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Part 1

Lie Algebras.



I.1 General definitions: Lie algebras.

In this section, k is an arbitrary field.

Definition 1.1.1 - A Lie algebra over k is a pair (g,[—, —]) where g is a k-vector space and
[—,—] : 9 X g —> g amap that satisfy the following conditions:

1. [—,—] is bilinear,

2. [—,—] is alternate: Vzx € g,[z,z] =0,

3. for allw,y,z € g, [z, [y, 2]] + [, [z, 9]] + [y, [2, 2]} = 0.
The dimension of a Lie algebra is the dimension of its underlying k-vector space. A lie algebra
(g,[—,—]) is called commutative or abelian whenever [—,—]| is identically zero.

Remark 1.1.2 - Let (g,[—, —]) be a Lie algebra.

1. By conditions 1 and 2 of Definition I.1.1, the map [—, —] is antisymmetric: Va,y € g, [x,y] =
- [ya .'IZ‘] .

2. If the characteristic of k is different from 2, condition 2 in Definition 1.1.1 is equivalent to the
antisymmetry of [—, —] (under condition 1).

3. The identity in the third point of the Definition 1.1.1 is called the Jacobi identity.

Definition 1.1.3 - Let (g,[—, —]) be a Lie algebra.

1. A Lie subalgebra U of (g,[—, —]) is a vector subspace [ of g stable under [—,—]|, that is: for all
r,y €L, [z,y] € L. (The pair (1, [—, —];) is then a Lie algebra in its own right.)

2. A Lie ideal i of (g,[—,—]) is a subspace i of g such that, for all (x,y) € g x 1, [x,y] € i. (In

particular: a Lie ideal of g is a Lie subalgebra of g.)

Exercise 1.1.4 — Let g be a Lie algebra and i an ideal of g.
1. There is a unique map [—, —] : g/i X g/i — g/i such that, for all z,y € g,

[z +iy+i] =[z,y +1
2. The pair (g/i, [—, —]) is a Lie algebra over k, called the quotient Lie algebra of g by i.

Exercise 1.1.5 — Let g be a Lie algebra and i, j be Lie ideals of g. The subspaces
iti={z+ylreiyejl and  [i,j]=Span{[z,y]|z €i, y €}
are Lie ideals of g.

Definition 1.1.6 — Let g be a Lie algebra. The ideal [g,g], denoted D(g), of g is called the
derived ideal of g.

Exercise 1.1.7 — Lie subalgebra generated by a subset. Let g be a Lie algebra.

1. The intersection of any family of Lie subalgebras of g is a Lie subalgebra of g.

2. Let X be a subset of g.

2.1. The intersection of all the Lie subalgebras of g containing X is a Lie subalgebra of g; it is
called the Lie subalgebra of g generated by X.

2.2. The set of all Lie subalgebras of g containing X, ordered by inclusion, has a minimum
element which is the Lie subalgebra generated by X.



Definition 1.1.8 — Let g be a Lie algebra, I be a nonempty set and X = (x;);c; be a family of
elements of g indexed by I.

1. The Lie subalgebra generated by X is the Lie subalgebra generated by the underlying set of X
(that is by the image of the map I — g, i — x;).

2. We say that X generates g if the Lie subalgebra of g generated by X is g.

Exercise 1.1.9 - Lie ideal generated by a subset. Let g be a Lie algebra.

1. The intersection of any family of Lie ideals of g is a Lie ideal of g.

2. Let X be a subset of g.

2.1. The intersection of all the Lie ideals of g containing X is a Lie ideal of g; it is called the Lie
ideal of g generated by X.

2.2. The set of all Lie ideals of g containing X, ordered by inclusion, has a minimum element
which is the Lie ideal generated by X.

Definition 1.1.10 — Let g be a Lie algebra, I be a nonempty set and X = (x;);cr be a family of
elements of g indexed by I.

1. The Lie ideal generated by X is the Lie ideal generated by the underlying set of X (that is by
the image of the map I — g, i — x;).

2. Ifi is a Lie ideal of g, we say that X generates i if the Lie ideal of g generated by X is i.

Definition 1.1.11 - Let (g,[—, —]) be a Lie algebra. The centre of g is the set, denoted Z(g),
defined by Z(g) = {z € g[[z,y] =0, Vy € g}.

Exercise 1.1.12 — The center of a Lie algebra is an ideal.

Exercise 1.1.13 — Center and decomposition as direct sum — Let g be a Lie algebra, I a
nonempty set and, for all ¢ € I, g; a Lie subalgebra of g. Suppose that g = @,.; g; and for all
i,j € Ia i #J? [9179]] =0.

1. Let g = > ;cr9i and h = >, ; h; be two elements of g (together with their decomposition
with respect to that of g). If [g, h] = 0, then, Vi, j € I, [g;, hj] = 0.

2. We have Z(g) = @ic; (Z(0) N 0i) = Dies Z(0:)-

Exercise 1.1.14 - Centraliser and normaliser Let g be a Lie algebra and X be a subspace
of g. Define the centraliser, Cy(X), and the normaliser, Ny(X), of X as follows:

Co(X)={yeglly,2z] =0,ve € X}  and  Ng(X) ={y € glly, 2] € X, Vo € X}.
These two sets are Lie subalgebras of g.
We start with a list of examples that will be central in the sequel.

Example 1.1.15 -

1. Let A be an associative algebra over k and consider the map [—,—] : A x A — A,
(z,y) — zy —yx. Then (A4, [—, —]) is a Lie algebra over k.

2. The general linear Lie algebras.

2.1. Let V be a vector space over k. The set Endg (V) of endomorphisms of V' is an associative
k-algebra. Point 1 above then shows that it may be endowed with a Lie algebra structure. To
stress that Endy (V) is considered as a Lie algebra, we denote it gl(V').

2.2. Let n € N*. The set M, (k) of n x n matrices with entries in k is an associative k-algebra.
Point 1 above then shows that it may be endowed with a Lie algebra structure. To stress that



M,, (k) is considered as a Lie algebra, we denote it gl, (k).

3. The special linear Lie algebras.

3.1. Let V be a finite dimensional vector space over k. The set of trace zero endomorphisms of
V is a Lie subalgebra of gl(V'). It is denoted by s((V).

3.2. Let n € N*. The set of trace zero n x n matrices with entries in k is a Lie subalgebra of
gl (k). It is denoted by sl,, (k).

4. Lie algebras associated to flags.

4.1. Let V be a finite dimensional vector space over k of dimension n € N* and

O)=Wwcwc...cV,=V

be a full flag of V', which we denote by F. The subset nz(V') of the endomorphisms x of V' such
that, for all 1 < i < n, x(V;) C V;_; is a Lie subalgebra of gl(V). It is included in sl(V'). The
subset bx(V) of the endomorphisms x of V such that, for all 1 < i < n, z(V;) C V; is a Lie
subalgebra of gl(V'). Clearly: nz(V) C br(V) C gl(V).

4.2. Let n € N*. The set n, (k) of n x n strict upper triangular matrices with entries in k is a Lie
subalgebra of gl, (k). The set b, (k) of n x n upper triangular matrices with entries in k is a Lie
subalgebra of gl,, (k).

Exercise 1.1.16 — Let s € N* and let (g1,[—, —]1),-.-,(gs,[—, —]s) be Lie algebras. Put g =
@1§i§s g;. The map

(=1 gxg — g
((1‘1,..-,xs),(yl,...,ys)) = ([xlayl]la-”a[x&ys]s) ’

Then (g, [—, —]) is a Lie algebra called the direct sum of the family ((g1, [—, —]1),---, (gs, [—, —]s))
of Lie algebras.

We now define morphisms between Lie algebras.

Definition 1.1.17 — Let (g,[—, —]) and (b,[—, —]) be Lie algebras. A morphism of Lie algebras
from g to b is a morphism of vector spaces f : g — b such that, for all x,y € g, [f(x), f(y)] =
f([z,y]). An isomorphism of Lie algebras from g to | is a bijective morphism of Lie algebras from

g to [. An endomorphism of the Lie algebra (g,[—,—]) is a morphism of Lie algebras from g to
itself. An automorphism of the Lie algebra (g,[—, —]) is a bijective endomorphism of Lie algebra
of g.

Exercise 1.1.18 - Let (g,[—, —]) and (b, [—, —]) be Lie algebras, let f : g — b be a morphism

of Lie algebras. The image under f of a Lie subalgebra of g is a Lie subalgebra of . The inverse
image under f of a Lie ideal of h is a Lie ideal of g. In particular, the image of f is a Lie
subalgebra of h and its kernel a Lie ideal of g.

Exercise 1.1.19 - Let (g,[—, —]) be Lie algebras and i a Lie ideal of g. The canonical projection
m g — g/i, x — x + 1 of vector spaces is a morphism of Lie algebras.

Exercise 1.1.20 - Isomorphism Theorems —

1. Let (g,[—,—]) and (h,[—, —]) be Lie algebras, let f : g — b be a morphism of Lie algebras
and let i be a Lie ideal of g included in ker(f).

1.1. There is a unique Lie algebra morphism f : g/i — b such that rof = f, where 7w : g — g/i
is the canonical projection.



1.2. If i = ker(f), then f is injective and induces an isomorphism of Lie algebras g/ker(f) =
im(f).

2. Let g be a Lie algebra, i be a Lie ideal of g and denote by m : g — g/i the canonical
projection. Then, there is a one-to-one correspondence between Lie ideals of g containing i and
Lie ideals of g/i, given by direct and inverse image under 7. Further, if j is an ideal of g containing
i, then there is an isomorphism of Lie algebras (g/i)/7(j) = g/j.

3. Let g be a Lie algebra. If i and j are Lie ideals of g, then there is an isomorphism of Lie
algebras (i+j)/j =i/inj.

Definition 1.1.21 - Linear Lie algebra — A Lie algebra g is called linear if there exists a
vector space V' over k such that g is isomorphic to a Lie subalgebra of gl(V').

Exercise 1.1.22 - Let (g, [—, —]) and (b, [, —]) be Lie algebras, let f : g — b be a morphism
of k-vector spaces, let (b;);cr be a generating set of the k-vector space g (where I is any nonempty
set). If, for all 4,5 € I, [f(b;), f(b;)] = f([bs, b4]), then f is a morphism of Lie algebras.

Example 1.1.23 - Classical Lie algebras —

0. The General Lie algebra. Let n € N*. We already defined the Lie algebra associated to the
associative algebra M, (k) of n xn matrices with entries in k; it is denoted gl,, (k). For 1 <i,j < n,
denote by Ej;; (or sometimes F; ;) the elementary matrix whose only nonzero entry is located in
row ¢ and column j and equals 1. Then, the subset {E;;, 1 <4,j < n} is a basis of the k-vector
space gl, (k) and the bracket is given by the following formula:

V1<, 5,k 01 <n, [Eij,Enl=0kEy— 01;Ey;. (L1.1)

1. The special linear Lie algebra. Let n € N*. Denote by sl,,+1(k) the subspace of gl,,+1(k) whose
elements are the matrices whose trace is zero. It is clear that sl,;1(k) is a Lie subalgebra of
gl+1(k). It is not difficult to see that the set

{Eij, 1<i#j<n}U{H;1<i<n}
is a basis of the k-vector space sl,,11(k), where, for 1 <1i <n, H; = E;; — E;11 1. Hence,
dimy (sl,+1(k)) = n® + 2n.

2. The symplectic Lie algebra. Suppose k has characteristic different from 2 and let n € N*.
Consider the 2n x 2n matrix with entries in k (written in n x n blocs form):

(0 I,
o=( 0 0)
(here, I,, stands for the identity matrix of M, (k)). We put

spon(k) = {A € gly, |"AB + BA = 0}.

It is easy to check that spa, (k) is a Lie subalgebra of gla, (k).
Now, let A € gla, (k) and write A in n x n blocs form:

(A Ay
(hn)



Then, A belongs to span (k) if and only if Ay = —'Ay, Ay = Ag and "A3 = A3. Here is a list of
elements in spoy, (k):
Xij = Eij — Ejinitn, 1<i,5<m

Ui=Eiitn, 1<i<mn
Yii=FEijin+ Ejitn, 1<1<j<n
Vi=FEitni, 1<i<m
Zij = Eitnj + Ejtni, 1<1<j<n.
It is clear from the above that the set
is a basis of the k-vector space spa, (k), so that
dimy (spay, (k) = 2n% + n.

3. The orthogonal Lie algebra (odd case). Suppose k has characteristic different from 2 and let
n € N*. Consider the (2n + 1) x (2n + 1) matrix with entries in k (writtenin 1 x 1,1 xn, n x 1
and n x n blocs form):

1 0 O
B=10 0 I,
0 I, O

We put
502,41 (k) = {A € glony1 (k) |'"AB + BA = 0}.

This is a Lie subalgebra of gla,,+1(k). It is not difficult to check that the elements of 09,41 (k)
are the matrices of the form

0 14 Lo
—Ly A1 Ay ;
—'L, Az -4

where Ly, Ly € M »(k), A1 € M, (k) and Az, A3 are antisymmetric matrices of M,, (k). It is then
clear that
5091 1(k) C slopii(k)  and  dimy(s02,41(k)) = 202 + n.

4. The orthogonal Lie algebra (even case). Suppose k has characteristic different from 2 and let
n € N*. Consider the 2n x 2n matrix with entries in k (written in n x n blocs form):

0 I,
() 0)

509,,(k) = {A € gla, (k) ['AB + BA = 0}.
This is a Lie subalgebra of gla, (k). It is not difficult to check that the elements of soa, (k) are

the matrices of the form
A A
As —tA; )7

where A; € M, (k) and As, A3 are antisymmetric matrices of M, (k). It is then clear that

We put

509, (k) C slo,(k)  and  dimg(s0g,(k)) = 2n* — n.



Remark I.1.24 - The classical Lie algebras may be introduced in a more intrinsic manner.

1. Suppose k has characteristic different from 2 and let n € N*. Let V be a 2n dimensional
vector space together with a basis {ej,...,ea,} and consider the bilinear form b : V. x V — k
whose matrix in the chosen basis is the matrix B of Example 1.1.23, Point 2. Then, clearly, b is
skew-symmetric and nondegenerate. We may then consider the subspace

sp(V,b) = {f € gl(V) |, Vo, w € V, b(f(v),w) + b(v, f(w)) = 0}
of gl(V'). It is easy to check that sp(V,b) is a Lie subalgebra of gl(V'). More precisely, the map
gl(V) = glan(k)

that sends an element of gl(V') to its matrix relative to the above basis is a Lie algebra isomorphism
that sends sp(V,b) onto spay, (k).

2. Suppose k has characteristic different from 2 and let n € N*. Let V be a 2n + 1 dimensional
vector space together with a basis {e1, ..., e2,+1} and consider the bilinear form b : V xV — k
whose matrix in the chosen basis is the matrix B of Example 1.1.23, Point 3. Then, clearly, b is
symmetric and nondegenerate. We may then consider the subspace

so(V,0) = {f € gl(V) |, Vo,w € V, b(f(v), w) + b(v, f(w)) = 0}

of gl(V'). It is easy to check that so(V,b) is a Lie subalgebra of gl(V'), isomorphic to s02,41 (k)
via the map sending an endomorphism of V' to its matrix relative to the chosen basis. Clearly,
the same holds when V is of dimension 2n and b is the bilinear form of V' whose matrix is the
matrix B of Example 1.1.23, Point 4 relative to an arbitrary choice of basis.

I.2 General definitions: representations of a Lie algebra.
In this section, k is an arbitrary field.

Definition I.2.1 - Representation of a Lie algebra — Let g be a Lie algebra. A represen-
tation of g is a pair (V,p) where V is a vector space over k and p : g — gl(V') a morphism
of Lie algebras. A finite dimensional representation of g is a representation (V, f) with V' finite
dimensional.

Example 1.2.2 - Trivial representations — Let g be a Lie algebra and V' be a vector space
over k. The map g — gl(V') which send any z € g to the zero endomorphism of V' is a morphism
of Lie algebra. This defines the trivial representation of g on V.

Definition 1.2.3 — Let g be a Lie algebra. A representation (V,p) of g is said to be faithful if
the morphism p : g — gl(V') is injective.

Definition I.2.4 - Module over a Lie algebra — Let g be a Lie algebra. A module over g is a
pair (V, f) where V is a vector space overk and f : gxV — V, (x,v) — x.v, a map satisfying
the following conditions, for all \,u € k, for all x,y € g and for all v,w € V:

(i) (Az + py).v = Az.v) + p(y.v);

(ii) z.(Av + pw) = ANz.v) + p(z.w);

(i13) [z, y]l.v = z.(y.v) —y.(z.v).

A finite dimensional module over g is a module over g whose underlying vector space is finite
dimensional.
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Exercise 1.2.5 - Modules versus representations — Let g be a Lie algebra.
1. Let (V, f) be a module over g. Then (V, py) is a representation of g, where

pr g — gl(V)
r -

g
fz,—)

and, for all z € g, f(z,—) : v z.0.
2. Let (V,p) be a representation of g. Then (V, f,) is a module over g, where

fo i gxV — V
(z,0) = pl)(v)

3. The processes that associate a representation to a module (Point 1 above) and a module to a
representation (Point 2 above) are inverse to each other.

Exercise 1.2.6 — Direct sum of representations — Let g be a Lie algebra, let I be a nonempty
set and, for all i € I, let (V;, p;) be a representation of the Lie algebra g. If V' = @,.; Vi, the
map
pig — gllV)
z = Dierpi(z)
is a Lie algebra morphism. The representation (V, p) is called the direct sum of the representations
(Wa pi)> i€l

Exercise 1.2.7 — Tensor product and duals of representations — Let (V, p) and (V' p’) be
two representations of the Lie algebra g.
1. The map
T g — gl(VeV)
z = p(z) @idy +idy ® p'(2)

is a morphism of Lie algebras, so that (V ® V', 7) is a representation of g. This representation is
called the tensor product of the representations (V, p) and (V, o).
2. The map
po:og — gl(Homy(V, V7))
= ()

where, for all z € g, u(x) : Homg(V, V') — Homg(V, V'), ¢ — p/(x) 0 — ¢ o p(x) is a morphism
of Lie algebras, so that (Homy(V, V'), 1) is a representation of g.

This applies in particular to the case where V' =k and (p/, V') is the trivial representation
of g on V'. Hence, we get a representation, (p*, V*), of g defined by

pt g — gl(VF)
z = =Ip(x)’

it is called the dual representation of (p, V).

The following example of representation of an arbitrary Lie algebra will be fundamental to
the theory.

Proposition 1.2.8 — Let g be a Lie algebra.
1. For all z € g, the map adg(x) : g — g, y — [z, y] is an endomorphism of the vector space g.
2. The map
adg : g — gl(g)
r = adg(x)

11



is a morphism of Lie algebras, so that (g,ady) is a representation of g.
3. We have, ker(adg) = Z(g).

Proof. Point 1 and 3 are clear. Point 2 follows from the Jacobi identity using antisymmetry. =

Definition 1.2.9 - Let g be a Lie algebra. The representation (g,ady) is called the adjoint
representation of g.

Exercise 1.2.10 — Multibrackets and generating families. Let g be a Lie algebra. For all

finite sequence (x1,...,x¢) of elements of g, ¢t € N*, put

1] =21 if t=1 and [€1,...,2¢) = adg(z1) o...cadg(xi—1)(xy) if t>2.
The element [x1, ...,z is called the multibracket associated to the sequence (x1,...,x¢).
1. Let (z1,...,2¢) be a finite sequence of elements of g, ¢ € N*. Then, adg([z1,...,2¢]) =

ladg(z1), ..., adg(x)].

2. Let I be a nonempty set and F = (z;);e; be a family of elements of g. We denote by Vr the
vector subspace of g generated by the elements [x;,,...,z;, ]|, where t € N* and iy,...,4; € I.
2.1. For all [z;,,...,24], t € N and i1,...,i; € I, Vr is stable under adg([z;,,...,2;]). (Hint:
induction on ¢ and ady is a morphism of Lie algebras).

2.2. The vector subspace Vr is a Lie subalgebra of g; it is the Lie subalgebra of g generated by
F. (In particular, if F generates g, then Vr = g.)

3. Let I be a nonempty set and F = (z;);es be a family of elements of g which generates g. Let
i be a subspace of g such that adg(z;)(i) C i, for all ¢ € 1.

3.1. For all [zj,,...,2], t € N"and i1,...,4 € I, adg([z;,,...,24])(i) Ci.

3.2. The subspace i is a Lie ideal of g.

4. Let I be a nonempty set and F = (x;);cr be a family of elements of g. We denote by Wy the
vector subspace of g generated by the multibrackets whose rightmost term is in the family F,
that is the elements [z1,..., 2], where t € N* x1,..., 2,1 € g and x4 € F.

4.1. For all x € g, Wr is stable under adg(x).

4.2. The vector subspace Wr is a Lie ideal of g; it is the Lie ideal of g generated by F.

Exercise 1.2.11 - Generalised eigenspaces — Let £,V be k-vector spaces and let p : &€ —
Endg (V') be a morphism of vector spaces. For all A € £*, put

Ww=A{veVI|Vfe& p(f)(v) =Af)v}.

Then, VA € £*, V), is a k-vector subspace of V' and further the sum of these subspaces is direct:

Y =W

reg* Ae&*

This applies in particular when £ is a Lie algebra and (V, p) a representation of this Lie algebra.

Definition 1.2.12 — Let g be a Lie algebra. Let (V, f) be a representation of g. A subrepresen-
tation of V' is a subspace W of V' stable under f(x) for all x € g. (The map f then induces a
map g — gi(W), =+ f(z)w which is a representation of g.)

Exercise 1.2.13 — Quotient by a subrepresentation — Let g be a Lie algebra, (V, f) be a
representation of g and W a subrepresentation of (V, f). Let # : V — V/W be the canonical
projection.

1. For all z in g, there is a unique element, p(z), of Endy(V/W) such that 7 o p(z) = p(z) o 7.
2. The map p : g — gl(V/W), = — p(x) is a morphism of Lie algebras. The representation
(V/W,p) is called the quotient representation of (V,p) by W.

12



Definition 1.2.14 — Let g be a Lie algebra. Let (V) f) and (W, g) be representations of g.
1. A morphism of representations from V to W is a morphism of vector spaces ¢ : V — W
such that, for all x € g, the following diagram commutes:

174 L 1474
if (z) ly(w)
14 L W

The subset of Homy(V, W) consisting of morphisms of representations from V to W is denoted
Homgy(V,W). An isomorphism of representations from V to W is a bijective morphism of repre-
sentations.

2. An endomorphism of the representation (V, f) is a morphism of representations from (V, f) to
itself. An automorphism of the representation (V, f) is an isomorphism of representations from

(V, f) to itself.

Exercise 1.2.15 —Let (V, p) and (V’, p’) be two representations of the Lie algebra g. The natural
morphism of vector spaces
V*®@V' — Homyg(V,V’)
AV = A=)

is a morphism of representations. In addition, if V' and V' are finite dimensional, then the above
map is an isomorphism of representations.

Definition 1.2.16 — Let g be a Lie algebra. A representation (V, f) of g is called irreducible (or
simple) if V # {0} and {0} and V are the only subrepresentations of V.

Definition 1.2.17 — Let g be a Lie algebra. A representation (V, f) of g is called completely
reducible (or semisimple) if there exists a set I and a family of simple subrepresentations (V;)icr
of V' such that V. = @,y Vi.

Remark 1.2.18 - Let g be a Lie algebra. According to Definition 1.2.17, the trivial representa-
tion of g on the vector space {0} is completely reducible, as it is the direct sum of a family of
simple subrepresentations indexed by the empty set.

Definition 1.2.19 — Let g be a Lie algebra and (U, f) a representation of g. We say that (U, f)
has the direct summand property if, for every subrepresentation V' of (U, f), there exists a sub-
representation W of (U, f) such that U =V @ W.

Remark 1.2.20 - Let g be a Lie algebra and (U, f) a representation of g. If (U, f) has the direct
summand property, then the same holds for every subrepresentation V' of (U, f). Indeed, given

a subrepresentation V' of U and a subrepresentation W of V. If X is a subrepresentation of U
such that U =W @ X, then V=W & (X NV).

Theorem 1.2.21 — Let g be a Lie algebra and (U, f) a representation of g. The following state-
ments are equivalent:

(1) (U, f) is completely reducible;

(ii) (U, f) has the direct summand property.
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Proof. If U = {0}, it satisfies (i) and (ii) (cf. Remark 1.2.18). Hence, we may assume U # {0}.
Suppose U satisfies (i). By hypothesis, there exists a nonempty set I and a family (S;);er of
irreducible subrepresentations of U such that

U=@eps:

iel

For any subset J of I, put S; = ,.; Si. Let now V be a subrepresentation of U. We consider
the set
E={J,JCI|S;NnV =(0)},

ordered by inclusion. Clearly, £ is not empty since it contains the empty set. We want to prove
that the ordered set (£, C) is inductively ordered. For this, consider a totally ordered subset F
of £ and put K = UjcrJ. It is not difficult to check that, F being totally ordered, we have that
Sk = UjerSy, from which we get that K € £. Hence, indeed, (£, C) is inductively ordered. By
Zorn’s Lemma, it follows that £ has a maximal element. Let M be such an element. We claim

that
U=V @ S

To show this equality, it is enough to show that
viel, S;CVEDSu. (1.2.1)
Of course, (1.2.1) holds for i € M. Let now i € I \ M. By the maximality of M, we have that
(Si® Sm) NV = Syupy NV # (0).

Thus, there exists v € V, s; € S; and s); € Sy such that 0 # v = s; + spyr. And, s; must
be nonzero for, otherwise we would have that sp; is a nonzero element in Sy; N V. Therefore,
0+#s; =v—spy € S;N(V®Sy), which shows that S;N(V@Sys) # (0). But, S; being irreducible,
this leads to S; N (V @ Sy) = S, that is S; € V @ Sy, as requierred. We have shown that U
satisfies (ii).

Conversally, suppose that U satisfies (ii).

We first show that any nonzero subrepresentation of U contains an irreducible subrepresen-
tation. Let V be a nonzero subrepresentation of U. Take 0 # v € V. Applying Zorn’s Lemma
to the set of subrepresentations of V' which do not contain v, we get that there exists a maximal
such subrepresentation, say Z. By Remark 1.2.20, there exists a subrepresentation Y of V' such
that V = Z @Y. Clearly, Y # (0). Further, if Y is a nonzero subrepresentation of Y such that
Y’ C Y, by Remark 1.2.20 again, there is a subrepresentation Y” of Y such that Y =Y’ @ Y”,
and (0) CY” CY. But,since V=2Z2aY @Y” we have (ZdY')N(Z®Y") = Z. Therefore
v cannot be in both Z @& Y’ and Z @ Y"”. But, this contradicts the maximality property of Z.
Hence, such a subrepresentation Y’ of Y does not exist. This shows that Y is irreducible.

