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Préambule

Nous avons rassemblé dans ce document des exemples (ou exercices) qui n’apparaissent
dans notre livre. Ils peuvent étre vus soit comme des illustrations de notions importantes
en probabilités, soit comme des résultats rarement abordés dans un cours standard mais qui
mériteraient d’étre connus, soit simplement comme des exemples que nous trouvons originaux
et/ou amusants. Soulignons qu’il s’agit d’un document de travail : certaines parties sont peut-
étre incompletes et il contient sfirement un certain nombre de coquilles. Nous avons néanmoins
décidé de rédiger ces quelques notes et de les proposer en ligne afin qu’elles puissent étre utiles
au plus grand nombre. D’ailleurs, n’hésitez pas a nous contacter si vous avez des commentaires
ou des suggestions d’autres problemes amusants ! En vous souhaitant bonne lecture.

Nous ferons régulierement référence aux définitions, théorémes, propositions, équations,
etc. de la version publié de notre livre, en gardant la méme numérotation que dans celui-ci;
les équations et figures du document présent seront précédées de la lettre « E » (par exemple,
I’équation (E-1.1)).



Ex. 1
Un exercice sur ’approximation de Poisson

Probleme 1.1. On attribue a n personnes, de maniere aléatoire (et indépendante), un réel
choisi de maniére uniforme dans [0, 1]. Le but du jeu est de trouver la personne qui posséde le
nombre le plus petit. Cependant, le seul outil que 1’on possede est celui de faire un sondage :
on pose une question aux n personnes (la méme pour tout le monde) a laquelle les seules
réponses possibles sont oui ou non. Comment poser la question, et quel est dans ce cas la
probabilité de trouver la personne qui possede le nombre le plus petit ?

Solution. On va fixer x,, € ]0, 1] et poser la question suivante :
« Votre nombre est-il plus petit que x;, ? »

Si une seule personne répond « Oui », il s’agit de la personne qui possede le plus petit
nombre. L’approximation de Poisson (Section 4.1) nous dit que si x, = %, la probabilité
qu’il y ait exactement une personne qui réponde oui vaut approximativement P(X = 1) ol
X ~ Poi(A), ¢’est-a-dire Ae—*. On remarque alors que la fonction A — Ae~* est maximale
en A = 1 : on peut donc prendre x,, = % et la probabilité qu’il y ait exactement une personne
qui réponde oui (et donc que I’on trouve la personne qui possede le plus petit nombre) vaut
approximativement e ' ~ 0,36788.

Mais on peut en fait améliorer un peu cette stratégie. En effet, si k personnes répondent
« QOui », on pourra choisir une de ces personnes au hasard et on aura une chance sur k d’avoir
trouvé la personne au plus petit nombre. Il reste a choisir proprement le nombre x = x,,.

On note A; = A (x) I’événement «la j-eéme personne répond oui» et N =N(x) =Y .y
le nombre de personnes qui répondent oui a la question. Ainsi, N ~ Bin(n,x), car les événe-
ments A; sont indépendants et de probabilité P(U < x) = x pour une variable U ~ U(0, 1).
Alors, la probabilité de trouver la personne avec le plus petit nombre est
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Il reste a optimiser sur le choix de x.
On va supposer que 7 est tres grand et utiliser I’approximation de Poisson : on va choisir
x= % ol A > 0 est fixé (2 optimiser), de sorte que N soit proche d’une loi Poi(A4). Plus

précisément, si X ~ Poi(A), alors grice au Théoréme 4.8, on obtient
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Il s’avere qu’il n’existe pas de forme fermée pour cette formule : il est possible de montrer
qu’il existe un unique maximum en un point Ay € ]0,4-oo[ , mais la valeur de Ay n’est pas
explicite. On peut par contre étudier la dépendance en A de maniére numérique : on trouve
que le maximum est max p(A) a2 0,51735, atteint pour Ay =~ 1,50286. On présente dans la
Figure E-1.1 le graphe de la fonction A — p(A) : d’abord sur [0,20], puis sur [1,2] ol est
atteint le maximum.
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F1G. E-1.1 Graphe de la fonction A — p(1), a deux échelles différentes. Dans le deuxiéme graphe, on a noté
le maximum qui vaut ~ 0,51735, atteint pour Ay =~ 1,50286.

En conclusion, il faut poser la question « Votre nombre est-il plus petit que % ?», et
choisir I'une des personnes au hasard parmi celles qui répondent « oui » (il y en a un nombre
aléatoire N de loi proche d’une loi Poi(Ag)). Dans ce cas, la probabilité de trouver la personne
qui possede le plus petit nombre est environ 0,51735, soit un peu plus d’une chance sur
deux! O



Ex. 2
Aiguille de Buffon et théoréme de Barbier

Considérons le probleme de 1’ Aiguille de Buffon de I’Exercice 6.47 : on lance une aiguille
sur un parquet composé de planches paralleles et on se demande quelle est la probabilité que
I’aiguille tombe a cheval sur (au moins) une rainure du parquet. On va maintenant résoudre
ce probleme d’une maniere différente, qui ne requiert quasiment aucun calcul mais repose
sur la propriété de linéarité de 1’espérance. Il s’agit d’une méthode donnée par Barbier en
1860 pour démontrer un théoréme qui porte son nom (voir le Théoreme 2.1 ci-dessous); la
démonstration qu’on donne ici est grandement inspirée de 1’exposé « ma preuve préférée »
d’ Alexandre Gaudilliére ¥,

Supposons que les rainures du parquet sont a une distance d les unes des autres et que 1’on
lance une aiguille de longueur ¢. Cette fois, plutot que s’intéresser a I’événement « 1’aiguille
tombe a cheval sur une rainure », on va étudier la variable aléatoire Ny =« nombre de rainures
rencontrées par 1’ aiguille ». Evidemment, on aura Ny < 1 dans le cas ot £ < d, mais on peut
avoir Ny > 2 si £ > d; de maniere générale, Ny est a valeurs dans {0, ..., |¢/d]}.

FIG. E-2.1 Illustration du parquet et de la position de 40 aiguilles de longueur 2d lancées au hasard.

1ére étape : linéarité de E(Ny). La premilre observation que 1’on peut faire est la suivante : si
I’on découpe une aiguille de longueur ¢ en deux parties de longueurs respectives ¢1, ¢, (avec
01+ ¢, = (), alors on peut écrire Ny = Ny, + Ny, ot Ny, est le nombre de rainures rencontrées
par la premiere partie de 1’aiguille (de longueur ¢1) et Ngz est le nombre de rainures rencontrées
par la deuxieéme partie de 1’aiguille (de longueur /).

/ 62
4

Evidemment, Ngl et ]ng ne sont pas indépendantes (pourquoi ?), mais on peut utiliser la
linéarité de I’espérance pour obtenir

E(Nf) = E(Nfl ) +E(]~ng) = E(Nél ) +E(N42> >

ol on a utilisé le fait que Ny , alaméme loi que Ny, (de méme pour ]ng).
Ainsi, si ’on pose g(¢) := E(Ny), on a montré que la fonction g : R, — R vérifie : pour
tous x,y > 0, g(x+y) = g(x) + g(y). Il s’agit ensuite d’un exercice classique de montrer que

$. Voici le lien : https://video.math.cnrs.fr/ma-preuve-preferee/.


https://video.math.cnrs.fr/ma-preuve-preferee/
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la fonction g est linéaire " sur R, et on en conclut donc qu’il existe @ € R, tel que
pour tout £ >0 E(Ny) = al. (E-2.1)

Il reste maintenant a déterminer la constante .

2¢me étape : aiguilles polygonales. La deuxieéme observation est que le point précédent reste
vrai si ’on considere une aiguille polygonale, constituée de segments de longueurs {1, ..., (.

/54
/1 fz 63

En effet, notons N, le nombre de rainures rencontrées par une aiguille polygonale a
constituée des segments de longueur ¢y, ..., ¢, lancée au hasard sur le parquet. On peut alors
écrire N, = Ngl 4+ "’ka’ ol Ngi est le nombre de rainures rencontrées par le i-eme segment
(de longueur ¢;). Encore une fois, les (N[[)lgigk ne sont pas indépendants, mais par linéarité
de I’espérance, on obtient encore

E(N,) =E(Ny,)+---+E(Ny,) = ol + -+ oly = al(a), (E-2.2)

ou {(a) := {1+ -+ ¥ est 1a longueur totale de 1’aiguille ; noter que 1’on a utilisé (E-2.1) pour
obtenir E(Ny,) = a/;.

3eme étape : approximation du cercle et conclusion. Maintenant, on peut encore généraliser
la formule (E-2.2) au cas d’aiguilles courbes, au moins dans le cas d’aiguilles que 1’on peut
approcher par une suite de lignes polygonales.

Prenons I’exemple d’un cercle C, de rayon r, et notons N¢, le nombre de rainures rencon-
trées par une aiguille de forme C, que I’on lance au hasard sur le parquet. Pour tout n > 1, on
peut alors encadrer le cercle C, par deux polygones a n cotés, le premier d,, inscrit dans le
cercle, le deuxieéme d, circonscrit au cercle.

( R
)

Dans ce cas, les nombres de rainures rencontrées par les aiguilles correspondantes vérifient
clairement Nz, < N¢, < Ng,, et donc par monotonie de I’espérance,

N~

all(dy) = E(Nz,) < B(Ng,) <E(Na,) = o(d)

Maintenant, en prenant la limite quand n — oo et comme les longueurs des polygones £(dy,),
£(ay,) convergent vers la périmetre du cercle £(C,) = 2xr, on en conclut que, pour tout r > 0

E(Nc,) = o x £(C,) =27ra.

+. Donnons ici les étapes : (i) par récurrence, on a g(n) = ng(1) pour tout n € N; (ii) par récurrence (sur m,
3 < ny_n n C G . H : :
anfixé),onag(%) = %¢(1) pour tout 2 € Q; (iii) comme g : R, — R est croissante, par approximation on

obtient que g(x) = xg(1) pour tout x € R.
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Cette identité permet alors de déterminer la valeur de «. En effet, si on considére un cercle
de diametre d (autrement dit de rayon r = d/2), ot on rappelle que d est la distance entre deux
rainures de parquet, alors on se rend compte que ce cercle rencontrera exactement 2 rainures,
quelle que soit sa position sur le parquet. On a donc Ng, n= 2, et

2
2=E(Ng,,) =mndoe = o= =
En conclusion, on a montré que pour toute aiguille A (droite, polygonale ou courbe )
de longueur £(A), si on note N4 le nombre de rainures rencontrées par 1’aiguille A lancée
aléatoirement sur le parquet, alors

2
B(Na) = —((A). (E-2.3)

Cette relation est aussi connue sous le nom de formule de Crofton dans le domaine de la
géométrie intégrale et posséde des généralisations en dimension plus grande*.

En particulier, si 1’on considere une aiguille droite de longueur ¢ < d, alors Ny vaut soit 0
soit 1, et E(N;)) =P(N; = 1) = %, ol I’événement « Ny = 1 » est exactement 1’événement
«1’aiguille tombe a cheval sur (au moins) une rainure du parquet ».

Conséquence : le théoreme de Barbier. Le méme raisonnement s’applique aux courbes de
largueur constante, qui sont des courbes avec la propriété suivante : pour n’importe quelle
paire de droites paralleles tangentes a la courbe en des points opposés (appelées aussi lignes
d’appui), la distance entre ces deux droites est constante; cette distance est alors appelée
diametre de la courbe, voir la Figure E-2.2. Le cercle est clairement un exemple de courbe de
largeur constante, mais il existe tout un tas de courbes de ce type, par exemple les polygones

dit de Reuleaux.
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F1G. E-2.2 Une courbe de largeur constante : le triangle de Reuleaux. Des lignes d’appui y sont représentées.

On peut montrer un certain nombre de propriétés de ces courbes : par exemple, il s agit
de courbes strictement convexes. Si on se donne C une courbe de largeur constante égale a
d, alors on se rend aussi compte que, de la méme maniere que pour le cercle, la courbe C
rencontrera exactement 2 rainures, quelle que soit sa position sur le parquet. Ainsi, grace a
la formule (E-2.3), on obtient 2 = E(N¢) = %E (C), ot £(C) est la longueur de la courbe C,
¢’est-a-dire son périmetre. On en déduit alors le théoréme suivant, obtenu par Joseph Emile
Barbier en 1860.

+. Il faut que la courbe soit suffisamment lisse, par exemple une courbe différentiable et réguliere, pour étre
approchable par une ligne polygonale ; une aiguille courbe est parfois appelée « nouille de Buffon ».

