . ,Xn}
}
.

Alors le même calcul que dans (E-7.1) donne la formule

P(An(ℓ)) =
∞

∑
k=1

(
n
ℓ

)
2−ℓ(k+1)(1−2−k)n−ℓ

.

On peut alors appliquer le même raisonnement que précédemment pour obtenir le comporte-
ment suivant : pour ℓ fixé, quand n → ∞,

P(An(ℓ))∼ fℓ(log2 n) = gℓ(n) avec gℓ(x) :=
1
ℓ! ∑

j∈Z
xℓ2( j−1)ℓe−x2 j

.

De même que précédemment, fℓ est une fonction 1-périodique.

Observation 7.3. Remarquons que par le théorème de Fubini–Tonelli, on a pour x > 0

+∞

∑
ℓ=1

gℓ(x) = ∑
j∈Z

∞

∑
ℓ=1

1
ℓ!

xℓ2( j−1)ℓe−x2 j
= ∑

j∈Z

(
ex2( j−1) −1

)
e−x2 j

= ∑
j∈Z

(
e−x2( j−1) − e−x2 j)

.

Notons que l’on ne peut pas écrire que cette somme est pas égale à ∑ j∈Z e−x2( j−1) −∑ j∈Z e−x2 j

car ces deux sommes sont infinies. Mais on voit qu’il s’agit d’une somme téléscopique : on a

∑
j∈Z

(
e−x2( j−1) − e−x2 j)

= lim
n→∞

n

∑
j=−n

(
e−x2( j−1) − e−x2 j)

= lim
n→∞

(
e−x2−n−1 − e−x2n)

= 1 .

On en conclut que ∑
+∞

ℓ=1 gℓ(x) = 1. Comme gℓ(x) > 0 pour tout ℓ et x > 0, cela montre
notamment que gℓ est à valeurs dans ]0,1[ .



Ex. 8
Probabilité que deux variables géométriques soient
premières entre elles

On considère X ,Y deux variables aléatoires indépendantes, toutes deux de loi géométrique
de paramètre α ∈ ]0,1[ . On pose Zα = pgcd(X ,Y ) et on note pk(α) := P(Zα = k) pour tout
k ∈ N∗. En particulier, p1(α) est la probabilité que X et Y sont premières entre elles. On
montre le résultat suivant.

Proposition 8.1. Pour tout entier k ∈ N∗, on a

lim
α↓0

pk(α) = lim
α↓0

P(Zα = k) =
c0

k2 , avec c0 =
6

π2 .

En particulier, la probabilité que X et Y soient premières entre elles converge vers 6
π2

quand α ↓ 0.

Noter que le fait de prendre un paramètre α ↓ 0 correspond à considérer une variable
aléatoire géométrique de moyenne 1/α →+∞ ; la limite α = 0 serait de manière informelle
« uniforme sur N ». On s’intéresse donc à la probabilité que deux nombres aléatoires (très
grands en moyenne) soient premiers entre eux, dans le même esprit que le Problème 1.27 (les
calculs sont d’ailleurs un peu similaires ici, mais pas complètement).

Démonstration. Commençons par un petit résultat préliminaire, intéressant en soi.
Lemme 8.2. Soit qk(α) := P(X est divisible par k). Alors

qk(α) =
α(1−α)k−1

1− (1−α)k .

Notamment, limα↓0 qk(α) = 1
k et qk(α)≤ 1

k pour tout α ∈ ]0,1[ . De plus, pour tout j ∈ N∗,

P
( 1

k X = j
∣∣ X est divisible par k

)
= (1−αk)

j−1
αk , avec αk := 1− (1−α)k .

Autrement dit, conditionnellement à l’événement « X est divisible par k », 1
k X suit une loi

géométrique de paramètre αk.

Démonstration. Notons Ak l’événement « X est divisible par k », que l’on peut ré-écrire
comme Ak =

⋃
∞
j=1{X = k j}. On a

P(Ak) =
∞

∑
j=1

P(X = k j) =
∞

∑
j=1

(1−α)k j−1
α =

α

1−α

∞

∑
j=1

(
(1−α)k) j

=
α

1−α

(1−α)k

1− (1−α)k ,

d’où la formule pour qk(α).

Le fait que limα↓0 qk(α) = 1
k vient du fait que limα↓0

1−(1−α)k

α
= k (il s’agit de la dérivée

en 0 de la fonction x 7→ −(1− x)k). Pour voir que qk(α) ≤ 1
k pour tout α ∈ ]0,1[ , on peut

22
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observer que x 7→ qk(x) est décroissante (par exemple en calculant sa dérivée †) : on en déduit
que pour tout x ∈ [0,1], qk(x)≤ limx↓0 qk(x) = 1

k .
Pour la deuxième formule, on a aisément, en posant αk := 1− (1−α)k de sorte que

qk(α) = 1−αk
αk

α

1−α
, on obtient

P
( 1

k X = j
∣∣ X est divisible par k

)
=

1
P(Ak)

P(X = k j) =
αk

1−αk

1−α

α
× (1−α)k j−1

α

= αk(1−αk)
j−1,

ce qui donne le résultat voulu. ⊓⊔

Étape 1. Expression de P(Zα = 1). Montrons que la probabilité p1(α) que X et Y soient
premiers entre eux converge. On peut utiliser la formule d’inclusion/exclusion de la Proposi-
tion 1.23, de la même manière que pour la probabilité que deux entiers pris dans {1, . . . ,n}
soient premiers entre eux, voir le Problème 1.27.

On commence par écrire que Zα ̸= 1 si et seulement si X et Y admettent un diviseur
commun : ainsi,

P(Zα = 1) = 1−P(Zα ̸= 1) = 1−P
( ∞⋃

i=1

Dpi

)
,

où p1, . . . , pn, . . . désignent les nombres premiers rangés par ordre croissant et où où Dk =« k
divise X et Y ». Notons que par indépendance, pour tout k ≥ 1 on a P(Dk) = qk(α)2.

On ne peut pas appliquer la formule d’inclusion-exclusion à l’union infinie, mais on peut
utiliser le fait que

P
( ∞⋃

i=1

Dpi

)
= lim

n→∞
P
( n⋃

i=1

Dpi

)
,

par continuité croissante des probabilités. On a alors, par la formule d’inclusion-exclusion

P
( n⋃

i=1

Dpi

)
= ∑

j=1
(−1) j+1

∑
1≤i1<···<i j≤n

P(Dpi1
∩·· ·Dpi j

)

= ∑
j=1

(−1) j+1
∑

1≤i1<···<i j≤n
P(Dpi1 ···pi j

) = ∑
j=1

(−1) j+1
∑

1≤i1<···<i j≤n
qpi1 ···pi j

(α)2 .

Notons que l’ensemble des pi1 · · · pi j est exactement l’ensemble des d ≥ 2 dont les facteurs
premiers sont dans {p1, . . . , pn} et de multiplicité 1. En utilisant la définition de la fonction
de Moebius µ (qui apparaît dans (1.25)), en notant Cn = {∏

n
i=1 pmi

i ,(m1, . . . ,mn) ∈ Nn}, on
obtient

1−P
( n⋃

i=1

Dpi

)
= 1+ ∑

k∈Cn\{1}
µ(d)qk(α)2 = ∑

k∈Cn

µ(k)qk(α)2 .

On peut alors prendre la limite quand n → ∞, car la somme converge absolument, en utilisant
le fait que qk(α)2 ≤ 1/k2 et |µ(d)| ≤ 1. On a donc montré que

p1(α) = P(Zα = 1) =
∞

∑
k=1

µ(k)qk(α)2 .

†. Le calcul donne q′k(x) =
(1−x)k−2

(1−(1−x)k)2 (1−kx−(1−x)k), qui est négatif car (1−x)k ≥ 1−kx pour x∈ [0,1]

(en observant que x 7→ (1−x)k −1+kx est nulle en x = 0 et de dérivée k(1− (1−x)k−1)≥ 0, donc croissante).
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Étape 2. Limite de P(Zα = 1). On sait que limα↓0 qk(α)2 = 1
k2 et il reste donc à montrer que

l’on peut intervertir la limite avec la somme (infinie).
Commençons par observer que ∑

∞
k=1

µ(k)
k2 est bien définie car la somme converge absolu-

ment. Fixons ε > 0, et K = K(ε) tel que ∑k>K
1
k2 ≤ ε . En appliquant l’inégalité triangulaire et

en utilisant que p1(α) = ∑
∞
k=1 µ(k)qk(α)2, on peut écrire∣∣∣p1(α)−

∞

∑
k=1

µ(k)
k2

∣∣∣≤ ∣∣∣ ∑
k>K

µ(k)qk(α)2
∣∣∣+ ∣∣∣ K

∑
k=1

µ(k)qk(α)2 −
K

∑
k=1

µ(k)
k2

∣∣∣+ ∣∣∣ ∑
k>K

µ(k)
k2

∣∣∣
≤ 2 ∑

k>K

1
k2 +

K

∑
k=1

∣∣∣qk(α)− 1
k2

∣∣∣≤ 2ε +
K

∑
k=1

∣∣∣qk(α)− 1
k2

∣∣∣ ,
où on a utilisé que |µ(k)| ≤ 1 et qk(α)2 ≤ 1

k2 .
Maintenant, comme limα↓0 qk(α) = 1

k pour tout k ∈ {1, . . . ,K} (avec K fixé), on peut
choisir α0 suffisamment petit (à quel point dépend de ε) pour avoir, pour tout α ≤ α0,
|qk(α)− 1

k2 | ≤ ε/K. On en conclut que, pour tout α ≤ α0 on a |p1(α)−∑
∞
k=1

µ(k)
k2 | ≤ 3ε , ce

qui montre que

lim
α↓0

p1(α) =
∞

∑
k=1

µ(k)
k2 .