By the above, the set of irreducible subrepresentations of U is not empty. Therefore, there
exists a non empty set I and for all ¢ € I an irreducible subrepresentation .S; of U such that
{S;, i € I} is the set of the irreducible subrepresentations of U. Let now S be the set of those
subsets J of I such that the sum of the S;, j € J, is direct. Clearly, S is not empty and we order
it by inclusion. It is easy to see that S is actually inductive. Therefore, by Zorn’s Lemma, there
is a subset J of I such that J is maximal as an element of S. Consider then

V =®jesS;.
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By the hypothesis on U, there exists a subrepresentation W of U such that U =V & W. Now,
if W were nonzero, by the above, it would contain an irreducible subrepresentation S and this
would contradict the maximality of J. Therefore, U = @®;c;5;. m

Corollary 1.2.22 — Let g be a Lie algebra. FEvery subrepresentation and every quotient repre-
sentation of a completely reducible representation is completely reducible.

Proof. The case of subrepresentations follows at once from Theorem 1.2.21 and Remark 1.2.20.
Now, if U is a completely reducible representation of g and V is a subrepresentation of U, by
Theorem 1.2.21, there exists a subrepresentation W of U such that U = V & W. Clearly then,
U/V and W are isomorphic representations. By the above, W is completely reducible, therefore,
sois U/V. "

Lemma 1.2.23 — (Schur’s Lemma) — Let g be a Lie algebra. Let (V, f) and (W, g) be irre-
ducible representations of g.

1. If V and W are not isomorphic representations of g, then Homgy(V, W) = 0.

2. The k-algebra Endg(V') is a division ring.

3. Ifk is algebraically closed and V' finite dimensional, then Endg(V') = k.idy .

Proof. Let ¢ : V — W be a nonzero morphism of representations. Since the kernel and image
of ¢ are subrepresentations, ¢ must be surjective and injective, hence an isomorphism. This
shows the two first points of the statement.

Suppose in addition that k is algebraically closed and V finite dimensional. Let ¢ € Endg(V).
Then ¢ must have an eigenvalue. Let A\ be such an eigenvalue. Then, ker(¢ — Aidy) is a
subrepresentation of V'; as it is nonzero, it must equal V. So ¢ = Aidy. m

I.3 Lie algebras of derivations.

In this section, k is an arbitrary field and, by a k-algebra, we mean a k-vector space A, equipped
with a bilinear map

AxA — A
(a,b) +— ab’

This notion then includes both Lie algebras and associative algebras (with or without a unit).

Beware: unless otherwise specified, outside the present section, k-algebra means associative unital
k-algebra. The reason here to introduce this more general notion is that it allows to deal with
derivations of Lie algebras and associative algebras all together.

Remark 1.3.1 — Let A be a k-algebra. The map

[——-] : AxA — A
(a,b) +— ab—1ba

is bilinear and alternate. However, it need not satisfy the Jacobi identity.

Definition 1.3.2 — Let A be ak-algebra. A derivation of A is an element d of Endy(A) satisfying
the Leibniz rule, namely:

V(a,b) € Ax A, d(ab) = ad(b)+ d(a)b.
The set of all derivations of A will be denoted Dery(A).
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Exercise 1.3.3 - Generalised Leibniz formula — Let A be a k-algebra and d € Derg(A).
Then, for all n € N, and for all z,y € A,

= 3 () d@ae )

0<i<n
(For all 0 <4 <mn, () stands for the number of subsets with i elements in the set {1,...,n}.)

Exercise 1.3.4 - Variant of generalised Leibniz formula — Let A be a k-algebra and d €
Derg(A). Then, for all n € N, A\, u € k and for all z,y € A,

(@ Ot i) = 3 ()@= Ao @) - pid )

0<i<n
(For all 0 < i <n, () stands for the number of subsets with i elements in the set {1,...,n}.)

Exercise 1.3.5 — Generalised eigenspaces of derivations — Let A be a k-algebra and d €
Derg(A). For all A € k, let Ay be the generalised eigenspace of the endomorphism d associated
to A:

Ay = {x e A|3k € N, (d — Mda)*(z) = o}.

For all A\, p € k, Ay A, C Ay
Hint: use Exercise 1.3.4.

Exercise 1.3.6 — Locally nilpotent derivations — Assume k has characteristic 0.

1. Let V be a k-vector space. An endomorphism f : V — V is called locally nilpotent if
it satisfies the following condition: for all v € V, there exists k € N such that f*(v) = 0. Let
f V. — V be alocally nilpotent endomorphism of f. We define its exponential as the following
map:

exp(f) : V. — V
1 .
v Zkzo Efk(’”)

1.1. If f € Endg(V) is locally nilpotent, then exp(f) € Endg (V).

1.2. If f,g € Endg (V) are locally nilpotent and commute, then f + g is locally nilpotent.

1.3. If f,g € Endg (V) are locally nilpotent and commute, then exp(f + g) = exp(f) o exp(g).
1.4. If f € Endg(V) is locally nilpotent, then exp(f) € Autg(V).

2. Let A be a k-algebra and d € Derg(A). Assume that d is a locally nilpotent endomorphism
of A. Then, exp(d) is an automorphism of the algebra A; that is, exp(d) is an automorphism of
the k-vector space A such that, for all z,y € A, exp(d)(zy) = exp(d)(z) exp(d)(y).

Exercise 1.3.7 — Let A be a k-algebra. Then, Derg(A) is a Lie subalgebra of the Lie algebra
gl(A). (Since A is a vector space, Endy(A) is of course an associative algebra and it is thus a Lie
algebra by means of the commutator.)

Remark 1.3.8 — Let g be a Lie algebra. Recall the k-linear map ady : g — gl(g).
1. The Jacobi identity exactly says that, for all x € g, adg(x) is a derivation of g, that is,

ady(g) C Derk(g) C gl(g).

2. Exercise 1.3.7 shows that Dery(g) is a Lie subalgebra of gl(g); by the above, adg(g) is thus a
Lie subalgebra of Derg(g). But, actually, an easy calculation shows that,

Vd € Derk(g), Vz € g, [d,adg(x)] = adg(d(x)),
so that adg(g) is actually an ideal of Dery(g).

16



Definition 1.3.9 — Let g be a Lie algebra. A derivation of g is called inner if it belongs to adg(g)
and outer otherwise.

We finish this section by the following result which shows that, provided k is algebraically
closed, the semisimple and nilpotent part of a derivation are again derivations. It will be at the
heart of the proof of the existence of an abstract Jordan-Chevalley decomposition.

Proposition 1.3.10 — Assume k is algebraically closed. Suppose A is a finite dimensional k-
algebra. If d is a derivation of A and if s and n are endomorphisms of A with s diagonalisable,
n nilpotent, son =nos and d = s+n (that is, d = s+ n is the Jordan-Chevalley decomposition
of d as an endomorphism of A), then s and n are derivations of A.

Proof. Let Spec(d) be the set of eigenvalues of d. For all A € Spec(d), let Ay be the generalised
eigenspace of d associated to A (see Exercise 1.3.5). Then, as is well known,

VA € Spec(d), Ay = {a: € A3k €N, (d— Xida)k(z) = 0} and A= @ Ax-
A€ESpec(d)

In addition, for all A € Spec(d), s,n leave A stable and, actually, Ay = ker(s — Aidy).
By Exercise 1.3.5,
VA, 1 € Spec(d),  AxA, € Axgp. (1.3.1)

As a consequence, for all A, ;1 € Spec(d), for all x € Ay and for all y € A,

s(zy) = A+ pay = M)y + z(py) = s(@)y + zs(y).

And, as A =P AeSpec(f) A, and the multiplication on A is bilinear, the above formula extends
to any (z,y) € A x A.
We have shown that s is a derivation and, since n = d — s, so is n. m

I.4 Nilpotent Lie algebras.

In this section, k is an arbitrary field.

Definition 1.4.1 — Let g be a Lie algebra. The descending (or lower) central series of g,
(Ci(9))ien, is the sequence of ideals of g defined recursively by: Co(g) = g and, for i € N,
Ci+1(9) = [g,Ci(g)]. Then, g is called nilpotent if there exists n € N such that Cy,(g) = (0).

Exercise 1.4.2 -

1. Any abelian Lie algebra is nilpotent.

2. Any subalgebra or homomorphic image of a nilpotent Lie algebra is nilpotent.
3. Let g be a Lie algebra. If g/Z(g) is nilpotent, then so is g.

Exercise 1.4.3 — Let g be a Lie algebra and i be a Lie ideal of g. Then all the terms in the
descending central series of the Lie algebra i are Lie ideals of g.

Example 1.4.4 — We use the notation of Example 1.1.15.

1. If V is a finite dimensional vector space and F is a full flag of V', then nx(V) is nilpotent.
2. For all n € N*, n,,(k) is nilpotent.
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The following exercise is easy. It connects nilpotency in the sense of Lie algebras and the
nilpotency of endomorphisms. The necessary condition it states will turn out to be sufficient
(this is the content of Engel’s Theorem below).

Definition I.4.5 — Let g be any finite dimensional Lie algebra. An element x € g is said to be
ad-nilpotent if the endomorphism ad(x) : g — g is nilpotent.

Exercise 1.4.6 — Let g be a Lie algebra. If g is nilpotent, then any elements of g is ad-nilpotent.

Theorem 1.4.8 below will be of central importance in the sequel. It shows that the Lie
algebras nz(V) (cf. Example 1.1.15) are prototypes of nilpotent Lie algebras. Its proof needs
some preparatory statements.

Lemma 1.4.7 — Let V' be a vector space over k. If x € gl(V') is a nilpotent endomorphism, then
adgivy () € gl(gl(V)) is a nilpotent endomorphism.

Proof. To any z € gl(V'), we may associate the two endomorphisms of gl(V') given by left and
right composition with x:

Az +ogl(V) — gl(V) and pr = gl(V) — gl(V)
Yy — T oy Yy — yowx

Of course, these two endomorphisms commute. Clearly, if x is nilpotent, the elements A, and p,
of the algebra gl(gl(V')) are also nilpotent (with the same nilpotency index as x). But then, by
standard arguments, adgy)(z) = Az — p, is nilpotent (of index bounded above by twice that of
x). "

Theorem 1.4.8 — (Preparatory to Engel’s Theorem.) Let V' be a nonzero finite dimensional
vector space and g be a Lie subalgebra of gl(V') consisting of nilpotent endomorphisms.

1. There exists a nonzero vector in V which is in the kernel of all the endomorphisms lying in g.
2. There exists a full flag F of V such that g C ng(V).

Proof. Notice that the hypotheses imply that g is finite dimensional.
1. We proceed by induction on the dimension of g. The result is obvious when dimy(g) = 0.
Suppose now that dimg(g) > 0.
Let h be any Lie subalgebra of g such that h C g. Consider the adjoint action of gl(V') on
itself: ad : gl(V) — gl(gl(V)). It induces an action of g on g and further an action of ) on g:

b — ol(g)
y = (v ly,z])

which stabilises h. We get that way an action as follows

h — gl(g/b)
y = (ztbo e th) (14.3)

Now, by Lemma 1.4.7, for all x € b, ad(z) is a nilpotent endomorphism of the vector space gl(V').
Hence the image of the map (I.4.1) consists of nilpotent endomorphisms of the vector space g/b.
Therefore, we are in position to apply the induction hypothesis to this image:

Jx € g\ hsuch that, Vy € b, [y,z] € b.
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In other words, b is properly included in its normaliser in g: h C Ny(bh).
Now, choose h maximal among proper subalgebras of g. The above then shows that g is the
normaliser of h in g. That is, b is an ideal of g. As a consequence, we get that

Vzeg\h, g=hDkz.
By the induction hypothesis, the vector space
W ={v e V|Vh € b, h(v) =0}

is nonzero and, as b is an ideal of g, this subspace is stable under any element of g. But, any z
as above is a nilpotent endomorphism of V', hence induces a nilpotent element of W. This forces
z to have a non zero element w of W in its kernel. Such a w is now an element in the kernel of
any element of g. The proof of point 1 is now complete.

2. To prove point 2, we use induction on the dimension of V. The result is true by Point 1 in case
V' is one dimensional. Take now any finite dimensional vector space V of dimension n > 2. By
point 1, there exists a nonzero element v € V that is in the kernel of any element of g. Clearly,
the line kv is a subrepresentation of V' for the obvious action of g and we get a morphism of Lie
algebras

r:g— gl(V/kv).

By the induction hypothesis, There is a full flag (0) = Wy C ... C W,,—1 = V/kv of V/kv such
that, Vo € g, r(z)(W;) C W;_1, 1 <i<n—1. Let now V;;1, 0 <i <n—1, be the inverse image
of W; under the canonical projection V' — V/kv and put Vy = (0). It is then clear that, for all
x € g, and for all 1 < i < n, z(V;) C V;_;. Therefore, the full flag Vi C ... C V,, of V has the
required property and the proof is complete. m

Remark 1.4.9 - It is worth mentioning that Theorem 1.4.8 is a theorem about simultaneous
trigonalisation. Indeed, as is well known, if V is a finite dimensional vector space and f a
nilpotent endomorphism of V', there exists a basis of V relatively to which the matrix of f is
strictly upper triangular. Theorem 1.4.8 generalises this result.

Here is a first consequence of Theorem 1.4.8.

Exercise 1.4.10 — Let g be a finite dimensional nilpotent Lie algebra.

1. If i is a nonzero ideal of g, then i intersect Z(g) nontrivialy. (Hint: Consider the representation
ad : g — gl(i) and apply Theorem 1.4.8 to its image.)

2. If g is nonzero, then Z(g) is nonzero.

We are now in position to establish Engel’s Theorem, which characterises the nilpotency of a
Lie algebra by means of its image under the adjoint representation (see Exercise 1.4.6).

Theorem 1.4.11 - (Engel’s Theorem.) Let g be a finite dimensional Lie algebra. Then g is
nilpotent if and only if every x € g is ad-nilpotent.

Proof. Exercice 1.4.6 proves the necessity. Conversaly, consider the adjoint representation and
suppose that its image consist in nilpotent endomorphisms. Then, by Theorem 1.4.8, the image
of g under the adjoint representation is a nilpotent Lie algebra. But the latter is isomorphic to
9/Z(g). Hence, g is nilpotent (see Exercise 1.5.3). n
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Remark 1.4.12 - At this stage, a comment may be useful which underlines a certain lack of
symmetry between Theorem 1.4.8 and Theorem 1.5.7 below.

Let V' be a finite dimensional nonzero vector space and g be a Lie subalgebra of gl(V'). By
Theorem 1.4.8, the nilpotency of the endomorphisms contained in g forces the nilpotency of g.
But, the converse is trivialy false. Indeed, for all n € N*, the set of diagonal matrices in gl,(C) is
an abelian, hence nilpotent, Lie algebra. However, none of its elements is nilpotent except zero.

I.5 Solvable Lie algebras.

In this section, unless otherwise specified, k is an arbitrary field.

Definition 1.5.1 — Let g be a Lie algebra. Define inductively the decreasing sequence (D;(g))ien
of ideals of g, called the derived series of g by: Do(g) = g and, fori € N, D;1(g) = [D;i(g), Di(g)]-
Then, g is called solvable if there exists n € N such that D, (g) = (0).

Example 1.5.2 - Let g be a Lie algebra. It is clear that, for all i € N, C;(g) 2 D;(g). Hence,
any nilpotent Lie algebra is solvable.

Exercise 1.5.3 -

1. Any Lie subalgebra or homomorphic image of a solvable Lie algebra is solvable.

2. Let g be a Lie algebra and i a Lie ideal of g. If i and g/i are solvable, then so is g.
3. Let g be a Lie algebra. The sum of two solvable ideals is a solvable ideal.

4. Let g be a Lie algebra. If the derived ideal of g is solvable, then so is g.

Exercise 1.5.4 — Let g be a Lie algebra and i be a Lie ideal of g. Then all the terms in the
derived series of the Lie algebra i are Lie ideals of g.

Example 1.5.5 — (For the notation, see Example 1.1.15.)
1. For any finite dimensional vector space V and any full flag F of V| bx(V) is solvable.
2. For all n € N*, b, (k) is solvable.

The following Theorems 1.5.6 and 1.5.7 will be of central importance in the sequel. They show
that the Lie algebras br (V') (cf. Example 1.1.15) are prototypes of solvable Lie algebras.

Theorem 1.5.6 — (Preparatory to Lie’s Theorem.) Assume that k is algebraically closed
and of characteristic 0. Let V be a nonzero vector space of finite dimension. If g is a solvable
Lie subalgebra of gl(V'), there exists a nonzero common eigenvector for all the elements of g.

Proof. We proceed by induction on the dimension of g. The case where dimg(g) = 0 is trivial.
The case where dimg(g) = 1 is easy. Indeed, any nonzero element x of g must have a nonzero
eigenvector by the hypothesis that k is algebraicaly close and, since g = kx, it is an eigenvector
for all the elements of g.

Fix n > 1 and suppose that the result is true whenever dimy(g) < n.

Suppose now that dimg(g) = n + 1. Since g is solvable, we have that [g,g] C g (strict
inclusion). Thus, the Lie algebra g/[g, g] is abelian and nonzero, so that it contains a Lie ideal
of codimension 1. Now, the inverse image of such an ideal under the canonical projection is a
codimension 1 ideal of g. Let i be such a codimension one ideal of g.
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By the induction hypothesis, there exists a nonzero element v € V which is a common
eigenvector for all the elements of i. Hence, there exists a linear form A on i such that, for all
x €1, z(v) = AM(z)v. Put now

0) c W ={w e V]z(w) = Mz)w, Vz €i} C V.

We now proceed to show that all the elements of g leave W invariant. An easy calculation
shows that this is equivalent to showing that, for all z € g and y € i, A([z,y]) = 0.
To this aim, fix x € g and w € W\ {0}. Put Wy = (0) and, for all i € N*, put

W; = Span{w, z(w), ...,z 1 (w)}.

Then (W;);en is an increasing sequence of subspaces of V. Let then d € N* denote the least
integer such that
Wy C Wy C...CWd:Wd+1=Wd+2:....

It is clear by definition that, for all i € N, z(W;) C W;4;.
An easy induction on i shows that,

Vzei, VieN, z(x'(w))— Az)z'(w) € Wi

From this, it follows that any z € i stabilises Wy and that the trace of its restriction to Wy is
dA(z). Take now any element y € i and apply this trace calculation to the element [x,y] € i. We
get that dA([z,y]) = 0; indeed, since x and y stabilize Wy, the endomorphism induced by [z, y]
on W, must be a commutator and hence have trace 0. As the characteristic of k is assumed to
be 0, we end up with the desired equality: A([z,y]) = 0.

At this stage, summing up the above, i is a codimension 1 Lie ideal of g and g leaves the
subspace

0) cW={w e V|z(w) =ANz)w, Vx €i} CV

invariant. Take any z € g\ i, take a nonzero eigenvector of the restriction of z to . This nonzero
eigenvector is clearly a common eigenvector of all the elements of g, since g =1+ kz. Hence, we
have proved that the result is true for g, which finishes the induction. n

Theorem 1.5.7 — (Lie’s Theorem.) Assume thatk is algebraically closed and of characteristic
0. Let V be a nonzero vector space of finite dimension. If g is a solvable Lie subalgebra of gl(V'),
then there exists a full flag F of V such that g C br(V).

Proof. The result follows easily from Theorem 1.5.6 using an induction on the dimension of V'
based on an argument similar to that of the proof of the second Point in Theorem 1.4.8. ]

Remark I.5.8 - It is worth mentioning that Lie’s theorem is a theorem about simultaneous
trigonalisation. Indeed, as is well known, if V' is a finite dimensional vector space over an alge-
braically closed field, pairwise commuting endomorphisms are simultaneously trigonalisable. In
the case where the base field has characteristic zero, Lie’s theorem provides a proof of this result.

We finish this section by two corollaries derived from Lie’s Theorem.

Corollary 1.5.9 — Assume that k is algebraically closed and of characteristic 0. Let g be a finite
dimensional solvable Lie algebra. Then, there exists an increasing sequence (gi)ogigdimk(g) of
ideals of g such that, for all 0 < i < dimy(g), dimg(g;) = i.
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Proof. Consider the adjoint representation of g, adg : g — gl(g). Since g is finite dimensional,
we may apply Lie’s Theorem to the solvable Lie algebra adg(g) C gl(g). It asserts that there
exists a full flag (g;)o<i<dim, (g) Of @ Whose subspaces are left stable by adg(x), for all z € g. But
this last property just means that, for 0 < i < dimg(g), g; is a Lie ideal of g. m

Corollary 1.5.10 — Assume that k is algebraically closed and of characteristic 0. Let g be a
finite dimensional solvable Lie algebra.

1. For all z € [g,g], adg(x) is a nilpotent endomorphism of gl(g).

2. The Lie subalgebra [g,g] of g is nilpotent

Proof. Since g is finite dimensional, we may apply Lie’s Theorem to the solvable Lie algebra
adg(g) C gl(g). There exists a full flag F = (8:)o<i<dim, (g) Of 8 such that ady(g) C br(g).

But then, if € [g,g], adg(x) € [br(g),br(g)] C nr(g), so that adg(x) is a nilpotent endo-
morphism of gl(g). This shows that the image of the adjoint action

adigg : [9,9] — ol([g, 0])

of [g, g] consists in nilpotent endomorphisms. By Engel’s Theorem, it follows that [g, g] is nilpo-
tent. ]

I.6 Cartan’s criterion for solvability.
In this section, unless otherwise specified, k is an arbitrary field.

Definition 1.6.1 — An endomorphism f of a vector space U over k is called semisimple if, for
all subspace V' of U stable under f, there exists a subspace W of U stable under f and such that
U=VoWw.

Remark 1.6.2 - Suppose k is algebraically closed, and let V' be a finite dimensional vector
space over k. Then, as is well known, an endomorphism of V' is semisimple if and only if it is
diagonalisable.

We begin with a Lemma which relates the Jordan-Chevalley decomposition of an endomor-
phism and that of its image under the adjoint representation.

Lemma 1.6.3 — Let V' be a finite dimensional vector space.

1. If z is a nilpotent element of gl(V'), then adgy)(z) is a nilpotent element of gl(gl(V)).

2. If x is a diagonalisable element of gl(V'), then adgy(z) is a diagonalisable element of
ol(gl(V)).

3. Assumek is algebraicaly closed. Let x € gl(V') and suppose d,n are elements of gi(V') such that
d is semisimple, n nilpotent, [d,n] =0 and x = d+n (that is, x = d+ n is the Jordan-Chevalley
decomposition of x as an endomorphism of V). Then, adgy)(z) = adgyvy(d) + adgivy(n) is the
Jordan-Chevalley decomposition of adgyvy(z) as an endomorphism of gl(V').

Proof. 1. This statement is the content of Lemma 1.4.7.
2. Let B = (v1,...,vn) be abasis of V consisting of eigenvectors of  whose respective eigenvalues
are A\i,...,Ap. For 1 <14,5 <m, let ¢; ; be the endomorphism of V' that sends v; to v; and any
other vector in B to zero. Then (e; ;)i<ij<m is a basis of gl(V'). A straightforward calculation
shows that:
adgy(z) = ol(V) — gl(V)
eij (A= Ajei;
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so that adyy)(z) is diagonalisable.

3. We have that adgy)(z) = adgy(d) + adgy)(n) and by Points 1 and 2 above, adgy(d) is
semisimple and adgy(n) is nilpotent. In addition, [adg v (d), adgv)(n)] = adgvy([d,n]) = 0.
Hence, indeed, adgyyy(z) = adgqy)(d) + adgy)(n) is the Jordan-Chevalley decomposition of
adgi(vy(7) as an endomorphism of gl(V'). "

Lemma 1.6.4 — Assume that k is algebraically closed and of characteristic 0. Let V be a finite
dimensional vector space and consider subspaces A and B of gl(V') such that A C B C gl(V).
Put

M = {z € gl(V)|Vy € B, [z,y] € A}.

If x is an element of M such that, for all y € M, Tr(xy) = 0, then x is nilpotent.

Proof. Fix an element z of M such that, for all y € M, Tr(zy) = 0.

Let z = x5 + x5, be the Jordan-Chevalley decomposition of x. That is, x5 is a diagonalis-
able endomorphism of V, x, is a nilpotent endomorphism of V' and these two endomorphisms
commute. Let B = (vy,...,vy) be a basis of V' consisting of eigenvectors of x5 whose respective
eigenvalues we denote A1, ..., A\p,.

We consider the following vector subspace of the (Q-vector space k:

E= ) Q.

1<i<m

Let now f : E — Q be any linear form on the Q-vector space E. We consider the endomor-
phism y of V' defined by
y V. — V
Vs — f()\i)vi, 1<:<m ’
We equip the vector space gl(V') with the basis associated to B: this is the familly (e; j)1<i j<m
of endomorphisms such that, for all 1 <17, j < m, e;; sends v; to v; and any other vector in B to
zero. It is straightforward to verify (see also the proof of Lemma 1.6.3) that:

adg(z) : gl(V) — gl(V) adgy) ¢ oglV) — gl(V)
eij = (A= Ajeiy eij = (f(N) = f(\))eiy

Now, by Lagrange interpolation, there exists a polynomial P € k[T]; without constant term and
such that P(\; — A;) = f(Xi) — f(Aj), for all 1 <4, j < m. But then, clearly,

adg(y) = Pladg(zs)).

On the other hand, by Lemma 1.6.3, adg(z) = adg(zs) + adg(xy) is the Jordan-Chevalley de-
composition of adg(x) € gl(gl(V)). Hence, there exists a polynomial @ in k[T, without constant
term, such that

adg(z,s) = Q(adg(x)).
Therefore, there exists a polynomial R in k[T], without constant term, such that

ady(y) = R(ady(2)).

From this, since x € M, it follows that y € M. By hypothesis on x, we thus get that

0= Tr(zy) = Z Aif(Ni)-

1<i<m
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The right hand side is an element of E, so that we may apply f to it and get 0 = >, .., f(\i)?,
which entails that f()\;) = 0, for all 1 < i < m, since this sum is a sum of positive rational
numbers.

At this stage, we have proved that f is zero. Hence, the dual of E, and therefore F, is zero.
It follows that all the eigenvalues of x4 are zero and that x is thus zero, which proves that x is
nilpotent. ]

Theorem 1.6.5 — Cartan’s criterion for solvability — Assume that k is algebraically closed
and of characteristic 0. Let V' be a finite dimensional vector space and g a Lie subalgebra of
gl(V). Suppose that, for all x € [g,g] and all y € g, Tr(x oy) =0, then g is solvable.

Proof. We are in position to apply Lemma 1.6.4 with A = [g,g], B=g. Put M = {zx € gl(V)|Vy €
B, [z,y] € A}, as in this Lemma. It is clear that g C M. Thus

0,9] C g C M Cgl(V).
Take x € [g,9], y € M. As is easily verified,
Va,b,c € gl(V), Tr(la,b] o ) = Tr(a o b, c]).