$. On peut renvoyer a la vidéo suivante de 3bluelbrown : https://www.youtube.com/watch?v=ItLUadnCyi0


https://www.youtube.com/watch?v=ltLUadnCyi0
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Théoreme 2.1 (de Barbier). Une courbe de largeur constante de diamétre d a pour
périmetre md.

(OO

F1G. E-2.3 Quelques autres courbes de largeur constante : un triangle, un pentagone et un heptagone de
Reuleaux (dont la piece de 50 cents britannique est un exemple), et une autre courbe de largeur constante non
régulicre.



Ex. 3
Nombre de cycles d’une permutation aléatoire

Pour n € N*, on note &,, le groupe des permutations de {1,...,n}. On choisit une permuta-
tion aléatoirement de maniere uniforme sur G, et on note X, le nombre de cycles disjoints
que cette permutation contient. On montre le résultat suivant.

Proposition 3.1. La variable aléatoire X, a la méme loi que Y1 + - - - +Y,,, ou les variables

aléatoires (Y1,...,Y,) sont indépendantes et de lois Y; ~ Bern(?).

En particulier, on en déduit que 1% converge en probabilité vers 1 quand n — oo, voir la
Section 3.3.6.

Démonstration. Une preuve possible passe par le calcul de la fonction génératrice de X,,. On
va montrer que X, et Y1 +--- 4+ Y, ont la méme fonction génératrice.

Etape 1. Combinatoire. Pour k € N on pose Cnx I'ensemble des permutations o € &,, qui ont
exactement k cycles a support disjoint et on note C, x le cardinal de cet ensemble.

Lemme 3.2. On a C,y |y = nCy + Cy k1 pour tout n,k > 0.

Démonstration. Ona C,y =0sik>nousik <1.Deplus, C,, =1 car la seule permutation
avec n cycles distincts (n points fixes) est I'identité. Le nombre G, ; de permutations avec un
seul cycle vaut (n— 1)!, car il faut choisir I'image de 1 (il y a n — 1 possibilités), puis I’image
du nombre choisi (il y a n — 2 possibilités), etc.

Pour obtenir la formule, notons que I’on peut séparer 1’ensemble des permutations de
longueur n+ 1 avec exactement k cycles en deux sous-ensembles : soit #n 4 1 apparait dans un
cycle de longueur au moins 2, soit n + 1 est un point fixe.

Le premier ensemble est de cardinal nC,, . En effet, étant donné une permutation ¢ € G,
avec exactement k cycles, on peut placer ’indice n+ 1 apres n’importe quel indice i €
{1,...,n} dans la décomposition en cycles de o : cela donne une permutation 6’ € &, avec
exactement k cycles (ou n+ 1 apparait dans un cycle de longueur au moins 2).

Le deuxieme ensemble est de cardinal C, ;. En effet, si on a une permutation ¢ € &,
avec exactement k — 1 cycles, on peut définir 6’ € &,41 en définissant ¢’ (i) = o(i) pour
i€{l,....,n}eto’(n+1)=n+1: celadonne une permutation 6’ € S, avec exactement k
cycles (ou n+ 1 apparait dans un cycle de longueur 1). a

Etape 2. Calcul de la fonction génératrice de X,,. Notons que I’on a P(X,, = k) = %ka. Ainsi,
si on note G, la fonction génératrice de X,,, on a pour z € R

Gx,(z) =E[z"] = % Z CosZ".
* k=0

Posons f,(z) = Xi_ kazk et utilisons la formule de la question précédente. On a
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n+1
far1(@) = Y Cosrsdt _Z"H-i-ﬂzcnkz +2an 12
k=1 = k=1
— n
ZZ"H—&—HZkazk—FZZCn,qu (n+z) Z = (n+2)fu(2).
k=1 k=0 =1

Comme fi(z) = C1,1z =z, on en conclut facilement par récurrence que

=[]z+i. VvzeC.
i=0

Donc

Etape 3. Comparaison avec la fonction génératrice de Yy + --- +Y,. Par indépendance, la
fonction génératrice de Y} + - - - + Y, vaut

Gy +-41,(2) = Gy, (2) -+ Gy, (2)
ol Gy,(z) =1— 4+ 1z=1(z+i—1). On en conclut que
n 1 n—1
Gy (@) = [T (e+i=1) = =[] +1) = Gx, (2),
i=1 i=0

ce qui signifie que X,, a la méme loi que Y; +---+ Y. a



Ex. 4

Une caractérisation de la gaussienne : le théoreme de
Bernstein

Considérons X,Y deux variables aléatoires indépendantes et de méme loi, admettant un
moment d’ordre deux fini. On suppose pour simplifier que E(X) = E(Y) = 0 et E(X?) =
E(Y?) = 1. On va montrer la caractérisation suivante de la loi N(0, 1), due a Bernstein.

Proposition 4.1. Si X,Y sont deux variables aléatoires indépendantes et de méme loi,
admettant des moments de tous ordres finis et telles que E(X) = E(Y) = 0 et E(X?) =
E(Y?) =1, alorsona

X,Y ~N(0,1) si et seulement si X +Y et X —Y sont indépendantes.

A noter que la caractérisation reste valable si on suppose simplement que X,Y ont des
moments d’ordre 2 fini (avec des outils qui n’ont pas été introduits ici). Noter aussi que dans
tous les cas, on a par bilinéarité et symétrie de la covariance,

Cov(X+Y,X —Y) = Var(X) 4+ Cov(Y,X) — Cov(X,Y) — Var(¥Y) =0,

ol on a utilisé que Var(X) = Var(Y) et Cov(X,Y) = Cov(Y,X). Ainsi, si X,Y sont indépen-
dantes (et centrées réduites), méme si on a toujours bien Cov(X +Y,X —Y) =0, le seul cas
ol X +Y et X —Y sont indépendantes est si X,¥ ~ N(0, 1).

Démonstration. Le sens direct est facile. Si X,Y ~ N(0, 1) sont indépendantes, alors (X,Y)
est un vecteur gaussien. On déduit que (X +Y,X —Y) est aussi un vecteur gaussien, et
comme Cov(X +Y,X —Y) =0, cela montre que X +Y et X — Y sont indépendantes, voir la
Proposition 6.73.

Supposons maintenant que X,Y sont indépendantes (centrées réduites) et que X + Y et
X —Y sont indépendantes. Notons M(z) := Mx (t) = E(e'X) pour ¢ € R la fonction génératrice

des moments de X : il suffit de montrer que M(¢) = S

a) Si on suppose M(t) < +oo pour t € R. Cette hypothese est plus forte que celle de la
proposition, mais la preuve dans ce cas est un peu moins technique *. Rappelons que dans ce
cas la fonction t — M(¢) est indéfiniment dérivable et on a notamment M'(t) = E(Xe'X) et
M (1) = E(X?e'X).

Calculons de deux manieres E ((X —Y)% (X+Y >). D’une part, en développant le carré et
par linéarité de 1’espérance, on obtient

E ((X _ Y)Zel(X+Y>) —FE (X2etXetY) _2E (XetXYetY) +E (YZetXetY)
— 2B (x%¥)E () —2E (xe'X)® = 2M" (1) M(r) — 2M'(¢)?,

ol on a aussi utilisé le fait que X,Y sont indépendantes et de méme loi. D’autre part, en
utilisant I’indépendance de X +Y et X — Y, on a

1. Etelle s’adapte bien au cas de la fonction caractéristique (qui n’a pas été introduite ici), pour donner
une preuve générale.
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E((X —Y)2X ) =E((X —Y)?) E (/¥ 1)) = 2E (¢X)® = 2M(1)?,

ot on a utilisé I’indépendance de X, Y, et le fait que E(X) = E(Y) =0 et E(X?) =E(Y?) =1
pour avoir E((X —Y)?) = E(X?) —2E(XY) + E(Y?) = 2. En combinant les deux égalités, on
en conclut que

M”(1)M(t) — M’ (1)? = M(r)?.
Ainsi, sil’on pose y(t) :=logM(¢) (rappelons que M(¢) > 0 pour tout ¢ > 0), on obtient

, M ” M” (£ \M(t) — M’ 2
R !

pour toutt € R.

En notant que y'(0) = E(X) = 0, on en déduit que W'(r) =t pour tout r € R. De méme,
comme Y(0) =log1 =0, on en conclut que y(¢) :=logM(z) = %tz pour tout € R. On a

1.2 . z .
donc montré que M(¢) = e2" pour tout 7 € R, ce qui conclut la démonstration.

b) Si on suppose que E(X") =E(Y") < 4-e0 pour tout n € N. On va montrer que E(X") = E(Z")
pour tout n € N, ot Z ~ N(0, 1) : cela montre alors que la série

converge et est égale a M(z), d’ott M(¢) = Mz(r) = e2t’.

Montrons donc que E(X") = E(Z") pour tout n € N, par une récurrence forte. C’est évi-
demment vérifié pour n = 0,1,2. Soit n > 2 et supposons que E(X*) = E(Z¥) pour tout
ke{0,...,n}.

Calculons maintenant E((X +Y)"~!(X —Y)?) de deux maniéres. D’une part, en dévelop-
pant (X +Y)"~1(X —Y)? et en utilisant la linéarité de 1’espérance (toutes les espérances sont
finies par hypothese), on obtient

E((X+Y)" ' (X -Y)?) =E (X" 4y + zn: ¢ jE(X'Y)
o (B-4.1)
=2E(Xx"") + ) i, B(X)EYY),
i,j=0

ou ¢; j sont des coefficients donnés (dont la valeur importe peu). De la méme maniere, si
Z1,Z ~N(0, 1) sont indépendantes, on a
n .
E((Zi+2)" " (Z1-2)*) =2E(Z{"")+ Y «iE(Z))E(Z3).

i,j=0

En utilisant I’hypothése de récurrence, on a E(X') = E(Z}), E(Y/) = E(Zé) pour tous i, j < n,
donc en faisant la différence des deux derniéres identités, on obtient

2B (X" —2E(Zi") =E((X+Y)" ' (X -Y)*) —E((Zi + Z)" (21 — 2»)?)
=E(X+Y)"DE(X-Y)?)-E((Zi+2Z)" YE((Zi - 2)?)
=2(E(X+Y)") —E((Z1+22)""))

(
(
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ot on a utilisé I’indépendance de X +Y, X —Y (par hypothese) etde Z; + 75, Z| — Z, (car Z,Z;
indépendantes de loi N(0, 1)). On a aussi utilisé le fait que E((X —Y)?) = E((Z — Z)?) = 2,
par un calcul direct (les variables impliquées sont indépendantes, centrées et réduites).

Il reste simplement a voir que E((X +Y)"~!) = —E((Z; +2Z,)"!) pour conclure. En effet,
en développant (X +Y)""!, en utilisant la linéarité de I’espérance et le fait que X et ¥ sont
indépendantes (de méme pour (Z; +Z,)""!), on obtient

B ) =3 (7)) Bom0), B(@ ) -

n
i=1 l =1

n—1 ; i
y (") peee).
14
En utilisant I’hypothése de récurrence, qui donne E(X’) = E(Z}), E(Y/) = E(Zé) on obtient
que les deux termes sont égaux. On en déduit que E(X"™!) = E(Z!"!) avec Z ~ N(0,1), ce
qui conclut la récurrence et donc la démonstration de la Proposition 4.1. ]



Ex. 5

Vecteur aléatoire uniforme dans une boule de grande
dimension

Soit Z, := (Xi,...,X,) un vecteur aléatoire de R", de loi uniforme dans la boule de
rayon \/n, notée B, (y/n) = {(x1,...,x,) € R", Y7 x? < n}. Autrement dit, Z, est un vecteur
aléatoire de R" de densité donnée par

1
)= —— 1 ).
Jz, (X1, -, %) ANG) Ba(ym) (X155 X0)

Pour tout £ < n, on note fx1 x,(x1,..,x,) la densité marginale de (Xi,...,X,) dans le

.....

vecteur Z,. On a alors le résultat suivant.

Proposition 5.1. Pour tout k € N fixé, on a pour tous (x1,...,x;) € R

1
lim X1,.- —337
n_}ﬁfk 15 IIJ 271:
Autrement dit, quand n — oo, la densité marginale du vecteur (Xi,...,Xy) converge vers

celle de k variables N(0, 1) indépendantes.