On a déjà vu dans le Problème 1.27 que cette somme est égale à 6/π2, mais on va le redémon-
trer plus bas.

Étape 3. Expression et limite de P(Zα = k). Montrons maintenant la relation suivante : On a
donc montré que, pour tout k ∈ N∗,

pk(α) = qk(α)2 p1(αk) , (E-8.1)

où αk = 1− (1−α)k est donné dans le Lemme 8.2. L’idée est d’écrire

pk(α) = P(Zα = k) = P
(

X et Y sont divisibles par k et pgcd
( 1

k X , 1
kY

)
= 1

)
,

et d’utiliser que, conditionnellement au fait que X et Y sont divisibles par k, 1
k X et 1

kY sont
des variables aléatoires indépendantes de loi Géom(αk), grâce au Lemme 8.2. Écrivons-le
proprement : en décomposant suivant les valeurs de 1

k X et 1
kY , on a

pk(α) = ∑
j, j′,pgcd( j, j′)=1

P
(
X et Y sont divisibles par k et 1

k X = j, 1
kY = j′

)
= ∑

j, j′,pgcd( j, j′)=1
P
(
X est divisible par k et 1

k X = j
)

P
(
Y est divisible par k et 1

kY = j′
)
,

où on a utilisé l’indépendance de X et Y . En notant X̂ , Ŷ deux variables aléatoires indépendantes
de loi Géom(αk), on obtient grâce au Lemme 8.2

pk(α) = ∑
j, j′,pgcd( j, j′)=1

qk(α)2 P(X̂ = j)qk(α)P(Ŷ = j′)

= qk(α)2
∑

j, j′,pgcd( j, j′)=1
P(X̂ = j,Ŷ = j′)

= qk(α)2 P
(
pgcd(X̂ ,Ŷ ) = 1

)
.
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On a donc montré (E-8.1). Maintenant, on sait grâce à l’étape 2 que la limite limα↓0 p1(α) = c0

existe : en prenant la limite α ↓ 0 dans (E-8.1) et en utilisant que limα↓0 qk(α) = 1
k et que

αk → 0 quand α → 0, on obtient

lim
α↓0

pk(α) =
1
k2 c0 , (E-8.2)

ce qui est le résultat voulu (une fois que la constante c0 a été déterminée).

Étape 4. Détermination de la constante c0 = limα↓0 p1(α). En sommant sur k la rela-
tion (E-8.1), on obtient

∞

∑
k=1

pk(α) = 1 =
∞

∑
k=1

qk(α)2 p1(αk) . (E-8.3)

Si pouvait échanger la somme et la limite α ↓ 0 dans (E-8.3) on aurait 1 = ∑
∞
k=1

c0
k2 , d’où

c0 =
(

∑
∞
k=1

1
k2

)−1
= 6

π2 . On va démontrer ce résultat à la main.
Fixons ε > 0 et K = K(ε) tel que ∑k>K

1
k2 ≤ ε . En reprenant (E-8.3), on obtient grâce à

l’inégalité triangulaire∣∣∣1− ∞

∑
k=1

c0

k2

∣∣∣≤ ∑
k>K

pk(α)+
∣∣∣ K

∑
k=1

pk(α)−
K

∑
k=1

c0

k2

∣∣∣+ ∑
k>K

c0

k2

≤ 2 ∑
k>K

1
k2 +

K

∑
k=1

∣∣∣pk(α)− c0

k2

∣∣∣≤ 2ε +
K

∑
k=1

∣∣∣pk(α)− c0

k2

∣∣∣ ,
où on a utilisé le fait que pk(α) = qk(α)2 p1(αk)≤ 1

k2 . Cette inégalité étant valable pour tout
α > 0, on peut prendre la limite α ↓ 0 dans le membre de droite (noter que K est fixé) : on
obtient |1−∑

∞
k=1

c0
k2 | ≤ 2ε , et comme ε > 0 est arbitraire, on en déduit que

1 =
∞

∑
k=1

c0

k2 = c0
π2

6
.

Cela permet de conclure que c0 = 6/π2, comme annoncé plus haut. ⊓⊔

Observation 8.3. On peut adapter la Proposition 8.1 au cas où X ∼Géom(α) et Y ∼Géom(β ),
avec α,β ↓ 0. ⊓⊔



Ex. 9
Problème de survie d’une marche aléatoire

Soient (Xi)i≥0 des variables aléatoires réelles, indépendantes et de même loi. On pose
S0 = 0 et pour k ≥ 1,

Sk :=
k

∑
i=1

Xi .

La suite (Sk)k≥0, appelée marche aléatoire, permet en pratique de décrire de nombreuses
situations, comme le gain d’un joueur lors d’une succession de paris, la position d’un marcheur
(ou d’une particule) après k pas effectués de manière aléatoire.

On s’intéresse ici au problème dit de survie de la marche aléatoire, c’est-à-dire à la
probabilité que (Sk)k≥0 reste (strictement) positive pendant un temps n ≥ 1 donné : on cherche
à estimer les probabilités

P
(
S1 ≥ 0, . . . ,Sn ≥ 0

)
et P

(
S1 > 0, . . . ,Sn > 0

)
.

Par exemple, si (Sk)k≥0 représente le gain d’un joueur après k paris, il s’agit de la probabilité
que le joueur ne soit jamais endetté au cours des n premières parties.

On va considérer ce problème dans deux cas :

• Le cas de la marche aléatoire simple étudié dans les Sections 2.2 et 4.4, c’est-à-dire si les
pas sont à valeur dans {+1,−1}, avec P(Xi =+1) = P(Xi =−1) = 1

2 ;

• Le cas général d’une marche aléatoire symétrique, c’est-à-dire où les variables aléatoires
(Xi)i≥1 sont telles que −Xi a la même loi que X . Le cas où les variables (Xi)i≥1 sont à
densité s’avère surprenant.

9.1 Pour la marche aléatoire simple

Considérons dans un premier temps le cas de la marche aléatoire simple, c’est-à-dire si les
variables aléatoires (Xi)i≥1 sont i.i.d. de loi

P(Xi =+1) = P(Xi =−1) =
1
2
.

On a alors le résultat suivant pour la probabilité de survie. Comme la marche aléatoire simple
ne peut revenir en 0 qu’aux instants pairs, on s’intéresse aux probabilités de survie aux instants
pairs. En effet, on a par exemple P(S1 ≥ 0, . . . ,S2n−1 ≥ 0) = P(S1 ≥ 0, . . . ,S2n ≥ 0) ou encore
P(S1 > 0, . . . ,S2n > 0) = P(S1 > 0, . . . ,S2n+1 > 0) pour tout n ≥ 1. Comme dans la Section 2.2,
on note

u2n :=
1
4n

(
2n
n

)
= P(S2n = 0) , (E-9.1)

où la deuxième égalité vient du fait que l’on a S2n = 0 si et seulement si il y a eu autant de pas
’+1’ que de pas ’−1’ dans les 2n premiers pas, voir (2.11).

26
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Théorème 9.1. Soit (Sk)k≥0 la marche aléatoire simple symétrique définie ci-dessus. Pour
tout n ≥ 1, on a

P
(
S1 ≥ 0, . . . ,S2n ≥ 0

)
= u2n ,

P
(
S1 > 0, . . . ,S2n > 0

)
=

1
2

u2n .

Comme la marche aléatoire simple (Sk)k≥0 ne peut pas changer de signe sans passer par 0,
il n’y a que deux possibilités pour avoir S1 ̸= 0, . . . ,S2n ̸= 0 : soit on a S1 > 0, . . . ,S2n > 0, soit
on a S1 < 0, . . . ,S2n < 0. Ainsi, on en déduit

P
(
S1 ̸= 0, . . . ,S2n ̸= 0

)
= P

(
S1 > 0, . . . ,S2n > 0

)
+P

(
S1 < 0, . . . ,S2n < 0

)
= u2n . (E-9.2)

On en déduit le corollaire suivant, concernant l’instant de premier retour en 0 de la marche
aléatoire simple.