From this equality, we easily get that Tr(xoy) = 0. Hence, Lemma 1.6.4 proves that x is nilpotent.
Applying now Engel’s Theorem (in the form of Theorem 1.4.8), we get that [g, g] is nilpotent,
hence solvable. Thus g is solvable by Exercise 1.5.3. m

Corollary 1.6.6 — Assume that k is algebraically closed and of characteristic 0. Let g be a finite
dimensional Lie algebra. Suppose that, for all x € [g,g] and all y € g, Tr(adg(z) o adg(y)) = 0,
then g is solvable.

Proof. Consider the adjoint representation of g, adg : g — gl(g). By the hypothesis on g, we

are in position to apply Cartan’s criterion to the Lie subalgebra adg(g) of gl(g). Hence, adg(g) is
solvable. But adg(g) is isomorphic to g/Z(g). Hence, g is solvable. "

I.7 Simple and semisimple Lie algebras.

In this section, k is an arbitrary field and Lie algebras are assumed to be finite dimensional.

Definition 1.7.1 — A Lie algebra g is called simple if it is nonabelian and if it has no other
ideals than {0} and g.

Exercise 1.7.2 — A simple Lie algebra is not solvable.

Exercise 1.7.3 — Let n € N*. If the characteristic of k is different from 2 and does not divide
n, then sl, (k) is a simple Lie algebra.

We now introduce semisimple Lie algebras.
We have already mentionned (cf. Exercise 1.5.3) that the sum of two solvable ideals of a Lie

algebra is a solvable ideal. It follows that, for any Lie algebra, the set of solvable ideals, ordered
by inclusion, as a greatest element. This justifies the following definition.
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Definition 1.7.4 — Let g be a Lie algebra. The radical of g, denoted Rad(g), is the greatest
solvable ideal of g.

Definition 1.7.5 — A Lie algebra g is semisimple if Rad(g) = (0).

Example 1.7.6 — Let g be a nonzero Lie algebra. Then, using the second point in Exercise 1.5.3,
we get that g/Rad(g) is semisimple.

Exercise 1.7.7 — A simple Lie algebra is semisimple (see Exercise 1.7.2). The Lie algebra (0) is
semisimple (though not simple).

Exercise 1.7.8 — Let g be a Lie algebra.
1. We have Z(g) C Rad(g).
2. If g is semisimple, its adjoint representation is faithful, i.e., adg : g — gl(g) is injective.

Actually, abelian ideals detect semisimplicity.

Lemma 1.7.9 - Let g be a nonzero Lie algebra. Then, g is semisimple if and only if it has no
nonzero abelian ideal.

Proof. Clearly, any abelian ideal of g is contained in Rad(g). So, the condition is necessary.
Conversally, if Rad(g) is nonzero, the last nonzero term in the derived series of Rad(g) is an
abelian ideal of Rad(g). But, by Exercise 1.5.4, this last nonzero term is actually an ideal of g.m

Remark 1.7.10 - Levi decomposition — Exercise 1.7.6 shows that any Lie algebra is the
extension of a semisimple Lie algebra by a solvable Lie algebra. It turns out that, actually, under
mild hypotheses on the base field, such an extension may be choosen to be split. In other words,
any Lie algebra g is the semi-direct product of its radical and a Lie subalgebra isomorphic to
g/Rad(g). This is the Levi decomposition. It clearly emphesises the importance of solvable and
semisimple Lie algebras.

We now introduce a major tool to characterise semisimplicity: the Killing form.

Definition 1.7.11 — Let g be a Lie algebra. The Killing form of g is the map:

kg : gxg — Kk
(z,y) +— Tr(ad(z)oad(y)) ’

where Tr stands for the usual trace map on gl(g).

Exercise 1.7.12 — Let g be a Lie algebra.
1. Show that the Killing form of g is is a symmetric bilinear form, and that, for all z,y, 2z € g:

’ig(x’ [y7 Z]) = Hg([xvy]’ Z)'

(A symmetric bilinear form over a Lie algebra satisfying the above compatibility condition with
the Lie bracket is called invariant.)
2. Show that the radical of the Killing form:

Rad(rg) := g= = {z € g| Kg(z,y) =0, Vy € g}

is an ideal of g.

3. Show that, more generaly, the orthogonal for x4 of an ideal of g is an ideal of g.

4. Let i be an ideal of g. Then, ki = (kg)jixi- (The same result does not hold if i is just a Lie
subalgebra of g.)
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Remark 1.7.13 - (Cartan’s criterion for solvability revisited) — Assume k is algebraically
closed and of characteristic 0. Let g be a Lie algebra. Corollary 1.6.6 actually states the following.
If [g, g] € Rad(kg), then g is solvable.

Lemma 1.7.14 — Assumek is algebraically closed and of characteristic 0. Let g be a Lie algebra.
Then Rad(kg) € Rad(g).

Proof. Put i = Rad(kg) and recall that i is an ideal of g (see Exercise, 1.7.12).

Let « € i, by definition, we have k4(z,y) = 0, for all y € i. By Point 4 of Exercise, 1.7.12, this
entails that x; = 0. In particular, [i,i] C Rad(k;). By Cartan’s criterion for solvability (under
the form of Remark 1.7.13), this means that i is solvable. Hence, being an ideal, i C Rad(g) by
definition of the radical of a Lie algebra. m

Exercise 1.7.15 — Let g be a Lie algebra.

1. Let i be an abelian ideal of g. For all (z,y) € gx1i, the endomorphism ad(x)oad(y) is nilpotent
(of index bounded above by 2), hence has zero trace.

2. Thus Rad(ky) contains any abelian ideal of g.

The following Theorem is fundamental; it connects the Killing form and semisimplicity.

Theorem 1.7.16 - (Cartan-Killing’s criterion.) — Assume k is algebraically closed and of
characteristic 0. Let g be a Lie algebra. Then, g is semisimple if and only if kg is nondegenerate.

Proof. It follows immediately from Lemma 1.7.14 that, if g is semisimple, then its Killing form
must be nondegenerate.

Conversaly, suppose that k4 is nondegenerate. By Exercise 1.7.15, then g has no nontrivial
abelian ideal. But then, Lemma 1.7.9 shows that g is semisimple. n

Exercise 1.7.17 — Assume k is algebraically closed and of characteristic 0. The direct sum of
two semisimple Lie algebras is again semisimple. (Hint. use the Cartan-Killing criterion.) In
particular, the (finite) direct sum of simple Lie algebras is semisimple.

We then get a structure Theorem for semisimple Lie algebras which reduces their study to
that of simple Lie algebras.

Lemma 1.7.18 — Assume k is algebraically closed and of characteristic 0. Let g be a semisimple
Lie algebra. Ifi is a Lie ideal of g, then

1. g=i@it and [i,it] = 0;

2. i and i+ are semisimple as Lie algebras.

Proof. Let i be a Lie ideal of g. By Exercise 1.7.12, we know that i is a Lie ideal of g. Consider
the ideal j = iNit. We have that

Kj = (Kg)jjxj = 0;

the first equality is Exercise 1.7.12, Point 4, the second is trivial. Hence, [j,j] C Rad(kj) and
Cartan’s criterion gives that j is solvable. But, being an ideal of the semisimple Lie algebra g,
this forces j to be trivial. That is, i Nit = 0, and thus

g=igit

since ry is nondegenerate. Moreover, [i,it] Cinit, so that [i,it] = 0.

26



But, this last equality shows that any ideal of the Lie algebra i (resp. i) is actually an ideal
of g. Hence, the existence of a non trivial solvable ideal of the Lie algebra i (resp. i*) would
imply the existence of a non trivial solvable ideal of g. Hence i and i+ are semisimple as Lie
algebras. ]

Theorem 1.7.19 — Structure of semisimple Lie algebras — Assume k is algebraically closed
and of characteristic 0. Let g be a nonzero semisimple Lie algebra.
1. There exist t € N*, Lie ideals s1,...,5: of g which are simple as Lie algebras, such that

g=51D...Ds;

and, for 1 <i<j<t, [s;,5;] =0.
2. If s is an ideal of g which is a simple Lie algebra, then there exists 1 < i <t such that s = s;.

Proof. Suppose that g is a semisimple Lie algebra which is not simple. By definition, there exists
an ideal i of g such that (0) C i C g. By Lemma 1.7.18, we know that i and i+ are semisimple Lie
algebras and that

g=i®it and [i,it]=0.

Choose now i minimal among proper nontrivial ideals of g. We even have that i is a simple Lie
algebra (and i+ a semisimple one).

Let now d € N* be the least integer for which there exists a semisimple Lie algebra of dimension
d. We are now ready to prove the theorem by induction on dimg(g). If g has dimension d, then
the above reasoning shows that g is actually simple. Hence the result is true. Suppose now that
dimg(g) > d. If g is simple, then the result holds for it. Otherwise, choose a minimal proper non
trivial ideal of g. Then, by the above, it is a semisimple Lie algebra of strictly lower dimension
and we may apply the induction hypothesis to it. By the above argument, we deduce that the
result holds for g.
2. Let s be an ideal of g which is a simple Lie algebra. Then, [s,g] is an ideal of s and it is
nonzero since Z(g) is zero. But then,

s=[s,0 = €D lssil,

1<i<t

(the first equality follows from the simplicity of s, the second is obvious). By the simplicity of s,
there must exist a unique 1 < i <t such that s = [s,s;]. In particular, s C s; and thus s = s; by
the simplicity of s;. n

The following Corollary describes Lie ideals of semisimple Lie algebras.

Corollary 1.7.20 — Assume k is algebraically closed and of characteristic 0. Let g be a semisim-
ple Lie algebra. Let t € N* and s1,...,8; be the Lie ideals of g which are simple (see Theorem
1.7.19). Then the following holds:

1. [g.0] =g

2. any nonzero Lie ideal is a sum ;¢ ;s; for some subset J C {1,...,t};

3. any Lie ideal or homomorphic image of g is semisimple.

Proof. By Theorem 1.7.19, we have that g =51 ® ... ®s; and, V1 <i < j <t, [s,5;] = 0.

1. Clearly, [g, 9] = [s1,61] ® ... D [s1,8¢]. But, for all 1 <i <+, [s;,8;] =s; by the simplicity of s;.
Hence Point 1.
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2. Let i be a nonzero ideal of g. By Lemma 1.7.18, i is semisimple, so that [i,i] = i, by Point 1.

Thus,
i=[ilCligC PlhslC Pinsci
1<i<t 1<i<t
Hence,
i= @ ins
1<i<t

On the other hand, for 1 <i <, s; is simple, so that i N s; equals s; or (0). Hence Point 2.
3. This is now clear using Exercise 1.7.17. ]

I.8 Engel and Cartan subalgebras.

In this section, k is an arbitrary field.

The main aim of this section is to introduce and study Cartan subalgebras of an arbitrary
(finite dimensional) Lie algebra g. This is done using other specific subalgebras, namely Engel
and Borel subalgebras.

We start with the notion of Engel subalgebra. The Engel subalgebras of the finite dimensional
Lie algebra g will be defined as generalised eigenspaces associated to the eigenvalue 0 of the
endomorphisms adg(z), € g. Hence, we introduce a notation for these subspaces: if V is a
vector space over k and f is an endomorphism of V, we put: Vo(f) = {v € V| f¥(v) =0, k> 0}.
More generally, for all A € k, we denote the generalised eigenspace of f associated to A by

Va(f) = {v e V|(f = Xidy)*(v) =0, k> 0} (1.8.1)

Remark 1.8.1 - Suppose g is a finite dimensional Lie algebra. To each element x of g we
associate the endomorphism adg(x) : g — g of g. Clearly, z is in the kernel of ady(x) and (as
mentionned above) we denote its generalised eigenspace by go(adg(z)):

go(ady(2)) = {y € g (adg(2))*(y) = 0, k> 0}.

It turns out that, actually, for all z € g, go(adg(x)) is a Lie subalgebra of g as is easily proven
applying the generalised Leibniz formula (cf. Exercise 1.3.3) to the derivation adg(x) of the Lie
algebra g.

Definition I1.8.2 — Let g be a finite dimensional Lie algebra.

1. For all x € g, the Lie subalgebra go(adg(x)) is called the Engel subalgebra of g associated to x.
(See Remark 1.8.1.)

2. An Engel subalgebra of g is a Lie subalgebra of g of the form go(adg(x)), for some x € g.

We now investigate the main properties of Engel subalgebras. We start showing that they
are self-normalising.

Proposition 1.8.3 — Let g be a finite dimensional Lie algebra. If Y is a Lie subalgebra of g

containing an FEngel subalgebra of g, then b is its own normaliser. In particular, any Engel
subalgebra is its own mormaliser.
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Proof. Consider = € g such that, putting ¢ = go(adg(z)), ¢ C h. We have:
z€eChC Ng(h) Cg, adg(z)(e) e, adg(z)(h) Ch, adg(z)(Ng(h)) Cb. (1.8.2)

Therefore, adg(x) induces endomorphisms of g/e and g/h. By definition of e, the former is an
automorphism and, as a consequence, so is the latter. But, the automorphism induced by adg4(z)
on g/bh sends the image of Ny(h) onto zero, by the last inclusion of (I.8.2). So, Ng(h) C h. The
rest is clear. n

We now turn to properties of Engel subalgebras related to nilpotency.

Proposition 1.8.4 — Let g be a finite dimensional Lie algebra and b be a Lie subalgebra of g.
Then b§ is nilpotent if and only if h C ﬂxeh go(adg(x)).

Proof. Suppose b is nilpotent, and consider x € h. Then, by the very definition of nilpo-
tency, we have that h C go(adg(z)). Hence, h C (1, go(adg(z)). Conversely, suppose that
h C mzeh go(adg(x)). Then, for all x € b, adg(z) induces a nilpotent endomorphism of h, which
is just ady(x). That is, all the elements of h are ad-nilpotent (as elements of h). By Engel’s
Theorem, § is therefore nilpotent. ]

Our next aim is Proposition 1.8.6. It relies on the following elementary lemma in linear
algebra.

Lemma 1.8.5 — Let V be a vector space over k, of finite dimension n € N*. Let f,g € Endg(V).
1. The subset of k of those scalars \ such that f + Ag is nilpotent is either finite, of cardinality
bounded by n or equal to k.

2. The subset of k of those scalars A such that f 4+ Ag is not an automorphism of V is either
finite, of cardinality bounded by n or equal to k.

Proof. For all A € k we denote by ) the characteristic polynomial of the endomorphism f + Ag.
It is easy to see that there exists p; € k[U], 1 < i < n, with either p; = 0 or deg(p;) <i < n,
for 1 <14 < n, such that

YAek, xa=(-D"T"+ Y p(NT

1<i<n

Now, for A € k, f + Ag is nilpotent (resp. is not an automorphism) if and only if p;(A) = 0, for
all 1 <i <n (resp. pn(A) = 0). The result follows. "

Proposition 1.8.6 — Assume g is a finite dimensional Lie algebra and the field k has cardinality
greater than or equal to 2dimy(g) + 1. Let b be a Lie subalgebra of g and let € be the set of Engel
subalgebras associated to elements of h:

& ={go(ady(z)), z € h}.

If there exists a minimal element of (€,C) containing b, then this minimal element is a least
element and by is nilpotent.

Proof. Let z € h be such that go(adg(2)) is a minimal element in (£, C) and h C go(adg(2)). Put
¢ = go(adg(2)).
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Let x € h, A € k. As z, z and z + Az belong to h C ¢ the endomorphisms adg(z), adg(z)
and adg(z + Az) stabilise ¢ and therefore induce endomorphisms of g/e, respectively denoted by
adg(z), adg(z) and adg(z + Az). Of course, we have ady(z + Az) = adg(z) + Aadg(x). Observe in
addition that, by definition of e, adg(2) is an automorphism of g/e.

Let z € h. Seen the above, it follows from the second statement of Lemma 1.8.5 that,
adg(z + Az) is not an automorphism of g/e for at most dimy(g) elements A € k. But, seen
the hypotheses on the cardinality of k, this entails that adg(z 4+ Az) is an automorphism of
g/e for at least dimg(g) + 1 elements A of k. So, for at least dimy(g) + 1 elements A of k,
we have that go(adg(z + Az)) C e and, by the minimality hypothesis on the Engel subalgebra
¢, we get that, for at least dimy(g) + 1 elements X of k, go(adg(z + Az)) = e. Now, for any
A € k, we have that z + Az € ¢, so adg(z + Ax) stabilises ¢ and induces on ¢ the endomorphism
ade(z + Az). If, in addition, go(adg(z + Az)) = e, then we get that ad.(z + Ax) is nilpotent. So,
at this stage, we have proved that, for at least dimy(g) + 1 elements A of k, the endomorphism
ade(z+ Ax) = ad.(z) + Aad.(x) is nilpotent. From this and the first statement of Lemma 1.8.5, we
deduce that ad,(z + Ax) is nilpotent for all A € k. In particular, ad,(z 4 z) is nilpotent. Summing
up, we get that,

Vrzebh, eCgo(adg(z+z)). (1.8.3)

Now, consider any element y € . The above inclusion applied with x = y — z establishes that
¢ C go(adg(y)). Hence, ¢ is indeed a least element of (£,C). Now, applying the second point of
Lemma 1.8.4, we deduce that h is nilpotent. n

We are now in position to introduce and study the so-called Cartan subalgebras of an arbitrary
(finite dimensional) Lie algebra g. These are the self-normalising nilpotent subalgebras of g.

Definition 1.8.7 — Let g be a finite dimensional Lie algebra. A Cartan subalgebra of g is a Lie
subalgebra of g which is nilpotent and equal to its normaliser.

Theorem 1.8.8 — Let g be a finite dimensional Lie algebra and assume the field k has cardinality
greater than or equal to 2dimg(g) + 1.

1. For a Lie subalgebra by of g, the following statements are equivalent:

(i) b is a Cartan subalgebra of g;

(ii) b is a minimal Engel subalgebra of g.

2. There exist Cartan subalgebras of g.

Proof. Suppose b is a minimal Engel subalgebra of g. By Proposition 1.8.3, b is its own normaliser
and, by Proposition 1.8.6, b is nilpotent. Therefore, § is a Cartan subalgebra.
Conversally, suppose h is a Cartan subalgebra of g. Put

& = {go(adg(z)), z € b}

As b is nilpotent, b is included in any element of £. Therefore, by Proposition 1.8.6, £ has a least
element. Let z € h be such that ¢ = go(adg(2)) is that least element of £.
We want to show that h = ¢. Suppose to the contrary that b C e (strict inclusion). Then,

Ve eb, bCgoladg(x)).

There is a natural representation of h on the nonzero vector space ¢/h given by the Lie algebra
morphism
p b — gl(e/b)
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which sends h € h to the endomorphism of ¢/h induced by adg(x). But, as
¢ C go(adg(x)), Vaeb,

the endomorphisms in the image of p are all nilpotent. We may therefore apply Engel’s Theorem
to the image of p and get that there exists a nonzero element of ¢/h in the kernel of p(z), for all
x € h. That is, there exists y € ¢\ b such that, for all x € b, [z,y] € h. But, this contradicts
the equality h = Ny(h). Thus, we conclude that h = e¢; in particular h is an Engel subalgebra
of g. In addition, suppose z is an element of g such that go(adg(x)) € b. Then, clearly, x € b
and therefore, go(adg(x)) € £, so that go(adg(z)) = h. We have shown that b is a minimal Engel
subalgebra.

All in all, point 1 of the statement is established. Clearly, point 2 follows at once. m

Remark 1.8.9 - Let g be a finite dimensional nilpotent Lie algebra. Then, clearly, g is a Cartan
subalgebra of itself. Therefore, by Theorem 1.8.8, g is the unique Cartan subalgebra of g.

We now mention a couple of useful statements about the behavior of Cartan subalgebras with
respect to surjective morphisms of Lie algebras.

Proposition 1.8.10 — Let g and g’ be finite dimensional Lie algebras and let 7 : g — g’ be a
surjective morphism of Lie algebras. Assume the field k has cardinality greater than or equal to
2 dimk (g) + 1.

1. If b is a Cartan subalgebra of g, then w(h) is a Cartan subalgebra of g¢'.

2. Let b be a Cartan subalgebra of ¢'. Then, any Cartan subalgebra of 7=1(b') is a Cartan
subalgebra of g.

Proof. 1. Let b is a Cartan subalgebra of g. Then, § is nilpotent and, therefore, so is w(h). Let
now y € Ny (n(h)) and let z € g be such that y = 7(x). Since [7(x), 7(h)] C 7(h), we have that
[x,h] C h+ker(m). But, clearly, [z, ker(m)] C ker(7). Hence, we get that [z, h+ker(w)] C h+ker(r).
On the other hand, the subalgebra h + ker(7) is a subalgebra of g that contains the Engel subal-
gebra b, by Theorem 1.8.8. Therefore, by Proposition 1.8.3, f + ker(r) is its own normaliser. As
a consequence, we get that x € b + ker(w), which gives that y = n(z) € 7(h). So, 7w(h) is its own
normaliser.

2. Let h be a Cartan subalgebra of m—!(h’). Then, by definition, b is nilpotent. On the other
hand, by Point 1, 7(h) is a Cartan subalgebra of g’, included in the Cartan subalgebra b’. Thus,
by Theorem 1.8.8, 7(h) = b'. Now, let € Ny(h). Then, [7(z),n(h)] C 7([z,h]) € 7(h). There-
fore, as mw(h) = b’ is a Catan subalgebra of ¢’, w(z) € w(h), that is: = € bh + ker(w). But
b+ ker(m) Ch+71(h) S al(h). So, x € 7~ (h). We have shown that z € Ny-1(y(h) and,
as b is a Cartan subalgebra of 7=1(b’), = € b. n

Our final aim in this subsection is to show that, wken k is algebraically closed and of charac-
teristic 0, all the Cartan subalgebras of a solvable Lie algebra are conjugate under the action of
the group of Lie algebra automorphisms. Actually, a little bit more is true: they are conjugate
under the action of a group smaller than the group of all Lie algebra automorphisms and, since
this smaller group is easier to handle, we will work with it.

Remark I.8.11 - On some specific automorphisms of a Lie algebra — In this remark, we
suppose k is algebraically closed and of characteristic 0. We fix a finite dimensional Lie algebra
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g and denote by Aut(g) the group of Lie algebra automorphisms of g.
1. Consider now an element x in g such that the derivation adg(«) is nilpotent. Then, Exercise
1.3.6 shows that exp(adg(z)) € Aut(g). We denote by Int(g) the subgroup of Aut(g) generated
by such automorphisms. Elements of Int(g) are called inner automorphisms of g.

Let now z € g and ¢ € Aut(g). Then, clearly, ¢ o adg(z) 0 ¢~ = ady(¢(x)). In addition, if
adg(z) is nilpotent, then so is adg(¢(x)) and

¢ o exp(ady(w)) 0 9~ = exp(adg(¢())).

It follows that Int(g) is a normal subgroup of Aut(g).
2. Let y € g and let A € k. We put:

ax(adg(y)) = {= € g| (adg(y) — Aidg)* (z) = 0, k> 0}

(this generalises the notation introduced in Remark 1.8.1). As is well-known, gy (ad4(y)) # (0) if
and only if A is an eigenvalue of ady(y) and

g= P aady).

A€eSpec(adg(y))

We are in the context of Exercise 1.3.5 (with d = adg(y)) which gives:

VA pek, [ga(adg(y)), gu(adg(y))] € ga+uladg(y)).

This shows that, for all A € k\ {0}, any element of gy (adq(y)) is ad-nilpotent.
3. Put
N = | axlady(y)).

yeg,Aek\{0}

The results of the previous point show that any element of N(g) is ad-nilpotent. Therefore,
we can consider the following subgroup of Int(g), generated by the automorphisms exp(adg(z)),

x € N(g):
&(g) = (exp(ady(z)), = € N(g)) < Int(g). (1.8.4)

It is easy to show that, for all o € Aut(g), y € g and X € k, gr(adg(o(y))) = o(ga(adg(y)).
Therefore, N(g) is stable under Aut(g). Using the same arguments as in point 1 above, we
deduce that £(g) is a normal subgroup of Aut(g).

It turns out that the group £(g) has good properties with respect to subalgebras and homo-
morphic images, as we show now.
3.1. Consider a Lie subalgebra b of g. It is immediate that A'(h) C N (g). Further, put

E(g;h) = (exp(ady(x)), © € N(b)) € E(g)-

Now, let € N(h). By definition, there exist y € h and A € k \ {0} such that = € hy(ady(y)).
Then, = € gx(adg(y)). We have that adg(x) is a nilpotent endomorphism of g and that ady(z)
is a nilpotent endomorphism of b (with nilpotency index less than or equal to that of adg(x)).

Therefore, we may consider the linear automorphism 7 = exp(adg(z)) = >, cn ,—'adg(:c)i of g. Of
il

course, 7 stabilises h and we have

my = 3 ady(e)' = explady (x)).
1€EN
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It follows that any element of £(g; h) stabilises b and that
E(b) ={op, o € E(mh)}.

3.2. Consider now a Lie algebra h and a surjective morhism ¢ : g — b of Lie algebras.
An immediate observation shows that:

Vreg VAck VkeN, go(adg(z)— Nidy)* = (ady(e(x)) — Aidy)* o ¢. (1.8.5)

Hence, Vo € g, VA € k, ¢(gr(adg(z))) € ba(ady(¢(x))). But, we have g = P, gx(ady(x)),
h =D, br(ady(o(z))) and ¢ is surjective, thus

Veeg VAek, ¢(ga(adg(z))) = halady(d())).

It follows that
$(N(g)) = N(b).
Now, let y € N(h). By the above, there exists x € N (g) such that y = ¢(z). Now, applying
(I.8.5), we get that: exp(ady(y)) o ¢ = ¢ o exp(adg(x)).
Now, clearly, the following statement follows: For all 7 € £(h), there exists o € £(g) such
that the diagram

commutes.
We are now in position to establish the following statement.

Theorem 1.8.12 — Assume k is algebraically closed and of characteristic 0. Let g be a finite
dimensional solvable Lie algebra g and denote by £(g) the group of Lie algebra automorphisms of
g introduced in (1.8.4). If b1 and bha are Cartan subalgebras of g, then there exists o € £(g) such
that ba = o(b1).

Proof. We procede by induction on the dimension of g. As g is solvable and non-zero, we cannot
have [g,g] = g and it is therefore abelian. Hence, by Remark 1.8.9, the result holds.