Commencons par le lemme suivant.
Lemme 5.2. Soit V,,(r) le volume d’une boule de rayon r > 0 en dimension n. Pour tout n > 1
et tout r > 0, on a la formule

Démonstration. Notons B, (r) = {(x1,...,x,) € R",Y"_ x? < r?} laboule de rayon r dans R".
On va démontrer la relation ci-dessus par récurrence. La formule est vérifiée en dimension
n =1 car Vi(r) = 2r (noter que I'(3) = $I"(3) = 1/, voir (6.37)) et en dimension n = 2
car Vs (r) = mr? (noter que I'(2) = 1).

En utilisant le théoréme de Fubini—Tonelli, on a la relation de récurrence suivante : pour
n>1

Var1(r) = /]Rn ]an+l(r)(x1,...,xn+1)dX1 codxga

:'/7r((/nﬂ{zgzjlxizgrzixﬁﬂ}dxl...dxn)dx”_;,_l = / Vn(\/rz—xZ)dx.

J—r

Ainsi, en appliquant I’hypothese de récurrence et par symétrie, on obtient

n/2 7'[”/2 1 1
n/2 _ n+1 _\/2,-3
Vat1(r) 2/ dx = F(%+1)r /0 (1 —v)Y<y~2dv

ol on a utilisé le changement de variable u = %5 pour la deuxieme égalité (on laisse les calculs
en exercice). Maintenant, la derniere intégrale a déja été calculée, voir la relation (6.93) : on a

12
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! 1 n 1 r+nrd

1/2 plnt1)/2 n+1

Comme I'(3) = 7'/2, on obtient bien la formule V., (r) = , ce qui conclut la

récurrence. O

Démonstration (de la Proposition 5.1). D’apres la Proposition (6.49), la densité marginale est
donnée par I’intégrale suivante : pour xi,...,x; fixés, on a

f]E X], X / on Xlyenny n)dxk+l---dxn

B ‘/”(\/>) {Zl 1 l<n} Rnfk 1{21 k+1 l<n Zk Z}dxk+] dxn7

de sorte que

V(i 8) .
———— 15 <1, avec Oy 1= ) xj.
V, (V1) {6:<n} :;

On peut maintenant utiliser le Lemme 5.2 : on obtient

fk(n)(xla"'vxk) =

L(3+1) g=0/2(n—g,)n=k)/2
T/2pn/2 F(Lgk—kl)
_ ML¢< _%)%ﬂ

T D(5E 1) k2 k2 {Ousn}-

LG8 =

Lio,<n)

n

Il reste maintenant a prendre la limite quand n — o. Pour k fixé et 6, € R fixé, on a
9 n 0 _k
fim (1-2)% =e73% gim (1-2) P =1, limlge =1
n—yo0 n n—oco n n—soco A=

Pour le terme restant, on montrera plus bas (a 1’aide des propriétés de la fonction Gamma
données dans la Section 6.3.2) que pour £ € N,

r;e+1) 1

lim ————— = —. E-5.1
PETGE DV V2 b
Alors, en écrivant le produit télescopique :
1L rGg+y 1 kHlF"f+1) = 1(n_j>1/zk—1 r(%f+1)
e NC NV R = A o L+ 5)vn=]

et pour chaque j € {0,...,k— 1}, en utilisant (E-5.1), on a

lim
n—eo

(”_j)m:u im — LCF 4D

n

Ainsi, pour k € Net (xq,...,x;) € R fixés, on en déduit que

hmfk (xl,...,xk): e 2

e (Var) ot
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qui est la conclusion désirée.
Pour montrer (E-5.1), on peut utiliser les formules (6.36)-(6.38) de la Section 6.3.2. Notons
que I’on peut réécrire la formule (6.37) pour les demi-entiers de la fagon suivante : pour m € N,

1)_ n"ﬁ(2+l) VT (2m)! _@(M)!'

F( )= -
mt3) = om o [, (20) 4" m]

i=0
Ainsi, en utilisant la formule de Stirling, on obtient

Vil (m+4) am (2m)!
Fm+1) 47 (m!)? noe

1, (E-5.2)

de maniere analogue a (2.13).
On peut maintenant montrer (E-5.1). Dans le cas ou ¢ est pair, en considérant 1’entier
m:= %6, on obtient

re+1) r(m+1) 1
FQH DV Tmt Hvam o V2
en utilisant (E-5.2). Dans le cas ou £ est impair, en considérant I’entier m := % — %, on obtient
riie+1)  m+3) | \/m+ 3l (m+3) 1

FGAIDVE Pty fame ) V2 Tmtl) o= V2

oll on a aussi utilisé que I' (ot + 1) = al (), voir (6.35), puis (E-5.2). Cela conclut la dé-
monstration de (E-5.1), donc de la proposition. O



Ex. 6

Minimum de variables exponentielles : le lemme des
réveils*

Soit n > 1 un entier naturel fixé et soient X1, ..., X, des variables aléatoires indépendantes.
On note
R:=min{Xy,...,X,},

et J le plus petit indice j tel que X; = min{Xj,...,X,}. Autrement dit, s’il existe plusieurs
indices ji,..., jk tels que X;, = --- = X;, = min{Xj,...,X,}, on pose J = ji ; si le minimum
est atteint de maniere unique, J est défini de maniere univoque comme 1’indice pour lequel
Xy =min{Xi,..., X, }.

On peut interpréter cette situation de la maniere suivante : on dispose de n réveils, le k-eme
réveil sonnant a une heure aléatoire X, indépendamment des autres réveils. Alors, R est le
premier instant oll un réveil sonne et J est I’indice du réveil qui a sonné. On a alors le résultat
suivant.

Proposition 6.1 (Lemme des réveils). Si les variables aléatoires Xy,...,X, sont indépen-
dantes et de lois exponentielles de parametres respectifs Ay > 0,..., 4, >0, alors :

e [es variables aléatoires R et J sont indépendantes,

o leurs lois sont données par R ~ Exp(0), P(J =i) = % pour tout j € {1,...,n} otona
posé 6 =Y" | A
En particulier, si tous les paramétres A; sont égaux (A; = A pour touti € {1,...,n}), alors J
est de loi uniforme sur {1,... n}.

Démonstration. Pour caractériser complétement la loi du vecteur (R,J), il faut calculer la
probabilité P(R € A,J € B) pour tous ensembles A, B. Comme R est & valeur dans R et J
esta valeur dans {1,...,n},onaP(R€A,J €B) =Y ;cgP(R€EANR,J = j), de sorte qu’il
suffit de calculer P(R € A,J = j) pour tout ensemble A C R et tout j € {1,...,n}, car cela

caractérise la loi du couple (R,J) & valeurs dans Ry x {1,...,n}.

Tout d’abord, notons que comme les variables aléatoires Xi,...,X, sont a densité, on a
P(X; # X pour tous i # j) = 1 (voir I’Exercice 6.59). En particulier, le minimum est atteint
pour un unique indice j avec probabilité 1. Ainsi, pour tout j € {1,...,n} ettout A CR;,ona

P(ReA,J=j)=P(X;€AX;>X;foralli#j).

Comme (Xj,...,X,) est un vecteur aléatoire a densité, de densité donnée par le produit des
densités fx;, on obtient

n
P (R <t,J= ]) = - ]l{xjeA,x,->xj for all i#j} Hin(xi)dxi
i=1

B /A (/Rn,l L x; for all i}

ou on a appliqué le théoreme de Fubini—Tonelli pour la deuxieme identité, ainsi que la forme
de la densité de fx;. Maintenant, pour x; € R fixé, I'intégrale intérieure est égale a

n
I1 fx,-(xi)dxi)lje%"x"dxp
ey

15
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n n
/ . ]l{xi>xj for all i} H in (xi)dxi =P (X,' > Xj for all i # _]) = H P (X,‘ > )Cj) s
R~ i=1,i£] i=1it]

otr on a utilisé le fait que les variables (X;);; sont indépendantes. Comme X; ~ Exp(4;), on
obtient que P(X; > x;) = e % pour x ;= 0, voir (6.44). En combinant avec ce qui précede,
on obtient

A
P(ReAJ =)= /Aje*""fdsz gf/ee*Qde, (E-6.1)
JA JA

otonaposé 0 =3" 4.

Cette identité caractérise completement la loi du vecteur aléatoire (R,J). En effet, on peut
retrouver la loi marginale de R et J. Tout d’abord, en sommant sur j € {1,...,n} et en prenant
A =[0,f] pourz >0, ona

!
P(R<t)= / Be P dr=1—e"?.
0

On en déduit que P(R < 1) = (1 —e )1, (t), qui est la fonction de répartition d’une variable
aléatoire de loi Exp(0) : ainsi, R ~ Exp(0). D’autre part, en prenant A = R dans (E-6.1), on
obtient

A
P(J=j)=§] pour tout j € {1,...,n}.

Le fait que R et J sont des variables aléatoires indépendantes se voit aussi dans (E-6.1) :
onaP(ReA,J=j)=P(ReA)P(J =j)pourtous A CR,, j € {l,...,n}. Le fait que ces
probabilités caractérisent la loi suffit pour en déduire que les variables aléatories R et J sont
indépendantes. Il suffit en effet d’étendre cette relation a tous les ensembles A, B, en écrivant
comme plus haut

P(ReA,JeB)=) P(REANR,,J=j)=Y P(REANR,)P(J=j)=P(R€A)P(JEB),
JjEB JjEB

ce qui est la définition de I’'indépendance de R et J. O



Ex. 7

Maximum de variables aléatoires géométriques et
log-périodicité

Soient (X;);>1 des variables aléatoires indépendantes et de méme loi Géom(3} ). Pourn > 1,
on considere 1’événement

Ap = «le maximum max{Xj,...,X,} est atteint de maniére unique »,
ou, formulé autrement, A, =«il existe i € {1,...,n} tel que X; = max{X,...,X,} et X; <
max{Xi,...,X,} pour tout j # i ». On a alors le résultat suivant¥.

Proposition 7.1. Il existe une fonction continue f : R — |0, 1[, périodique de période 1 et
non-constante, telle que

lim |P(A,) — f(logyn)| = 0

n—yoo

ou logy x = 1223 désigne le logarithme en base 2.

log2

Plusieurs commentaires s’imposent quant a ce résultat :

e Premierement, la fonction f étant périodique et continue, elle atteint ses bornes et
0 < min f(x) < max f(x) < 1. Ainsi, la probabilité de I’événement A, ne tend ni vers 0,
ni vers 1; on peut en fait le montrer assez facilement, voir les observations préliminaires
plus bas.

e Deuxieémement, la probabilité P(A,) ne converge pas! On a P(A,) ~ f(log,n) avec f
une fonction qui est périodique non constante (donc oscille) : on dit que P(A,) est
asymptotiquement 10g,-périodique.

e La fonction f est explicite, voir le Lemme 7.2 plus bas. Avec un rapide programme
Python, on obtient que min f(x) /2 0.72340 et max f(x) a2 0.72355 pour tout x > 0, voir
la Figure E-7.1. Autrement dit, la fonction f est périodique, mais 1’amplitude de ses
oscillations est de I’ordre de 1,5-1077...

Observations préliminaires. Avant de montrer le résultat, observons que I’on peut obtenir
une borne inférieure et supérieure pour P(A,) qui permettent de voir facilement que P(A,) ne
tend ni vers O ni vers 1. Notons &, := |log, n].

Pour la borne inférieure, notons que

n
P(A,) > P(U{Xi — ky+1,X; < k, pour j # i}> ZP =k D) P(X; < k)"
i=1
ou on a utilisé le fait que les événements de la premiere union sont disjoints et que les variables
Xi,...,X, sont indépendantes. Comme P(X; = j) = (3)/~'1 =277 et P(X; > j) = (3)/ pour
j > 1, on obtient

_ 1 2\n—1
P(A) = n2 B (1 —270)" > (1= 2)"

1. Inspiré de discussions avec Thomas Duquesne.

17
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ou on a utilisé le fait que % <27k < % car log,n— 1 <k, <log, n. Notons que cette borne
inférieure converge, vers %e’z > 0.
Pour la borne supérieure, on procéde de la méme maniére : on minore 1 —P(A,) = P(A9)

en écrivant

() =P (| X=X =kn+1,X; <k, pour (£1,})
1<i<j<n
= Y PXi=ko+1)P(X;j =k, + 1)P(X; <ky)" 2.

1<i<j<n

De méme que précédemment, on obtient

P(4;) > L"; D) g tha 1)t ) (1—2y 25 0] (1 - 3)”72.

Notons que cette borne inférieure converge, vers %e’z > 0.