Corollaire 9.2. Soit T := min{k ≥ 1,Sk = 0} l’instant premier retour en 0 de la marche
aléatoire simple. Pour tout n ≥ 1, on a

P(T = 2n) =
1

2n−1
u2n .

Démonstration. Commençons par noter que T > 2n si et seulement si on a S1 ̸= 0, . . . ,S2n ̸= 0.
Ainsi, d’après le Théorème 9.1, ou plus précisément (E-9.2), on a

P(T > 2n) = P
(
S1 ̸= 0, . . . ,S2n ̸= 0

)
= u2n .

Notons déjà que cela montre que P(T =+∞) = limn→∞ P(T > 2n) = 0.
Maintenant, observons que T ne peut prendre que des valeurs paires, car la marche aléatoire

ne revient en 0 qu’à des instants pairs. On a donc T = 2n si et seulement si on a T > 2n−2
(donc T > 2n−1) mais pas T > 2n : on obtient

P(T = 2n) = P(T > 2n−2)−P(T > 2n) = u2(n−1)−u2n .

Notons que u2(n−1) =
1

4n−1

(2n−2
n−1

)
et que

(2n−2
n−1

)
= (2n−2)!

(n−1)!2 = n2

2n(2n−1) ×
(2n−2)!
(n−1)!2 = n

4n−2

(2n
n

)
.

Ainsi, u2(n−1) =
4n

4n−2 u2n, et

P(T = 2n) = u2n

( 4n
4n−2

−1
)
=

1
2n−1

u2n ,

ce qui conclut la démonstration. ⊓⊔

Observation 9.3. On peut aussi déduire du Théorème 9.1 une identité combinatoire intéres-
sante : pour tout n ≥ 1, on a

n

∑
k=0

u2ku2(n−k) = 1 ⇐⇒
n

∑
k=0

(
2k
k

)(
2(n− k)

n− k

)
= 4n .

En effet, en notant L2n := max{0 ≤ k ≤ 2n,Sk = 0} le dernier instant de retour en 0 de la
marche aléatoire simple avant l’instant 2n, on obtient ∑

n
k=0 P(L2n = 2k) = 1, car L2n est
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forcément pair. Mais en écrivant explicitement l’événement {L2n = 2k}, on a

P(L2n = 2k) = P
(
S2k=0,S2k+1 ̸= 0, . . . ,S2n ̸= 0

)
= P

(
S2k=0

)
P
(
S1 ̸= 0, . . . ,S2n−2k ̸= 0

)
.

Comme P(S2k = 0) = u2k et P(S1 ̸= 0, . . . ,S2 j ̸= 0) = u2 j (voir (E-9.2)), cela conclut la dé-
monstration. ⊓⊔

Démonstration (du Théorème 9.1). On va utiliser une démonstration combinatoire. Comme
dans la Section 2.2, notons

Ω̃2n =
{
(s0, . . . ,s2n) : s0 = 0, |sk − sk−1|= 1 pour tout k ∈ {1, . . . ,2n}

}
l’ensemble des chemins possibles de longueur 2n. La loi de la marche aléatoire simple
(S0, . . . ,S2n) correspond à la probabilité uniforme sur Ω̃2n.

On considère maintenant les deux sous-ensembles de Ω̃2n suivant :

A2n :=
{
(s0, . . . ,s2n) ∈ Ω̃2n : s2n = 0

}
,

B2n :=
{
(s0, . . . ,s2n) ∈ Ω̃2n : sk ≥ 0 pour tout k ∈ {1, . . . ,2n}

}
,

de sorte que P(S1 ≥ 0, . . . ,S2n≥0) =
1

|Ω̃2n|
|Bn| et P(S2n=0) =

1
|Ω̃2n|

|An|. Il nous reste donc à
montrer que |An|= |Bn|.

Pour voir que |A2n|= |B2n|, on va donner une bijection entre A2n et B2n. Il nous suffit en
fait donner, pour tout k ∈ {0, . . . ,n}, une bijection entre A2n,k et B2n,k, où

A2n,k :=
{
(s0, . . . ,s2n) ∈ A2n : min

0≤i≤2n
si =−k

}
,

B2n,k :=
{
(s0, . . . ,s2n) ∈ B2n : s2n = 2k

}
.

En effet, A2n est l’union disjointe des (A2n,k)0≤k≤n (noter que si s2n = 0, le minimum ne
peut pas être inférieur à −n) et B2n est l’union disjointe des (B2n,k)0≤k≤n (noter que s2n est
forcément pair, et positif).

Soit k ∈ {0, . . . ,n}. Une bijection ψ entre A2n,k et B2n,k est donnée de la manière suivante.
Soit s = (s0, . . . ,s2n) un chemin de A2n,k et soit m := min{i : si =−k} le premier instant où
le chemin atteint son minimum. On associe alors à s un chemin s̃ := ψ(s) = (s̃0, . . . , s̃2n) de la
manière suivante :

s̃i = sm+i − sm pour i ∈ {0, . . . ,2n−m} (noter que s̃2n−m = k) ,
s̃i = k+(sm − s2n−i) pour i ∈ {2n−m+1, . . . ,2n} (noter que s̃2n = 2k) .

Autrement dit, on décompose s en deux morceaux, s′ = (s0, . . . ,sm) et s′′ = (sm, . . . ,s2n).
Le chemin s̃ est alors construit en deux parties : la première partie s̃′ = (s̃1, . . . , s̃ℓ), avec
ℓ = 2n−m, est identique à s′′ (à translation près pour faire démarrer s̃′ en 0) ; la deuxième
partie s̃′′ = (s̃ℓ, . . . , s̃2n) est l’image de s′ par une symétrie verticale (à translation près pour
placer s̃′′ « à la suite » de s̃′). Une illustration est donnée dans la Figure E-9.1.

On peut facilement vérifier que l’image de s ∈ A2n,k par ψ est un élément de B2n,k : par
construction, on a s̃i ≥ 0 pour tout i et s2n = 2k. Pour voir qu’il s’agit d’une bijection, il suffit
de montrer que ψ possède un inverse : il est décrit de la manière suivante.

Soit s̃ := ψ(s) = (s̃0, . . . , s̃2n) un chemin de B2n,k et soit ℓ= max{i ≥ 0 : si = k} le dernier
instant où le chemin s̃ passe par k avant d’atteindre 2k. L’inverse de ψ est alors construit en
associant à s̃ le chemin s = (s0, . . . ,s2n) obtenu de la façon suivante :
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N
m

s′

−k

2n

s′′

N
ℓ

s̃′

k

2k

s̃′′

2n

FIG. E-9.1 Illustration de la bijection ψ entre A2n,k et B2n,k. Dans la figure du haut, on a représenté un chemin
s = (s0, . . . ,s2n) ∈A2n,k, que l’on a décomposé en deux parties, s′ = (s0, . . . ,sm) et s′′ = (sm, . . . ,s2n). Dans la
figure du bas, on a représenté le chemin s̃ = ψ(s) ∈ B2n,k, décomposé lui aussi en deux parties, s̃′ = (s̃0, . . . , s̃ℓ)
et s̃′′ = (s̃ℓ, . . . , s̃2n), avec ℓ= 2n−m. La bijection ψ identifie s̃′ à s′′ et s̃′′ au symétrique de s′ par rapport à
l’axe vertical (dans les deux cas, à translation près).

si = s̃2n − s̃2n−i pour i ∈ {0, . . . ,2n− ℓ} (noter que s2n−ℓ =−k) ,
si =−k+ s̃i−2n−ℓ pour i ∈ {ℓ+1, . . . ,2n} (noter que s2n = 0) .

Autrement dit, s̃ est composé de deux morceaux s̃′ = (s0, . . . ,sℓ) et s̃′′ = (sℓ, . . . ,s2n). Le
chemin s est construit en deux parties : la première partie s′ est identique à s̃′′ (à translation
près pour faire démarrer s′ en 0) ; la deuxième partie s′′ est l’image de s̃′ par une symétrie
verticale (à translation près pour placer s′′ « à la suite » de s′). On renvoie à la Figure E-9.1
pour une illustration. Notons qu’il est ici aussi facile de voir que le chemin s ainsi construit est
un élément de A2n,k.

Pour conclure, on a montré que ψ : A2n,k → B2n,k est une bijection : on en déduit que
|A2n,k|= |B2n,k| ce qui termine la démonstration. ⊓⊔

9.2 Marches aléatoires symétriques à densité : le théorème de Sparre
Andersen

Considérons maintenant le cas où les variables aléatoires (Xi)i≥0 sont i.i.d. de loi symétrique,
c’est-à-dire que −Xi a la même loi que Xi. Supposons de plus que les (Xi)i≥1 sont de loi à
densité ; le fait que la loi est symétrique s’exprime dans le fait que la densité fXi est une
fonction paire, c’est-à-dire fXi(−x) = fXi(x). On a alors le résultat suivant, démontré par
Sparre Andersen † en 1954.