Assume now that n € N* is an integer such that the result holds for all solvable Lie algebra of
dimension bounded by n and consider a solvable Lie algebra of dimension n+ 1. If g is nilpotent,
then the result holds by Remark 1.8.9. We thus assume that g is solvable but not nilpotent. The
last nonzero term in the derived series of g is therefore a proper, non-zero abelian ideal of g.
Hence, g posseses non-zero, proper, abelian ideals. Let i be a non-zero, proper, abelian ideals
of g, of minimal dimension. We denote by m : g — g/i the canonical projection and notice
that, by the induction hypothesis, the Cartan subalgebras of g/i are conjugate under £(g/i). By
Proposition 1.8.10, 7(h1) and 7(h2) are Cartan subalgebras of g/i. Hence, there exists 7 € £(g/1)
such that

m(h2) = 7(7(h1))-
On the other hand, by Remark 1.8.11, there exists o € £(g) such that the diagram

™

g g/i
)
g

g/i
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commutes. Now, from the identities 7(7(h1)) = 7(h2) and Tom = 7woo, we get that 7(o (7~ (7 (h1))))
7(h2). Since ker(m) C o(7~1(m(h1))), it follows that

o(r N (w(h1))) = 7 (7 (ha)). (1.8.6)

First case: suppose that we have a strict inclusion
7 Yn(h2)) C g. (1.8.7)

Of course, the Lie subalgebra 7—!(7(h2)) of g is solvable, as g is. Further, it contains the Cartan
subalgebras ho and o(h1) of g. Hence, ho and o(h1) are Cartan subalgebras of the solvable Lie
algebra 7= 1(7(h2)). Thus, under our assumption that 7~!(7(hs)) C g, the induction hypothesis
apply to show that there exists an element of &(7~!(m(h2))) that sends o(h1) to ha. But, as
shown in Point 3 of Remark 1.8.11, elements of £(7~1(7(h2))) are restrictions to m1(7(h2)) of
elements of £(g). So, there exists v € £(g) such that ha = v(o(h1)). Thus, under assumption
(1.8.8), we are done.

Second case: suppose, alternatively, that we have

7Y r(b2)) = g. (1.8.8)

Thus, by (1.8.6), we have that o(7~!(n(h1))) = 7 Y(w(h2)) = ¢ and, hence, 7~ 1(n(h1)) =
7 1(n(h2)) = g. So,
g=br+i="bhy+1i

On the other hand, by Theorem 1.8.8, by is a minimal Engel subalgebra. In particular, there
exists € g such that hy = go(adg(x)). Now, the endomorphism adg(x) of g stabilises i. So, i
decomposes as the direct sum of generalised eigenspaces for adg()y;:

i = @aekin(adg(w)i) = io(adg(z);) ® ix(adg(2)}), (1.8.9)

where i,(adg(7)};) stands for the sum of all the generalised eigenspaces associated to nonzero
eigenvalues (see the notation introduced in (I.8.1). Similarly, we have the decomposition of g as
the direct sum of the generalised eigenspaces of adg(x):

9 = Orexdx(adg(7)) = go(adg(z)) ® g«(ady(2)) = b2 @ g« (ady(2)), (1.8.10)

where g.(adg(z)) stands for the sum of all the generalised eigenspaces associated to nonzero
eigenvalues. Of course, we have that:

VA ek, ix(adg(z);) = galadg(z)) Ni.
In addition, by Exercise 1.3.5 (applied with A = g and d = adq(x)):

VA ek, [ga(adg(x)), gu(adg())] € grsy(adg(z)). (18.11)

Hence, as i is an abelian ideal,we have that

VA ek, [g, i)\(adg(m)h] [bg +1, iA(adg(:v)h]
[b2, ix(adg(2)]
[g0(adg(2)), ix(adg (2) ]

ga(adg(z)) Ni
ix(adg(z)};)-

in 1



That is: all the summands in (I.8.9) are abelian ideals of g. Now, as i is minimal among
nonzero abelian ideals of g, there must exist A € k such that i = iy(ady(z);). But, the equality
i = ip(adg(z);) would entail i C hy and thus g = bg, contradicting the assumption that g is
not nilpotent, so such a A is nonzero. But then, g = hy @ i and it follows from (1.8.10) that
i = gx(adg(x)). We have shown that:

X € k\ {0}, such that i= gy(adg(z)).

We are now in position to exhibit an element of £(g) that sends by to ho. First, as g = by + 1,
there exist y € h; and z € i such that = y 4+ z. On the other hand, ad4(z) acts invertibly on i
since i is a generalised eigenspace of ady(x) associated to a nonzero eigenvalue. Thus, there exists
Z' € isuch that z = [z,2/]. Now, 2/ being in a generalised eigenspace of ady(x) associated to a
nonzero eigenvalue, its action on g is nilpotent, by (I.8.11). So, we can consider the automorphism
o = exp(ady(2)) of the Lie algebra g, and o € £(g). But clearly, i being abelian, ady(2’)? = 0.
Hence,
o = exp(ady(z')) = idg + adg(2').

In particular, o(z) = y. But, using (1.8.5) we have that o(go(adg(z)) = go(adg(o(z)). So

o(b2) = o(go(adg(x)) = go(adg(o(x)) = go(ady(y))-

Therefore, go(adg(y)) is a Cartan subalgebra of g. On the other hand, h; being nilpotent, since
y € b1, b1 € go(adg(y)). As both by and go(adg(y)) are Cartan subalgebras of g, they must
be equal (see Point 1 of Theorem 1.8.8). All in all, we get that h; = o(h2). The proof is now
complete. n

We will eventually show that Theorem 1.8.12 extends to the case of an arbitrary finite dimen-
sional Lie algebra. This will be done using Borel subalgebras. We thus introduce the latter right
now. However, their detailled study will be postponed since it uses properties of semisimple Lie
algebras that are not yet established.

Definition 1.8.13 — Let g be a finite dimensional Lie algebra. A Borel subalgebra of g is a Lie
subalgebra of g that is maximal among solvable Lie subalgebras of g.

Lemma 1.8.14 — Let g be a finite dimensional Lie algebra and b be a Borel subalgebra of g.
Then, b = Ng4(b).

Proof. Let € Ng(b). Then, the Lie subalgebra b + ka of g satisfies [b + ka,b +ka] C b. It
follows, b being solvable, that b + kx is solvable. Therefore b = b 4 kx, so that « € b. ]

Lemma 1.8.15 — Let g be a finite dimensional Lie algebra and let m : g — g/Rad(g) be the
canonical projection. Then, direct and inverse image under w establish a bijective correspondence
between Borel subalgebras of g and Borel subalgebras of g/Rad(g).

Proof. Notice first that, since Rad(g) is a solvable ideal of g, then any Borel subalgebra of
g must contain Rad(g). Now, direct and inverse image establish a bijective correspondence
between subalgebras of g and subalgebras of g/Rad(g), and, by the previous observation, this
correspondence preserves solvability (see Exercise 1.5.3). The rest is clear. ]
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Part 11

Semisimple Lie algebras.
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II.1 Complete reducibility of finite dimensional representations.
Assume k is algebraically closed of characteristic 0.

Definition I1.1.1 - Let g be a Lie algebra and B : g x g — k be a symmetric bilinear form
over g. Then, B is called invariant if

z,y,2 €9, Bz,[y,z2]) = B([z,y],2).

Lemma I1.1.2 — Let g be a finite dimensional semisimple Lie algebra and (V, f) a faithful finite
dimensional representation of g. Consider

B + gxg — k
(@y) = Te(f(z)o fly)

Then, By is an invariant, nondegenerate and symmetric bilinear form on g.

Proof. Bilinearity and symmetry of the form [y are clear. The invariance of 3; is easy. Let
now Rad(ff) be the radical of B¢. By the invariance of 8, Rad(8¢) is a Lie ideal of g. Now,
f(Rad(By)) is a Lie subalgebra of gl(V'), isomorphic to Rad(fy), since f is faithful. On the
other hand, Cartan’s criterion for solvability clearly applies to f(Rad(ff)) and shows that it is
solvable. It follows that f(Rad(f8y)) is solvable and hence that so is Rad(f). But g is semisimple,

so Rad(8f) = (0). "

Lemma I1.1.3 - Let g be a finite dimensional Lie algebra, B : g x g — k be an invariant,
nondegenerate, symmetric bilinear form on g and (V, f) a representation of g. Let (z1,...,zy)
be a basis of g and (y1,...,yn) be its dual basis with respect to B. Then, the element

c= Z f(zi) o f(y;) € Endg(V)

1<i<n

is a morphism of representation of (V, f).

Proof. Let z be an element of g. Consider elements a; ;,b; ; € k, 1 <14, j < n, such that

[z, z;] = Z a; jT; and [z, 4] = Z bi jy;-

1<j<n 1<j<n

By the invariance of 3, we have that, for all 1 <4, < n,

aij = B([z zil,y;) = —B([xi, 2], y5) = —B(ws, [2,y5]) = —bja

Recall now that [f(z),—] : Endg(V) — Endg(V)) is a derivation of the associative algebra
Endk(V) SO,

[f(2),c] = Zl§i<n[ (2), f(zi) 0
= Zl§i<n[ (2), [ (2
= Zl§i<n ([z,2i]) o
= Zlgi,ggn aijf(xj) o
= Zlgi,jgn ai,jf(xj) fyi) + El§i7j§n bj,lf(x])
= 219;,35”(@1‘,]‘ +bj.i) f(x5) o f(yi)
= 0.

f (i)l
Jo f(yi)+ Zl<z<n (i) o [f(2), f(y)]
(yl) +Zl<1<n ( ) ([27 1])
Eyz) + 219,]3” i f(wi) o E ;

~ —

Which proves that ¢ is a morphism of representation of (V, f). n
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Remark I1.1.4 - Let g be a finite dimensional semisimple Lie algebra and (V, f) a faithful finite
dimensional representation of g. Lemma II.1.2 proves that

ﬁf LogXxXg — k
(,y) = Tr(f(z)o f(y))

is an invariant, nondegenerate, symmetric bilinear form on g. Let (z1,...,x,) be a basis of g and
(y1,---,yn) be its dual basis with respect to 8. Then the element,

c= Y fzi)o f(yi) € Endy(V) (I1.1.1)

1<i<n

is a morphism of representation of (V, f), by Lemma II.1.3. In addition, we have

Tr(c) = > Tr(f(zi)o f(yi) = Y Bylxiyi) = dimy(g). (I1.1.2)

1<i<n 1<i<n

Suppose in addition that (V, f) is simple. Then, by Schur’s Lemma, ¢ € kidy . It follows that

dimk (g) .
= ——idy.
T Ty (V)Y
In particular, the above element is independant of the choice of the basis (z1,...,z,). For this

reason, we denote it ¢y and call it the Casimir element associated to f.

We are now ready to prove Weyl’s Theorem of complete reducibility of finite dimensional
representations of finite dimensional semisimple Lie algebras. According to Theorem 1.2.21, the
complete reducibility of a representation is equivalent to the fact that it satisfies the direct sum-
mand property. Hence, we prove that any finite dimensional representation of a finite dimensional
semisimple Lie algebra does satisfy the direct summand property.

Lemma II.1.5 — Let g be a finite dimensional semisimple Lie algebra and let (V,p) be a finite
dimensional representation of g. If W is a codimension 1 subrepresentation of (V,p), then there
exists a subrepresentation X of (V,p) such that V=W @& X.

Proof. We proceed by induction on the dimension of V. The result is trivial whenever V has
dimension less than or equal to 1. We now consider a finite dimensional representation (V, p) of
g with dimg (V') > 1 and a codimension 1 subrepresentation W of V.

Suppose W is not simple. Then, there exists a subrepresentation W’ of V' such that

O)cWwW cwcV.

We consider the quotient representation (V/W’ p) of g and denote by # : V. — V/W’' the
canonical projection. Clearly, (W) is a codimension 1 subrepresentation of V/W’ and, since
dimg (V/W’) < dimg(V), the induction hypothesis yields a subrepresentation W of V' such that

W CW, dimg(W)=dimx(W')+1 and V/W =x(W)®n(W).

Now, dimy (W) = dimy, (W')+1 < dimg (V) — 1. So again, we may apply the induction hypothesis
to W and its subrepresentation W’. It provides a subrepresentation X of W, of dimension 1,
such that -

wW=weX.

38



But, on the one hand, we have that WNX CWNW =W/, sothat WNX C W NX = (0).
And, on the other hand, dimy (W) + dimy(X) = (dimg (V) —1) +1 = dimg (V). Therefore, we get
that

V=wWaoX.

So, in case W is not simple, it has the desired complement subrepresentation.

Suppose now that W is simple. Observe first that we may suppose, without loss of generality,
that p is faithful. Hence, to the arbitrary choice of a basis of g, we may associate an element ¢
as in (II.1.1); the element ¢ is an endomorphism of the representation V' (Lemma II.1.3) which,
by construction, stabilises all the subrepresentations of V.

Observe that, g being semisimple, we have that g = [g, g], from which it follows that g acts
trivially on any one dimensional representation. Therefore, g acts trivialy, on V/W. In other
words, p(g)(V) € W. By construction, we therefore have ¢(V) C W. Further, by Schurs’s
Lemma, c¢ acts on W by scalar multiplication: there exists A € k such that ¢ = Aidy. All in
all, in any basis of V' obtained by completing one of W, the matrix of ¢ is as follows:

A0 ... 0 =«
0

: .0

0O ... 0 X %
0 0 0

But, by (II.1.2), we know that the trace of ¢ is nonzero. Hence, A # 0. From which it follows
that ker(c) is a one dimensional subspace of V' and W Nker(c) = (0), so that:

V =W @ ker(c).

It remains to notice that, ¢ being an endomorphism of representation, ker(c) must be a subrep-
resentation to conclude that ker(c) is the desired complement to WW.
The proof is now complete. n

Theorem I1.1.6 — (Weyl’s Theorem.) Let g be a finite dimensional semisimple Lie algebra.
Any finite dimensional representation of g is completely reducible (equivalently, has the direct
summand property).

Proof. Let (V,p) be a finite dimensional representation of g. By Theorem 1.2.21, the result
amounts to showing that (V, p) has the direct summand property. Of course, the result holds if
(V, p) is simple.

Suppose (V, p) is not simple and let (0) C W C V be a subrepresentation of V. We consider
the representation (Homy (V, W), ) of g as defined in Exercise 1.2.7. We consider the two following
subspaces of Homy(V, W): let V (resp. W) be the subspace of linear maps f : V. — W which
act by scalar multiplication (resp. by 0) on W. Let f € V and let A € k such that f = Aidw .
Then, by definition of u, we have that,

Veeg YweW, (u(x)(f)(w)=p(x)o f(w)—fop(@)(w) = px)Aw) = Ap(x)(w) = 0.

Therefore, ¥V and W are subrepresentations of (Homy(V, W), ) and, further, the action of g
on this representation sends V into W. In addition, it is clear that W is a subspace of V of
codimension 1.
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Therefore, we are in position to apply the result of Lemma I1.1.5: there exists a one dimen-
sional subrepresentation of ¥V which is a complement of W. Let f € V be a basis for such a
complement. Multiplying f by a nonzero scalar, if necessary, we may suppose that fiy, = idw.
As we already noticed in the proof of Lemma I1.1.5, g must act trivially on the subrepresentation
kf, since it is semisimple. This means that f is, actually, a morphism of representations from V'
to W. As such, its kernel must be a subrepresentation of V. Further, as fjyr = idw, we have
that ker(f) N W = (0). Now, an obvious dimension argument gives that

V=W ®ker(f).
Therefore, ker(f) is the desired complement to W in V. "

Corollary I1.1.7 — Let b be a finite dimensional Lie algebra. If g is a semisimple ideal of g,
then there exists a unique Lie ideal i of b such that

=gt

Proof. The proof uses two representations attached to ady : h — gl(h).

Consider first the finite dimensional representation of g: (ady)y : g — gl(h). Clearly, g is a
subrepresentation of h and thus, by Weyl’s Theorem, there exists a subrepresentation i of § such
that h = g @ i. We have that [g,i] C i because i is a subrepresentation of h and [g,i] C [g,h] C g
because g is an ideal of . Therefore, we have

lg,i] Cing=(0).

Consider now the subrepresentation f : h — gl(g) of (h,ady). We claim that i = ker(f).
The inclusion i C ker(f) has been proved before. Conversaly, let z € ker(f). Write = x4 + zj,
g €9, 7; € 1. For all y € g, we have

0=[z,y] = [zq4,y] + [z, y] = [2q, Y]

It follows that x4 € Z(g). But, g being semisimple, Z(g) = (0) and we get that z € i. We have
shown that i = ker(f). In addition, as i is the kernel of f, it must be an ideal of h. The existence
is established.

Unicity is easy as, using the same argument as above, any i as in the statement must equal

ker(f). "

I1.2 Derivations.

Assume k is algebraically closed of characteristic 0.

Recall from Remark 1.3.8 that, given any Lie algebra g, we have adg(g) € Derk(g) C gl(g)
and that Dery(g) is a Lie subalgebra of gl(g) and adg(g) a Lie ideal of the Lie algebra Dery(g).

We now proceed to show that, if g is a finite dimensional semisimple Lie algebra, then ady(g) =
Derg(g).

Proposition I1.2.1 — Let g be a finite dimensional semisimple Lie algebra. Then adg(g) =
Derg(g); that is, all the derivations of g are inner derivations.
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Proof. We work in the finite dimensional Lie algebra Dery(g) and consider its Lie ideal ady(g)
(see Remark 1.3.8). By the semisimplicity of g, the map ady : g — Derk(g) is injective. Hence,
adg(g) is a semisimple Lie ideal of Dery(g). Thus, we are in position to apply Corollary I1.1.7
which asserts that there exists an ideal i of Derg(g) such that

Derg(g) = adg(g) @ i.
Let d € i. For all z € g, we have that
adg(d(z)) = [d,adg(x)] = 0;

indeed: the first equality above comes from Point 2 of Remark 1.3.8, and the second follows from
the fact that i and adg(g) are ideals of Dery(g) with trivial intersection. Hence, d(x) is in the
center of the semisimple Lie algebra g, so that it is zero. We have shown that d = 0. Hence
i = (0), which proves the statement. "

I1.3 Abstract Jordan-Chevalley decomposition.

Assume k is algebraically closed of characteristic 0.

The results in this section show that any element of a finite dimensional semisimple Lie al-
gebra may be written uniquely as the sum of a nilpotent and a semisimple elements (in a sense
that needs to be defined) which commute. This amounts to an abstract form of the classical
Jordan-Chevalley decomposition of endomorphisms. The point with this decomposition is that
it is universal in some sense, since this decomposition recovers the classical one on any finite
dimensional representation.

The first notion defined below has already been introduced; we recall it for the sake of sym-
metry.

Definition I1.3.1 - Let g be any finite dimensional Lie algebra and let x € g.
1. We say that x is ad-nilpotent if the endomorphism ad(x) : g — g is nilpotent.
2. We say that x is ad-semisimple if the endomorphism ad(x) : g — g is diagonalisable.

The next Theorem establishes the existence of an abstract Jordan-Chevalley decomposition
for any finite dimensional semisimple Lie algebra.

Theorem I1.3.2 — Abstract Jordan-Chevalley decomposition — Let g be a finite dimen-
sional semisimple Lie algebra. For all x € g, there exists a unique pair (z,,xs) of elements of g
with x,, ad-nilpotent, xs ad-semisimple, [x,,xs] =0 and x = x, + xs. Further, any element of g
which commutes with x also commutes with s and ..

Proof. Since g is semisimple, the adjoint representation is faithful. In addition, by Proposition
I1.2.1, its image is Derg(g). Hence, the adjoint representation induces an isomorphism of Lie
algebras as follows:

g —> Derg(g)

x = adg(x)

Now, let = € g. The endomorphism adg(z) € Endk(g) as a (usual) Jordan-Chevalley decomposi-
tion. That is, there exist endomorphisms s and n in Endy(g) with s diagonalisable, n nilpotent
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and such that adg(z) = s +n and s and n commute. But, by Proposition 1.3.10, s and n must
belong to Derg(k). Hence, there exists x4, z, € g such that adg(xs) = s and adg(zy,) = n. It then
follows from the properties of s an n that x, is ad-nilpotent, =, is ad-semisimple, [x,,xs] = 0,
T = x, + x5 and that, any element which commutes with & must also commute with zs and x,,.
In addition, the unicity in the Jordan-Chevalley decomposition for endomorphisms implies the
unicity of such a pair (xg, ;). n

Definition 11.3.3 — Let g be a finite dimensional semisimple Lie algebra. Let x € g. If (zy, zs)
is the pair of elements of g whose existence and unicity is given by Theorem 11.3.8, x,, is called
the nilpotent part of x, x5 the semisimple part of x and the decomposition x = x,, + x5 s called
the abstract Jordan-Chevalley decomposition of x.

It will be useful latter to know how the abstract Jordan-Chevalley decomposition behaves
with respect to the decomposition of a semisimple Lie algebra as the sum of its simple ideals (see
Theorem 1.7.19). This is the aim of the following exercise.

Exercise 11.3.4 — Let g be a nonzero semisimple Lie algebra, t € N*, gi,...,gs, semisimple
Lie subalgebras of g such that, for all 1 < i # j < t, [g;,g9;] = 0. Consider z € g and write
xr = Zl<i<t Ti, Ti € @i forall 1 <i<t.

1. If = is ad-semisimple then, for all 1 < i < t, z; is ad-semisimple both as an element of g and
as an element of g;.

2. If x is ad-nilpotent then, for all 1 < i < ¢, x; is ad-nilpotent both as an element of g and as an
element of g;.

3. Let x5 be the semisimple part of x and z;, its nilpotent part. For 1 < i < ¢, let (z;)s be the
semisimple part of z; and (z;), its nilpotent part, as an element of g;. Then, for all 1 < < ¢,

Ts = Zlgigt(mi)s and x, = Zlgigt(mi)n'

At this stage, a first problem arises concerning the abstract Jordan-Chevalley decomposition,
that we have to fix in order to avoid ambiguity. Indeed, let V be a finite dimensional vector space
and let g C gl(V) be a semisimple Lie subalgebra of gl(V'). Given any element of g we have at our
disposal the usual Jordan-Chevalley decomposition of that element (that is, as an endomorphism
of the vector space V) and its abstract Jordan-Chevalley decomposition (as an element of the
semisimple Lie algebra g). This leads to the obvious question of the relationship between these
decompositions. This problem is fixed by Lemma I1.3.6, via the preparatory Lemma I1.3.5.

Lemma I1.3.5 — Let V be a finite dimensional vector space and let g C gl(V') be a semisimple
Lie subalgebra of gl(V)). For all x € g, g contains the semisimple and nilpotent part of the
Jordan-Chevalley decomposition of x (as an endomorphism of Endg(V)).

Proof. Let V be the set of subrepresentations of V' (seen as a representation of g by means of
g N gl(V)). For all W € V, let

gw = {y € g[(V)’ ’y(W) - W)’ Tl"(ym/) = 0} .

In addition, let

g« = Naan (@) ( N gw) Cgl(V)

wey

and observe that g, is a Lie subalgebra of gl(V). We wish to show that g = g..
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First, it is clear that, for all W € V, g C gw. Indeed, W is a subrepresentation of V' (for g)
and g = [g, g since g is semisimple (see Corollary 1.7.20), so that the restriction of any element
of g to a subrepresentation W is a commutator and, hence, has zero trace. We have shown that
g g g*'

We now show the converse inclusion. To start with, observe that g is actually an ideal of the
Lie algebra g., since g. € Ny(1)(g). So, by Corollary I1.1.7, there exists a unique Lie ideal i of
g« such that

g« =g&i

Consider y € i. If W is a simple subrepresentation of V' for g, then y(W) C W, so that y induces
an endomorphism of W and, since [y,g] C [i,g] CiNg = (0), yw is actually an endomorphism
of the representation W of g. By Schur’s Lemma this implies that there exists A € k such that
yjw = Aidw and, since in addition Tr(yy) is zero, then yjy = 0. But, by Weyl’s Theorem, V' is
the sum of such simple representations, so y = 0. We have shown that i = (0) and therefore that
9= O«

It remains to show that g* contains the semisimple part and nilpotent part of each of its
element. Let z € g. and let d and n be its semisimple and nilpotent part, respectively (as
an element of Endg(V)). We know that there exist polynomials D and N in k[T (without
constant terms) such that d = D(z) and n = N(z). Thus, d and n stabilise any W € V. In
addition, since ny is nilpotent, its trace is zero, and so is that of djy since d = x — n. Hence,
n,d € (Yyyey gw- On the other hand, x € Ny (g); that is adgyy(7)(g) € g. But, by Lemma
1.6.3, adgv)(z) = adgy)(d) + adgy(n) is the Jordan-Chevalley decomposition of adg ().
Hence, both adyyy(d) and adgy)(n) are polynomials in adgy(x). Thus, adgyy(d)(g) € g and
adgiv)(n)(g) C g. In other terms, d,n € Ny y(g). We have proved that d,n € g.. This finishes
the proof. n

Lemma I1.3.6 — Let V be a finite dimensional vector space and let g C gl(V') be a semisimple
Lie subalgebra of gl(V'). For all x € g, the abstract Jordan-Chevalley decomposition of x (that
is, as an element of the semisimple Lie algebra g) coincides with its usual Jordan-Chevalley
decomposition (that is, as an endomorphism of Endg(V)).

Proof. Write z = d+n the Jordan-Chevalley decomposition of z as an element of Endg(V'), with d
semisimple and n nilpotent. We know (by Lemma 1.6.3) that adyy(x) = adgy(d) + adgiv)(n)
is the Jordan-Chevalley decomposition of adgy)(z). We also know (Lemma I1.3.5) that d,n € g.
Hence, adgy) (%), adgiv(d), adgv)(n) € gl(V) actually leave g invariant and, clearly,

adgivy(z))g = adg(w), adgvy(d))g = adg(d) and adgyy(n)g = adg(n).

In addition, ady(d) is semisimple, as the restriction to g of the semisimple endomorphism adg(y-) ()
of gl(V'), and similarly, adg(n) is nilpotent, as the restriction to g of the nilpotent endomorphism
adgvy(n) of gl(V). So, the identity

adg(x) = adg(d) + adg(n),

which we deduce from the above, exactly says that * = d + n is the abstract Jordan-Chevalley
decomposition of x. n

The following Theorem shows that, actually, the abstract Jordan-Chevalley decomposition of
a semisimple Lie algebra provides a universal procedure to recover the usual one on any finite
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dimensional representation.

We need a lemma first. Recall (see Corollary 1.7.20) that any homomorphic image of a
semisimple Lie algebra is semisimple.

Lemma I1.3.7 - Let g be a finite dimensional semisimple Lie algebra, i be an ideal of g and
let m : g — g/i be the canonical projection. For all x € g, if x = x5 + xy, is the abstract
Jordan-Chevalley decomposition of x, then w(x) = m(xs) +m(xy) is the abstract Jordan-Chevalley
decomposition of w(x) in the (semisimple) Lie algebra g/i.

Proof. Since i is an ideal of g, it is a subrepresentation of the adjoint representation (g,ady) and
we have a commutative diagram

adg

{p € gllg)lp() C i} C gl(g)

g
iﬂ adg /i in.
g/i gl(g/i)

where II sends an element of {¢ € gl(g)|¢(i) C i} to the endomorphism it induces on g/i.