Démonstration de la Proposition 7.1. Commencons par donner une formule explicite pour
P(A,). En effet, en écrivant A, = «il existe i € {1,...,n} tel que X; > X pour tout j # i », on
obtient

=

n
P(A,) =P ( U {X; > X; pour tout j # l}) =Y P(X; > X; pour tout j # i)
i=1 i=1

=nP (X, > X; pour tout j € {2,...,n}),

ol on a utilisé que (Xi,...,X,) a la méme loi que (X;,X,...,Xi—1,Xi+1,...,X,) (dans les
deux cas, il s’agit de n variables aléatoires indépendantes de loi Géom(%)). Maintenant, en
décomposant suivant la valeur de X; et en utilisant I’indépendance, on a

Il
s

P (X, > X; pour tout j € {2,...,n}) P(X; =k+1,X; <kpour j€{2,...,n})

T
I

P(X; =k+1)(1—P(X; > k)"

s

»
Il

Comme on a P(X; = j) = (3)/"14 =27/ et P(X; > j) = ()’ pour j > 1, on en conclut que

P(A,) = in2_<k+1)(1 —27 (E-7.1)

On introduit maintenant une fonction g(x), dont on donne les propriétés dans le lemme suivant,
que 1’on démontrera plus bas.
Lemme 7.2. On définit une fonction g : R’ — R, en posant pour x > 0,

gx) = Y x2i e = ¥ o (ke (E-7.2)
jez kez

Alors g est bien définie, elle est continue et non constante, et vérifie g(x2°) = g(x) pour tous
x>0etl e

Ce lemme montre que la fonction x — f(x) := g(2*) est continue, 1-périodique et non-
constante; on a f(log, n) = g(n). On montre alors le résultat suivant :
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lim |P(A,) —g(n)| =0, (E-7.3)
n—yoo
ce qui conclura la démonstration.
On introduit ¢,, := L% log, n|. En partant de (E-7.1) et de (E-7.2), en appliquant I'inégalité
triangulaire, on obtient

IP(Ay) —g(n)| < Y m2-®rD(1 — 2yt

~
HMx
—_

Il (S T L I R S S
k>0, ke k<ly

. . —k .
Pour le premier terme, en majorant 1 —27%¥ < let1—2"% <e™2 " pour k > 1, on obtient

[/ [/ oo
n n —k ) 1 1/3
Z nzf(k+1)(1 _sz)nq < Z pa— () g2t o n2= Z 2~ (k1) < Enein / :
k=1 k=1
ol on a utilisé que £,, < % log, n d’out 2l > n—2/3. Pour le troisieme terme, on utilise la méme

L ih .
majoration 1 —27% <e=2" pour k > 1, et on obtient, pour n > 2 :

Z n2—(k+1)e—n2’k Z 2=in2je —n2/ < 1 e " Z 2—(j+1) — e .

k<0 ,>0 j>0

[\)

Pour I’inégalité, on a utilisé que 2%/ e 2 < e~ pour tout j > 0, car la fonction ¢ — e est
décroissante sur [1,+o0) pour n > 2 (en effet, sa dérivée vaut —r(nr —2)e~"). On en conclut
que
—
+ne "+ Z nzf(kﬂ)’(l _27k)n71 _e M2 ‘ )
k>0,

—t—12

11 est facile de montrer que pour ¢ suffisamment petit,ona 1 —¢ > e . Comme on a la

borne (1 -2~ )” I < e’”2 valable pour tout & > 1, on obtient pour k > ¢,, et n suffisamment
grand,

|(1 - ka)nq _ efn2*k| < |e7(n71)2*k7(n71)2*2k . efn2*k| _ 67112*" |efszef(n71)2*2k o 1} .

En utilisant maintenant que 1 >e~2 " > 1 — 2*" >1-27>1~1n72/3 (on rappelle que
1’0na£,,2%logzn—l)etaussiIZe (=127 5y _ (n—l) *4/3>1 1 n~13 pourn >3,
on en conclut que

_ _ 1 1 7
0<1—e2 ke (n—1)27% <1- (1 _ Enq/a) (1 _ 5”71/3) < En71/3 <n /3.
En combinant toutes les estimées, on obtient

‘P(A,,) —g(n)’ < n(ef"m —5—67") +n71/3 Z nzf(k+1)efn27k < n(eﬂm +efn) +n1/3g(n).
k>0,

Comme g(n) est bornée (car x — g(2*) est continue 1-périodique), la borne supérieure tend
vers 0 quand n — oo, ce qui montre (E-7.3) et conclut 1la démonstration. O

Démonstration (du Lemme 7.2). 11 est facile de voir que g(x) est bien définie, en tant que
somme de termes positifs. Elle est finie, car on a
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szjflefxz-i < %xz 2* < foo,

j<0 k=0

. i 1 L i 1 .
szjflefxz./ — Z 27]22167)52./ < —xey Z 277 < o0,
jz1 2 j=1 2 j>1

N i
oll ¢ = sup 5, 2%e ™.

Notons de plus que par un simple changement d’indices dans la somme, on a

. A . il
g(zéx) = Z x2€+1_1e—x2’+/ - Z X2/ e — g(x).
JEZ JEL

Montrons que x — g(x) est continue . On écrit g(x) = Lx(hy (x) +ho(x)), ol on a séparé
la somme en termes j > O et j < —1, c’est-a-dire

i)=Y 2e, )=y 2t
j>0 k>1

et on va montrer que /1,y sont continues. On se concentre sur /7, le méme type de raison-
nement pouvant étre appliqué a h,. Pour x,y € [a,+oo[ avec x < y, on a grice a I’inégalité
triangulaire

() ~m ()| < Y 27 |1 —e 0| < (x—y) Y 2Me
i20 j=0

olion a utilis¢ 0 < 1—e~" <7 pour ¢ > 0. On a donc montré que pour tout a > 0, |k (x) —
hi(y)| < Calx—y| pour tous x,y € [a,+oo[, et en particulier limy_, |2 (x) — A+ (y)| = 0, ce qui
montre la contuinuité de /.

Le fait que g ne soit pas constante n’est pas si facile a voir, mais on présente dans la
Figure E-7.1 les graphes des fonctions g(x) sur [1,128] et f(x) = g(2¥) pourx € [0,7]. O

0.72140 0.72140

0.72138 0.72138

0.72136 0.72136

e IAVA _— VAVAVAVAVAVAVA

0.72132 0.72132

0.72130 0.72130
0 0

FIG. E-7.1 Graphes des fonctions x — g(x) pour x € [1,128] et x — f(x) = g(2%) pour x € [0,7]. On remarque
que f, g sont non-constantes et ont une amplitude d’oscillation de I’ordre de 10~ autour de la valeur ~ 0.72135.

Probabilité que le maximum soit atteint par exactement ¢ variables. On peut refaire la
méme démonstration pour obtenir une estimée de la probabilité que le maximum soit atteint
par exactement ¢ variables. Notons cet événement A, (¢), c’est-a-dire

+. On peut en fait montrer que la fonction g est indéfiniment dérivable.
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An(0) == {ilexiste I C {1,...,n} avec |I| = tel que :
VielX;=max{X,....X,}etVj¢IlX; <max{X1,...,Xn}}.

Alors le méme calcul que dans (E-7.1) donne la formule

=

P(AL(0) = Y (Z) 2t (1 _ky.

k=1

On peut alors appliquer le méme raisonnement que précédemment pour obtenir le comporte-
ment suivant : pour ¢ fixé, quand n — oo,

ZX/Z j—1 / 7)62]
JEZ

P(An(0)) ~ filogyn) = ge(n) — avec gu(x) :=

De méme que précédemment, f; est une fonction 1-périodique.

Observation 7.3. Remarquons que par le théoreme de Fubini—Tonelli, on a pour x > 0

fg[ Z Z 7 [2 j—1 Z —x2J Z (ex2(j*1) . 1)e_X2j _ Z (e_xz(jfl) —e_xzj) .
=1

JEZ =1 JEZ JEZ

x0=D —x2J

b Z b 2z ~ —
Notons que I’on ne peut pas €crire que cette somme est pas €gale a )’ jcz € —Yjez€
car ces deux sommes sont infinies. Mais on voit qu’il s’agit d’une somme téléscopique : on a

n

Z (e7x2(j’l> _efxzj) — lgn Z (efo(j’l) _efxzj) = lim (efo’”’l _efo”) 1.
Nn—soo

jez j=—n n—vee

On en conclut que ¥, g/(x) = 1. Comme g;(x) > 0 pour tout ¢ et x > 0, cela montre
notamment que g est a valeurs dans ]0,1].



Ex. 8

Probabilité que deux variables géométriques soient
premieres entre elles

On considere X, Y deux variables aléatoires indépendantes, toutes deux de loi géométrique
de parametre o €]0,1[. On pose Zy = pged(X,Y) et on note py(@) := P(Zy = k) pour tout
k € N*. En particulier, p;(a) est la probabilité que X et ¥ sont premiéres entre elles. On
montre le résultat suivant.

Proposition 8.1. Pour tout entier k € N*, on a

limpi (o) =limP(Zy = k) = « avec ¢y =

al0d al0d K’ ﬁ '

En particulier, la probabilité que X et Y soient premiéres entre elles converge vers
T

quand o | 0.

Noter que le fait de prendre un parametre ¢ | 0 correspond a considérer une variable
aléatoire géométrique de moyenne 1/0 — +oo; la limite o = O serait de maniére informelle
«uniforme sur N ». On s’intéresse donc a la probabilité que deux nombres aléatoires (tres
grands en moyenne) soient premiers entre eux, dans le méme esprit que le Probleme 1.27 (les
calculs sont d’ailleurs un peu similaires ici, mais pas compleétement).

Démonstration. Commencons par un petit résultat préliminaire, intéressant en soi.
Lemme 8.2. Soit g (o) := P(X est divisible par k). Alors

a(l—o)k!
I—(1—a)k’

Notamment, limg o qi(0t) = % et gi(a) < %pour tout & € )0, 1[. De plus, pour tout j € N*,

q(a) =

P(1X=j | X est divisible par k) = (1 —op) ey, avec o ==1—(1—a)k.

Autrement dit, conditionnellement a I’événement « X est divisible par k », %X suit une loi
géométrique de parametre 0.

Démonstration. Notons Ay I’événement « X est divisible par k », que 1’on peut ré-écrire
comme Ay = J7_;{X =kj}.Ona

P(A ) iP(X kj):i(l (X)kj 1 i (04 (lf(x)k
ML ~ —a = 1—0c1—(1—a)’<’
J=1 J=1 J=1
d’otr la formule pour g ().
Le fait que limg o g (@) = v1ent du fait que limg g (17_)]( =k (il s’agit de la dérivée

en 0 de la fonction x — —(1 —x) ). Pour voir que g (a) < % pour tout o € |0, 1], on peut

22
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observer que x — gy (x) est décroissante (par exemple en calculant sa dérivée *) : on en déduit
que pour tout x € [0, 1], g (x) < limyjoqx(x) = ¢.
Pour la deuxi¢me formule, on a aisément, en posant o := 1 — (1 — Oc)" de sorte que

gr(a) = 1;;’% 125> on obtient

1 o l-a ;

v _ PR o A k kj—1

P(EXf]|Xestd1v151blepark)7MP(X—k])fl_ak a x(1—a)" o
= ak(l - ak)j_17

ce qui donne le résultat voulu. a

Etape 1. Expression de P(Zy, = 1). Montrons que la probabilité p;(a) que X et Y soient
premiers entre eux converge. On peut utiliser la formule d’inclusion/exclusion de la Proposi-
tion 1.23, de la méme maniére que pour la probabilité que deux entiers pris dans {1,...,n}
soient premiers entre eux, voir le Probleme 1.27.

On commence par écrire que Zy # 1 si et seulement si X et Y admettent un diviseur
commun : ainsi,

P(Zy=1)=1-P(Zg#1) = pP(ODP,),
i=1

ol py,...,Pn,... désignent les nombres premiers rangés par ordre croissant et ou olt Dy =« k
divise X et ¥ ». Notons que par indépendance, pour tout k > 1 on a P(Dy) = qi(x)?.