†. Avec une démonstration très différente de ce que nous donnons ci-dessous.
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Théorème 9.4 (de Sparre Andersen). Supposons que les variables aléatoires (Xi)i≥1
sont i.i.d. de loi symétrique et à densité, et soit Sk = ∑

k
i=1 Xi la marche aléatoire associée.

Alors, pour tout n ≥ 1, on a

P
(
S1 ≥ 0, . . . ,Sn ≥ 0

)
= P

(
S1 > 0, . . . ,Sn > 0

)
=

1
4n

(
2n
n

)
.

Observation 9.5. Ce résultat est assez surprenant par plusieurs aspects :

• Aucune hypothèse de moment n’est faite à propos des variables aléatoires (Xi)i≥1 ; en
particulier, on ne suppose pas que les Xi admettent une espérance ou une variance.

• Le résultat ne dépend pas de la loi des variables aléatoires (Xi)i≥0, pourvu qu’elles soient
symétrique et à densité ; on peut par exemple prendre Xi ∼ N(0,1), Xi ∼ U(−1,1), où
plus généralement n’importe quel Xi de densité paire.

• La valeur de la probabilité de survie ressemble beaucoup à celle trouvée pour la marche
aléatoire simple symétrique dans le Théorème 9.1.

⊓⊔

Démonstration (du Théorème 9.4). Pour n ∈ N, on introduit la variable aléatoire

Kn := min
{

k ∈ {0, . . . ,n} : Sk = min
0≤ j≤n

S j
}
,

qui est l’indice où la marche aléatoire atteint son minimum sur {0, . . . ,n} pour la première
fois, voir la Figure E-9.2 pour une illustration.

On a Kn = 0 si et seulement si S j ≥ 0 pour tout j ∈ {1, . . . ,n}, de sorte que

P(Kn = 0) = P
(
S1 ≥ 0, . . . ,Sn ≥ 0

)
.

Aussi, Kn = n si et seulement si Sn < S j pour tout j ∈ {0, . . . ,n−1}, de sorte que

P(Kn = n) = P
(
Sn < 0,Sn −S1 < 0, . . . ,Sn −Sn−1 < 0

)
= P

(
Xn < 0,Xn +Xn−1 < 0, . . . ,Xn + · · ·+X1 < 0

)
= P

(
S1 < 0,S2 < 0, . . . ,Sn < 0

)
,

où on a utilisé pour la dernière égalité que si on pose S̃ j =Xn+ . . .+Xn− j+1 pour j ∈ {1, . . . ,n},
alors (S̃ j)1≤ j≤n a la même loi que (S j)1≤ j≤n.

Pour k ∈ {1, . . . ,n−1}, on a Kn = k si et seulement si S j > Sk pour tout j ∈ {0, . . . ,k−1}
et S j ≥ Sk pour tout j ∈ {k, . . . ,n}, voir la Figure E-9.2 pour une illustration. Ainsi, on peut
écrire l’égalité d’événements suivante :

{Kn = k}=
{

Sk < 0,Sk −S1 < 0, . . . ,Sk −Sk−1 < 0
}
∩
{

Sk+1 −Sk ≥ 0, . . . ,Sn −Sk ≥ 0
}

=
{

Xk < 0,Xk +Xk−1 < 0, . . . ,Xk + · · ·+X1 < 0
}
∩
{

Xk+1 ≥ 0, . . . ,Xk+1 + · · ·+Xn ≥ 0
}
.

En remarquant que le premier événement est généré par les variables aléatoires (X j)1≤ j≤k et
le deuxième par les variables aléatoires (X j)k+1≤ j≤n, on en déduit qu’ils sont indépendants,
grâce à l’indépendance par paquets. Ainsi, la probabilité P(Kn = k) est égale à

P
(
Xk < 0,Xk +Xk−1 < 0, . . . ,Xk+ · · ·+X1 < 0

)
P
(
Xk+1 ≥ 0, . . . ,Xk+1 + · · ·+Xn ≥ 0

)
= P

(
S1 < 0, . . . ,Sk < 0

)
P
(
S1 ≥ 0, . . . ,Sn−k ≥ 0

)
,
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N
Kn = k

min
0≤ j≤n

S j

Sn

FIG. E-9.2 Illustration de la décomposition de l’événement {Kn = k} comme une intersection des deux
événements {Sk < 0,Sk −S1 < 0, . . . ,Sk −Sk−1 < 0} et {Sk+1−Sk ≥ 0, . . . ,Sn−Sk ≥ 0}. Ces deux événements
sont indépendants car le premier est généré par les variables aléatoires (X j)1≤ j≤k et le deuxième par les variables
aléatoires (X j)k+1≤ j≤n.

car (Xk + · · ·+Xk− j+1)1≤ j≤k a la même loi que (S j)1≤ j≤k et (Xk+1 + · · ·+Xk+1+ j)1≤ j≤k a la
même loi que (S j)1≤ j≤n−k.

Ainsi, en posant, pour j ≥ 1,

pℓ := P(S1 ≥ 0, . . . ,Sℓ ≥ 0) et qℓ := P(S1 < 0, . . . ,Sℓ < 0)

(et par convention p0 = q0 = 1), on a montré que P(Kn = k) = qk pn−k, pour tout k ∈ {0, . . . ,n}.
En sommant sur k ∈ {0, . . . ,n}, on obtient

n

∑
k=0

P(Kn = k) =
n

∑
k=0

qk pn−k = 1 . (E-9.3)

Maintenant, notons que l’on n’a pas (encore) utilisé les hypothèses du théorème : l’iden-
tité (E-9.3) est valable pour n’importe quelle marche aléatoire. L’hypothèse de symétrie de la
marche aléatoire permet d’obtenir que (−S j)0≤ j≤k a la même loi que (S j)0≤ j≤k, de sorte que

qℓ = P(−S1 > 0, . . . ,−Sℓ > 0) = P(S1 > 0, . . . ,Sℓ > 0) .

L’hypothèse que les variables aléatoires (Xi)i≥1 possèdent une densité permet d’obtenir que Sℓ
possède une densité, et notamment P(Sℓ = 0) = 0, pour tout ℓ≥ 1. Ainsi, on obtient que

pℓ = P(S1 ≥ 0, . . . ,Sℓ ≥ 0) = P(S1 > 0, . . . ,Sℓ > 0) = qℓ ,

car P(∃ j ∈ {1, . . . , ℓ} S j = 0) = 0.
On déduit donc de (E-9.3) que, sous les hypothèses du théorème, pour tout n ≥ 0

n

∑
k=0

pk pn−k = 1 . (E-9.4)

Notons que cette relation, avec la donnée initial p0 = 1, détermine complètement † la
suite (pn)n≥0.

Remarquons maintenant que, d’après l’Observation 9.3, la suite (u2n)n≥0 définie en (E-9.1)
vérifie exactement la même relation (E-9.4), avec aussi u0 = 0. Cela permet donc de conclure

†. Par récurrence : en effet, en isolant les termes k = 0 et k = n dans la somme, on obtient 2pn =
1−∑

n−1
k=1 pk pn−k et la somme ne contient que des termes p j avec j ≤ n−1.
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que, pour tout n ≥ 0,

(qn =) pn = u2n =
1
4n

(
2n
n

)
,

comme annoncé. ⊓⊔

Observation 9.6. Si on connaît les séries entières, on peut conclure rapidement à partir de
(E-9.4). En effet, on peut calculer la série génératrice suivante de deux manières : pour tout
|x|< 1,

∞

∑
n=0

( n

∑
k=0

pk pn−k

)
xn =

∞

∑
n=0

xn =
1

1− x
et

∞

∑
n=0

( n

∑
k=0

pk pn−k

)
xn =

( ∞

∑
m=0

pmxm
)2

,

où pour la deuxième identité on a reconnu un produit de Cauchy de deux séries entières. On
en déduit donc que

∀|x|< 1 ,
∞

∑
m=0

pmxm =
1√

1− x
.

Il reste ensuite à utiliser le développement en série entière de 1√
1−x

pour obtenir que

pm =
1

m!
1
2

3
2
· · · 2m−1

2
=

1
m!

1
2m

(2m)!
2 ·4 · · ·2m

=
1

4m
(2m)!
(m!)2 ,

ce qui donne la formule voulue. ⊓⊔



Ex. 10
Comportement asymptotique d’un processus de
renouvellement

Soient (Xi)i≥1 des variables aléatoires indépendantes et de même loi, à valeur dans R+,
définies sur le même espace probabilisé (Ω ,F ,P) ; on suppose que P(Xi = 0) ̸= 1 pour éviter
des cas dégénérés. On interprète Xi comme des durées de vie de composants d’une chaîne
de production : lorsqu’un composant tombe en panne il est immédiatement remplacé par un
nouveau composant. Ainsi, pour k ∈ N, l’instant où le k-ème composant tombe en panne est

Tk := X1 + · · ·+Xk ,

avec par convention T0 = 0.
On s’intéresse au nombre Nt de composants que l’on aura remplacé à l’instant t, que l’on

peut exprimer en fonction de (Tk)k≥1 de la façon suivante : pour t ∈ R+,

Nt := max{k ∈ N,Tk ≤ t} . (E-10.1)

On appelle (Nt)t∈R+ processus de renouvellement et on cherche à obtenir des informations sur
le comportement en temps long (t → ∞) de ce processus.