Let x € g and let * = x5 + x,, be its abstract Jordan-Chevalley decomposition in g. By
definition, adg(x,) is semisimple and adg(z,,) is nilpotent, from which it follows that IT o adg(zs)
is semisimple and IT o adg(,) is nilpotent, that is ady/(m(zs)) is semisimple and adg;(7(zn))
is nilpotent. Of course, [7(zs),7(zy)] = 0. So, 7(z) = w(zs) + 7(xy,) is the abstract Jordan-
Chevalley decomposition of w(z) in the semisimple Lie algebra g/i. "

Theorem 11.3.8 — Let g be a finite dimensional semisimple Lie algebra and f : g — gl(V)
a finite dimensional representation of g. For all x € g, if x = xp + x5 is the abstract Jordan-
Chevalley decomposition of x, f(zy) is a nilpotent endomorphism of V and f(xs) a semisimple
endomorphism of V.. That is, f(x) = f(xn) + f(xs) is the usual Jordan-Chevalley decomposition
of the endomorphism f(z) : V — V.

Proof. We have the following commutative diagram

g/ ker(f)

where 7 is the canonical projection and f the faithful representation of g/ ker(f) induced by f.
Let z € g and let © = x5+ x,, be its abstract Jordan-Chevalley decomposition. By Lemma I1.3.7,
m(x) = m(zs) + w(xy) is the abstract Jordan-Chevalley decomposition of 7(x) in the semisimple
Lie algebra g/ ker(f). It follows, by Lemma I1.3.6, that f o m(x) = f o m(ws) + f o m(x,) is the
usual Jordan-Chevalley decomposition of f o (z) in gl(V). In other words, f(x) = f(xs) + f(xn)
is the usual Jordan-Chevalley decomposition of f(z) in gl(V'). "

II.4 Finite dimensional representations of sly(k).

Assume k is algebraically closed of characteristic 0.
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Of course, the Lie algebra sly(k) is of interest on its own as it is the first example of a simple
Lie algebra over k.

However, there is a much better reason to be interrested in sly(k): its representation theory
is the key to many subtle properties of the structure of any semisimple Lie algebra g over k.
This is due to the ubiquity of sla(k) in any semisimple Lie algebra, as we will see via the Cartan-
Chevalley decomposition. For this reason, g, or even any of its representation, may be considered
(actually in many different ways) as a representation of sls(k), which provides a lot of information.

We now describe finite dimensional representations of sla(k). According to Weyl’s theorem,
we may concentrate on simple representations.

Recall that sly(k) is the Lie subalgebra of gla(k) consisting of those matrices whose trace is
zero. The elements z, y and h form a basis of sly(k), where:

01 1 0 0 0
=(oa) =00 h) w=(io)
In addition, the following relations hold:
[z,y] = h, [h,x] =22 and [h,y] = —2y. (I1.4.1)

Lemma I1.4.1 — Let (V, p) be a finite dimensional representation of sla(k). The following holds:
1. p(h) is a semisimple endomorphism;
2. p(x) and p(y) are nilpotent endomorphisms.

Proof. It follows easily from relations (11.4.1) that h is ad-semisimple and z and y are ad-nilpotent.
Thus, the result follows from Theorem I1.3.8. n

Motivated by Lemma II.4.1, we make the following definition.
Definition 11.4.2 Let (V,p) be a representation of sly(k). For all X € k put
Vi ={v eV ]hv=2v}.

A weight of (V,p) is an element A € k such that V) # {0}. If XA € k is a weight of (V,p), Vy is
called the weight space of V' associated to the weight X and any element of V) is called a weight
vector of weight .

Remark I1.4.3 Let (V, p) be a representation of sly(k).

1. For all weight A € k of (V, p), V) is just the eigenspace of p(h) of eigenvalue .

2. Suppose that V' is finite dimensional. By Lemma I1.4.1, V' = @, Vi and the set of weights
of (V, p) is finite.

Lemma I1.4.4 - Let (V, p) be a nonzero representation of sla(k). Then, the following holds.
1. For all X € k p(x)(Vy) C Vauo and p(y)(Vy) € Vy_a.
2. Let X\ € k. Suppose v € V) satisfies p(x)(v) = 0, then,
VEeN,  p(@)(p(y))(v) =t —t+1)p(y)' " (v).
3. Suppose V is finite dimensional. Then, there exists a weight A\ € k of (V, p) such that Vo = 0.
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Proof. Point 1 follows easily from relations (I1.4.1). Point 2 is proved by an easy induction on ¢
using relations (I1.4.1) and Point 1. Point 3 is clear as V' is finite dimensional. n

Lemma I1.4.5 — Let (V, p) be a nonzero finite dimensional representation of sla(k).
1. There exists a weight vector v € V' \ {0} in the kernel of p(x).
2. Let v be a nonzero weight vector of weight \ in the kernel of p(x). Put

1 . .
v_1 =0, vg=v, and v;= ,—‘yl.v, Vi € N.
7!

Then, for all i € N:

2.1. h.vi == ()\ — 21)02 i
2.2. yu; = (’L + 1)1}¢+1 N
2.3. T.v; = ()\ -1+ 1)%‘_1.

Proof. Points 1 and 2 follow easily from Lemma 11.4.4. n

Proposition 11.4.6 — Let m € N. Let (p, V') be a simple representation of dimension m + 1 of
sla(k). Let v be a nonzero weight vector of weight A € k in the kernel of p(x) (which exists by
Lemma I1.4.5). Fori € N, put v; = (1/i!)y*.v. Then, the following hold:

1. {vo,...,vm} is a basis of V;

2. A=mandV = @ogigm Vin—oi;

3. for 0 <1< m, Viy_9 = kuv,.

Proof. By Lemma I1.4.5, the family (v;);en spans a nonzero subrepresentation of V. Hence, it
spans V since (V, p) is simple.

Point 2.1 of lemma I1.4.5 shows that the v;, ¢ € N, are eigenvectors of p(h) with eigenvalue
A —2i. In particular, the nonzero vectors in (v;);en have pairwise distinct eigenvalues and, hence,
form a linearly independant family which, by the above is a basis of V. So, since V is finite
dimensional, there exists ¢ € N such that v; = 0. And, as Point 2.2 of the same Lemma shows, if
v; is zero for some ¢ € N, then v;;1 is also zero. Therefore, the nonzero elements in (v;);cny must

be (vg,...,Um).
Point 2.3 of lemma I11.4.5 gives 0 = z.v,41 = (A — m)v,,. Hence A = m since v, # 0. The
rest easily follows. n

Proposition I1.4.6 put drastic limits on simple finite dimensional representations of sly(k). It
also motivates the following definition.

Let m € N. Let B be the canonical basis of k™. Motivated by Proposition 11.4.6, we
introduce the morphism of k-vector spaces:

pm  sla(k) — gl (k™)

such that
0 m 0 0 0 0 O
0 0 m—1 " 0 Lo
. . . O 2
Matp(pm(z)) = : T Matg(pm(y)) =
o0
0 0 1 0
0 0 0 O 0 0 0
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0 m—2 0 0 0
Matss(pya (h)) =

0 0 e oo 0 —m+2 0

0 0 0 —-m

A straightforward calculation gives the following relations in the Lie algebra gl (km+1):

om(2), pm (V)] = pm([z,9]),  [Pm(h), pm(T)] = pm([h, x]), and  [pm(h), pm(y)] = pm([R, y])-

Hence, p,, defines a representation of the Lie algebra sly(k) in k™*! (see Exercise 1.1.22).
Lemma I1.4.7 — For allm € N, (k™*!, p,,) is a simple representation of sla(k).

Proof. We have to show that any nonzero subspace of k™! which is left stable by p,(h), pm(z)
and p,,(y) must equal k™*1,

Let V' be such a vector subspace and let v be a nonzero element of v. Write B = (e;)o<i<m
for the canonical basis of k11 and v = ) ;.. aei, a; € k, for all 0 < i < m. Denote by S
the support of v, that is, the subset of {0,...,m} containing those i’s for which a; is nonzero.
Letting h act on v, it is easy to see that, if the support of v has at least two elements, then
V must contain a nonzero element whose support as cardinality equal to that of S minus 1.
(This is because the eigenvalues of p;,(h) are pairwise distinct.) From this, we deduce that V'
must contain an eigenvector of p,,(h), that is: ¥V must contain an element of B. But then, letting
pm(x) and p,(y) act on this element of B, we see that V actually contains B. Hence V = k™!, u

The following Theorem gives an explicit classification of simple finite dimensional represen-
tations of sla (k).

Theorem II.4.8 - Classification of simple representations of sly(k) -

1. For allm € N, (K™Y, p,,,) is a simple representation of sl (k).

2. Letm € N. If (V, p) is a finite dimensional simple representation of sla(k) of dimension m+1,
then (V, p) is isomorphic to (k™1 p,,).

Proof. The first point is Lemma I1.4.7. Use the notation of Proposition I1.4.6. It is easy to
check, using Lemma I1.4.5 and Proposition I1.4.6, that the linear map k™ *! — V, ¢; — v; is an
isomorphism of representations between (k™*1, p,,,) and (V, p). n

I1.5 Toral subalgebras and Cartan-Chevalley decomposition.
Assume k is algebraically closed of characteristic 0.

Let g be a nonzero finite dimensional semisimple Lie algebra. Recall the adjoint representation

adg : g — gl(g)
x +— ad(x)’

which we know is faithful.
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If any element of g was ad-nilpotent, then Engel’s Theorem would entail that g is nilpotente,
which is absurde since it is semisimple and nonzero. Hence, by the existence of the abstract
Jordan-Chevalley decomposition, g must contain nonzero ad-semisimple elements. The line gen-
erated by such an element is a (nonzero abelian) Lie subalgebra of g whose elements are all
semisimple.

Definition II.5.1 - Let g be a nonzero finite dimensional semisimple Lie algebra. A toral Lie
subalgebra of g is a nonzero Lie subalgebra of g whose elements are all ad-semisimple.

Lemma I1.5.2 - Let g be a nonzero finite dimensional semisimple Lie algebra. Any toral Lie
subalgebra of g is abelian.

Proof. Let t be a toral subalgebra of g. By definition, for any element x of t, adg(x) is semisimple
and thus so is ad¢(x) since it is its restriction to the fixed subspace t.

We need to show that, for all x € t, ad¢(z) is zero or, equivalently, that its eigenvalues all
are zero. Suppose, to the contrary, that there exists an element x of t such that adi(x) has a
nonzero eigenvalue: there exists A € k \ {0} and y € t\ {0} such that [z,y] = Ay. Now, ad¢(y)
is also semisimple, so that there exists a basis (y1,...,ym) of t and scalars Aj,..., A\, such that,
for 1 <i<m, [y,yi] = \iyi. Now, write x = ayy1 + ... + @m¥Ym, @1, .., &y, € k. Then,

Ny =y, 2] =[y,cay1 + ... + am¥m] = @1y, y1] + - - - + @[y, Ym] = @1y + - oo+ @A Ym.

On the right hand side of the above equation, we have 0 or a linear combination of eigenvectors of
ad¢(y) with nonzero eigenvalue. In contrast, on the left hand side, we have a nonzero eigenvector
ad¢(y), with eigenvalue 0. This is absurd. We conclude that an element = as above does not exist.
That is, t is abelian. m

Exercise I1.5.3 — Let g be a finite dimensional semisimple Lie algebra, t € N*, and, for 1 <1 <'t,
semisimple Lie subalgebras g; of g such that g = @,.,., g; and, forall 1 <1i # j <t, [g;,9;] = 0.
Let b be a maximal toral subalgebra of g. o

1. Let g = > 1<;<; 9; be an element of b, g; € g;, 1 < i < t. Then, for 1 <i <+, h+kg; is an
abelian Lie subalgebra of g.

2. We have h = P, hNgi.

3. Forall 1 <1i¢ <t hnNg; is a maximal toral subalgebra of g;.

Let g be a nonzero finite dimensional semisimple Lie algebra and h a maximal toral subalgebra
of g. Put r = dimg(h).

By lemma I1.5.2, the elements of the finite dimensional vector space ady(h) pairwise commute.
In addition, they all are semisimple since h is toral. It follows that they are simultaneously
diagonalisable: there exists a basis B = (b1, ..., b,) of g such that any vector in B is an eigenvector
for all adg(h), h € h. Now, for 1 <i < n and h € b, put

It is then obvious that, for all 1 <i <n, a; : h — k, h — «;(h) is a linear form on b.

Exercise I1.5.4 — Retain the above notation and recall Exercise 1.2.11.
For all a € b, let go = {z € g[ Vh € b, [h, 2] = a(h)z}. Then, g = D,y go-
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Now, let ® C bh* be the (finite) subset of h* consisting of the nonzero linear forms « such that

go 7 0. Then we get that
g=00EP (EB ga> (IL5.1)

acd
and h C go = Cg(h)'

Definition I1.5.5 — In the above notation, the elements of ® are called the roots of (g,h), ®
is called the set of roots of (g,h) and the decomposition (I1.5.1) is called the Cartan-Chevalley
decomposition of (g,h).

Much more can be said about the Cartan-Chevalley decomposition of (g, ).

We begin with an easy Lemma underlining the compatibility between this decomposition and
the Lie bracket as well as the Killing form.

Lemma I1.5.6 — Retain the above notation.

1. For 0576 € b*: [gaagﬁ] - Ya+8-
2. For a € h*\ {0} and = € go, the endomorphism adg(x) is nilpotent.

3. If a, B € b* satisfy a + [ # 0, then kg(ga,93) = 0.

Proof. Point 1 follows at once from the Jacobi identity.

Fix o € h*\ {0}. Given any (3 € b*, the set {8 + i, i € N} is infinite. Hence, it cannot lie in
®U{0}. This means that, for all 3 € ®L{0}, there exists an integer ig satisfying adg(z)" (gz) = 0,
for all # € go. Now, let i = max{ig, § € ®U{0}}. By the Cartan-Chevalley decomposition, we
have that ady(z)’(g) = 0, which proves point 2.

Let now o, 3 € h* and consider x € go, ¥y € g3, h € h. By the invariance of the Killing form
(see Exercise 1.7.12),

a(h)rg(,y) = rq([h, z],y) = —kg(z, [h,y]) = =B(h)kg(2,y).

If a + B # 0, then we may choose h such that (a + 8)(h) # 0. The above identity then gives
kg(z,y) = 0. This proves point 3. n

Remark I1.5.7 —Point 3 of Lemma I1.5.6 shows that, for all a € h*\ {0}, g, is a totally isotropic
subspace of g with respect to the Killing form.

Corollary I1.5.8 - Retain the above notation.
The restriction of the Killing form to go is nondegenerate.

Proof. The Lie algebra g is semisimple, so that x4 is nondegenerate. Suppose x € b is orthogonal

to any element y € h. Then, by point 3 of Lemma II1.5.6, it is orthogonal to any element of g.

Hence it is 0. =
The next proposition is very important.

Proposition 11.5.9 — Retain the above notation. The following equality hold:

go={zecg|Vheb, [hz]=0}=b.
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Proof. Notice that, being a centraliser, go is a Lie subalgebra of g. Notice also the two follow-
ing alternative descriptions of gy (the second one being due to the faithfulness of the adjoint
representation):

go = {z € gladg(2)(h) € (0)}; (IL.5.2)
go = {x € g|Vh € b, [ady(x),ady(h)] = 0}. (I1.5.3)

(a) The Lie subalgebra gy contains the semisimple and nilpotent parts of each of its elements.
Let x € gg. Write x = x5 + x,, its abstract Jordan-Chevalley decomposition. By definition, the
usual Jordan decomposition of adg(z) is adg(x) = adg(zs) +adg(x,) with adg(zs) semisimple and
adg(zy) nilpotent. By the properties of the usual Jordan-Chevalley decomposition, we know that
adg(xs) and adg(x,) are polynomials without constant terms of adg(x). So, the result follows
from (I1.5.2).

(b) All the ad-semisimple elements of go are in b.

Let x € go. Then, by definition of gg, h + kx is a Lie subalgebra of g. If we suppose that x is
ad-semisimple, then so are all the elements of h + kz and § + kz is toral. By maximality of b
among toral subalgebras of g, we are done.

(¢c) The restriction to b of the Killing form is nondegenerate.

Let = be an element of b such that x4(z,h) = 0. Consider y € go and write y = ys+ys its abstract
Jordan-Chevalley decomposition. By (a) and (b) above, we know that ys € h and y,, € go. Hence,

Kg(2,y) = Kg(z,yn) = Tr (adg(z) 0 ady(yn)) -

But, since y, € go, adg(yn) and adg(z) commute and, by definition, adg(y,) is a nilpotent
endomorphism. It follows at once that adg(z) o adg(yy) is nilpotent and thus that its trace is 0.
So, kg(z,y) = 0. We have shown that k4(z,go) = 0. But, by Corollary I1.5.8, the restriction of
the Killing form to gg is nondegenerate. So we must have x = 0.

(d) The Lie algebra go is nilpotent.

Consider = € go and write x = x5 + z,, its abstract Jordan-Chevalley decomposition. By (a), (b)
above, x, € b and z,, € go. It follows that adg, (z5) = 0, by definition of gg. In addition, adg, ()
being the restriction of adg(xy) to go, it is nilpotent. Hence, ady,(z) = adg,(zy) is nilpotent. So,
for all « € go, adg, () is nilpotent. By Engel’s Theorem, g is nilpotent.

(e) One has h N [go,go] = 0.

By the invariance of the Killing form, x4(b, [go, g0]) € £g([h, go], 80) = Kg(0,g0) = 0. Hence, an
element of h N [go, go] must be an element of h orthogonal to any element of h. By (c) it must
then be zero.

(f) The Lie algebra go is abelian.

By (d), go is nilpotent. Suppose it is not abelian, then, by Exercice 1.4.10, Z(go) N [go, go] # (0).
Take = € Z(go) N [g0, 8o}, © # 0. Write x = x5 + x,, its abstract Jordan-Chevalley decomposition.
By (a), (b) and (e) above, s € h and x,, € go \ {0}. Further, ady(z,) is the nilpotent part of the
usual Jordan-Chevalley decomposition of adg(x) and, as such, it is a polynomial without constant
term of adg(z). So, z, € Z(go). Now, for all y € go,

Kg(Zn,y) = Tr (adg(zy) o adg(y)) .

But, x,, being nilpotent and in the center of go, adg(z,) o adg(y) must be nilpotent and thus have
trace 0. This shows that z, is a nonzero element of gg, orthogonal to any element in gg. By
Corollary I1.5.8, this is a contradiction. Hence, gg is abelian.

(g) One has go = b.

Suppose, on the contrary, that h C go and consider x € go \ h. Write x = x5 + z,, its abstract
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Jordan-Chevalley decomposition. By (a) and (b), z, € go \ {0}. Take any element y € go. By
(),
’%B (xna y) =Tr (adg(xn) © adg(y)) = 07

since ady(xy) is nilpotent and commutes with ady(y) (same argument as used several times above).
This contradicts Corollary I1.5.8. ]

Corollary I1.5.10 — Retain the above notation. The restriction to b of the Killing form is
nondegenerate.

Proof. The result follows from Corollary I1.5.8 and Proposition I1.5.9. ]

Notation I1.5.11 - Since the restriction to h of the Killing form is nondegenerate (Corollary
I1.5.10), we have an isomorphism of vector spaces as follows:

t b — b*
h —  kg(h,—)

which allows to identify canonically b and h*. For o € h*, we put t, = 1~ ().

We pointed out, in the introduction to Section I1.4, the ubiquity of sla(k) in any semisimple
Lie algebra. We are now ready to give precise statements to justify this claim.

Proposition I1.5.12 - Retain the above notation.

The set ® spans h*.

Let a € h*. If o € @, then —a € D.

Let o € ®. If (x,y) € ga X §—a, then [z,y] = Kkg(z,y)ta.

Let o € @; [ga, 8—a) is the one dimensional subspace of b spaned by t, .
For o€ @, a(ty) = kg(ta,ta) # 0.

Cuds Lo o~

Proof. 1. Suppose that ® does not span h*. Then, there exists h € b\ {0} on which any element
of @ vanishes. Then, for all « € ®, [go, h] = 0. But, b is abelian, so the existence of the Cartan-
Chevalley decomposition of g proves that h is in the centre of g. Hence a nonzero element in the
center of the semisimple Lie algebra g; a contradiction.

2. Let a € ®. If we suppose that —a ¢ @, then Point 3 of Lemma II.5.6 contradicts the
nondegeneracy of the Killing form on g.

3. Lemma II.5.6 shows that [ga,9-«] C h. More precisely, let « € g, ¥ € g—qa, h € b, then

ra([2,9], h) = ro(@, [y, h]) = a(h)re(z,y) = Ko(ta, h)re(, y)-

Hence, [z,y] — kg(x,y)ts is an element of b, orthogonal to any element of h and thus equal to
zero by Corollary 11.5.10.
4. By Point 3, it is enough to show that rg(ga, g—a) # 0. But, by Point 3 of Lemma II.5.6, this
must be true since otherwise x4 would be degenerate.
5. By the definition of tn, a(ta) = Kg(ta,ta). By Point 4, there exists (z,y) € go X g—o such that
[x,y] = to. Put

S = Span{z,y,t.} C g.

Then S is a Lie subalgebra of g of dimension 3. More precisely, we have
[l'ay] = ta, [taal'] = Kg(taata)l' and [taay] = _"Qg(tonta)y-
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If we suppose that kq(tq,ts) = 0, then S must be solvable, as is easily verified.

Moreover, adg : g — gl(g) is injective. Hence, adg(S) is a solvable Lie subalgebra of gl(g).
By Lie’s Theorem, it follows that there exists a full flag F of g such that adg(S) € bz(g). This
forces adg(tn) to be a nilpotent endomorphism since it is the bracket of two elements of bz(g).
But, being an element of the toral algebra b, ¢, is ad-semisimple. Hence, adg(t,) is nilpotent
and semisimple, hence zero, and thus t, = 0. But this is absurd since t, = ¢:~!(a). Hence,
Kg(ta,ta) # 0. ]

Theorem I1.5.13 - Retain the above notation. Let o € P.

1. For all nonzero x4 in gq, there exists Yo € §—qo such that, if we put ho = [Za, Yo, the subspace
Span{za, Ya, ha} is a Lie subalgebra of g isomorphic to sla(k) via x4 — x, Yo — Y, ha — h.

2. Moreover, for any pair (To,Ya) € 8o X §—a Ssuch that, putting he = [Ta,Yal, the subspace
Span{z,, géa, ha} is a Lie subalgebra of g isomorphic to sla(k) via xq — x, Yo > y, ho — h, then

hy = ————t,,.
“ 7 Kgltarta) ©

Proof. 1. Let x4 in go \ {0}. By Point 3 of Lemma II.5.6 and the nondegeneracy of kg,
Kg(Tas §—a) # 0. By Point 3 of Proposition I1.5.12, kg4(ta,ta) 7# 0. Hence, we may chose yo € g—q

_ ———tq (by
Kg(ta, ta) Kg(tasta) © (
Proposition I1.5.12). It is easy to verify that Span{z, ya, ha} is a Lie subalgebra of g isomorphic
to sly(k) via zo — &, Yo — Y, ho — h.

2. Let (ZayYa) € 8a X G—q be as in the statement. Then, putting hy = [Za, Ya), we must have

such that kg(Za,Ya) = . Put hy = [Za,Ya]. We then have [z4,y.] =

[-Tou ya] = ha, [haafﬂa] =2z, and [hou ya] = —2Ya.

By Point 3 of Proposition I1.5.12, we have hq = [Zqa, Ya] = Kg(Tas Ya)ta- On the other hand, 2z, =
[ha, Ta] = a(ha)za. Hence, 2 = a(ha) = a(kg(Ta, Ya)ta) = Kg(Ta, Ya)a(ta) = Kg(Ta, Ya)kg(tas ta)-
So, indeed, h, =

—1q. [
Kg(tasta) ©
Theorem I1.5.13 stresses the ubiquity of sla(k) in the semisimple Lie algebra g. However, it
is not completely satisfactory as it establishes an existence without any kind of uniqueness.
Actually, we can go further using this existence and the representation theory of sla(k). This
leads to the following statement which is a crucial step to the study of the representations of g.

Remark I1.5.14 - Fix an element a € .
As Theorem I1.5.13 allows us to do, consider a pair (Zqa,Ya) € ga X §—a such that, putting
ha = [Ta, Ya) and Sy = Span{za, Y, ha }, We get a Lie algebra isomorphism

ia : Sa L) 5[2
To X
Ya +— Y
ho +— h
2 . . .
Recall further that h, = Wta. The adjoint representation (g, adg) then induces a repre-
Hg [e2de]

sentation
ra : Sa — gl(g) .
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The analysis of the representation (g,7,) (which is a representation of sla(k), up to the
isomorphism i,), on the basis of the results in Section II.4, provides substancial information on
the Cartan-Chevalley decomposition of g, as we now proceed to show.

Proposition 11.5.15 — Retain the above notation. Let o € ®.

1. The only scalar multiples of a in ® are +a.

2. We have dimg(gs) = 1.

3. In particular, the Lie subalgebra S, of Remark 11.5.1} is the Lie subalgebra of g generated
by 9o ® 9—o. Moreover, in the notation of Theorem I1.5.13, Point 1, the element y, s uniquely
determined by the choice of x,,.

Proof. Let a € ®. Fix a pair (Za,Ya) € ga X §—a as in Remark I1.5.14.
Let us consider the subspace g(a) = h &P (@cek cocd gca) of g. It follows from Lemma I1.5.6

that g(«) is a subrepresentation of (g, 74).

The kernel ker(«) of the linear form « is an hyperplane of h on which S, acts trivially, so that
any choice of basis of ker(«) gives a decomposition of this subrepresentation as the direct sum of
dim(h) — 1 lines which are all subrepresentations of g(«), each of which is isomorphic to the one
dimensional representation of S,. In addition, the subspace S, of g(«) is also a subrepresentation
of (g(), ra), isomorphic to the 3-dimensional simple representation of S,. Since b = ker(«a)®kh,,
we get that

h & ko ® kya

is a subrepresentation of (g(a),rs), which decomposes as the direct sum of dim(h) — 1 copies of
the one dimensional and one copy of the 3-dimensional representations of S,. From this, it follows
that the eigenvalues of r4(hy) on the subrepresentation h @ kx,, @ ky, are 0 (with multiplicity
dimg(h)) and 2 and —2 (with multiplicity 1).

By Weyl’s Theorem, there exists a subrepresentation W of g(«) such that

8(c) = (h © kzo @ kya) P W,

and W decomposes as a direct sum of simple subrepresentations.