On ne peut pas appliquer la formule d’inclusion-exclusion a 1’union infinie, mais on peut
utiliser le fait que

n—yoo

p(QDP,,) _ nmp(gD,,i),

par continuité croissante des probabilités. On a alors, par la formule d’inclusion-exclusion

P(UDy) =YL (D" ¥ Py, 0Dy
i=1

j=1 1<i)<--<ij<n
i - )
- Z(_l)1+ Z P(Dpil"'Pij) = Z(_I)JJF Z Qp,-1~-~pij(05) .
Jj=1 lSi]<"'<ian j=1 1§i1<---<ij§n

Notons que I’ensemble des p;j, - - p;; est exactement I’ensemble des d > 2 dont les facteurs
premiers sont dans {pj,...,p,} et de multiplicité 1. En utilisant la définition de la fonction
de Moebius  (qui apparait dans (1.25)), en notant C, = {[I/_, p{", (m1,...,m,) € N}, on
obtient .
1-P(UDy) =1+ ¥ #@a(@)P= Y ukja(@)?.
i=1 keCa\{1} kec,

On peut alors prendre la limite quand n — oo, car la somme converge absolument, en utilisant
le fait que g (o) < 1/k* et |u(d)| < 1. On a donc montré que

=

pi(@) =P(Za = 1) = ¥ u(k)qu(e)’.
k=1

(1-x)k2
(1-(1-x)k)?
(en observant que x — (1 —x)¥ — 1 4kx est nulle en x = 0 et de dérivée k(1 — (1 —x)*~1) > 0, donc croissante).

t. Le calcul donne g; (x) = (1—kx— (1—x)k), qui est négatif car (1 —x)¥ > 1 —kx pour x € [0, 1]
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Etape 2. Limite de P(Zo, = 1). On sait que limg o gi(a)? = kLZ et il reste donc a montrer que

I’on peut intervertir la limite avec la somme (infinie).
% est bien définie car la somme converge absolu-

ment. Fixons € > 0, et K = K(¢€) tel que Y4~ kiz < €. En appliquant 1’inégalité triangulaire et

Commencons par observer que Y >,

en utilisant que py (o) = Y5, p(k)gi ()%, on peut écrire

i)~ £ 57 <[ S utaier] | utaa f”k!

k>K

<22k2+2‘qk ——‘<28+Z‘qk

k>K

e

k>K

oti on a utilisé que |u (k)| < 1 et gi(x)? g iz

Maintenant, comme limg o gi(0t) = k pour tout k € {1,...,K} (avec K fixé), on peut
choisir ¢ suffisamment petit (a quel point dépend de &) pour avoir, pour tout o < g,
lgx (@) — k%| < g/K. On en conclut que, pour tout &t < o on a |p;(¢t) — Y5, %\ <3g,ce
qui montre que

o M(k
li = 7.
limpi (@)=Y %

On a déja vu dans le Probléme 1.27 que cette somme est égale 2 6/7%, mais on va le redémon-
trer plus bas.

Etape 3. Expression et limite de P(Zy, = k). Montrons maintenant la relation suivante : On a
donc montré que, pour tout k € N*,

pi(@) = qe(@)*pi(oy), (E-8.1)

ot o = 1 — (1 — )* est donné dans le Lemme 8.2. L’idée est d’écrire
pi(a) =P(Zy =k) =P (X et ¥ sont divisibles par k et pged(1X, 1Y) = 1) ,

et d’utiliser que, conditionnellement au fait que X et ¥ sont divisibles par &, %X et %Y sont

des variables aléatoires indépendantes de loi Géom(0y), grace au Lemme 8.2. Ecrivons-le
proprement : en décomposant suivant les valeurs de %X et %Y ,ona

pr(a) = Z P (X et Y sont divisibles par k et %X =], kY =7 )
J.J'pged(j,j")=1
= Y P (X est divisible par k et $X = j) P (Y est divisible par k et 1Y = j)
J»J'pged(j.j')=1

ot on a utilisé I’indépendance de X et Y. En notant X, ¥ deux variables aléatoires indépendantes
de loi Géom(0oy), on obtient grice au Lemme 8.2

pr(a) = Z ar(@)*P(R = j)gi(a)P(¥ = j)
7 pged(j,j')=1
=g Y PR=jP=J)
7' peed(j,j')=1
= gx(a)?P (pged(X,¥) = 1).
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On a donc montré (E-8.1). Maintenant, on sait grace a I’étape 2 que la limite limg o p1 (@) = co
existe : en prenant la limite & | O dans (E-8.1) et en utilisant que limg o gi (o) = % et que
o — 0 quand @ — 0, on obtient

lim py(0t) = (E-8.2)

—¢o
al0 k2
ce qui est le résultat voulu (une fois que la constante c( a été déterminée).

Etape 4. Détermination de la constante co = limg o p1(or). En sommant sur & la rela-
tion (E-8.1), on obtient

Zpk( —I—qu 2p1 (o). (E-8.3)

(4]

Si pouvait echanger la somme et la limite & | 0 dans (E-8.3) on aurait 1 =Y ; 2 , d’ou
co=(Xr k—z) = 5. On va démontrer ce résultat 2 la main.

Fixons € > 0 et K = K(¢) tel que Y- kLZ < €. En reprenant (E-8.3), on obtient grace a
I’inégalité triangulaire

I VD WACRE) IR o E

k>K k= k>K
1 K K o
<2 5+ Y @) - 5] <28+ Y |mele) - 5.
k>K k=1 k=1

ot on a utilisé le fait que py(a) = qi (@) p1(og) < k2 Cette inégalité étant valable pour tout
a > 0, on peut prendre la limite o | 0 dans le membre de droite (noter que K est fixé) : on
obtient |1 — Y7, Ii | <2¢, et comme € > 0 est arbitraire, on en déduit que

Cela permet de conclure que ¢y = 6/7%, comme annoncé plus haut. O

Observation 8.3. On peut adapter la Proposition 8.1 au cas ou X ~ Géom(a) et Y ~ Géom(f3),
avec o, | 0. a



Ex. 9
Probleme de survie d’une marche aléatoire

Soient (X;);>o des variables aléatoires réelles, indépendantes et de méme loi. On pose
So=0etpourk > 1,

k
Sk = ZX,
i=1

La suite (Sk)r>0, appelée marche aléatoire, permet en pratique de décrire de nombreuses
situations, comme le gain d’un joueur lors d’une succession de paris, la position d’un marcheur
(ou d’une particule) apres k pas effectués de maniere aléatoire.

On s’intéresse ici au probleme dit de survie de la marche aléatoire, c’est-a-dire a la
probabilité que (Sy)r>0 reste (strictement) positive pendant un temps n > 1 donné : on cherche
a estimer les probabilités

P(5;>0,...,5,>0) et P(8;>0,...,5,>0).

Par exemple, si (S )i>0 représente le gain d’un joueur apres k paris, il s’agit de la probabilité
que le joueur ne soit jamais endetté au cours des n premiéres parties.
On va considérer ce probleme dans deux cas :

e Le cas de la marche aléatoire simple étudié dans les Sections 2.2 et 4.4, c’est-a-dire si les
pas sont a valeur dans {+1,—1}, avec P(X; = +1) =P(X; = —1) = J;

o Le cas général d’une marche aléatoire symétrique, c’est-a-dire ou les variables aléatoires
(X;)i>1 sont telles que —X; a la méme loi que X. Le cas ol les variables (X;);>; sont &
densité s’avere surprenant.

9.1 Pour la marche aléatoire simple

Considérons dans un premier temps le cas de la marche aléatoire simple, c’est-a-dire si les
variables aléatoires (X;);>; sont i.i.d. de loi

P(X;=+1)=PX;=-1)= 3
On a alors le résultat suivant pour la probabilité de survie. Comme la marche aléatoire simple
ne peut revenir en 0 qu’aux instants pairs, on s’intéresse aux probabilités de survie aux instants
pairs. En effet, on a par exemple P(S; > 0,...,82,—1 > 0) =P(S| >0,...,52, > 0) ou encore
P(S1>0,...,8,>0)=P(5; >0,...,5,+1 > 0) pour tout n > 1. Comme dans la Section 2.2,
on note

4}1
ol la deuxieme égalité vient du fait que I’on a S, = 0 si et seulement si il y a eu autant de pas
’+1° que de pas —1’ dans les 2n premiers pas, voir (2.11).

Ugp = i (Znn> = P(SZn = 0) ) (E-9.1)

26
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Théoreme 9.1. Soit (Si)i>0 la marche aléatoire simple symétrique définie ci-dessus. Pour
toutn>1,ona

P(S] 207...752;120) = Uy,

P(S] >0,...,Szn>0):%u2n.

Comme la marche aléatoire simple (S )z>0 ne peut pas changer de signe sans passer par 0,
il n’y a que deux possibilités pour avoir S # 0,...,82, # 0 :soitona Sy > 0,...,8, > 0, soit
onasS; <0,...,5, <0. Ainsi, on en déduit

P(S1#0,...,5,#0) =P (51 >0,...,8, >0) +P (S <0,...,8, <0) =uy,. (E9.2)

On en déduit le corollaire suivant, concernant 1’instant de premier retour en O de la marche
aléatoire simple.

Corollaire 9.2. Soit T := min{k > 1,S; = 0} !’instant premier retour en 0 de la marche
aléatoire simple. Pour toutn > 1, on a

1

Démonstration. Commengons par noter que T > 2n si et seulement sion a Sy #0,...,52, #0.
Ainsi, d’apres le Théoreme 9.1, ou plus précisément (E-9.2), on a

P(T >2n) =P (81 #0,...,5, #0) = uz,.

Notons déja que cela montre que P(7 = +o0) = limy, . P(T > 2n) = 0.

Maintenant, observons que 7 ne peut prendre que des valeurs paires, car la marche aléatoire
ne revient en 0 qu’a des instants pairs. On a donc T = 2n si et seulementsiona 7 > 2n—2
(donc T > 2n— 1) mais pas T > 2n : on obtient

P(T =2n) =P(T >2n—2)—P(T >2n) = up(,_) — ton -

4"171 (2:—_12) et que (2:—_12) A G2 — 2 (2:)

Notons que uy(,—1) = —D2 = m2n—1) X (=112 — 2
Ainsi, uy(,_1) = 4:,‘%2 Ugp, et

4n

P(T =2n) = n(ifl):i 0,
(T'=2n) =un( 3= n—1"
ce qui conclut la démonstration. O

Observation 9.3. On peut aussi déduire du Théoréeme 9.1 une identité combinatoire intéres-
sante : pour toutz > 1, 0n a

u L 2k\ (2(n—k)
WU (—k) = 1 = ( ) ( ) =4",
k;) (n=k) k;) k)\ n—k

En effet, en notant Ly, := max{0 < k < 2n,S; = 0} le dernier instant de retour en 0 de la
marche aléatoire simple avant ’instant 2n, on obtient Y (P(Ly, = 2k) = 1, car Ly, est
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forcément pair. Mais en écrivant explicitement 1’événement {L,, = 2k}, on a
P(Lyy = 2k) =P (Sok=0,52k11 #0,..., 8 #0) =P (Sn—0) P (81 #0,..., 802k #0).
Comme P(Sy;, = 0) = up et P(Sy #0,...,82; # 0) = uz; (voir (E-9.2)), cela conclut la dé-

monstration. O

Démonstration (du Théoreme 9.1). On va utiliser une démonstration combinatoire. Comme
dans la Section 2.2, notons

Doy = {(50,.-.,54)  50="0,|s¢ —sxk—1| =1 pour tout k € {1,...,2n}}

I’ensemble des chemins possibles de longueur 2n. La loi de la marche aléatoire simple
(So,-..,S2,) correspond a la probabilité uniforme sur £;,,.
On considere maintenant les deux sous-ensembles de £2;,, suivant :

Ao = {(50,---,521) € Dan : 52, =0},
By, = {(so,...,S2,,) € Q5,1 sx > 0 pour tout k € {1,...,2n}},

de sorte que P(S; > 0,...,S2,>0) = \QITMB”‘ et P(S2,—0) = @\An\. Il nous reste donc a

montrer que |A,| = |B,|.
Pour voir que |Ay,| = |B2,|, on va donner une bijection entre Ay, et By,. Il nous suffit en
fait donner, pour tout k € {0,...,n}, une bijection entre Ay, i et By, x, ot

Ao = {(s0,...,52) € Apu : ogilig%nsi =—k},

By = {(so,...,sz”) € Byt s = 2k}.
En effet, A, est I'union disjointe des (A, k)o<k<n (nOter que si s2, = 0, le minimum ne

peut pas étre inférieur & —n) et By, est I’union disjointe des (B x)o<k<n (nOter que sy, est
forcément pair, et positif).

Soit k € {0,...,n}. Une bijection y entre Ay, i et By, x est donnée de la maniére suivante.
Soit s = (50,...,52,) un chemin de Ay, ; et soit m := min{i : s; = —k} le premier instant ot
le chemin atteint son minimum. On associe alors & s un chemin §:= y(s) = (§,...,5;,) de la

maniere suivante :
§i=Sm+i—Sm pouri€{0,....2n—m} (noter que $2,—,, = k),

Si=k+ (sm—sm—i) pouri€ {2n—m+1,...,2n} (noter que $p, = 2k).