Observation 10.1. Si les variables aléatoires (Xi)i≥1 sont i.i.d. de loi exponentielle, alors
(Nt)t≥0 est le processus de Poisson étudié dans les Sections 6.6.3 et 6.6.4. ⊓⊔

10.1 Loi des grands nombres pour le processus de renouvellement

Le premier résultat que l’on obtient est une loi (faible) des grands nombres pour le processus
de renouvellement (Nt)t∈R+ .

Théorème 10.2 (Loi faible des grands nombres). Soient (Xi)i≥1 des variables aléatoires
i.i.d., à valeur dans R+, définies sur le même espace probabilisé (Ω ,F ,P). Alors le
processus de renouvellement associé (Nt)t∈R+ défini en (E-10.1) vérifie une loi faible des
grands nombres :

∀ε > 0 : lim
t→+∞

P
(∣∣∣1

t
Nt −

1
E(X1)

∣∣∣> ε

)
,

où par convention 1
E(X1)

= 0 si E(X1) = +∞.

Démonstration. Commençons par le cas où E(X1)<+∞ et notons µ := E(X1). On suppose
aussi que µ > 0 car sinon on aurait P(X1 = 0) = 1, auquel cas Tk = 0 pour tout k et Nt =+∞

pour tout t > 0.
Fixons ε > 0 tel que ε < 1/µ . Comme{

|1
t

Nt −
1
µ
|> ε

}
=
{1

t
Nt −

1
µ

> ε

}
∪
{1

t
Nt −

1
µ

<−ε

}
,

on obtient par sous-additivité
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P
(∣∣∣1

t
Nt −

1
µ

∣∣∣> ε

)
≤ P

(1
t

Nt >
1
µ
+ ε

)
+P

(1
t

Nt <
1
µ
− ε

)
, (E-10.2)

et on doit donc montrer que les deux probabilités dans le membre de droite tendent vers 0.
Une observation importante est que l’on a l’égalité d’événements {Nt ≥ k}= {Tk ≤ t} : en

effet, Nt ≤ k si et seulement si on a dû remplacer les k premiers composants avant l’instant t,
c’est-à-dire si et seulement si le k-ème composant est tombé en panne avant l’instant t. Ainsi,

P
(1

t
Nt >

1
µ
+ ε

)
= P

(
Nt >

t
µ
+ tε

)
= P(Nt ≥ k+t ) = P(Tk+t

≤ t) ,

où on a posé

k+t :=
⌊ t

µ
+ tε

⌋
+1 .

Maintenant, on va appliquer la loi des grand nombres (Théorème 7.3) à Tk = X1 + · · ·+Xk. On
a en effet, pour t ≥ 1,

P(Tk+t
≤ t) = P

( 1
k+t

Tk+t
−µ ≤ t

k+t
−µ

)
≤ P

( 1
k+t

Tk+t
−µ ≤−ε̃

)
,

où pour la dernière inégalité, on a utilisé le fait que que k+t ≥ t
µ
+ tε et k+t ≤ t

µ
+ tε +1 ≤

( 1
µ
+ ε +1)t pour t ≥ 1, de sorte que

t
k+t

−µ =
t −µk+t

k+t
≤−µtε

k+t
≤− µε

1
µ
+ ε +1

=: −ε̃.

Comme ε̃ > 0 est fixé et que limt→∞ k+t =+∞, la loi des grands nombres L1 (Théorème 7.3)
montre que limt→∞ P( 1

k+t
Tk+t

− µ ≤ −ε̃) = 0, dont on déduit que le premier terme dans le
membre de droite de (E-10.2) tend vers 0 quand t → ∞.

Pour le deuxième terme dans (E-10.2), on utilise la même méthode : on écrit

P
(1

t
Nt <

1
µ
− ε

)
= P

(
Nt <

t
µ
− tε

)
≤ P(Nt < k−t ) = P(Tk−t

> t) ,

où on a posé

k−t :=
⌊ t

µ
− tε

⌋
+1

et utilisé l’égalité d’événements {Nt < k}= {Tk > t}. On a alors, pour t ≥ 2/ε ,

P(Tk−t
> t)≤ P

( 1
k−t

Tk−t
−µ >

t
k−t

−µ

)
≤ P

( 1
k−t

Tk−t
−µ > ε̃

′
)
,

où cette fois on a utilisé que k−t ≤ t
µ
− tε +1 ≤ t

µ
− 1

2 tε (d’où aussi k−t ≤ t
µ

) pour t ≥ 2/ε , de
sorte que

t
k+t

−µ =
t −µk+t

k+t
≥ µtε

2k+t
≥ µ2ε

2
=: ε̃

′ .

Comme précédemment, limt→∞ k−t = +∞, et la loi des grands nombres L1 (Théorème 7.3)
montre que l’on a limt→∞ P( 1

k−t
Tk−t

−µ > ε̃ ′) = 0, dont on déduit que le deuxième terme dans
le membre de droite de (E-10.2) tend vers 0 quand t → ∞. Cela conclut la démonstration dans
le cas E(X1)<+∞.
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Il reste à traiter le cas où E(X1) = +∞. Soit ε > 0, et estimons

P
(∣∣∣1

t
Nt

∣∣∣> ε

)
= P

(
Nt > εt

)
= P

(
Nt ≥ k+t

)
= P

(
Tk+t

≤ t
)

où ici k+t := ⌊εt⌋+1. On peut alors écrire, pour t ≥ 1
ε

,

P
(
Tk+t

≤ t
)
= P

( 1
k+t

Tk+t
≤ t

k+t

)
≤ P

( 1
k+t

Tk+t
≤ 1

2ε

)
où on a utilisé le fait que k+t ≤ εt + 1 ≤ 2εt. Maintenant, on peut appliquer le résultat de
l’Exercice 7.3 à Tk = X1 + · · ·+Xk : comme limt→∞ k+t = +∞, pour A = (2ε)−1 > 0 fixé
(arbitrairement grand), on obtient que

lim
t→∞

P
( 1

k+t
Tk+t

≤ 1
2ε

)
= 0 .

Cela montre que limt→∞ P(Tk+t
≤ t) = 0, ce qui conclut la démonstration dans le cas E(X1) =

+∞. ⊓⊔

10.2 Théorème central limite pour le processus de renouvellement

Le deuxième résultat que l’on obtient est un théorème central limite pour le processus
(Nt)t∈R+ , sous l’hypothèse un peu plus fortes que les (Xi)i≥1 admettent un moment d’ordre
deux fini. De la même manière que pour le théorème central limite (Théorème 7.17), il s’agit
de déterminer à quelle vitesse la quantité 1

t Nt − 1
µ

tend vers 0. Comme dans (7.20), il faut
multiplier la quantité 1

t Nt − 1
µ

par une suite ct ≈
√

t, pour obtenir une quantité « qui ne tend ni
vers 0 ni vers +∞ » et est une variable aléatoire normale.

Théorème 10.3 (Théorème central limite). Soient (Xi)i≥1 des variables aléatoires i.i.d.,
à valeur dans R+, définies sur le même espace probabilisé (Ω ,F ,P) et d’espérance et de
variance finie

µ := E(X1)> 0 , σ
2 := Var(X1) .

Alors le processus de renouvellement associé (Nt)t∈R+ défini en (E-10.1) vérifie un théo-
rème central limite : quand t → ∞,

Zt :=
µ3/2√t

σ

(1
t

Nt −
1
µ

)
L−→ N(0,1) .

Observation 10.4. On a utilisé ci-dessus la notation Zt
L−→ N(0,1) de la Section 8.2.3, qui

signifie :
lim
t→∞

P(Zt ≤ x) = P(Z ≤ x) ∀x ∈ R ,

où Z est une variable aléatoire N(0,1). ⊓⊔

Démonstration. On va encore utiliser l’égalité d’événements {Nt ≥ k}= {Tk ≤ t}, déjà cru-
ciale pour la loi des grands nombres, pour se ramener à une application du théorème central
limite (Théorème 7.17) pour Tk = X1 + · · ·+Xk. Fixons x ∈ R et considérons la probabilité
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P(Zt > x) = P
(

µ3/2√t
σ

(1
t

Nt −
1
µ

)
> x

)
= P

(1
t

Nt −
1
µ

>
σx

µ3/2
√

t

)
= P

(
Nt >

t
µ
+

σx
µ3/2

√
t
)
.