Suppose now that 2a € ®. Then, any nonzero element x of go, is an eigenvector of eigenvalue
4 of ro(hy), indeed: rqo(ho)(z) = [ha,x] = 2a(hy)x = 4x. But, as the restriction of 7, to
h @ kxy @ ky, has eigenvalues —2, 0,2, then we must have x € W. This forces the existence of
a copy of an odd dimensional simple representation of S, in the above decomposition of W and,
has a consequence, the existence in W of an eigenvector of r,(hy) of eigenvalue 0. Now, clearly,
the eigenspace of eigenvalue zero of the restriction of r4(hy) to h @ ko @ ky, is h. So, all in
all, the eigenspace of eigenvalue zero of the restriction of r,(hy) to g(a) must be of dimension

at least equal to dimg(h) + 1. On the other hand, g(a) = h P (@cek, cacd Qca), from which it

follows at once that the latter eigenspace must be h since
Oca C ker (14(ha) — 2cid) . (IL.5.4)

This is a contradiction. At this stage, we have proved that, if @ € &, then 2a ¢ ®. Notice
that the above argument also shows that W cannot contain a copy of an odd dimensional simple
representation of S,.

Of course, it follows from the above intermediate conclusion that, if & € ®, then (1/2)a ¢ ®.
This excludes 1 from the list of eigenvalues of the restriction of r,(hy) to g(«), by (I1.5.4). This
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shows that a decomposition of W as a direct sum of simple representation of S, contains no copy
of an even dimensional representation.

Putting all this together, we conclude that W = (0), that is g(a) = b ® kx, ® ky,, which
proves Points 1 and 2 of the statement.

Point 3 follows easily. n

Proposition I1.5.16 — Retain the above notation. Let o, 3 € ®.

1. We have B(hy) € Z and 8 — B(he)a € .

2. Suppose f # ta. Put ¢ = max{i € Z|B +ia € ®} and r = max{i € Z| [ — ia € ®} (hence
q,7 > 0). Then, for all —r < i <gq, B+ia € ® and B(hy) =1 —q.

3. If a+ B € @, then [ga, 98] = Ga+5-

Proof. Let a, B € .

If 8 = +a, the statements of Point 1 have already been proved. Hence, from now on, we
assume 3 # ta.

Put g(a, ) = @,cz 98+ia € g and recall from Proposition I1.5.15 that this is a decomposition

of g(a, ) as a direct sum of lines. By Lemma I1.5.6 and in the notation of Remark I1.5.14, g(a, 3)
is a subrepresentation of (g,r,). Now, we have that

Vi €Z, gpria C ket (ra(ha) — (B(ha) + 20)id)

and, since the elements [(hy) + 2, ¢ € Z, are clearly pairwise distinct, the above decomposition
is the decompositon of g(«, ) into eigenspaces of the restriction of r4(hy) to g(a, 8). Now, by
Weyl’s Theorem and the classification of simple representations of sla(k), the scalars 5(hq) + 24,
i € Z must be integers and, since these scalars must be all odd or all even, we have that g(a, 3)
is an irreducible representation of S,.
Put
g=max{i € Z| B +ia € O} and r=max{i € Z|f —ia € ®}.

Then g, > 0. The form of the simple representations of sla(k) then provides the following. First,
the set of eigenvalues of the restriction of 74, (hy) to g(a, 3) must be {B(hy) + 2i, —r < i < ¢},
which implies that, for all —r <i < ¢, 5+ ia € . Second, —(B(ha) — 2r) = B(ha) + 2¢, which
implies B(hy) =7 — q.

Now, since ¢, > 0, we have —r < g —r < g, so that 5 — B(ho)a =5+ (¢ —r)a € .

Suppose in addition that o + 8 € ®. Then, (B(h,) is not maximal among eigenvalues of
the restriction of rq(hqa) to g(a, 5), since gqo4p is a nonzero eigenspace of eigenvalue 5(hq) + 2.
Now, using the explicit description of the irreducible representations of sly(k), it follows that the
action of z, on gg is nonzero. That is: [ga,gg] # 0. Since, on the other hand, [ga, 95] € ga+5
(cf. Lemma IL1.5.6) and dimg(ga+g) = 1 (cf. Proposition I1.5.15), we get that [ga, 95] = gatp- =

Proposition I1.5.17 — The set ) 4 9o generates g as a Lie algebra.

Proof. Since ® spans h*, it is enough to show that, for all o € ®, h,, is in the Lie subalgebra of g
generated by >° g 0o But this is clear since hy = [Za, Yal- .

The following Exercise gives an explicit expression for the restriction to b of the Killing form.
It will be useful latter.

Exercise 11.5.18 — If g is a finite dimensional semisimple Lie algebra and h a maximal toral
subalgebra. Then the following holds:

1. for o € ¢, h,k € h and = € go, ad(h) o ad(k)(z) = a(h)a(k)x.

2. for h,k €b, kg(h, k) = co a(h)a(k).
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For the remainder of the present section, we turn our attention to the following important
point: if g is a semisimple finite dimensional Lie algebras, then mazimal toral subalgebras and
Cartan subalgebras are the same. Evidently, we will use the results of Section 1.8. Notice that,
as we assume k is algebraically closed of characteristic zero, it is infinite. Hence, the results of
Section L.8 are fully available.

Proposition 11.5.19 — Let g be a nonzero finite dimensional semisimple Lie algebra and let h
be a Lie subalgebra of g. Then, the following are equivalent:

(i) b is a mazximal toral subalgebra of g;

(ii) b is a Cartan subalgebra of g.

Proof. Suppose b is a maximal toral subalgebra of g. By Lemma I1.5.2, § is abelian and there-
fore nilpotent. Now, let ® C bh* be the set of roots of (g,h). We have the Cartan-Chevalley

decomposition (II.5.1)
-0 (Do)

acd

and h = go = Cy(h) (by Proposition I1.5.9). Fix z € g. By the above, there exist elements
To € ga, a € ®U{0}, such that z = 29+ Y cp Ta and,

Yheb, [ha]= [h, Zxa] =) [ha] =D a(h)z,.

acd acd acd

Suppose now that € Ny(h). Then, we must have
Vheh Vae®, «(h)z,=0.

But, as 0 ¢ ®, for all @ € @, there exists h € h such that a(h) # 0. We therefore conclude that,
for all « € ®, x, = 0. Hence x = zg € h. We have shown that b is its own normaliser.

Conversally, suppose that § is a Cartan subalgebra of g. By Theorem 1.8.8, §j is a minimal
Engel subalgebra of g. In particular, there exists € g such that h = go(adg(z)). Now, using
Theorem I1.3.8, there exists a unique pair (z,,z,) of elements of g with x,, ad-nilpotent, x5 ad-
semisimple, [z,,zs] =0 and x = z,, + 5. Now, as x5 and x,, commute, and x,, is nilpotent, we
observe that go(adg(xs)) € go(adg(x)) (notation of Section 1.8). But then, the minimality of ) as
an Engel subalgebra gives that go(adg(zs)) = go(adg(x)) = b. But, adg(x,) being diagonalisable,
its characteristic subspace associated to the eigenvalue 0 is nothing but its kernel and we finally
obtain that:

h= go(adg(xs» = Cg(xS)-

Now, as z is semisimple, the Lie subalgebra kz is toral and, hence, is included in some maximal
toral subalgebra t of g. And, as toral subalgebras are abelian, we must have [t,z5] = 0, that is:
t C Cy(xs) = h. But, in the first part of the present proof, we have shown that maximal toral
subalgebras are Cartan subalgebras. Hence, t and h are Cartan subalgebras of g and t C . By
Theorem 1.8.8, we get that t = bh. n

Remark I1.5.20 — Let g be a nonzero finite dimensional semisimple Lie algebra and let § be
a Lie subalgebra of g. The proof of Proposition I1.5.19 actually shows that, if h is a maximal
toral subalgebra of g, equivalently a Cartan subalgebra of g, then b is the centraliser in g of some
semisimple element of b.
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I1.6 Emergence of the root system of a semisimple Lie algebra.

Assume k is algebraically closed of characteristic 0.

At this point, it is time to introduce the root system underlying any semisimple Lie algebra.
It is a combinatorial tool whose importance is central. It has two applications. First, it will allow
us to classify finite dimensional simple Lie algebras (and, as a consequence, finite dimensional
semisimple Lie algebras). It will also allow to go deeper into the structure of the Cartan-Chevalley
decomposition by exhibiting a positive and a negative part which will turn out very important
latter on.

Fix a finite dimensional semisimple Lie algebra g and a maximal toral subalgebra .

Recall the Cartan-Chevalley decomposition g = h P (@aecb ga} where, for a € h*, we put
go={zr€g|Vheb, [h,x] = a(h)x} and & = {a € h*\ {0} | ga # (0)}. Recall also that gy = b.

It is useful to tranfer to h* the restriction to h of the Killing form on g. Recall that the
restriction to b of kg being nondegenerate, we have an isomorphisme of vector spaces

¢t b — b*
h —  kg(h,—)

We may then transfer (kg)jyxp to h* as follows

(=—=) + b"xbh" — k
(@,8) = Kt Ha), 7 (B)

Recall that, for o € h*, we put: t, = ¢~ 1(a). Since, by Proposition I11.5.12, ® generates h*, the
form (—, —) is then completely described by:

Va,ﬁe‘b, (Oé,,@) :Hg(tout,@)'
At this stage, notice that Point 1 of Proposition I1.5.16 shows that,

_ Hg(tﬁvta) _ (ﬁ,a)
Kg(tasta) a> - Kg(ta,ta) B 2(a,a)

To go further, let us give a more detailled account on the way ® spans h*.

(IL.6.1)

Va,B € ®, [B(hy) =70 < e Z. (I1.6.2)

Let (aq,...,a7) € @ be a basis of h*. If o is an element of ®, there exist ¢; € k, 1 < i < ¢,
such that o =Y, ., ., cia;. For 1 < j < {, we thus have the following equation:

2(a, o) B . 2(oy, o)

(ag,05) 52, (ag,05)

The above ¢ equations show that (c1,...,¢¢) is a solution to a £ x £ linear system of equations
whose coefficients are in Z, by (11.6.2). But, the matrix of this system is, up to left multiplication
by an obviously invertible matrix, the matrix of the nondegenerate form (—,—) in the basis
(a1,...,ap). So, it has to be invertible. From this, using Kramer’s formula, we get that ¢; € Q,
for all 1 < ¢ < £. We have shown that any element of ® is a linear combination with rational
coefficients of the elements of {a1,...,as}. Now, put

Eg = Spang(®) C ™.
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The above discusion shows that Eg = Spang{as,...,as}, so that:
dimg(Eg) = dimg(h*). (I1.6.3)

On the other hand, recall that, for all for h,k € b, rg(h, k) = >_ g v(h)y(k), by Exercise
11.5.18. Translated into h*, this gives that,
Va,Beb™, (on8) =Y (v,0)(7,8). (I1.6.4)

yed

Applying (11.6.4) with 8 = «, and taking (I1.6.2) into account, it follows that

1 B2
VB ed, 5.5 _; G 02 € Q. (11.6.5)

Using (I1.6.2) again, we end up with
Va, € P, (a,8) € Q. (I1.6.6)

This shows that the restriction of (—, —) to Eg x Eg takes its values in Q. Hence, we have
endowed Eg with a symmetric bilinear form

(—,—)Q : EQXEQ — Q

which is nondegenerate since Eg contains a basis of the k-vector space h* and the bilinear form
(—,—) on h* is. Actually, (I1.6.4) gives

Va,f €Eg, (a,8)0 =Y (1 @)a(r B (11.6.7)

yed

from which it follows easily that (—, —)g is positive definite.

The picture will be perfect with a last small effort. Consider the R-vector space
Er = R ®q Eg,
the canonical, Q-linear, injective map Eqg — Er, ¢ — 1 ® ¢, and identify Eg to a Q-subspace of
Er by means of this map. It is not difficult to show that there exists a symmetric R-bilinear map
(—,—)r : ErxEg — R,

such that, under the above identification:

\V/Oé,,ﬁ S EQa (avﬂ)R = (aaﬁ)(@
Now, by construction, ® (identified with a subset of Eg) generates the R-vector space Er and
(I1.6.7) gives:
Va,B€®, (a,B)r=> (v, )r(Y:B)E, (I1.6.8)

yeD
which entails (by bilinearity)

VOZ, 6 € ERa (Oé, /B)R = 2(77 a)R("Y? 6)1@7 (1169)
yEP
so that (—, —)r is positive definite. In other words, the pair (Eg, (—, —)r) is a euclidean space.

Summing up, we have the following statement.
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Theorem I1.6.1 — Let g be a finite dimensional semisimple Lie algebra. Let b be a maximal
toral subalgebra of b, ® be the associated set of roots and (Eg,(—,—)r) be the euclidean space
attached to these data. The following holds.

1. The R-vector space Eg is generated by ® and 0 ¢ .

2. Let o € ®. The only scalar multiple of o in ® (seen as a subset of Er) are .

3. Fora,B € ®, Q(B’Q)R e 7.
(Oé,Oé)R

4. For o, € @, 572(5’04)]1Q
(Oé,OZ)]R

ae P,

Proof. Point 1 is clear, by construction of Eg and definition of ®. Points 3 and 4 are contained
in Proposition 11.5.16, as we already noticed.

Now, Point 2 claims that, for all & € ®, {+a} = RanN ® C Eg.

Let « € ® and A € R such that A\a € ®. Choose a basis of Eg which contains a. As
Aa € ® C Eq, it may be written in a unique way as a linear combination with coefficients in Q
of the elements of this basis. This clearly implies that A € Q. So, Aa € PN Qa C & Nka C h*.
Therefore, Proposition I1.5.15 leads to A = +£1. m

In the vocabulary of Part III, Theorem I1.6.1 states that ®, seen as a subset of the euclidean
space Eg, is a root system (see Definition I11.2.1).

Let g be a finite dimensional semisimple Lie algebra. By Theorem 1.7.19, g enjoys a decom-
position as a direct sum of its simple ideals. By Theorem I1.6.1, g enjoys a Cartan-Chevalley
decomposition (associated to the choice of a maximal toral subalgebra). The aim of the following
Remark is to investigate the compatibility between these two decompositions.

Remark I1.6.2 - Let g be a finite dimensional semisimple Lie algebra. Let ¢ € N* and, for 1 <
it <t, let g; be semisimple Lie subalgebras of g such that g = ®1<ij<;g; and, for all 1 <14 # j <t,
[9i,9;] = 0. Let b be a maximal toral subalgebra of g and let x be the Killing form of g.

1. Recall from Exercise 11.5.3 that, if we put h; = hnNg;, 1 <i <t, then we have

h = Dr<i<thi

and b; is a maximal toral subalgebra of g;, 1 <7 < t.

2. Let ® C b* be the set of roots associated to the pair (g,h). Let a € ®. Since a # 0, we
cannot have a(h;) = 0 for all 1 <4 < ¢ Let 1 < i <t be such that a(h;) # 0. Then, consider
T =) 1<ictTi € Gas T; € g, 1 <4 < t. Consider h € h; such that a(h) # 0, We have that

> [h,a;] = [h, 2] = a(h)z

and hence, x € g;. We have shown that g, C g;. Since in addition, the sum of the g;, 1 <1 <t
is direct, such an ¢ must be unique.

We have shown that, for all & € ®, there exists a unique 1 <4 < ¢, such that «(g;) # 0 and
that ga C 9i-
3. In the light of Point 2, for all 1 <14 <t, we let ®; be the subset of ® of those elements o € ¢
such that a(h;) # 0 and a(h;) = 0 whenever j # i. By Point 2, we have that

|| @ (I1.6.10)

1<i<t
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In addition, we have

926@(@%) - el

aced 1<i<t acd;

But, for 1 <i <t, we have h; ® (Baco,0a) C gi- Hence, since g = S1<i<¢gi, we end up with

vi<i<t, gi=hi@P| Po.]|- (I1.6.11)

acd;

Actually, the above equality gives the Cartan-Chevalley decomposition of the pair (g;, b;) as we
now proceed to show. Let 1 <i <t, a € ®;, then

6o = {zcglVheb, [ha]=alh))
— {weq|Vheb, [ha]=alh))
= {z€gi|Vhen, [ha]=a(h)z}
— {wcg|Vheb; [he) = oy (h)z)
= (gi)o‘\hi'

Indeed, the second equality follows from g, C g;. As to the third, the inclusion C is trivial, and
the inclusion 2 follows from the fact that [h;, g;] = 0 and «(h;) = 0 whenever j # i. The other
equalities are clear.

Hence, (I1.6.11) is in fact the Cartan-Chevalley decomposition of the pair (g;, h;), and the set
{ayy,, @ € ®;} is the correponding set of roots.
4. Let 1 < i # j < t. It is clear that s(bh;,h;) = 0, hence, @;x;b; C (h;)*. Let now h be
an element of (h;)* and write h = Zlgjgt hj, hj € b, 1 < j < t. Then, clearly, h; is also in
(h;)*. Tt follows that h; is in hb-. Hence, x being nondegenerate, h; = 0. We have proved that
®izih; = (hi)* or, equivalently r being nondegenerate:

1
P | =b. (11.6.12)
i

Now, recall that, x being nondegenerate on b, it induces a nondegenrate symmetric bilinear
form (—,—) on h* under the canonical identification h — b*, = — k(x, —). Recall also that we
denote t, the element of h corresponding to o € ® under this identification, so that a = k(tqa, —).
It follows that, if @ € ®;, 1 <4 < t, then for j # i, we must have ¢, € (gj)i, as o vanishes on b;.
So, by (11.6.12), t, € h;. This shows that

VI<i#j<t, (®;®;)=0.

So, the partition (I1.6.10) is a decomposition of ® into pairwise orthogonal subsets of h*. As a
consequence, we have the following direct sum decomposition of h* into orthogonal subspaces:

h* = Z Spany (®;) = @ Spany (®;), (I1.6.13)

1<i<t 1<i<t

indeed, the first equality follows from the fact that ® generates h* and the second from the fact
that (—, —) is nondegenerate and the summands pairwise orthogonal.
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5. We now complete the picture by expliciting the link between the euclidean spaces associated
to (g,bh), on the one hand, and the t euclidean spaces associated to the pairs (g;, h;), 1 <i <,
on the other hand.

Beware: we will have to consider orthogonal in the sense of duality. If V' is a vector space
and W a subspace of V, its orthogonal in the sense of duality will be denoted W**, to avoid
ambiguity.

We will have to make use of the following restriction maps, 1 <i < t¢:

res; : b* — b

Clearly, by restriction, it gives rise to an isomorphism of k-vector spaces: (@;;h j)*L 5 hy.
5.1. To start with, we have the following diagram

® C  Eg=Spangy(®) C h*
U U U
a € & C Ejg=Spangy(®;) C (@#ibj)*i
! + =1 = | res;
ap, € ¥, C Fo= Span@(llli) C by

Further, by Point 3 above, ¥; = res;(®;) is the set of roots of the Cartan-Chevalley decomposition
of the pair (g, b;).

5.2. For 1 <i <t, put F;g = R®q F; . We now describe a natural isomorphism between Er
and the direct sum of the F; g, 1 < i <t. Notice first that, by (I11.6.13):

Eo= P Eig CH"
1<i<t
This allows to construct an R-linear isomorphism § as follows
ER = R RQ EQ
R ®q (@19‘9& Eio
@199: R ®q Ei
@1§z‘gt R ®q Fi,0
@1§i§t Fir

where, in the above display, the first isomorphism is the canonical isomorphism (distributivity of
the tensor product on the direct sum) and the second is the direct sum of the maps idr ®q res;.
Hence

e [

o ER — ®1§i§tFi:R

sends any 1 ® o, a € ®; to 1@ ap €1V,
So, identifying ® with its image in Er and, for 1 <+¢ < ¢, ¥; with its image in F; g, we have
that
V1<i<t, §6(P;) =1,
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5.3. In order to complete the picture, it remains to link the euclidean structures on the spaces
Er and F; g. This is straightforward. We actually do it at the level of the duals of the maximal
toral subalgebras involved. Recall the natural isomorphism

b* — DBicicib;
Sest e 11.6.14
A= (Ag)i<ist ( )

We have the nondegenerate bilinear form (—,—) on h*, dual to the Killing form on b, and, for
1 < i < t, the nondegenerate bilinear form, denoted (—, —);, dual to the Killing form on b;. The
latter give rise to a nondegenerate bilinear form, that we denote @i<ij<¢(—, —); on @, b’
relative to which the components of different indices are pairwise orthogonal. It is not difficult to
check that the isomorphism (I1.6.14) commutes with the bilinear forms (—, —) and ®1<;<¢(—, —);-

As an immediate consequence, we get that § is an isometry between the euclidean spaces
Er and @, ,, Fir, where @,_,, Fir is endowed with the euclidean structure which extends
the natural euclidean structure of each summand in such a way that distinct summands be
orthogonal.

I1.7 On some automorphisms associated to a Cartan-Chevalley
decomposition.

Assume k is algebraically closed of characteristic 0.

In this section, we introduce important automorphisms of a semisimple Lie algebra associated
to a Cartan-Chevalley decomposition. It will turn out that they provide crucial information on
the Lie algebra and its representations.

We start with an elementary result which holds in a rather general context.

Exercise I1.7.1 - In this exercise, we only assume that k is of characteristic 0.

Let g be a finite dimensional Lie algebra, (V, ¢) a finite dimensional representation of g and
a € g such that adg(a) : g — g and ¢(a) : V — V are nilpotent endomorphisms. Let b € g.
1. The endomorphism adgy(¢(a)) : gl(V) — gl(V) is nilpotent (cf. Lemma 1.4.7).

L1. For all n € N, ¢((adg(a))" (b)) = (adgi(v)(#(a)))" (¢(b)).
1.2. The following equality holds in gl(V):

exp (adgiv)(6(a))) (6(b)) = ¢ (exp(adg(a))(b)) -

2. As ¢(a) is nilpotent, we may consider the endomorphism exp(¢(a))p(b) exp(—¢(a)) : V. — V.
2.1. Let p € N be such that ¢(a)” = 0 for all integer n > p. Then

exp(6(a))o(b) exp(—d(a) = 3 = (a)d(b)o(~a).

— 4l !
0<ij<p
2.2. Let ¢ € N be such that (adg[(v)(d)(a)))n = 0 for all integer n > ¢. Then

exp (adyw) (6(a) (60) = 3 1 (adgv(9(a))) (60).

0<k<q
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From which it follows that

exp (adgvy(¢(a))) (¢(b)) = Z Z i%ﬂa)%(b)qﬁ(—a)t.

0<k<q s,teN, s+t=k

Hint: to deduce the last equality from the previous one, one can use the two commuting endomor-
phisms Ly : gl(V) — gl(V), f+ ¢(a)f (left multiplication by ¢(a)) and Ry_qy : gl(V) —
gl(V), f— fé(—a) (right multiplication by ¢(—a)) and the binomial expansion formula together
with the identity adgy)(¢(a)) = L) + Rg(—a)-

2.3. The following identity holds in gl(V):

exp (adgv)(¢(a))) (6(b)) = exp(d(a))(b) exp(—¢(a)).
3. The following identity holds in gl(V):
¢ (exp(adg(a)) (b)) = exp(¢(a))p(b) exp(—¢(a)).

For the rest of the section, we let g be a semisimple Lie algebra, h be a Cartan subalgebra
of g and ® be the set of roots associated to the pair (g,h). We have the Cartan-Chevalley
decomposition associated to (g, h):

9=h@<@ga>, b = go-

acd

The results established in Section I1.6 may be summed up as follows. We have a diagram

h*
/
“

E

On bh* we have the Killing form, denoted (—,—), as defined in (I1.6.1). It restricts to a positive,
definite, symmetric bilinear form (—, —)g of Eg. The latter, in turn, extends to a scalar product
(=, —)r of Eg.

(11.7.15)

® C Eg

R

Now, any element of ®, seen as an element of Er gives rise to a reflection of the euclidean
space Er. We are going to build an automorphism of §h* which will be, somehow, a counterpart
to this reflection. This automorphism will actually arises from an automorphism of the Lie alge-
bra g which has a particularly nice behavior with respect to the Cartan-Chevalley decomposition.

To any « € ®, we associate a triple (4, ha, Yo) as in Remark I1.5.14. Recall that we have

[has Ta] = 2Ta,  [PasYa] = —2Ya,  [Tay Ya) = ha- (I1.7.16)

Hence, z, and y, belong to generalised eigenspaces of adg(hy) associated to nonzero eigenvalues;
in the notation of Remark 1.8.11, x4, ya € N (g). As a consequence (cf. Remark 1.8.11), adg(z4)
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and adg(ya) are locally nilpotent derivations of g and we may define the following automorphism
of Lie algebra of g, which is thus an element of £(g):

O = exp(adg (za)) 0 eXp(adg(_ya)) ° exp(adg(:na)).

Using relations (I1.7.16), it is easy to show that ©,(hq) = —hqa. On the other hand, it is immediate
that, for all h € ker(a), O4(h) = h. But, as a(h,) = 2, we have that h = khy @ ker(a). So,
O, stabilises h and therefore induce on h an automorphism, which is involutive. By abuse of
notation, this automorphism of h will still be denoted by ©,. To sum up:

On : h—b; Oulha) =—ha; Vheker(a), Ou(h) =h.
We now investigate the transpose of ©:
t@a . h* — b*

It follows at once from the above that '©,(a) = —a. Consider now an element vy € h* orthogonal
to a with respect to the Killing form on h*. Then,

2 )’Y(ta) =

hy) = ——
v(ha) PO

———Kg(ty,ta) =0
K (to“ta)HQ( Yo )
So, since Oy (ha) = —hq, we get that 'O, (7)(ha) = 0 = v(hy). Similarly, for h € ker(a), we have
that ©,(h) = h, and therefore that ‘©,(y)(h) = v(h ) But h = khq @ ker(a), so 10, (y) = 7. To
sum up:

Vv € b* such that (o, 7) =0, 'O4(7) =1. (I1.7.17)

Let us now denote by s, the reflection of the euclidean space Er associated to o € Er. By
Theorem II.6.1, s, stabilises ® and, therefore, Eg. In addition, we have

Eg = Qa & (Qa)™,

where (Qa)t is the orthogonal of the line Qo with respect to (—,—)g. Consider a basis B
of Ep consisting of o and elements of (Qa)t. All the elements of ® are linear combination
with coefficients in Q of the elements of B. Therefore, as ® generates the k-vector space h* by
Proposition 11.5.12, B generates h* and, by (I1.6.3), B is a basis of h*. But, we have seen above
that '©,(a) = —a and, by (I1.7.17), 'O, leave all the other elements of B fixed. Therefore, ‘O,
stabilises Eg and the restrictions of ‘@, and s, to Eg coincide on B. We have therefore:

(sa) gy = ("Oa) gy (11.7.18)

We are now ready to examine the action of the automorphism O, on the Cartan-Chevalley
decomposition of g. For this, we first notice the following identity which follows easily from the
third point in Exercise I1.7.1, which we may apply with ¢ the adjoint representation and a equal
to x,, and y, since these are ad-nilpotent:

Vo cg, adg(Ou(z))=0,o0ady(z)o0,". (I1.7.19)

«

Consider now 3 € ®. For all z € gg and all h € b, we have:

[h,Oa(2)] = [Oa(Oalh )) Ou(2)]
= (@ o adg(©q(h)) o @(;1) (0a(2))
,(86 o adg(Oa(h))) (2)

©a(h)
a)(8)(7)Oa(2)
)(h)

(
= Yo
= saf

|
)



Indeed, the first equality holds because the restriction of ©, to h is an involution, the second
because of (I1.7.19), the sixth because of (I1.7.18) and the others are obvious. That is, we have
Oa(gs) € gs,(8)- But, the two spaces in this inclusion are one dimensional (cf. Proposition
I1.5.15). So, we get

VB E®, On(gs) = s.(8)- (I1.7.20)

Taking into accout that ©,(h) = b, as we already noticed, we get that 6, leave one summand
of the Cartan-Chevalley decomposition fixed and permutes the others accordind to the way s,
permutes their indices.
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Part 111

Root systems.
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III.1 Reflexions in euclidean spaces.