Autrement dit, on décompose s en deux morceaux, s’ = (so,...,85m) €t 5" = (Sm,-..,52)-
Le chemin § est alors construit en deux parties : la premiére partie § = (51,...,8), avec
£ =2n—m, est identique a s” (& translation prés pour faire démarrer § en 0); la deuxieéme
partie §' = (5y,...,5,) est 'image de s’ par une symétrie verticale (a translation prés pour
placer §” «a la suite » de §). Une illustration est donnée dans la Figure E-9.1.

On peut facilement vérifier que I'image de s € A, x par Y est un élément de By, : par
construction, on a §; > 0 pour tout i et sy, = 2k. Pour voir qu’il s’agit d’une bijection, il suffit
de montrer que Y possede un inverse : il est décrit de la maniere suivante.

Soit §:= y(s) = (50,...,55) un chemin de By, ; et soit £ = max{i > 0: s; = k} le dernier
instant ot le chemin § passe par k avant d’atteindre 2k. L’inverse de y est alors construit en
associant a § le chemin s = (so, ..., s2,) obtenu de la fagon suivante :
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FI1G. E-9.1 Illustration de la bijection y entre Ay, x et By, x. Dans la figure du haut, on a représenté un chemin
$=(50,.-.,52m) € Aznk, que 'on a décomposé en deux parties, s’ = (s0,...,5mu) et s” = (sm,...,52,). Dans la

figure du bas, on a représenté le chemin § = y(s) € By, x, décomposé lui aussi en deux parties, § = (5o,...,57)

et§’ = (5,...,5n), avec £ = 2n—m. La bijection y identifie §' & s” et § au symétrique de s" par rapport a

I’axe vertical (dans les deux cas, a translation pres).

Si =38y —Sm—;i pouri€{0,....2n—{} (noter que sp,_¢ = —k),
si=—k+38i_op—¢ pouri€{l+1,...,2n} (noter que sp, = 0).
Autrement dit, § est composé de deux morceaux § = (sq,...,57) et §' = (s¢,...,50). Le
chemin s est construit en deux parties : la premiere partie s” est identique a §” (& translation
prés pour faire démarrer s’ en 0); la deuxieme partie s” est I’image de § par une symétrie
verticale (a translation prés pour placer s” « a la suite » de s"). On renvoie 2 la Figure E-9.1
pour une illustration. Notons qu’il est ici aussi facile de voir que le chemin s ainsi construit est
un élément de Ay, .
Pour conclure, on a montré que Y : Ay, x — Bonx est une bijection : on en déduit que
| A2 k| = |Bank| ce qui termine la démonstration. 0

9.2 Marches aléatoires symétriques a densité : le théoréme de Sparre
Andersen

Considérons maintenant le cas ou les variables aléatoires (X;);>0 sonti.i.d. de loi symétrique,
c’est-a-dire que —X; a la méme loi que X;. Supposons de plus que les (X;);>; sont de loi a
densité; le fait que la loi est symétrique s’exprime dans le fait que la densité fx, est une
fonction paire, c’est-a-dire fx,(—x) = fx;(x). On a alors le résultat suivant, démontré par
Sparre Andersen  en 1954.

+. Avec une démonstration trés différente de ce que nous donnons ci-dessous.
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Théoréme 9.4 (de Sparre Andersen). Supposons que les variables aléatoires (X;)i>1
sont i.i.d. de loi symétrique et a densité, et soit S = Zé‘: 1 Xi la marche aléatoire associée.
Alors, pour toutn > 1, on a

1 /2
P(S;>0,...,5,>0) =P (S >0,...,5,>0) = 4,,( ") :
n
Observation 9.5. Ce résultat est assez surprenant par plusieurs aspects :

e Aucune hypothese de moment n’est faite a propos des variables aléatoires (X;);>1; en
particulier, on ne suppose pas que les X; admettent une espérance ou une variance.

o Le résultat ne dépend pas de 1a loi des variables aléatoires (X;);>0, pourvu qu’elles soient
symétrique et a densité ; on peut par exemple prendre X; ~ N(0,1), X; ~ U(—1,1), ol
plus généralement n’importe quel X; de densité paire.

e La valeur de la probabilité de survie ressemble beaucoup a celle trouvée pour la marche
aléatoire simple symétrique dans le Théoreme 9.1.
O

Démonstration (du Théoreme 9.4). Pour n € N, on introduit la variable aléatoire

K, :=min{k € {0,...,n} : Sx= min S},

0<j<n

qui est I’indice ol la marche aléatoire atteint son minimum sur {0,...,n} pour la premiére
fois, voir la Figure E-9.2 pour une illustration.
On a K, = 0 si et seulement si S; > 0 pour tout j € {1,...,n}, de sorte que

P(K,=0)=P($; >0,...,5,>0).
Aussi, K, = n si et seulement si S,, < S; pour tout j € {0,...,n— 1}, de sorte que

P(K,=n) =P (S, <0,5,— 81 <0,...,8,—S,—1 <0)
=P (X, <0,X+X,—1 <0,....%,+-+X; <0)
=P (5, <0,5<0,...,8,<0),
ol on a utilisé pour la derniere égalité que si on pose S'j =X,+...+X,_jp1pour je{l,...,n},
alors (S;)1<j<x a laméme loi que (S;)1<j<n.

Pourk € {1,...,n—1}, ona K, = k si et seulement si S; > Sy pour tout j € {0,...,k—1}
et S; > S pour tout j € {k,...,n}, voir la Figure E-9.2 pour une illustration. Ainsi, on peut
écrire 1’égalité d’événements suivante :

{Kn=k} ={S<0,85—81<0,....85—Sk—1 <O} N{Sk1 =S >0,...,8,— S >0}
={X <0, X+ X1 <O0,... . Xp 4+ +X1 <O} N {Xp1 >0,... . X1 +---+X, >0}
En remarquant que le premier événement est généré par les variables aléatoires (X;)1< j< et
le deuxieme par les variables aléatoires (X;)it1< <. on en déduit qu’ils sont indépendants,

grice a I'indépendance par paquets. Ainsi, la probabilité P(K, = k) est égale a

P(Xe <0,Xc+ X1 <0,.... X+ +X) <O)P (X1 >0,..., X1+ +X, >0)

=P (51 <0,...,5% <0)P(S; >0,...,5, 4 >0),
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F1G. E-9.2 Illustration de la décomposition de I’événement {K,, = k} comme une intersection des deux
événements {S; < 0,8 —S1 <0,...,8c—Sk—1 <0} et {Skr1 —Sk >0,...,8, — Sk > 0}. Ces deux événements
sont indépendants car le premier est généré par les variables aléatoires (X;) ;< j<x et le deuxiéme par les variables
aléatoires (X;)it1<j<n-

car (Xg+--- +Xk7j+l)1§j§k a la méme loi que (Sj)lgjgk et (Xppq+ - +Xk+1+j)1§j§k ala
méme loi que (S;)1<j<n—«-
Ainsi, en posant, pour j > 1,

pe:=P(8;>0,...,5 >0) et qe:=P(5; <0,...,8 <0)
(et par convention py = go = 1), on a montré que P(K,, = k) = qxp,—_, pour tout k € {0,...,n}.
En sommant sur k € {0,...,n}, on obtient

n

Y P(Kn=k)=} qupni=1. (E-9.3)
k=0 k=0

Maintenant, notons que 1’on n’a pas (encore) utilisé les hypotheses du théoréme : I’iden-
tité (E-9.3) est valable pour n’importe quelle marche aléatoire. L’hypothese de symétrie de la
marche aléatoire permet d’obtenir que (—S)o< j<x a la méme loi que (S;)o< j<k, de sorte que

q=P(-81>0,...,—S,>0)=P(§; >0,...,5 >0).

L hypothese que les variables aléatoires (X;);>| possédent une densité permet d’obtenir que Sy
possede une densité, et notamment P(Sy = 0) = 0, pour tout £ > 1. Ainsi, on obtient que

pEZP(Sl 207"'aS£ ZO) :P(Sl >Oa"'7Sf >0) =dq¢,
carP(3je{l,... .4} §;=0)=0.
On déduit donc de (E-9.3) que, sous les hypotheses du théoreme, pour tout n > 0

Y pipni=1. (E-9.4)
k=0

Notons que cette relation, avec la donnée initial pg = 1, détermine complétementT la
suite (pp)n>0-

Remarquons maintenant que, d’apres I’Observation 9.3, la suite (u2,),>0 définie en (E-9.1)
vérifie exactement la méme relation (E-9.4), avec aussi ug = 0. Cela permet donc de conclure

+. Par récurrence : en effet, en isolant les termes k = 0 et k = n dans la somme, on obtient 2p, =
1— ):Z;} DiPn—k €t la somme ne contient que des termes p; avec j <n— 1.
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que, pour tout n > 0,

(=) pu =1 = (7
qn = Pn—MZn—4” n)’

comme annonce. O

Observation 9.6. Si on connait les séries entieres, on peut conclure rapidement a partir de
(E-9.4). En effet, on peut calculer la série génératrice suivante de deux manieres : pour tout
|x| <1,

i (Zpkpn k)x = ZX = et l;(kiopkpn-k)x" = (rgopmx’”)z,

ou pour la deuxieme identité on a reconnu un produit de Cauchy de deux séries entieres. On
en déduit donc que

Vx| <1, Z pmX" =
Il reste ensuite a utiliser le développement en série entiere de \/7 pour obtenir que

113 2m-1 11 (w1 (2m)!
P =22 T 2 T i 24 2m Am (m)?

ce qui donne la formule voulue. a



Ex. 10

Comportement asymptotique d’un processus de
renouvellement

Soient (X;);>1 des variables aléatoires indépendantes et de méme loi, a valeur dans R,
définies sur le méme espace probabilisé (22, F,P); on suppose que P(X; = 0) # 1 pour éviter
des cas dégénérés. On interprete X; comme des durées de vie de composants d’une chaine
de production : lorsqu’un composant tombe en panne il est immédiatement remplacé par un
nouveau composant. Ainsi, pour k € N, I’instant ol le k-€éme composant tombe en panne est

T =X1+ -+ X,

avec par convention Ty = 0.
On s’intéresse au nombre N; de composants que 1’on aura remplacé a I’instant ¢, que I’on
peut exprimer en fonction de (7;);>| de la facon suivante : pour r € R,

Ny :=max{k e N, T} <t}. (E-10.1)

On appelle (N;);cr, processus de renouvellement et on cherche a obtenir des informations sur
le comportement en temps long (# — o) de ce processus.

Observation 10.1. Si les variables aléatoires (X;);>; sont i.i.d. de loi exponentielle, alors
(N;)r>0 est le processus de Poisson étudié dans les Sections 6.6.3 et 6.6.4. O

10.1 Loi des grands nombres pour le processus de renouvellement

Le premier résultat que I’on obtient est une loi (faible) des grands nombres pour le processus
de renouvellement (N; );cr, -

Théoréme 10.2 (Loi faible des grands nombres). Soient (X;);>1 des variables aléatoires
i.i.d., a valeur dans R, définies sur le méme espace probabilisé (Q,F,P). Alors le
processus de renouvellement associé (N );cr,, défini en (E-10.1) vérifie une loi faible des
grands nombres :

. 1 1
Ve>0: IETOO P(‘tN’_E(Xl)‘ > e) )
ou par convention % =05 E(X]) = +oo.

Démonstration. Commengons par le cas ot E(X]) < +eo et notons it := E(X;). On suppose
aussi que (1 > 0 car sinon on aurait P(X; = 0) = 1, auquel cas T; = 0 pour tout k et N, = +oo
pour tout # > 0.

Fixons € > 0 tel que € < 1/p. Comme

(vt} -2 Bt <.

on obtient par sous-additivité

33
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P(‘i]\l,—;‘>£)SP(;N,>;+8)+PCN,<;—S)7 (E-10.2)

et on doit donc montrer que les deux probabilités dans le membre de droite tendent vers 0.
Une observation importante est que 1’on a I’égalité d’événements {N; > k} = {T} <t} :en

effet, N; < k si et seulement si on a dli remplacer les k premiers composants avant 1’instant z,

c’est-a-dire si et seulement si le k-éme composant est tombé en panne avant I’instant 7. Ainsi,

1 1 t
P(;Nt>ﬁ+€) :P<Nt>ﬁ+te> =P(N, > k) =P(T;- <1),

ol on a posé
t
k= {—HsJ +1.
u

Maintenant, on va appliquer la loi des grand nombres (Théoréeme 7.3) a T, = X; +--- + X;. On
a en effet, pourt > 1,

1 t 1 ~
P(Tys <1) =P<ET,Q+—# < E—u) SP(ng;—u <-),
ot pour la derniére inégalité, on a utilisé le fait que que k" > ﬁ +reetk < ﬁ +re+1<
(ﬁ +&+ 1)t pour t > 1, de sorte que

N N

t _t—ukl*< pre _ Ue .