Ainsi, en posant

kt := kt(x) =
⌊ t

µ
+

σx
µ3/2

√
t
⌋
+1

(noter que limt→∞ kt =+∞), on obtient

P(Zt > x) = P(Nt ≥ kt) = P(Tkt ≤ t) .

On peut alors réécrire l’identité ci-dessus pour se mettre en position d’appliquer le théorème
central limite : on a

P(Zt > x) = P
(√

kt

σ

( 1
kt

Tkt −µ

)
≤ xt

)
, où xt :=

√
kt

σ

( t
kt
−µ

)
=

t − kt µ

σ
√

kt
.

Remarquons ici que l’on a µkt ≥ t + σx√
µ

√
t et µkt ≤ t + σx√

µ

√
t +2µ : on en déduit que

− x
√

t
√

µ
√

kt
− 2µ

σ
√

kt
≤ xt ≤− x

√
t

√
µ
√

kt
,

et comme kt ∼ t
µ

quand t → ∞, on en conclut que limt→∞ xt = −x. Ainsi, en utilisant le
théorème central limite (Théorème 7.17), ouplus précisément la convergence (7.31) (que l’on
peut déduire de la Proposition 7.22), on obtient (rappelons que limt→∞ kt =+∞)

lim
t→∞

P(Zt > x) = lim
t→∞

P
(√

kt

σ

( 1
kt

Tkt −µ

)
≤ xt

)
= P(Z ≤−x) ,

où Z ∼ N(0,1). Comme P(Z ≤ −x) = P(Z > x), on a donc montré que limt→∞ P(Zt > x) =
P(Z > x) pour tout x ∈ R, ce qui conclut la démonstration en passant au complémentaire. ⊓⊔



Ex. 11
Urne de Pólya et loi Beta

Une urne contient initialement a boules rouges et b boules vertes. Lors du n-ème tour, on
tire une boule dans l’urne : on la replace dans l’urne en ajoutant une boule de la même couleur.
Peut-être de manière plus précise, si après le (n−1)-ème tour l’urne contient r boules rouges
et v boules vertes, alors au n-ème tour : avec probabilité r/(r+ v) on tirera une boule rouge et
on ajoutera une boule rouge dans l’urne (qui contiendra r+1 boules rouges et v boules vertes
après le n-ème tour) ; avec probabilité v/(r+ v) on tirera une boule verte et on ajoutera une
boule verte dans l’urne (qui contiendra r boules rouges et v+1 boules vertes après le n-ème
tour).

Soit (Xi)i≥1 la suite de variables aléatoires de Bernoulli définie de la manière suivante : on
pose Xi = 1 si la boule tirée lors du i-ème tour est rouge et Xi = 0 sinon. On s’intéresse au
nombre de boules rouges dans l’urne après n tours, que l’on note

Rn := a+
n

∑
i=1

Xi .

Le nombre total de boules dans l’urne étant a+b+n, on peut aussi étudier la proportion de
boules rouges dans l’urne, donnée par 1

a+b+n Rn ∈ [0,1]. On montre le résultat suivant.

Proposition 11.1. Pour tout t ∈ [0,1], on a

lim
n→∞

P
( 1

a+b+n
Rn ≤ t

)
= P(W ≤ t) ,

où W est une variable aléatoire de loi Beta(a,b), introduite dans la Section 6.6.2,
voir (6.92).

Observation 11.2. On peut aussi utiliser la notation 1
a+b+n Rn

L−→ Beta(a,b) pour désigner la
convergence de la Proposition 11.1, avec des notations analogues à celle de la Section 8.2.3.

⊓⊔

Démonstration. Commençons par observer que pour tout n≥ 1, on peut calculer explicitement
la loi de (X1, . . . ,Xn). Pour tout n ≥ 1 et tout (ε1, . . . ,εn) ∈ {0,1}n, montrons que

P
(
(X1, . . . ,Xn) = (ε1, . . . ,εn)

)
=

k−1
∏
i=0

(a+ i)
n−k−1

∏
i=0

(b+ i)

n−1
∏
i=0

(a+b+ i)
, où k =

n

∑
i=1

εi . (E-11.1)

On procède par récurrence sur n. On remarque que, en posant k = ∑
n
i=1 εi,

P
(
Xn+1 = εn+1 | (X1, . . . ,Xn) = (ε1, . . . ,εn)

)
=


a+k

a+b+n si εn+1 = 1

b+n−k
a+b+n si εn+1 = 0

37
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car si l’on sait que (X1, . . . ,Xn) = (ε1, . . . ,εn), cela signifie qu’il y a a+ k boules rouges dans
l’urne et b+n− k boules vertes, où k = ∑

n
i=1 εi est le nombre de fois où l’on a tiré une boule

rouge. En posant k′ = ∑
n+1
i=1 εi, on en déduit par hypothèse de récurrence que

P
(
(X1, . . . ,Xn+1) = (ε1, . . . ,εn+1)

)
=

k−1
∏
i=0

(a+ i)
n−k−1

∏
i=0

(b+ i)

n−1
∏
i=0

(a+b+ i)
×


a+ k

a+b+n
si k′ = k+1 ,

b+n− k
a+b+n

si k′ = k ,

c’est-à-dire

P
(
(X1, . . . ,Xn+1) = (ε1, . . . ,εn+1)

)
=

k′−1
∏
i=0

(a+ i)
n+1−k′−1

∏
i=0

(b+ i)

n
∏
i=0

(a+b+ i)
.

Cela conclut la récurrence et démontre (E-11.1).
Notons que l’on peut réécrire la formule (E-11.1) de la façon suivante :

P
(
(X1, . . . ,Xn) = (ε1, . . . ,εn)

)
=

(a+b−1)!
(a−1)!(b−1)!

(a+ k−1)!(b+n− k−1)!
(a+b+n−1)!

.

Comme on a Γ (u) = (u−1)! pour u ∈ N∗, en utilisant la fonction β (u,v) = Γ (u)Γ (v)
Γ (u+v) définie

dans la Section 8.2.3 (voir (6.42)-(6.43)), on peut le réécrire de manière plus concise sous la
forme

P
(
(X1, . . . ,Xn) = (ε1, . . . ,εn)

)
=

β (a+ k,b+n− k)
β (a,b)

, où k =
n

∑
i=1

εi .

Comme il y a exactement
(n

k

)
n-uplets (ε1, . . . ,εn) tels que ∑

n
i=1 εi = k, on en déduit que, pour

k ∈ {0, . . . ,n},

P
( n

∑
i=1

Xi = k
)
=

(
n
k

)
β (a+ k,b+n− k)

β (a,b)
=

1
β (a,b)

(
n
k

)∫ 1

0
xa+k(1− x)b+n−k dx , (E-11.2)

où on a utilisé le fait que β (u,v) =
∫ 1

0 xu(1− x)vdx, voir (6.42).

Observation 11.3. On pourrait essayer d’obtenir la formule (E-11.2) de ∑
n
i=1 Xi, par exemple

par récurrence sur n, mais c’est en réalité plus compliqué que d’obtenir directement (E-11.1),
voir l’Observation 11.4 plus bas. ⊓⊔

On en déduit que

P(Rn = a+ k) = P
( n

∑
i=1

Xi = k
)
=

∫ 1

0

(
n
k

)
xk(1− x)n−k fa,b(x)dx ,

avec fa,b(x) = 1
β (a,b)xa(1− x)b pour x ∈ [0,1] la densité d’une loi Beta(a,b), voir (6.92). On

peut réinterpréter cette identité de la manière suivante :

P(Rn = a+ k) =
∫ 1

0
P(Yn,x = k) fa,b(x)dx
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où Yn,x est une variable aléatoire de loi Binomiale de paramètre n,x.
Pour t ∈ [0,1], posons kn := ⌊(a+b+n)t⌋−a. Alors on a limn→∞

1
n kn = t et on peut écrire

P
( 1

a+b+n
Rn ≤ t

)
=

kn

∑
k=0

P(Rn = a+ k) =
∫ 1

0

kn

∑
k=0

P(Yn,x = k) fa,b(x)dx

=
∫ 1

0
P
(
Yn,x ≤ kn

)
fa,b(x)dx

(E-11.3)

où on a utilisé la linéarité de l’espérance (pour une somme finie) dans la deuxième égalité.
Donnons une idée de comment la démonstration se conclut ; on donnera la preuve complète

plus bas. Comme limn→∞
1
n kn = t, la loi faible des grands nombres permet de montrer que †

lim
n→∞

P
(1

n
Yn,x ≤

1
n

kn

)
=

{
0 si x < t ,
1 si x > t .

Si l’on pouvait échanger la limite et l’intégrale dans l’identité (E-11.3) ci-dessus, on aurait

lim
n→∞

P
( 1

a+b+n
Rn ≤ t

)
=

∫ t

0
fa,b(x)dx = P(Z ≤ t) .