For all this section, E stands for a euclidean vector space which scalar product we denote (—, —) :
E x E— R. We let O(E) be the group of orthogonal linear automorphisms of (E, (—, —)).

Notation I11.1.1 - The following notation will be useful. For o, 8 € E, 8 # 0, put

_ ol B)
@9 =255y
To any o € E\ {0}, we associate the map
oo : E — E

x = - (ra)a’

As is well known, o, is a reflection with reflecting hyperplane (Ra)*.

We start with an elementary Lemma.

Lemma III1.1.2 — Let V be an R-vector space of finite dimension n, ® a finite subset which
spans V and o € V' a nonzero element. There exists at most one endomorphism f of V such that

fla) = —a, dimg (ker(f —idy)) > n —1 and f(®) C P.

Proof. Let f,g : V. — V be such endomorphisms. First, observe that V = ker(f —idy) ® Ra =
ker(g — idy) €@ Ra, that f and g are automorphisms of ordre 2 and that they both induce the
identity on V/Ra.

Put h = fog. Since h(a) = a and h induces the identity on V/Ra, its characteristic
polynomial must be (X — 1)", as me see by computing its matrix in a basis of V' starting by a.
Its minimal polynomial thus divides (X —1)™. On the other hand, as h stabilises the finite set ®,
for all z € @, the set {h*(z), k € N} must be finite. So, h being invertible, there exists an integer
k € N such that h¥(x) = z. It follows, ® being a finite generating set of V, that there exists
m € N such that A = id. The minimal polynomial of A thus divides X" — 1. As a consequence
of the above, the minimal polynomial of h is X — 1; that is: h = 1. But f? =idy, thus f =g. =

Lemma II1.1.3 — Let a € E\ {0} and consider a subspace F of E. If 0, (F) C F, then, either
a€F, or FC(Ra)t.

Proof. Suppose 04(F) C F and o ¢ F. For all z € F, o4(x) = v — (x,a)a € F, so that
(r,a)a € F. But a« ¢ F, so (z,a) = 0. "

Lemma I11.1.4 — Let @ be a finite generating set of E such that, for all « € ®\ {0}, 0, (P) C .
Let 0 € GL(E) such that o(®) C ® and g € ®\ {0}. Then, o = o3 if and only if there exists a
hyperplane H of E pointwise fized by o and o(f) = —f.

Proof. This follows immediately from Lemma III.1.2. n

Corollary II1.1.5 — Let ® be a finite generating set of E such that, for all « € ®\ {0}, 0, (P) C
®. Let 0 € GL(E) such that o(®) C ®. The following holds:

1. for all o € ®\ {0}, 0000 = 04(a) ;

2. for all a € @\ {0} and for all € @, (B,a) = (o(B),0(a)).

Proof. Notice first that, for « € ® \ {0}, since ® is finite and o, is an automorphism, the
hypotheses actually give 0,(®) = ® and thus o, !(®) = .

1. Let o € ®\ {0}. The automorphism oo,0~"! fixes pointwise the hyperplane o((Ra)"), sends
® into itself and maps o () to —o (). Thus, by Lemma IIL.1.4, 60,0~ = 0,(a)-

2. Applying the above identity to o(f), 5 € ®, gives the result. "
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I11.2 Definition of Root Systems.

In this section, (E, (—, —)) is a euclidean space. We start with the definition of root system in the
euclidean space E.

Definition IT1.2.1 — Let ® be a subset of E. Then ® is called a root system of E if it satisfies
the following conditions.

1. The set ® is finite, generates E as an R-vector space and does not contain 0.

2. For oll a € ®, the scalar multiples of a in ® are +a.

3. For all a € @, 0,(P) C .

4. Forall a,B € ®, (B,a) € Z.

The rank of ® is defined to be the dimension of E.

Example II1.2.2 — Let g be a finite dimensional semisimple Lie algebra and b a maximal toral
subalgebra. Theorem I1.6.1 exactly says that ®, seen as a subset of Eg, is a root system of Eg.

Remark II1.2.3 — Let ® be a root system of (E,(—,—)). If we consider any A € R, A(—, —)
is a scalar product on the vector space E and @ is still a root system for (E, \(—, —)).

Definition II1.2.4 — Let ® be a root system of E. The Weyl group associated to @ is the subgroup
of O(E) generated by the reflections oo, a € . We denote it by We.

Remark I11.2.5 — Let ® be a root system of E.
1. By the third condition of the definition of root system, we have a natural morphism of groups

ch — 6({)),

where &(®) stands for the symmetric group of ®. In addition, since ® generates E, this morphism
must be injective. Since, on the other hand, ® is finite, then Wg must also be finite.

2. By Corollary I11.1.5, the action of GL(E) on itself by conjugation restricts to an action of its
subgroup {o € GL(E) |o(®) C ®} on Ws.

Definition III.2.6 — Isomorphism of root systems - Let ® be a root system of E. Let E/
be a euclidean space and ®" be a root system of E'. The pairs (E,®) and (E',®") are said to be
isomorphic if there exists an isomorphism ¢ : E — E' of vector spaces such that p(®) = @' and,
for all a, B € ®,

(p(a), p(B)) = (a, B).

An automorphism of (E, ®) is an isomorphism between (E, ®) and itself.

Exercise II1.2.7 — Let ® be a root system of E. Let E’ be a euclidean space and ® be a root
system of E’ and let ¢ : E — E’ be an isomorphism of root systems between (E, ®) and (E, ®').

L. For all a, 8 € @, 0,0 (¢(8)) = ¢(0a(B))-
2. The map Wg — War, po oo @' is an isomorphism of groups.

Exercise I11.2.8 — Let ® be a root system of E. Any automorphism of the vector space E that
leaves ® invariant is an automorphism of (E, ®). (See Corollary III.1.5.)
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Exercise II1.2.9 - Dual (or inverse) of a root system -
Let ® be a root system. To o € @, associate

1. For all o, 8 € ®,

1.1. o = BY if and only if o = 3,

1.2. (", 8Y) = (B, ).

1.3. aqv(8Y) = (0a(B))",

2. The set @V = {a", o € ®} C E is a root system of E, called the dual (or inverse) of ®.

Example I11.2.10 - Root systems of rank one — Up to isomorphism, there is a unique root
system of rank one. It is the root system of sly(k).

Example 111.2.11 - Examples of root systems of rank two — The reader is referred to
[Humphreys ; p.44] for examples of root systems of rank 2.

As will be seen latter, root systems can be classified. This is due to the very strong constraint
put on them by the fourth condition in the definition. We now examine this condition.

Remark II1.2.12 - Let o, € E\ {0}. The Cauchy-Schwartz inequality states that
(o, B)

1< <
e[ {181

1.

In addition,

(0, 8) | *
— =41 ff A eR = \a.
Tl T4 1 ER[F=Aa

Here, || — || stands for the euclidean norm associated to (—, —). Therefore, there exists a unique
real number 6 in the interval [0, 7] such that (a, ) = cos(0)||a||||3]|. We call this real number
the angle between o and S.

Remark II1.2.13 — Let ® be a root system of E. Let a, 5 € ®.
1. The integers («a, §) and (8, @) have the same sign since:
(. B)IBII? = 2(cr, B) = 2(8, @) = (B, )] |a*.
2. The Cauchy-Schwartz inequality then gives
0<{a,B)(B,c) <4 and (o, B)(B,0) =4 <= INeR" | = A

But, a and f being roots, («, §) and (3, &) must be in Z and, in addition, « and /3 are proportional
if and only if @« = £8. It follows that, if we assume ||a|| < ||8]|, the possible values for these
integers are as follows:

(o, ) | (B,c) | angle | [|B]1/]|ed[?

0 0| 7/2 | undetermined | case where a and (3 are orthogonal
1 1| «/3 1

-1 -1 27/3 1
1 2| w/4 2

-1 —2 | 3mw/4 2
1 3| m/6 3

-1 —3| 57/6 3
2 2 0 1| case where o = 8

-2 -2 T 1 | case where o = —f3

(=)}
oo



As a consequence, we get the following Lemma.

Lemma II1.2.14 — Let ® be a root system of E. Let a, 5 € ®, a # +[3.
1. If (o, B) > 0, then o — 5 € .
2. If (o, B) < 0, then a+ B € P.

Proof. Suppose that («, 3) > 0, by Remark II1.2.13, either (o, ) =1 or (5,) = 1. In the first
case, o« — 3 = og(a) € @, in the second case, f — a = 04(5) € ® (by the third condition on root
systems). By the second condition, we get point 1. Point 2 follows from point 1. m

We now introduce the notion of string of roots.

Proposition 111.2.15 — Let o, 5 € ® be nonproportional roots.
PutI={i€eZ|B+ia € ®} and S ={f+ia, i€ I}. Then:

1. I is a bounded interval of 7. containing 0,

2. if r,q € N are the integers such that I = [—r,q|, then r — q = (5, ).

Proof. Consider the map
p + Z — E
i = [B+ia’

As a # 0, p is injective. Thus, since @ is finite, I is a finite subset of Z. Clearly I contains 0.
We may thus consider r,¢ € N such that ¢ = max(I) et —r = min(]) and we have I C [—r,q].
Suppose I is not an interval of Z. Then, there exists integers p, s avec p < s such that p,s € I,
p+1,s—1¢ I. Lemma II1.2.14 then implies that (8 + pa,«) > 0 and (8 + sa, ) < 0. From
which it follows that —p(a, ) < (8, a) < —s(a, a), contradicting p < s. This proves Point 1.

It is clear that 0,(S) C S. Moreover, o, is injective and S finite. So, 0,(S5) = S. More
precisely, for i € Z,

00&(5"*'7;04) =B - <,8,0L>OZ —ia =+ (—<,8,0é> —i)Oé.

It follows that the map Z — Z, i — —i — (f, ) induces a map

I — 1
i = —i—{(p,a)
obviously bijective and decreasing. It thus maps —r to q. Hence, r — (5, ) = q. "

Definition II1.2.16 — Strings of roots — Let o, 3 € ® be nonproportional roots. In the notation
of Proposition II1.2.15, S is called the a-string through B, B —ra its origine, [+ qo its extremity
and q + r its length.

Proposition II1.2.17 - Length of strings of roots — Let a, 8 € ® be nonproportional roots.
The length of the a-string through B is bounded by 3.

Proof. Let v be the origine of the a-string through g. It is clear that the a-string through S and

the a-string through ~ coincide. But, by Point 2 of Proposition I11.2.15, the length of the latter
is —(7, ). Point 2 in Remark II1.2.13 then gives the result. "
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I11.3 Bases of root systems.

In this section, (E,(—,—)) is a euclidean space.

Definition II1.3.1 — Let ® be a root system of E. A subset A of ® is called a base of O if:

(i) A is a basis of E;

(ii) for all a € ®, the coefficients of a as a linear combination of elements of A are integers
which are all in N or all in —N.

Remark II1.3.2 — Let ® be a root system of E, let E’ be a euclidean space and ® a root system
of E' and let ¢ : E — E’ be an isomorphism between (E, ®) and (E’, ®’). Then if A is a base of
®, p(A) is a base of 9’

Remark II1.3.3 — Let ® be a root system of E. A base A of ® gives rise to a partition of ®.
Indeed, put:

®+:{Znaa,na€N,Va€A}ﬂ<b and @‘:{Znaa, naE(N),VaeA}ﬂrb

aEA acA

Then ® = &+ L &~ (disjointe union). In addition, ®~ = —®™.

Definition II1.3.4 — Let ® be a root system of E and A a base of ®. The elements of A are
called simple roots; the elements of ®* (resp. ®~ ) are called positive (resp. negative) roots.
Further, the height of a € ®, denoted ht(«), is the sum of its coefficients in its expression as a
linear combination of elements of A.

Definition III1.3.5 — Let ® be a root system of E and A a base of ®. We define a binary relation
on E, denoted =, as follows:

Vz,y €E, x =y if y—x € Spany(®") = Spany(A).

Proposition 111.3.6 — Let ® be a root system of E and A a base of . The binary relation <
of Definition I11.5.5 is an ordre on E.

Proof. This is clear. n

Lemma II1.3.7 - Let ® be a root system of E and A a base of ®. If a, B € A are distinct, then
(o, 8) < 0.

Proof. Suppose, on the contrary, that (a, ) > 0. Then, Lemma II1.2.14 shows that a — 3 is a
root, which contradicts the second condition of the definition of base. n

At this stage, however, it is not even clear that a root system does admit a base. We now
proceed to show that, indeed, it does.

Let ® be a root system. To any o € ®, associate the hyperplane P, = (Ra)*. This hyperplane
determines two half-spaces of E:

Pl ={r€E|(a,z) >0} and P, ={z€E|(a,z)<0}.
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Exercise 111.3.8 — Let E be a finite dimensional nonzero vector space over an infinite field.
Let r € N*. For 1 < i < r, let P; be an hyperplane of E. Then we have the strict inclusion:

Ui<i<, i C E.

Definition II1.3.9 - Let ® be a root system of E. An element of E is called regular if it belongs
to E\ Unea Pa-

Remark II1.3.10 - In the above notation, by Exercise I11.3.8, we have the strict inclusion

UPaCE.

acd

Hence, there exist regular elements.
Definition II1.3.11 — Let ® be a root system of E and x a regqular element of E. Put
T () ={a e ®|(r,a) >0} and @ (z)={a € ®|(x,a)<0}.

An element of ®*(x) is indecomposable if it cannot be written as the sum of two elements of
Ot (z). We denote by A(x) the subset of @ (x) of indecomposable elements.

Remark IT1.3.12 — Let ® be a root system of E and x a regular element of E. Consider an
element o in ®T(x) such that (z,«) is minimal. If oy and ay are elements of ®*(x) such that
a = a1 + ag, then we have (z,a) = (z,a1) + (z,a2). But (z,01) > 0, so (z,) < (z,a), a
contradiction. Therefore, the set A(z) is not empty.

Remark II1.3.13 — Let ® be a root system of E and x a regular element of E.

1. It is clear that:

1.1. d=0T(2) Ud (z) ;

1.2. = (z) = -9 (x).

2. Suppose A(z) is a base of @, and let ®T and ®~ be the set of positive and negative roots
relative to the choice of A(z) as a base of ®, as defined in Remark II1.3.3. Then,

ot = ot (2) and O =P (x).

Exercise 111.3.14 — Let E be a euclidean space and let B be a basis of E.
For all b € B, let p, be the orthogonal projection of b on the line (Spang(B\ {b}))*. Put

5:Zpb.

Then, for all b € B, (b,6) > 0.
In particular, there exists an element x € E such that (b,z) > 0, for all b € B.

Lemma II1.3.15 — Let E be a euclidean space, v € E \ {0}, K a nonempty set and X =
{zk, k € K} a familly of elements of E. If, for all k € K, (z,v) > 0, and, for all i,j € K,
i #J, (xi,xj) <0, then X is linearly independant.

Proof. Suppose X is linearly dependant. From the existence of a nontrivial equation of linear
dependence between elements of X', we deduce the existence of an equality Y, ;7@ = >y 5%,
where I, J are disjoint subsets of K and r; € Ryq, for all € I LI J. Notice that I or J may be
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empty (in which case the corresponding sum is understood to be zero) but that one of the two
at least is not. Now, let e = . r;z;. Then,

(e.e) = Zril‘i,z?"jfvj = Z rirj (x;,xj) < 0.

iel jeJ (i,5)eIxJ

So e = 0. But then, 0 = (¢,v) = Y, ri(x,v), with 7, > 0 and (z;,v) > 0. This entails I = 0.
In the same manner, we get J = (). A contradiction. n

Theorem 111.3.16 - Existence of bases — Let ® be a root system of E.
1. If x is a regular element of E, then A(z) is a base of ®.
2. If A is a base of ®, then there exists a regqular element x of E such that A = A(x).

Proof. 1. We proceed in four steps.

(1) We have ®*(x) C Spany(A(z)).

Suppose the contrary and choose o € ®*(z) \ Spany(A(z)) with (z,«) minimal. In particular,
a ¢ A(x), so that there exist ay,ay € ®T(z) satisfying a = a1 + ag. Thus, we have (a,z) =
(a1, ) 4 (ag, x) with (aq,z), (e, z) > 0. Hence, by minimality of («, ), a1, as € Spany(A(x)),
which entails a € Spany(A(z)). A contradiction.

(2) If a, B € A(x), then either (o, ) <0, or a = f3.

Suppose (a, 3) > 0 and « # 3. Since we cannot have « = —3 as a, 3 € ®*(x), Lemma I11.2.14
applies and shows that « — 3 € ®. If a — 8 € 7 (z), @ = (o« — 8) + B and « is decomposable;
otherwise, 8 —a € ®(z), 8 = (8 — a) + a and B is decomposable. A contradiction.

(3) The set A(x) is linearly independant.

By (2), we are in position to apply Lemma III.3.15, which gives the result.

(4) The set A(z) is a base of ®.

By (1), any element of ®*(z) is a linear combination with coefficients in N of elements of A(x).
It follows that any element of &~ (x) is a linear combination with coefficients in (—N) of elements
of A(x), since @ (z) = —®*(z). Since ® = & () UP(x) the second condition in the definition
of a base is fulfilled. In particular, any element of ® is in Spang(A(x)). And, since ¢ generates
E as a vector space, so does A(x). So, by (3), A(z) is a basis of the vector space E.

2. Let A be a base of ®. Let ®T and ®~ be the sets of positive and negative roots with respect
to A. By Exercise II1.3.14, there exists an element x € E such that (z,a) > 0, for all « € A. By
the second condition of the definition of base, such an x must be regular. More precisely:

Vae d, (z,0) >0 and Vaed, (z,a) <0,

so that @+ C &1 (x) and &~ C &~ (x). But, since @ (z) U P (z) = ® = & U™, we actually
have ®* = &*(z) and &~ = & (z). In particular, A C &*(z). More is true: for all a € A,
« must be indecomposable (as an element of ®*(z)). Indeed, otherwise a could be written as
the sum of two elements in ®*(z) = ®T, each of which, in turn, is a linear combination with
coefficient in N* of elements of A. This would contradict the linear independance of A. So
A C A(x). But, as Point 1 shows, A(x) is a base of ®. As A is also a base of ®, they both are
bases of the vector space E and hence have the same cardinality. So A(x) = A. "

Remark II1.3.17 - Let ® be a root system of E and A a base of ®. Let & and &~ be the sets
of positive and negative roots with respect to A.

1. By Exercise 111.3.14, there exists an element x of E such that (x,«a) > 0, for all a € A.
2. By the proof of Theorem II1.3.16, an element x as in Point 1 must be regular.
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3. By the proof of Theorem I11.3.16, an element z as in Point 1 satisfies A = A(z), & = &1 (x)
and &~ = &~ (z). In particular

¢t C{y€E|(y,z) >0}

4. If y is a regular element of E (with respect to A) and A(y) = A, then A C ®*(y) and, thus:
(y,a) > 0, for all @ € A.

5. We have shown that the regular elements = such that A = A(z) are those satisfying (z, a) > 0,
for all a € A.

At this stage, we are in position to discuss bases for dual root systems. Recall Exercise 111.2.9
for the definition of the dual root system ®V of ®.

Proposition I111.3.18 — Let ® be a root system and A a base of . Put
AV ={a",a € A} CE.
Then, AV is a base of the root system ®" of E.

Proof. Notice first that the set of regular elements relative to ® and ®V is the same.

By Remark I11.3.17, there exists an element = in E such that (x,«) > 0, for all « € A, such
an element is regular (with respect to ®) and we have A = A(z) and ®* = &t (z). Now, as
pointed above, x is regular with respect to ®". Observe in addition that

AV C (@) (z) ={aY,a € ®|(a,2) >0} = {a", a € DT}

Consider now o € A and suppose that o is decomposable as an element of (®V)" (x). Then, by
definition, there exists 8,y € ®T such that oV = 8 ++Y. Put A = {ay,...,a}, a1 = a. Since
B,7 € ®T, there exists n;,m; € N, 1 <14 </, such that

8= Z n;o; and vy = Z m;0y.

1<i<t 1<i<t
The equality o = Y +~" then gives

)~ 2 <(5T,Liﬁ) s %) .

1<i<e

From which it follows, A being a basis of E, that n; = m; = 0 whenever i # 1. Therefore, 8 and
~ are positive roots, proportional to «; that is, 8 = v = «. This leads to a = 2«, a contradiction.

At this stage, we have proved that AV is included in the set of indecomposable elements of
(®V)*(x). But, by Theorem I11.3.16, the latter set is a base of the root system ®" and thus, in
particular, a basis of E. As AV is also a basis of E, the previous inclusion must be an equality,
which proves that AV is a base of ®V. .

The notion of base of a root system allows to refine the Cartan-Chevalley decomposition as
we now show.

Example I11.3.19 — Application to the Cartan-Chevalley decomposition — Recall the
setup of Section II1.6. The field k is assumed to be algebraically closed of characteristic 0. We
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consider a pair (g,h), where g is a finite dimensional semisimple Lie algebra and h a maximal
toral subalgebra of g.

We then have the Cartan-Chevalley decomposition g = h &P (EB acd ga} where, for a € h*,
we put go = {z € g|Vh € b, [h,z] = a(h)z} and ® = {a € h*\ {0} | ga # (0)}. Recall also that
go=b.

The Killing form on h gives rise to a nondegenerate form on h*: (—,—) : b* x h* — k, via
the identification ¢ : h — bh*. Then, putting Eg = Spang(®) C h*, we get a Q-subspace of
dimension dimg(h*) and on which (—,—) induces a positive, definite, symmetric bilinear form
(—,—)o : Eg x Eg — Q wich, in turn, defines a positive, definite, symmetric bilinear form
(—,—)r : Er xEg — R on the R-vector space Ex = R®q Eq, turning it into a euclidean space.

Then, Theorem I1.6.1 shows that, seen as a subspace of Eg, ® is a root system of Eg.

At this stage, the results of the present section allow us to refine the Cartan-Chevalley de-
composition as follows. Choose a basis A of ®, and write ® = ®* LU ®~. Then, we can put:

N =@aeqp-0a and n=n" =ducqp+fa, sothat g=n"@hon’.

The first point of Lemma I1.5.6 shows that n™ and n~ are Lie subalgebras of g. The same results,
together with Engel’s Theorem, actually shows that n™ and n™ are nilpotent Lie algebras. Put
now

b=bT=phpnt.

The same argument as above shows that b is a Lie subalgebra of g and that [b, b] C n™. It follows
that the Lie subalgebra [b, b] of b is nilpotente (hence solvable), which entails that b is solvable.

Actually, more is true, we have: [b,b] = n. Indeed, let a € ®*. There exists h € b such
that a(h) # 0. Then, if x € g,, the identity [h,z] = ¢(h)x shows that = € [h,n]. The inclusion
n C [b, b] follows.

I11.4 Properties of root systems.

In this section, (E,(—,—)) is a euclidean space.

Proposition II1.4.1 — Let ® be a root system of E and A be a base of .

1. If « is a positive but not simple root, there exists a simple root B such that o — B is a positive
r001.

2. If a is a positive root, there exists t € N* and a finite sequence (a;)i1<i<t of simple roots such
that:

(i) @ =3 1<icy i and,

(i) for all1 < s <t, > e 0 € DT,

Proof. Remark II1.3.17 shows there exists z € E, regular, such that ®* C {y € E| (y,z) > 0}.

Let a be a nonsimple, positive root. Suppose that («,3) < 0 for all simple root 3, by
Lemme II1.3.7, we are in position to apply Lemma II1.3.15 which implies that AU {a} is linearly
independant. This is a contradiction. Hence, there exists a simple root § such that («, ) > 0.
But, a and 8 are not proportional since « is positive but not simple. So, Lemma III.2.14 applies
and shows that o — 3 is a root.

Now, a being positive, for all v € A, there exists n, € N such that o = nyeA n~7y. As a and
[ are not proportional, there exists v € A\ {8} such that n, > 0. But then, since o — 3 is a
root, the definition of base implies that ng > 1. Point 1 follows.
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Point 2 is an immediate consequence of Point 1. ]

We are now in position to give a better set of generators for a semisimple Lie algebra than
the one given in Proposition I1.5.17. (See Example II1.3.19 for comments on the context.)

Proposition 111.4.2 — Suppose k is algebraically closed of characteristic 0. Let g be a finite
dimensional semisimple Lie algebra, let b be a maximal toral subalgebra, let ® be the set of roots
for the pair (g,b) and let A be a base of the root system (Eg, ®). Then, the set ) A (§a + 0-a)
generates g as a Lie algebra.

Proof. Let [ be the Lie subalgebra of g generated by the root spaces g, and g_o, @ € A. By
Proposition 11.5.17, it is enough to show that any root space gg, 3 € ®, is in L

Suppose first that 5 is a positive root. We proceed by induction on the height of 5. The
result is trivial if the height of S is 1 since then 5 € A. Consider now any [ with height at least
equal to 2. By Proposition I11.4.1, we know that there is a simple root o and a positive root y
with ht(y) = ht(f) — 1 such that 8 = a + . By the induction hypothesis, both g, and g, are in
[. On the other hand, by Proposition I1.5.16, we have that gg = [ga, 8] So, gg € .

Clearly, a similar argument works for negative roots /3, using induction on —ht(/3). "

Notation 111.4.3 — Let ® be a root system of E and A a base of &. We put

5:%ZﬁEE.

Bed+t

Proposition I11.4.4 — Let ® be a root system of E and A a base of ®. Let o € A.

1. If B € @1\ {a}, then 0,(B) € T\ {a}.
2. The restriction of o to ®T \ {a} induces a bijection of T\ {a} into itself.
3. We have 0,(0) =6 — a.

Proof. Denote ay, ..., «a, the simple roots, with a; = a. There exist n,no,...,n, € N such that
B =na+) 5., nic;. Moreover, since o # f3, there exists 2 <4 < r such that n; > 0. Then,

oo(B)=|—n— Z ni{ag, a) | a+ Z n; ;.