Comme & > 0 est fixé et que lim;_,c kfr = 40, la loi des grands nombres L! (Théoreme 7.3)
montre que lim;_e P(%Tk,* —u < —8) =0, dont on déduit que le premier terme dans le
1
membre de droite de (E-10.2) tend vers 0 quand # — co.
Pour le deuxieme terme dans (E-10.2), on utilise la méme méthode : on écrit

P(;Nt<%—s) :P<Nt<ﬁ—te> <P(N, <k,*):P(Tk; >t),

ol on a posé
t
k= {——ISJ +1
u

et utilisé 1’égalité d’événements {N; < k} = {T; >t}. On a alors, pour t > 2 /¢,

1 t 1 ~
P(Tk7>t)gp(kfrk;—u>g—u) SP(ET,{—LL>£/)7
t

ol cette fois on a utilisé que k; < ﬁ —te+1< L %te (d’ol aussi k; < ﬁ) pours >2/¢g, de

m
sorte que

t t—uk _ ute _ ple

= > ——=:£.

G T

Comme précédemment, lim;_,..k, = oo, et la loi des grands nombres L! (Théoreme 7.3)

montre que 1’on a limeP(k%Tk; — > &) =0, dont on déduit que le deuxieéme terme dans
1

le membre de droite de (E-10.2) tend vers O quand ¢ — co. Cela conclut la démonstration dans

le cas E(X}) < 0.
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Il reste a traiter le cas ol E(X]) = +oo. Soit € > 0, et estimons

1
(R
t

>e) =P (N >er) =P(N 2 k") =P(T; <1)

ouici k" := | &t] + 1. On peut alors écrire, pour ¢ > é,

1 t 1 1
P <0 =P (57 = 7) <P (577 = 2¢)

ot on a utilisé le fait que k" < ef + 1 < 2&r. Maintenant, on peut appliquer le résultat de
I’Exercice 7.3 2 Ty = X{ + -+ + X; : comme lim; ... k;” = o0, pour A = (2¢)~! > 0 fixé
(arbitrairement grand), on obtient que

Cela montre que limHmP(Tk;r <t) =0, ce qui conclut la démonstration dans le cas E(X;) =

10.2 Théoreme central limite pour le processus de renouvellement

Le deuxieme résultat que 1’on obtient est un théoréme central limite pour le processus
(Nt )ier., » sous I’hypothése un peu plus fortes que les (X;);>1 admettent un moment d’ordre
deux fini. De la méme maniere que pour le théoréeme central limite (Théoreme 7.17), il s’agit
de déterminer a quelle vitesse la quantité %Nt — ﬁ tend vers 0. Comme dans (7.20), il faut

multiplier la quantité %Nt — L par une suite ¢, ~ v/7, pour obtenir une quantité « qui ne tend ni
vers 0 ni vers +oo » et est une variable aléatoire normale.

Théoréme 10.3 (Théoréme central limite). Soient (X;);>| des variables aléatoires i.i.d.,
a valeur dans R, définies sur le méme espace probabilisé (Q,F,P) et d’espérance et de
variance finie

u:=E(X;) >0, o2 := Var(X;).

Alors le processus de renouvellement associé (N;);er . défini en (E-10.1) vérifie un théo-
reme central limite : quand t — oo,
A (1 1

L
Z : —— ] —N(0,1).
i o tNl‘ IJ) (Oa )

Observation 10.4. On a utilisé ci-dessus la notation Z N (0,1) de la Section 8.2.3, qui
signifie :
limP(Z, <x) =P(Z <x) VxeR,

f—voo
ol Z est une variable aléatoire N(0, 1). O
Démonstration. On va encore utiliser I’égalité d’événements {N, > k} = {T}, <t}, déja cru-

ciale pour la loi des grands nombres, pour se ramener a une application du théoréme central
limite (Théoreme 7.17) pour T; = X1 + - - - + X;.. Fixons x € R et considérons la probabilité
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3/2
o (Ve Co(ly 1 ox
P<Zf>x>"( = u)”)"(ﬂf i )

P(N,> u+ 3/2‘ﬂ>'

Ainsi, en posant
t OoX

TR vif 1
(noter que lim;_s. k; = +o0), on obtient
P(Z >x)=P(N; > k) =P(T}, <t).

On peut alors réécrire 1’identité ci-dessus pour se mettre en position d’appliquer le théoréme
central limite : on a

P(Z,>x):P<\/GkT(ktTk[ [,L)<x,), ou x = \/ki(kt 'u):t;k,/.t'

c ky

Remarquons ici que I'on a uk, > 1+ %% \/f et wk, <r+ S% \f+ 24 : on en déduit que

X/t 2 X/t
A T
Vivk  ovk VHVk
et comme k; ~ ﬁ quand t — oo, on en conclut que lim; ;. x; = —x. Ainsi, en utilisant le

théoreme central limite (Théoreme 7.17), ouplus précisément la convergence (7.31) (que I’on
peut déduire de la Proposition 7.22), on obtient (rappelons que limy_,o. k; = —+o0)

N
B < = < —
lim P(Z, > x) = 11mP< - (k T, — u) <x | =PZ<—x),

) o0

ol Z ~ N(0,1). Comme P(Z < —x) = P(Z > x), on a donc montré que lim,_.P(Z, > x) =
P(Z > x) pour tout x € R, ce qui conclut la démonstration en passant au complémentaire. O



Ex. 11
Urne de Pélya et loi Beta

Une urne contient initialement a boules rouges et b boules vertes. Lors du n-éme tour, on
tire une boule dans I'urne : on la replace dans 1’urne en ajoutant une boule de la méme couleur.
Peut-étre de maniére plus précise, si apres le (n — 1)-&me tour I'urne contient r boules rouges
et v boules vertes, alors au n-&éme tour : avec probabilité r/(r 4 v) on tirera une boule rouge et
on ajoutera une boule rouge dans 1’urne (qui contiendra r 4 1 boules rouges et v boules vertes
apres le n-eme tour) ; avec probabilité v/(r 4 v) on tirera une boule verte et on ajoutera une
boule verte dans 1’urne (qui contiendra r boules rouges et v+ 1 boules vertes apres le n-¢me
tour).

Soit (X;);>1 la suite de variables aléatoires de Bernoulli définie de la maniére suivante : on
pose X; = 1 si la boule tirée lors du i-eme tour est rouge et X; = 0 sinon. On s’intéresse au
nombre de boules rouges dans I’urne apres n tours, que I’on note

Le nombre total de boules dans I'urne étant a -+ b + n, on peut aussi étudier la proportion de

boules rouges dans 1’urne, donnée par mRn € [0, 1]. On montre le résultat suivant.

Proposition 11.1. Pour toutt € [0,1], on a

1
li P(iR <t) =P(W <1),
nglgo at+b+n "~ ( - )
o W est une variable aléatoire de loi Beta(a,b), introduite dans la Section 6.6.2,

voir (6.92).

Observation 11.2. On peut aussi utiliser la notation mRn £ Beta(a,b) pour désigner la

convergence de la Proposition 11.1, avec des notations analogues a celle de la Section 8.2.3.
O

Démonstration. Commengons par observer que pour tout #z > 1, on peut calculer explicitement

laloi de (X,...,X,). Pour tout n > 1 et tout (gy,...,€&,) € {0,1}", montrons que
k—1 . n—k—1 .
II(a+i) I (b+i) n
P((Xl,...,Xn):(81,...,8,,)) == =0 , ot k=Yg (E-1L1)
[1(a+b+i) =
i=0

On procede par récurrence sur n. On remarque que, en posant k =Y.\ | &,

S sig =1
P(Xps1 =&t | (X1, . Xn) = (€1,...,8)) = bk
a+b+n S1Ept1 = 0

37
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car si I’on sait que (Xi,...,X,) = (&1,...,&), cela signifie qu’il y a a + k boules rouges dans
I’urne et b+n — k boules vertes, ol k = )| & est le nombre de fois o1 I’on a tiré une boule
rouge. En posant k' = ijll &, on en déduit par hypothese de récurrence que

k=1 n—k-1 atk .
P((Xi o Xoit) = (81,0 i) = S 2§ 9O
a+b+i —— sikl =k,
,-130( ) a+b+n
c’est-a-dire
K —1 n+1-k'—1
[M(a+i) I (b+i)
i=0 i=0
P((X],...,X,H,l):(81,...,8n+1)): m
[M(a+b+iQ)

i=0
Cela conclut la récurrence et démontre (E-11.1).
Notons que 1’on peut réécrire la formule (E-11.1) de la fagon suivante :

(a+b—1)! (a+k—1)(b+n—k—1)!
(a—1)!b-1)! (@a+b+n—1)! '

P10 Xo) = (e1, ) =

Comme on a I'(u) = (u—1)! pour u € N*, en utilisant la fonction 8 (u,v) = % définie
dans la Section 8.2.3 (voir (6.42)-(6.43)), on peut le réécrire de maniere plus concise sous la

forme

P((Xl,...,Xn)—(81,...,8,,))_ﬁ(a+ﬁlcéjz)n_k)’ ou k:i&'.

Comme il y a exactement (Z) n-uplets (€1,...,&) tels que Y| & = k, on en déduit que, pour
keA{0,...,n},

P(izn‘ixizk) = (Z>ﬁ<a+;£j;)n_k) — ﬁ(;b) (Z) /le“+k(1—x)h+”’kdx, (E-112)

ol on a utilisé le fait que B(u,v) = fol x*(1 —x)"dx, voir (6.42).

Observation 11.3. On pourrait essayer d’obtenir la formule (E-11.2) de Y7, X;, par exemple
par récurrence sur n, mais c’est en réalité plus compliqué que d’obtenir directement (E-11.1),
voir I’Observation 11.4 plus bas. a

On en déduit que

P(R,=a+k)=P (ngl = k) = /01 (’Z)xk@ ) f () dr,

avec fop(x) = (;.b)x“(l —x)? pour x € [0, 1] la densité d’une loi Beta(a,b), voir (6.92). On
peut réinterpréter cette identité de la maniére suivante :

1
P(Rn = (l+k) = /0 P(Yn,x = k)fa,b(x) dx
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ou Y, , est une variable aléatoire de loi Binomiale de parameétre n, x.

Pour 7 € [0, 1], posons k, := [(a+b+n)t| —a. Alors on a lim,_e %kn =1 et on peut écrire

1 kn

1
P(mRn_> ZP (Ro=a+k) /OkzéP(Yn,xk)fa’b(x)dx

_ /0 P (Yo < o) o (1)

(E-11.3)

ou on a utilisé la linéarité de 1’espérance (pour une somme finie) dans la deuxieme égalité.
Donnons une idée de comment la démonstration se conclut; on donnera la preuve complete
plus bas. Comme lim,,—; %kn =1, la loi faible des grands nombres permet de montrer que '

1 1 0 ix<t
lim P<7Yn.x < 7kn) = { S%x 7
n—ee \p n 1 Six>t.

Si I’on pouvait échanger la limite et I’intégrale dans I’identité (E-11.3) ci-dessus, on aurait

lim P

N (HTR" >~ / fab dx P(Z < t)

Montrons que cette stratégie fonctionne en montrant notamment 1’inversion de limite et
d’intégrale 2 la main ¥, Fixons un € > 0 et raisonnons par borne supérieure et inférieure. Fixons
ensuite & > 0 (qui dépend de €) tel que f fa plx)dx <e.

Pour la borne supérieure, on écrit

p(ﬁiﬂn_ / fan(x dx+/ P (Yo < ki) fop(x)dx

Maintenant, la loi faible des grands nombres, plus précisément (7.6), permet de montrer que si
x >t+ 0, pour n suffisamment grand de sorte que %k,, —x<—6/2,ona

1 1 1 1
P (*Yn,x < *kn) <P (fYn,x—x < —75)
n n n
x(1—x) 1
n%52 ~ né?’

1 1
S P (‘7Yn.x_x‘ 2 76) S
n 2

en utilisant aussi le fait que x(1 —x) < % pour tout x € [0,1]. On en déduit que pour n
suffisamment grand

1 1
/t+5p(yn,xgkn)fa,b(x> S fab() = e
On en conclut que
P(LR /f Odetet
a+b+n n=t o ng?

ol on rappelle que & est tel que j”‘s Sap(x)dx <e.