Montrons que cette stratégie fonctionne en montrant notamment l’inversion de limite et
d’intégrale à la main ‡. Fixons un ε > 0 et raisonnons par borne supérieure et inférieure. Fixons
ensuite δ > 0 (qui dépend de ε) tel que

∫ t+δ

t−δ
fa,b(x)dx ≤ ε .

Pour la borne supérieure, on écrit

P
( 1

a+b+n
Rn ≤ t

)
≤

∫ t+δ

0
fa,b(x)dx+

∫ 1

t+δ

P
(
Yn,x ≤ kn

)
fa,b(x)dx .

Maintenant, la loi faible des grands nombres, plus précisément (7.6), permet de montrer que si
x ≥ t +δ , pour n suffisamment grand de sorte que 1

n kn − x ≤−δ/2, on a

P
(1

n
Yn,x ≤

1
n

kn

)
≤ P

(1
n

Yn,x − x ≤−1
2

δ

)
≤ P

(∣∣∣1
n

Yn,x − x
∣∣∣≥ 1

2
δ

)
≤ x(1− x)

n 1
4 δ 2

≤ 1
nδ 2 ,

en utilisant aussi le fait que x(1 − x) ≤ 1
4 pour tout x ∈ [0,1]. On en déduit que pour n

suffisamment grand∫ 1

t+δ

P
(
Yn,x ≤ kn

)
fa,b(x)dx ≤ 1

nδ 2

∫ 1

t+δ

fa,b(x)dx ≤ 1
nδ 2 .

On en conclut que

P
( 1

a+b+n
Rn ≤ t

)
≤

∫ t

0
fa,b(x)dx+ ε +

1
nδ 2 ,

où on rappelle que δ est tel que
∫ t+δ

t−δ
fa,b(x)dx ≤ ε .

†. On le laisse en exercice.
‡. Si l’on connaît le théorème de convergence dominée, on peut conclure directement.
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Pour la borne inférieure, on écrit

P
( 1

a+b+n
Rn ≤ t

)
≥

∫ t−ε

0
P
(
Yn,x ≤ kn

)
fa,b(x)dx

=
∫ t−δ

0
fa,b(x)dx−

∫ t−δ

0
P
(
Yn,x > kn

)
fa,b(x)dx .

Comme précédemment, la loi faible des grands nombres, plus précisément (7.6), permet de
montrer que si x < t −δ , alors pour n suffisamment grand de sorte que 1

n kn − x ≥ δ/2, on a

P
(1

n
Yn,x >

1
n

kn

)
= P

(1
n

Yn,x − x >
1
n

kn − x
)
≤ P

(∣∣∣1
n

Yn,x − x
∣∣∣≥ 1

2
δ

)
≤ 1

nδ 2 .

On en conclut comme plus haut que

P
( 1

a+b+n
Rn ≤ t

)
≥

∫ t

0
fa,b(x)dx− ε − 1

nδ 2 ,

où on a encore utilisé le fait que que
∫ t+δ

t−δ
fa,b(x)dx ≤ ε .

On a donc montré que pour n suffisamment grand (notamment tel que 1
nδ 2 ≤ ε), on a∣∣∣∣P

( 1
a+b+n

Rn ≤ t
)
−

∫ t

0
fa,b(x)dx

∣∣∣∣≤ 2ε ,

ce qui conclut la démonstration. ⊓⊔

Commentaire sur l’échangeabilité et le théorème de de Finetti ?

Observation 11.4. On pourrait aussi vouloir obtenir directement la loi de Sn := ∑
n
i=1 Xi par

récurrence (mais en fait c’est plus compliqué que (E-11.1), même si je m’y prends peut-être
mal), et montrer la formule suivante :

P
(
Sn = k

)
=

(
n
k

)
×

k−1

∏
i=0

(a+ i)
n−k−1

∏
i=0

(b+ i)

n−1

∏
i=0

(a+b+ i)

pour tout k ∈ {0, . . . ,n} , (E-11.4)

où par convention ∏
k−1
i=0 (a+ i) = 1 si k = 0 et ∏

n−k−1
i=0 (b+ i) = 1 si k = n. Mais en fait c’est

plus compliqué que la formule (E-11.1)...
Noter que la formule (E-11.4) peut aussi se réécrire en

P
(
Sn = k

)
=

(a+b−1)!
(a−1)!(b−1)!

(a+ k−1)!(b+n− k−1)!
(a+b+n−1)!

n!
k!(n− k)!

=

(k+a−1
k

)(n−k+b−1
n−k

)(n+a+b−1
n

) .

Pour n = 1, on a en effet S1 = X1, et P(X1 = 1) = a
a+b , P(X1 = 0) = b

a+b , car il y a a+b
boules dans l’urne, dont a rouges et b vertes. Cela correspond à la formule annoncée.

Ensuite, pour tout k ∈ {0, . . . ,n}, conditionnellement à Sn = k il y a a+ k boules rouges et
b+n− k boules vertes dans l’urne, d’où

P
(
Xn+1 = 1 | Sn = k

)
=

a+ k
a+b+n

, P
(
Xn+1 = 0 | Sn = k

)
=

b+n− k
a+b+n

.
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Ainsi, comme Sn+1 = Sn +Xn+1, on obtient :
• Pour k = 0, comme

(n
0

)
= 1 pour tout n, on a

P(Sn+1 = 0) = P(Sn = 0)P
(
Xn+1 = 0 | Sn = 0

)
=

∏
n−1
i=0 (b+ i)

∏
n−1
i=0 (a+b+ i)

b+n
a+b+n

,

qui donne la formule voulue (E-11.4) au rang n+1 pour k = 0.
• De même, pour k = n+1, comme

(n
n

)
= 1 pour tout n, on a

P(Sn+1 = n+1) = P(Sn = n)P
(
Xn+1 = 1 | Sn = n

)
=

∏
n−1
i=0 (a+ i)

∏
n−1
i=0 (a+b+ i)

a+n
a+b+n

,

qui donne la formule voulue (E-11.4) au rang n+1 pour k = n+1.
• Pour k ∈ {1, . . . ,n}, par la formule des probabilités totales, on a

P(Sn+1 = k) = P(Sn = k−1)P(Xn+1 = 1 | Sn = k−1)+P(Sn = k)P(Xn+1 = 1 | Sn = k−1),

et par hypothèse de récurrence

P(Sn = k−1)P(Xn+1 = 1 | Sn = k−1) =
(

n
k−1

)
× ∏

k−2
i=0 (a+ i)∏

n−k
i=0 (b+ i)

∏
n−1
i=0 (a+b+ i)

× a+ k−1
a+b+n

=

(
n

k−1

)
× ∏

k−1
i=0 (a+ i)∏

n+1−k−1
i=0 (b+ i)

∏
n+1−1
i=0 (a+b+ i)

,

et similairement

P(Sn = k)P(Xn+1 = 0 | Sn = k) =
(

n
k

)
× ∏

k−1
i=0 (a+ i)∏

n−k−1
i=0 (b+ i)

∏
n−1
i=0 (a+b+ i)

× b+n− k
a+b+n

=

(
n
k

)
× ∏

k−1
i=0 (a+ i)∏

n+1−k−1
i=0 (b+ i)

∏
n+1−1
i=0 (a+b+ i)

.

Au final, en sommant les deux dernières expressions, et comme
( n

k−1

)
+
(n

k

)
=
(n+1

k

)
, on obtient

la formule (E-11.4) au rang n+1.



Ex. 12
Records successifs d’une suite de variables aléatoires
i.i.d.*

Soient (Xi)i≥0 des variables aléatoires indépendantes et de même loi, que l’on suppose à
densité, de densité commune notée f et de fonction de répartition notée F . Pour n ≥ 1, on
dit qu’un record a lieu au n-ème tour si Xn > Xi pour tout i ∈ {0, . . . ,n−1}, et on note An cet
événement :

An :=
n⋂

i=0

{
Xn > Xi

}
.

Lemme 12.1. On a P(An) =
1

n+1 et pour tous 1 ≤ k < n, P(Ak ∩An) =
1

k+1
1

n+1 . En particulier,
Cov(1Ak ,1An) = 0.