F. On le laisse en exercice.
$. Sil’on connait le théoreme de convergence dominée, on peut conclure directement.
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Pour la borne inférieure, on écrit

1 t—&
P<7R <t>>/ P(Y,, <k dx
atbtn =)=, ( xS n)fa,b(x)

) t—0
= [ fuswpa— /0 P (Yo > k) fop ()

Comme précédemment, la loi faible des grands nombres, plus précisément (7.6), permet de
montrer que si x < f — &, alors pour n suffisamment grand de sorte que %k,, —x>06/2,0ona
1 1 1 1 1 1 1

P <7Yn.x > 7kn) =P (7Ynx —x> —ky _x) <P (‘*Yn.x —X’ > *6> <—=-

n'"" " n n ' n n " 2 né?

On en conclut comme plus haut que
1 1
Pophusi)z [ ,
atbtn "= Jaol n&?

ol on a encore utilisé le fait que que j;”g Sap(x)dx <e.

On a donc montré que pour n suffisamment grand (notamment tel que —= < €), ona

1
P ( / <2,
‘ atb+n R, < fa X ‘
ce qui conclut la démonstration. O

Commentaire sur 1’échangeabilité et le théoreme de de Finetti ?

Observation 11.4. On pourrait aussi vouloir obtenir directement la loi de S, := Y7 | X; par
récurrence (mais en fait ¢’est plus compliqué que (E-11.1), méme si je m’y prends peut-étre
mal), et montrer la formule suivante :

(a+1) (b+ i)
P(S,=k) = <”) x =0 i=0 pour tout k € {0,...,n},  (E-11.4)

(a+b+i)
i=0

ot par convention [ (a+i) = 1 si k= 0et [T (b+i) = 1 si k = n. Mais en fait c’est
plus compliqué que la formule (E-11.1)...
Noter que la formule (E-11.4) peut aussi se réécrire en

(a+b—-1)! (a+k—1)(b+n—k—1)! n! _(k+271)(n7£t271)
(a=1)!(b-1)! (a+b+n—1)! Kkl — (b

n

P(S,=k) =

Pourn=1,onaeneffet S| =Xj,etP(X; =1) = ﬁ, P(X; =0)= ai—b, carilyaa+b
boules dans ’'urne, dont a rouges et b vertes. Cela correspond a la formule annoncée.
Ensuite, pour tout k € {0,...,n}, conditionnellement a S, = k il y a a + k boules rouges et

b+ n— k boules vertes dans 1’urne, d’ou

a+k

)_ b+n—k
at+b+n’ N

P(Xn+1:1‘sn:k): m

P(X,p1 =08, =k
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Ainsi, comme S, = S, + X,,11, on obtient :

e Pour £ = 0, comme (g) =1 pour tout n, on a

"J(b+i)  b+n

P(SnJrl:O):P(S’l_O) ( "+I_O|S _0) H (a+b+l)a+b+n
i=0

qui donne la formule voulue (E-11.4) au rang n+ 1 pour k = 0.

* De méme, pour k =n+ 1, comme () = 1 pour tout , on a

Hl 0(a—|—l) a+n
" la+b+i)atbtn’

P(Sup1=n+1)=P(Sy=n)P(Xyy1 =1|S,=n) =

qui donne la formule voulue (E-11.4) aurangn+ 1 pour k =n+1.
* Pour k € {1,...,n}, par la formule des probabilités totales, on a

P(Sps1 = k) = P(Sp =k — 1)P(Xpp1 = 1| Sy =k — 1)+ P(Sp = k)P(Xps1 = 1| Sy =k — 1),

et par hypothese de récurrence

k=2 1 bt 1
P =AU = LS = k=) = (knl)xnl OH(a (25—119+() Z)XZIbﬂz
_< n ) Ty (a+ )T (b +i)
k-l 3 Ya+b+i)

et similairement

n (a—i—z)H;’;k*l(b—&-i) b+n—k
Pis =0 P =01 5=k = (1) x 1= e

(1) AT
—\k M, '(a+b+i) ’

Au final, en sommant les deux dernieres expressions, et comme ( kfl) + (Z) = ("J]gl), on obtient
la formule (E-11.4) au rang n+ 1.



Ex. 12

Records successifs d’une suite de variables aléatoires
Li.d.*

Soient (X;);>0 des variables aléatoires indépendantes et de méme loi, que 1’on suppose a
densité, de densité commune notée f et de fonction de répartition notée F. Pour n > 1, on
dit qu’un record a lieu au n-eme tour si X,, > X; pour tout i € {0,...,n— 1}, et on note A,, cet

événement :
n

Api={Xa > X}
i=0
Lemme 12.1. Ona P(A,) = ﬁ et pour tous 1 <k <n, P(AyNA,) = lerl w1+ En particulier,
COV(]IAk,]lAn) =0.

Démonstration. Pour calculer P(A,), on peut utiliser (Ia méthode de) 1’Exercice 6.59, en re-
marquant que dans les notations de ’exercice, P(4,) = P(Afzn) ), sachant que presque slirement
on a X, # X; pour tous 0 < i < n— 1 (voir I’Exercice 6.59). Utilisons ici I’approche directe de
I’Exercice 6.60, qui se généralise bien au calcul de P(A; NA,,).

Calcul de P(Ay,). On peut réécrire I’événement A, en fonction des (X;)o<j<, :onaA, = {Xo <
X, X1 < Xp, ..., Xn—1 < X, }. Ainsi, en écrivant P(A4,) = E(1,4,) et en appliquant la formule
de transfert, on a

P(An) = f(xo) o 'f(xnfl)f<xn)]l{xo<xn,x1 <Xpyeoy Xp—1 <xn}dx0 - dxy

]Rn+l

=/ fxn (/ / J(x0) -+ f(xn—1)dxo- "dxn1>dxn,

ol on a utilisé le théoreme de Fubini—Tonelli pour la deuxieme égalité. Maintenant, comme
JX. f(t)dt = F(x) et que F'(x) = f(x), on obtient

~+oo

PA) = [ fl)F()'dsy = | ——

1

o0 1
F 71+1:| —
+1 (xn)

—w  n+1’
ol on a aussi utilisé que lim,_,_o F () =0, lim,_ 1 F (t) = 1 pour la derni¢re identité.

Calcul de P(A;NA,). On peut maintenant reproduire le calcul, en écrivant
ArNA, = {X() < X, X1 < Xy ooy X1 < Xy Xir1 < Xppyoo 0, Xnm1 < Xn}

De la méme maniere que précédemment, en utilisant de nouveau le théoréme de Fubini—Tonelli,
on obtient

(B-12.1)
=/ fxn (/ / F 1) - f(xn—1)dxgyy - dxnl>gk(xn)dxn7

ou, pour éviter d’écrire trop d’intégrales, on a posé

8k (xn) :;/ (xx) (/ / J(x0) - f(xg—1)dxo- '-dxk1>ka-

42
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Remarquons que 1’on a gi(x) := P(Xo,..., Xp—1 < Xx < x) = P(Ax N {Xx < x}), et qu’en
reprenant les calculs faits dans le paragraphe précédent on obtient
F(x)FL, (E-12.2)

— [ rP s =

En injectant dans (E-12.1) et en réutilisant le fait que [*_ f(u)du = F(x), on en déduit que

PANAY) = [ Flon)F (o)™ — P (),

- k+1
= [ i F ) =
Tkt ) S S =T T

ce qui est le résultat voulu.

Calcul de la covariance. Le dernier point du lemme vient simplement de I’observation que
Cov(1u,,14,) =P(AcNA,) —P(Ar)P(Ar) =0,

o1 I’on autilisee les calculs précédents qui montrent que P(A; NA,) = —+ —— = P(A;) P(A).

On peut déduire du Lemme 12.1 le théoreme suivant sur le nombre de records observés
jusqu’au n-eme tour, c’est-a-dire
n
R,, = Z 1 A -
i=1

En effet, on sait calculcer E[R,] et Var(R),) :

= iP(Ai) =

i=1

1
i+1

||M=

qui est la série harmonique décalée de 1. En particulier, log(n+ 1) — 1 <E(R,) <log(n+1)
eton aE(R,) ~ logn quand n — co.

D’autre part, en utilisant la Proposition 3.69-ii, on obtient que comm les covariances
Cov(14,,14,) sont nulles,

n 1 l

n
v, Var(1 1— <1 1
ar(R ; ar(Ly,) = Z;i+1( 1) ;;H og(n+1).

\ N

Ainsi, en appliquant I’'inégalité de Bienaymé—Tchebychev (Théoreme 3.77), de méme maniere
analogue a la Section 3.3.6,

ar(R,) 1
P (IR, —E(R,)| = CVA ) < _ Var(R) 1
| 2l og(n+ C’log(n+1) — C?
On peut donc en déduire que, quand n tend vers [’infini, avec grande probabilité, le nombre de
records R, vaut logn, a une erreur de I’ordre de O(+\/logn) prés.

Observation 12.2. 11 s’avere que ’on peut généraliser le calcul fait dans le Lemme 12.1 et
obtenir le résultat suivant, suprenant a premiere vue.
Lemme 12.3. Les événements (A, = {un record est établi au n® tour}),>| sont indépendants,

de probabilité P(A,) = 1.
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Ainsi, le nombre de records R, apres n tours suit une loi qui est (tres proche de) celle observée
dans la Section 3.3.6.

Démonstration (du Lemme 12.3). On doit montrer que pour tous k; < --- < k, des entiers
quelconques
1 1

Pl NN A, ) = Pl )+ P(Ay,) = =g ey
n

(E-12.3)

De maniere analogue a la démonstration du Lemme 12.1, posons, pour k; < --- < k, x € R,
8y vy (X) =P(Ag, M- NAg, Xi, < X).
On va montrer par récurrence que

1 1
ki +1 k,+1

pourtous ky <--- <kpetx R, g i (x)= F(x)". (E-12.4)

Cela montrera (E-12.3), simplement en prenant x — o dans (E-12.4), car g,
P(Ay, N---NAy,) et F(x) tend vers 1.

On a déja fait le calcul de (E-12.4) pour n = 1, voir (E-12.2). Il reste donc a montrer 1’étape
de récurrence. Commencons par observer que I’on peut réécrire

Syt () =P ((Xeys -, Xk,) € Dy, (%))

k, (x) tend vers

.....

1, (x) est le sous-domaine de R¥*! défini par

_ kn+1 .
Dkl,.‘.,k,, ()C) = {()C(),...,)Ckn) eR™M; xo Xy e s Xy =1 < Xhy s Xk 1 <Xy ooy Xky—1 < Xy

X =1 < Xk s Xk 1 < Xy ey Xy —1 < Xg,, < x} s
de sorte que par la formule de transfert on a
Bkyooy (X) = /Rkn+1 Fx0) - f (o Vg (.o, €Dy, gy ()3 X0+ A - (E-12.5)

Soient maintenant k; < --- < k,4+1 et x € R. Un point important est que, au vu de sa
définition, on peut écrire Dk1 k,.; (x) de la fagon suivante :

Dkl7-~-7kn+1 (x) = {(X(), .. n+1) € Rkn-H ; (X(), see 7xk,l) € Dkl,.“,k,l (xk,,_H )7
Xy +1 < Kheyyp s+ -+ 3%k —1 < Xheys 1 } .

Ainsi, par la formule de transfert et en appliquant le théoréme de Fubini—Tonelli,

x M1 K1
gkl,...,k,,+.(X)=[ Sk, y) [ / F o 1) - f (g —1) X 1 -+ - A1

J —oo

Rkn+1° = 7 7 0 00 R S e
kpiq1—kn—1
= /Rf(xkrm )F(xkn+1) e g(kal)dka] )

en ayant utilisé encore une fois que [~ f(r)dt = F(x), et la formule (E-12.5).
En utilisant I’hypothese de récurrence (E-12.4), on en déduit que



12 Records successifs d’une suite de variables aléatoires i.i.d.* 45

X 1 1
= b1 —hn—1 kn+1
8k fen 1 (X) [wf(kal)F(xan) +1 o ...mp(ka) dx, .,

1 1 X .
ot G F

Un calcul explicite donne alors que la derniere intégrale vaut
/x f(u)F(u)k;1+1du = [LF(M)}X — ;F(x>k"+l+]
- errl + 1 —oo kn+1 —+ 1 ’

ce qui montre que (E-12.4) est valable pour n+- 1. Cela conclut la récurrence et la démonstration
du lemme. a
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