Démonstration. Pour calculer P(An), on peut utiliser (la méthode de) l’Exercice 6.59, en re-
marquant que dans les notations de l’exercice, P(An) = P(A(n)

n ), sachant que presque sûrement
on a Xn ̸= Xi pour tous 0 ≤ i ≤ n−1 (voir l’Exercice 6.59). Utilisons ici l’approche directe de
l’Exercice 6.60, qui se généralise bien au calcul de P(Ak ∩An).
Calcul de P(An). On peut réécrire l’événement An en fonction des (Xi)0≤i≤n : on a An = {X0 <
Xn,X1 < Xn, . . . ,Xn−1 < Xn}. Ainsi, en écrivant P(An) = E(1An) et en appliquant la formule
de transfert, on a

P(An) =
∫
Rn+1

f (x0) · · · f (xn−1) f (xn)1{x0<xn,x1<xn,...,xn−1<xn}dx0 · · ·dxn

=
∫ +∞

−∞

f (xn)

(∫ xn

−∞

· · ·
∫ xn

−∞

f (x0) · · · f (xn−1)dx0 · · ·dxn−1

)
dxn ,

où on a utilisé le théorème de Fubini–Tonelli pour la deuxième égalité. Maintenant, comme∫ x
−∞

f (t)dt = F(x) et que F ′(x) = f (x), on obtient

P(An) =
∫ +∞

−∞

f (xn)F(xn)
ndxn =

[ 1
n+1

F(xn)
n+1

]+∞

−∞

=
1

n+1
,

où on a aussi utilisé que limt→−∞ F(t) = 0, limt→+∞ F(t) = 1 pour la dernière identité.
Calcul de P(Ak ∩An). On peut maintenant reproduire le calcul, en écrivant

Ak ∩An = {X0 < Xk,X1 < Xk, . . . ,Xk−1 < Xk,Xk+1 < Xn, . . . ,Xn−1 < Xn} .

De la même manière que précédemment, en utilisant de nouveau le théorème de Fubini–Tonelli,
on obtient

P(Ak ∩An) =
∫
Rn+1

f (x0) · · · f (xn)1{x0<xk,...,xk−1<xk,xk+1<xn,...,xn−1<xn}dx0 · · ·dxn

=
∫ +∞

−∞

f (xn)

(∫ xn

−∞

· · ·
∫ xn

−∞

f (xk+1) · · · f (xn−1)dxk+1 · · ·dxn−1

)
gk(xn)dxn ,

(E-12.1)

où, pour éviter d’écrire trop d’intégrales, on a posé

gk(xn) =:
∫ xn

−∞

f (xk)

(∫ xk

−∞

· · ·
∫ xk

−∞

f (x0) · · · f (xk−1)dx0 · · ·dxk−1

)
dxk .

42
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Remarquons que l’on a gk(x) := P(X0, . . . ,Xk−1 < Xk < x) = P(Ak ∩ {Xk < x}), et qu’en
reprenant les calculs faits dans le paragraphe précédent on obtient

gk(x) =
∫ x

−∞

f (xk)F(xk)
kdxk =

1
k+1

F(x)k+1 . (E-12.2)

En injectant dans (E-12.1) et en réutilisant le fait que
∫ x
−∞

f (u)du = F(x), on en déduit que

P(Ak ∩An) =
∫ +∞

−∞

f (xn)F(xn)
n−k−1 1

k+1
F(xn)

k+1dxn

=
1

k+1

∫ +∞

−∞

f (xn)F(xn)
ndxn =

1
k+1

1
n+1

,

ce qui est le résultat voulu.
Calcul de la covariance. Le dernier point du lemme vient simplement de l’observation que

Cov(1Ak ,1An) = P(Ak ∩An)−P(Ak)P(Ak) = 0 ,

où l’on autilisee les calculs précédents qui montrent que P(Ak ∩An) =
1

k+1
1

n+1 = P(Ak)P(Ak).
⊓⊔

On peut déduire du Lemme 12.1 le théorème suivant sur le nombre de records observés
jusqu’au n-ème tour, c’est-à-dire

Rn :=
n

∑
i=1

1Ai .

En effet, on sait calculcer E[Rn] et Var(Rn) :

E(Rn) =
n

∑
i=1

P(Ai) =
n

∑
i=1

1
i+1

qui est la série harmonique décalée de 1. En particulier, log(n+1)−1 ≤ E(Rn)≤ log(n+1)
et on a E(Rn)∼ logn quand n → ∞.

D’autre part, en utilisant la Proposition 3.69-ii, on obtient que comm les covariances
Cov(1Ak ,1An) sont nulles,

Var(Rn) =
n

∑
i=1

Var(1Ai) =
n

∑
i=1

1
i+1

(1− 1
i+1

)≤
n

∑
i=1

1
i+1

≤ log(n+1) .

Ainsi, en appliquant l’inégalité de Bienaymé–Tchebychev (Théorème 3.77), de même manière
analogue à la Section 3.3.6,

P
(∣∣Rn −E(Rn)

∣∣≥C
√

log(n+1)
)
≤ Var(Rn)

C2 log(n+1)
≤ 1

C2 .

On peut donc en déduire que, quand n tend vers l’infini, avec grande probabilité, le nombre de
records Rn vaut logn, à une erreur de l’ordre de O(

√
logn) près.

Observation 12.2. Il s’avère que l’on peut généraliser le calcul fait dans le Lemme 12.1 et
obtenir le résultat suivant, suprenant à première vue.
Lemme 12.3. Les événements (An = {un record est établi au ne tour})n≥1 sont indépendants,
de probabilité P(An) =

1
n+1 .
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Ainsi, le nombre de records Rn après n tours suit une loi qui est (très proche de) celle observée
dans la Section 3.3.6.

Démonstration (du Lemme 12.3). On doit montrer que pour tous k1 < · · · < kn des entiers
quelconques

P(Ak1 ∩·· ·∩Akn) = P(Ak1) · · ·P(Akn) =
1

k1 +1
· · · 1

kn +1
. (E-12.3)

De manière analogue à la démonstration du Lemme 12.1, posons, pour k1 < · · ·< kn x ∈ R,

gk1,...,kn(x) = P(Ak1 ∩·· ·∩Akn ,Xkn ≤ x) .

On va montrer par récurrence que

pour tous k1 < · · ·< kn et x ∈ R , gk1,...,kn(x) =
1

k1 +1
· · · 1

kn +1
F(x)n . (E-12.4)

Cela montrera (E-12.3), simplement en prenant x → ∞ dans (E-12.4), car gk1,...,kn(x) tend vers
P(Ak1 ∩·· ·∩Akn) et F(x) tend vers 1.

On a déjà fait le calcul de (E-12.4) pour n = 1, voir (E-12.2). Il reste donc à montrer l’étape
de récurrence. Commençons par observer que l’on peut réécrire

gk1,...,kn(x) = P
(
(Xk1 , . . . ,Xkn) ∈ Dk1,...,kn(x)

)
,

où Dk1,...,kn(x) est le sous-domaine de Rkn+1 défini par

Dk1,...,kn(x)=
{
(x0, . . . ,xkn)∈Rkn+1 ; x0 < xk1 , . . . ,xk1−1 < xk1 ,xk1+1 < xk2 , . . . ,xk2−1 < xk2 ,

. . . ,xkn−1−1 < xkn−1 , ,xkn−1+1 < xkn , . . . ,xkn−1 < xkn < x
}
,

de sorte que par la formule de transfert on a

gk1,...,kn(x) =
∫
Rkn+1

f (x0) · · · f (xkn)1{(x0,...,xkn )∈Dk1 ,...,kn (x)}dx0 · · ·dxkn . (E-12.5)

Soient maintenant k1 < · · · < kn+1 et x ∈ R. Un point important est que, au vu de sa
définition, on peut écrire Dk1,...,kn+1(x) de la façon suivante :

Dk1,...,kn+1(x) =
{
(x0, . . . ,xkn+1) ∈ Rkn+1 ; (x0, . . . ,xkn) ∈ Dk1,...,kn(xkn+1),

xkn+1 < xkn+1 , . . . ,xkn+1−1 < xkn+1

}
.

Ainsi, par la formule de transfert et en appliquant le théorème de Fubini–Tonelli,

gk1,...,kn+1(x) =
∫ x

−∞

f (xkn+1)

(∫ xkn+1

−∞

· · ·
∫ xkn+1

−∞

f (xkn+1) · · · f (xkn+1−1)dxkn+1 · · ·dxkn+1−1∫
Rkn+1

f (x0) · · · f (xkn)1{(x0,...,xkn )∈Dk1 ,...,kn (x)}dx0 · · ·dxkn

)
dxkn+1

=
∫
R

f (xkn+1)F(xkn+1)
kn+1−kn−1g(xkn+1)dxkn+1 ,

en ayant utilisé encore une fois que
∫ x
−∞

f (t)dt = F(x), et la formule (E-12.5).
En utilisant l’hypothèse de récurrence (E-12.4), on en déduit que
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gk1,...,kn+1(x) =
∫ x

−∞

f (xkn+1)F(xkn+1)
kn+1−kn−1 1

k1 +1
· · · 1

kn +1
F(xkn+1)

kn+1dxkn+1

=
1

k1 +1
· · · 1

kn +1

∫ x

−∞

f (xkn+1)F(xkn+1)
kn+1 dxkn+1 .

Un calcul explicite donne alors que la dernière intégrale vaut∫ x

−∞

f (u)F(u)kn+1 du =
[ 1

kn+1 +1
F(u)

]x

−∞

=
1

kn+1 +1
F(x)kn+1+1 ,

ce qui montre que (E-12.4) est valable pour n+1. Cela conclut la récurrence et la démonstration
du lemme. ⊓⊔
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