2<i<r 2<i<r

Now, 0,(8) € ® by definition of a root system, and one of its coefficients n;, 2 < i < r, in its
decomposition over A is in N* by the above observation. Hence, 0,(3) € ®1 and it is different
from «. This proves the first point. The two others follow immediately. n

Proposition I11.4.5 — Let ® be a root system of E and A a base of ®. Lett € N, t > 2 and,
for 1 <i<t, a simple root c;; and the reflection o; = 04, attached to it.
Ifo1...00-1(c) € @, then there exists an integer s, 1 < s < t, such that

01...0¢ = H gj.

1<i<t,ists, it

(With the convention that the above product is the identity if t = 2.)
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Proof. Let By, ..., Bt—1 be the roots defined by 8; = 041 ...0¢—1(an), 0 < i <t—2, and f4—1 = .

By hypothesis, By € ®~ et ;1 € ®T. Hence, there exists a least integer s such that
1<s<t—1and fBs € P". We have Bs_1 = 05(8s) € ®. Proposition I11.4.4 thus implies that
Bs = Q.

If s=t—1, we thus have oy = ;1 = a¢_1 and the result is clear.

Otherwise, we have 0411 ...04-1(¢) = as. Thus, by Corollary II1.1.5, we have

-1
(0’s+1...Utfl)a't(O'erl...O'tfl) = Og,
thatisoy...00 =01...05-10s41-..0¢—1. n

Corollary I11.4.6 — Let ® be a root system of E, Wg its Weyl group and A a base of ®. Let
o € Wg, 0 # id. If t is the least element of N* such that o may be written as product of

t reflections o4, a € A and if ay,...,ap are elements of A such that o = 04, ...04,, then
O'(Oét) c .

Proof. If t = 1, the result is clear.
Suppose t = 2. Then 0 = 04,04,, @1, a2 € A. If we suppose that o(ay) € @7, then o4, (a2) €
®~ which implies, by Proposition I11.4.4, that c; = ae. But o # id, hence a contradiction.
Suppose now that t > 3. Then o = 04, .. .04, Q1,...,a € A. If we suppose that o(at) € O,
then oq, ...0q, ,(at) € ®~. We are then in position to apply Proposition II1.4.5 which shows
that o may be written as a product of t—2 reflections associated to simple roots, which contradicts
the minimality of ¢. Hence, o(ay) € &~ u

III.5 Weyl chambers.

In this section, (E,(—,—)) is a euclidean space.

Let ® be a root system of E. Recall the set

T=E\|JP

aed

of regular elements of E (cf. Definition II1.3.9) relative to ®, which we know is not empty (cf.
Remark I11.3.10).

Remark II1.5.1 -
1. Clearly, T = {z € E|(z,a) # 0, Va € ®}.
2. As the Weyl group relative to ¢ stabilises @, it also stabilises T .

Lemma II1.5.2 — Let x,y € T. The following statements are equivalent:
(i) for all a € @, (z,)(y, ) >0 ;

(ii) @F(z) = @ (y) ;

(iii) A(x) = Aly).

Proof. Statement (i) means, for all a € ®, the sign of the nonzero real numbers (z, o) and (y, @)
is the same. The equivalence between (i) and (ii) is therefore immediate. It is clear also that (ii)
implies (iii), by definition of A(x) and A(y).

Let us now suppose that (iii) holds. By Theorem III1.3.16, A(x) and A(y) are bases of ®, so
we are in position to apply Point 2 of Remark I11.3.13, which gives ®*(x) = ®*(y). n
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Lemma II1.5.2 suggests an equivalence relation on 7, denoted ~, defined as follows. Let
x,y €T, put
x~y if VYaed, (z,a)(y,a)>0.

In other terms, two elements of 7 are in relation if, for every root «, they are in the same
half-space relative to P,.

Lemma II1.5.3 -

1. Relation ~ is an equivalence relation.

2. This equivalence relation is compatible with the action of W on T (that is, Vx,y € T and
w e Wy, if x ~y, then w(z) ~ w(y)).

Proof. The first statement is clear. The second follows easily from the fact that Wg stabilise ®
and consists in orthogonal linear maps. n

Definition II1.5.4 — Let ® be a root system of E.
1. Equivalence classes for the equivalence relation ~ are called Weyl chambres.
2. If x € T, the Weyl chambre to which x belongs will be denoted Ch(x).

Remark II1.5.5 — It can be shown that Weyl chambres are the connected components of the
topological space T (equiped with the topology induced from that of the euclidean space E).

Remark IT1.5.6 —Let P(®) stand for the set of subsets of ®. Then, we have a map T — P (),
x — A(z) whose image is, by Theorem II1.3.16, the set of all the bases of ®. Lemma II1.5.2 then
shows that it induces an injection

Che) o Al (I11.5.1)

Hence, the set of Weyl chambres is in one-to-one correspondance with the set of bases of ®.

Definition II1.5.7 — Let A be a base of ®. The inverse image of A by the injective map (1I1.5.1)
is called the fundamental chambre relative to (®,A). It will be denoted Ch(A).

Lemma II1.5.8 — Let A be a base of the root system ®. Then Ch(A) = {y € T |Va €
A, (y,a) > 0}.

Proof. By definition, Ch(A) = {z € T |A(z) = A}. Hence, the result is just Point 5 in Remark
I11.3.17. "

Remark II1.5.9 -
1. The Weyl group stabilises @, hence acts on ®. It follows that it also acts on P(®). Actually,
it is easy to check that:

VeeT and Vwe Wep, w(®T(z)) = T (w(x)) and w(A(z)) = A(w(x)).
Hence, the map

(@)

T — P
xr =  A(zx)
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is Wg-equivariant.
2. Recall from Lemma III.5.3 that the action of Wg on T is compatible with ~. Hence, the
action of Wg on T induces an action of Wg on 7/ ~. It follows from the above that:

T/~ — P(®)
Ch(z) +— A(x)

is Wa-equivariant. That is: the set of Weyl chambers is in bijection with the set of bases of ®
and this bijection commutes with the action of Wg.

I1I.6  Weyl group, generators and action.

In this section, (E,(—,—)) is a euclidean space.

Let ® be a root system of E and A a base of ®. Lemma II1.5.8 gives the first equality below
and the second is clear by the definition of 7T

Ch(A)={yeT|Vae A, (y,a) >0} ={ycE|Vae A, (y,a) > 0}.
We now introduce the following notation.
Notation I11.6.1 — Let ® be a root system of E and A a base of . Put:
Ch(A) = {y € E|Va € A, (y,a) > 0}.

The following theorem collects fundamental results about the Weyl group. We prepare its
proof with two exercises.

Exercise 111.6.2 - Let E be a finite dimensional nonzero vector space over an infinite field. Let
reN, r>2 Forl<i<r, let P, bean hyperplane of E. If Py,..., P. are pairwise distinct,
then there exists an element of P; which is not in (Jy,;, P;. (This is a consequence of the result
in Exercise 111.3.8.) o

Exercise I11.6.3 — 1. Let T be a topological space, r € N*, and f : T — R, f; : T — R,
1 <4 < r be continuous maps. Suppose y € T satisfies f(y) = 0 and, f;(y) # 0, for 1 < i < r.
Then there exists an open subset U of T containing y such that, for all « € U, and for all
1<i<r, f(2) < |fi(a)]

2. Let E be a euclidean vector space, r € N*, and v, v; be nonzero elements of E, 1 < i < r.
Suppose there exists y € E such that (v,y) = 0 and (v;,y) # 0, for all 1 <4 < r. Then, there
exists € E such that 0 < (z,v) < [(x,v;)| for all 1 <¢ <.

Theorem I11.6.4 — Let © be a root system of E and Wy its Weyl group. Let A be a base of ®
and W' the subgroup of We generated by the reflexions oo, o € A.

1. Let x be a regular element of E. There exists w € W' such that w(z) € Ch(A). In particular,
the Weyl group acts transitively on the set T/ ~ of Weyl Chambers.

2. If A’ is a base of @, there exists w € W' such that w(A") = A. In particular, the Weyl group
acts transitively on the set of bases of ®.

3. Let « € ®. There exists w € W' such that w(a) € A.

4. The Weyl group is generated by the reflections oo, o € A; that is, W = W',

5. If w is an element of the Weyl group such that w(A) = A, then w = id. In particular, the
Weyl group acts simply transitively on the set of bases of ®.
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1
Proof. 1. Recall the element § = 3 Z B (see Notation II1.4.3). As the set {(w(z),d), w €
pedt
W’} C R is finite, we may chose w € W' such that (w(x),0) is its maximum. Now, let a € A.
Then o,w € W' and thus

(w(z),08) = (daw(),8) = (w(z),04(9)) = (w(z),d — @)

(see Proposition I11.4.4), which entails (w(x),«) > 0. The second point of Remark III.5.1 then
shows that (w(x),«) > 0. Therefore, by Lemma I11.5.8, w(z) € Ch(A).

2. This follows immediately from Point 1 by Remark I11.5.9.

3. By Point 2, it suffices to show that o belongs to a base. By Exercise II1.6.2, there exists
x € P, such that, for all 3 € ® \ {£a}, ¢ P3. Now, by Exercise I11.6.3, it follows that there
exists y € E such that 0 < (y,a) < |(y,p)], for all B € @\ {£a}. Clearly, y must be regular
and, in addition, we have o € ®*(y). It is easy to check that, actually, o is an indecomposable
element of T (y), so that a € A(y).

4. Let a € ®. By Point 3, there exists w € W’ such w(a) € A. Corollary I11.1.5 then shows that
woaw ™t = 0y € W' Tt follows that o, € W'.

5. Let w be an element of the Weyl group such that w(A) = A. By Point 4, w may be written
as a product of reflections o, @ € A. Suppose w # id, Corollary I11.4.6 shows that there exists
a simple root sent by w to a negative root, which contradicts the hypothesis on w. Therefore,
w = id. The rest is clear since the action of Wg on the set of bases of ® is transitive. n

Definition II1.6.5 — Simple reflections —
Let ® be a root system of E and A a base of ®. A simple reflection is a reflection o, with o € A.

Definition II1.6.6 — Length of a Weyl group element -

Let ® be a root system of E, Wg its Weyl group and A a base of .

1. Let w € Wg, w # id. The least integer t € N* such that w may be written as the product of t
simple reflections is denoted ¢(w) and called the length of w relative to A.

2. In addition, we put £(id) = 0.

Definition II1.6.7 — Reduced expression of a Weyl group element -
Let ® be a root system of E, Wg its Weyl group and A a base of . Let w € Wy, w # id. A
reduced expression of w is a decomposition of w as a product of £(w) simple reflections.

Notation II1.6.8 — Let ® be a root system of E, Wg the Weyl group of ® and A a base of ®.
If w € Wy, we denote n(w) the cardinality of the set {a € 1 |w(a) € 7 }.

Proposition I11.6.9 — Let ® be a root system of E, Wg its Weyl group and A a base of ®.

1. If w is a Weyl group element of nonzero length, then there exists w' € W and o € A such
that:

(i) w=w'oy;

(i1) b(w) = L(w') + 1;

(11i) w(a) € 7.

2. For allw € Wy, l(w) = n(w).

Proof. 1. Let w = 0g, ...0q, be a reduced expression of w; hence aq,...,ap € A and ¢ = {(0).

Put @ = oy and v’ = wo,. Then, clearly, w = w'o, and £(w') = £(w) — 1. On the other hand,
by Corollary I11.4.6, w(a) € ™.
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2. We proceed by induction on the length. The result is obvious for elements of length 0. (It is
also true for elements of length 1 by Proposition I11.4.4, Point 2.) Suppose now that w € Weg,

¢(w) > 1. Decompose w as Point 1 allows to. We have w(a) € ®~. But then, Proposition
I11.4.4, Point 2, implies that n(woy,) = n(w) — 1. But, {(wo,) = ¢(w) — 1, so that the induction
hypothesis, yields n(woy) = ¢(woy). So, n(w) = £(w). "

Proposition II1.6.10 — Let ® be a root system of E, Wy its Weyl group and A a base of ®.
The set Ch(A) is a fundamental domain for the action of We on E. That is, each Wg-orbit for
this action intersect Ch(A) in exactly one point.

Proof. Define a binary relation on E, denoted &, by: for allz,y € E, y > wif y—z € Spang_ (A) =
Spang_ (®*). It is clear that this binary relation is an order on E. B

Let £ € E. As Wy is finite, so is the orbit Wg.x of x. It follows that Wg.x has a maximal
element; let y be such an element. Let o € A. Then, 0,(y) = y— (y, @)a. Now suppose (y,a) < 0,
then o,(y) —y = —(y,a)a € RTA. The maximality of y with respect to the above order entails
(y, ) = 0. This shows that y € Ch(A). We have shown that any Wg-orbit intersect Ch(A).

Suppose now that z,y € E are elements of Ch(A) such that there exists w € Wy with
y = w(z). We wich to show that = y. For this, we proceed by induction on the length of w.
The result is trivial if £/(w) = 0. Suppose now that w is an element of Wy such that ¢(w) > 0. By
Proposition I11.6.9, there exists w’ € Wy and o € A such that w = w'o,, {(w) = £(w') + 1 and
w(a) € ®~. But, as 7,y € Ch(A), 0 < (z,0) = (wi(y),a) = (y,w(a)) < 0. Hence, (z,a) =0
and thus y = wo,(z). But, {(wo,) = £(w) — 1. Thus, the induction hypothesis gives z = y. This
terminates the proof. m

Exercise I11.6.11 — Let ® be a root system of E and A be a base of ®. Let in addition
A= > nen koo, with ko € Z, for all @ € A and suppose that either k, > 0 for all @ € A or
ko <0 for all &« € A. Then, either A € RS, for some 5 € ®, or there exists w € Wg such that if

w(A) =3 en koo, with ki, € Z, then there exists a, 8 € A such that kg, > 0 and kjy < 0.

II1.7 Irreducible root systems.

In this section, (E,(—,—)) is a euclidean space.

Lemma II1.7.1 - Let @ be a root system of E. Suppose there exists a decomposition E = E1 D E,
of E into subspaces such that ® C E; UEy and put &, = ®NE;, ¢ = 1,2. Then, E; L Eo,
D =D LDy, and, fori=1,2, ®; is a root system of E;.

Proof. The hypotheses imply that ®; N ®y = ) and & = &7 LI O».

Let « be an element of E. As ® spans E, there exists x; € Span(®;) C E;, i = 1,2, such that
x=x1+x2. AsE=E; ®Ey, ifx € Fy, then = x1, which proves that Span(®;) = E;. Similarly,
Span(®3) = Es.

Let a; € ®;, i = 1,2. We have that o4, (a2) = ag — (a9, a1)a; € & = &1 U P9, As the sum
of E; and Eg is direct, the only possibility is 0, (a2) = ag € ®g; that is (a1, a2) = 0. Whence,
E; L Es.

Let o € E;. The above shows that o, leaves ®, (pointwise) fixed. However, as o, stabilises
®, it must stabilise ®;. Similarly, if o € Eo, 0, must stabilise ®s.

The proof is complete. L]
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Lemma II1.7.2 - Let ® be a root system of E. Suppose there exists a partition ® = &1 1Py of
such that ®1 1 ®9 and put E; = Span(®;), i = 1,2. Then E=E; ®Eg, E; L Ey and ® C E; UE,.
In addition, fori=1,2, ®; = ® NE; and it is a root system of E;.

Proof. It is clear that E = E; ® Eo, E; L Es and ® C E; UEs. In addition, it is easy to check that,
fort=1,2, &; = PN E;. So, Lemma II1.7.1 shows that, for ¢ = 1,2, ®; is a root system of E;. =

Definition II1.7.3 — Let ® be a root system of E. We say that ® is irreducible if E # (0)
(equivalently ® # () and there exist no partition ® = &1 U $y of & with ®1 and P2 nonempty
and orthogonal.

Remark II1.7.4 — Let ® be a root system of E, let E’ be a euclidean space and " a root system
of E' and let ¢ : E — E’ be an isomorphism between (E, ®) and (E’, ®"). Then @ is irreducible
if and only if @’ is.

Proposition II1.7.5 — Reducibility of root systems — Suppose E # (0). Let ® be a root
system of E. There exists k € N* and subspaces E; of E, 1 < i < k, such that, if we put
¢, = dNE;, then:

1@ =U<i<p®; ;

2. ®; is an irreducible root system of E;, for 1 <i < k;

3. E is the orthogonal direct sum of the subspaces E;, 1 < i < k.

Further, such a decomposition of (E, ®) is unique (up to the permutation of indices).

Proof. To prove the existence, we proceed by induction on the dimension of E.

The result is clear if dimg(E) = 1 since then any root system is irreducible.

Suppose now that E has dimension d € N with d > 2. If ® is irreducible, then there is nothing
to do. Otherwise, there exists a partition ® = ®; LI &5 of & into nonempty subsets such that
®; L &y. Put E; = Span(@i), 1=1,2. By Lemma II1.7.2, E=E{®Es, E; L Eg, ® C E;UE, and,
fori =1,2, & = P NE; is a root system of E;. Applying the induction hypothesis to (Ei, ®1)
and (Eg, ®2) shows that (E, ®) enjoys a decompositon as required.

Let us now prove the unicity. We begin with an observation. Suppose we are given a deco-
mosition as in the statement and suppose in addition that ® = ®' L ®” is a partition of ® with
@' | @”. Then, forall 1 <i<k, & =(®NP;)U(P"ND;), and (&' NP;) L (" NP;). Now, D;
being an irreducible root system of E;, this forces ® N ®; = () or " N &; = (.

Suppose now that we are given [ € N* and subspaces E; of E, 1 < i <, such that, if we put
¢, = & NE] then & = Uj<;,<;®, ! is an irreducible root system of E;, for 1 <i <[ and E is the
orthogonal direct sum of the subspaces Eg, 1 <i<I Given 1l <i <k, itis clear that there must
exist 1 < j <[ such that ®; N @, # (. Now, the above observation applied with &' = &’ and
®" = Uy, shows that ®&; C @, Further, a similar argument gives ®; O ®’. In particular, such
a j must be unique. We have therefore defined a map {1,...,k} — {1,...,l} that associates to
1 the unique j such that ®; = <I);-. The injectivity of this map is obvious, its surjectivity follows
from the fact that, for 1 <4 <1, (E}, ®}) is irreducible and hence @/ not empty.

It follows that k& = [ and that there exists a permutation o € &j such that @, = D),
1 <i < k. In addition, for all 1 < i <k, E,(;) = Spang(®,(;)) = Spang(®;) = E;. The result is
proved. m

Definition ITI.7.6 — Suppose E # (0) and let ® be a root system of E. The decomposition of
(E, ®) given by Proposition II1.7.5 is called the decomposition of (E,®) into irreducible compo-
nents.
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Exercise II1.7.7 — Suppose E # (0) and let ® be a root system of E. Let E be a euclidean
space and @’ a root system of E’. If ¢ is an isomorphism from (E, ®) to (E’,®’), then ¢ sends
the decomposition of (E, ®) into irreducible components onto the decomposition of (E’, ®') into
irreducible components.

Proposition II1.7.8 — Let ® be a root system of E and A a base of E. The root system ® is
irreducible if and only if A cannot be partitionned into two nonempty orthogonal subsets.

Proof. Suppose @ is reductible. By definition, there exists a partition ® = &1 LI $5 of ® into
nonempty and orthogonal subsets. Suppose A C ®;. Then, A being a basis of E, an element of
®y must be orthogonal to itself, hence zero; a contradiction. So, A € ®1. Similarly, A Z ®s.
Whence, A is the disjoint union of the nonempty orthogonal subsets A N ®; and A N .

Conversely, suppose A is the disjoint union of two nonempty orthogonal subsets A; and As.
Put @1 = W@.Ai, 1= 1, 2.

Point 3 of Theorem II1.6.4 together with the stability of ® under Wg imply that & = &1 U ®s.
Further, for i =1, 2,

®; C Span(A;).

Indeed, let @ € Ay and w € Wg. By Theorem 111.6.4, w is the product of reflexions associated
to simple roots. But, reflections associated to orthogonal vectors commute and « is invariant
under any reflexion associated to an element of Ag. Hence, w(a) is the image of o under a
product of reflections associated to elements of Aj. It follows that w(«) € Span(A;). Hence,
®; C Span(A;). Similarly, &2 C Span(Ajz). As a consequence ®; L ®o. It follows that & is
reducible. n

Lemma II1.7.9 - Let ® be an irreducible root system of E and A a base of E.
1. The ordered set (®,=) has a maximum element (see Definition II1.5.5).

2. Let p be the maximum element of (®, =), then:

2.1. Yo € &, a # p, ht(a) < ht(u) (see Definition I111.5.4);

2.2. Vo € A, (u,a) > 0;

2.8. 0 < pand if p=73 ca ko, ko €N, Va € A, then ko € N*.

Proof. Observe that the result is easy if dimg(E) = 1. We thus suppose now that dimg(E) > 2.

The ordered set (®,=) must have a maximal element since ® is finite. Let p be such an
element. Observe that u =< 0 would then force u < « for any simple root «, which contradicts
the maximality of . So that 0 < p and thus g = Y A ka0, ko €N, Va € A. Let

A ={a€A|ky, >0} and As={a€ Ak, =0},

so that A = A U As.

Suppose that Ay # (). By Lemma II1.3.7, for all distinct a, 8 € A, (o, 8) < 0. In particular,
for all & € Ay, (a, ) < 0. But, as ® is irreducible, Proposition II1.7.8 implies that there exists
an element of Ay which is not orthogonal to all the elements of A;. Hence, there exists a € A,
such that (o, p) < 0. But then, Lemma II1.2.14 implies that x4 + « € ®, which contradicts the
maximality of x. Hence, we must have Ay = ().

Now, Lemma II1.2.14, together with the maximality of 4 implies that, for all &« € A, (u, ) > 0.
Further, as A spans E, there exists o € A such that (u,a) > 0.

Let 1/ be any maximal element of (®,=<). The above applies to it: there exits k], € N*,
o € A, such that y/ =3 A ko And, since there exists v € A such that (p,a) > 0, we have
(p, ") > 0. If we suppose p # p/, then g and p' are not proportional since they are both positive
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roots (see above). Thus Lemma II1.2.14 applies and shows that p— i is a root, with implies that
w=p or p’ =X pand hence u = p'; a contradiction. Therefore u = .
At this stage, we have shown Points 1, 2.2 and 2.3. In addition, Point 2.1 is clear. m

Lemma II1.7.10 — Let ® be an irreducible root system of E.
1. The natural action of the Weyl group on E is irreducible.
2. For all o € &, Wg.ax spans E.

Proof. Let F' be a subspace of E stable under the action of Wg.

Let a € ®. Suppose a ¢ F. As 0,(F) C F, Lemma II1.1.3 implies that F' C (Ra)*. As
a consequence, a € F-. This shows that ® C FUFL. So ® = (PNF)U (P NFL). As @ is
irreducible, we must have ® = ® N F or ® = ® N F*. But ® spans E, so F = E or F' = (0). Point
1 is proved.

Let o € ®. Tt is clear that Span(Wg.«) is a nonzero subspace of E stable under the action of
Wg. Point 1 then gives Point 2. ]

Remark II1.7.11 — Let ® be an irreducible root system of E. Let o, 8 € ®. By Lemma III1.7.10,
Wa.a spans E, so there must exist w € Wg such that w(a) L 5.

Exercise II1.7.12 - Isomorphisms of irreducible root systems — Let (E, ®) and (E’, ®’)

be root systems and let ¢ be an isomorphism between them.
1. For all a, 5 € ®, with « } 3,

(pla),p(@)) _ (p(B),

_ v(5))
(@, @) 8.8

2. Suppose ® is irreducible.
2.1. The equality of question 1 holds for all «, 8 € .
2.2. The isomorphism ¢ is an isometry, up to multiplication by an element of R~q.

Lemma II1.7.13 — Let ® be an irreducible root system of E.
1. The set of lengths of elements of ® is of cardinality at most 2.
2. If a, B € ® have the same length, there exists w € Wy such that B = w(a).

Proof. Let a, f € ®. According to Remark II1.7.11 there exists w € Wg such that w(a) L S.
As the lenght of o and w(a) are the same, it follows from Remark I11.2.13 that ||«|[?/||3]|* €
{1/3,1/2,1,2,3}. Suppose that there exists three roots «, 3, v with pairwise distinct lengths.
We can order them so that ||a|*> < ||B]|*> < ||y||>. This implies that ||3]|?/||ca||* = 2 and
[[712/||c||? = 3. Which entails that ||||?/||8]|*> = 3/2; a contradiction. Point 1 is proved.

Let us now prove Point 2. If «,, 8 € ® have the same length, by Remark II1.7.11, there exists
w € Wy such that w(«) and S be nonorthogonal roots with the same length. Hence, to prove
Point 2, we may assume that « and § are not orthogonal. The case where o = ( is trivial. The
case where a = —f3 is easy since then o3(f) = —f. Suppose now that o and 3 are nonorthogonal
and nonproportionnal. By Remark I11.2.13, (o, 8) = (8, ) = £1. Changing ( in —f if necessary
(which we can do without loss of generality since opposit roots are in the same Wg-orbit), we
may suppose that («, 3) = (,a) = 1. Then 0,0304(8) = . Point 2 is proved. "

Definition II1.7.14 — Let ® be an irreducible root system of E. (See Lemma I11.7.13.)

1. If the set of lengths of elements of ® has cardinality 2, the roots with the greatest length are
called long roots, the others are called short roots.

2. If the set of lengths of elements of ® has cardinality 1, all the roots are called long roots.
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Lemma II1.7.15 — Let ® be an irreducible root system of E with two root lengths. Let A be a
base of ®. The mazimum root of ® (see Lemma I11.7.9) is long.

Proof. Let u be the maximum root of ®. We must show that (i, 1) > (o, @), for all a € ®.

Let a« € ®. Then, by Proposition II1.6.10, we know that the Wg-orbit of a contains an
element of the set Ch(A), which clearly is a root. For this reason, we can assume without loss
of generality that a € Ch(A). By Lemma II1.7.9 and our assumption on «, «, € Ch(A). Since
0 < p — a it follows that (u, u) — (e, ) = (B —a,p+ @) = (p—a,p) + (p— o, ) > 0.

The result is proved. m

II1.8 Examples.

Type Ay, ¢ € N*. Consider the euclidean space R‘! equipped with the standard scalar product.

Let (e1,...,€041) be the canonical basis of R“1. Put
I= P Ze.
1<i<+1

Let E be the hyperplane of R defined by:
E = (R(El —+ ...+ Eg_,_l))l;

hence (E, (—, —)) is a euclidean space of dimension ¢. Consider the set ® of elements of E belonging
to I and whose norm is v/2 :
O={zcENI|(z,z) =2}

It is emediate that
O={e—¢j|1<i#j<L+1}

Put now
A:{gi_5i+17 1 S’Lgﬁ}

It is clear that A is a linearly independant family of Rt and a basis of the R-vector space E.

Let 1 <i < /(. Put oy = 0., ¢, ., € O(E). Clearly, o; is the restriction to E of the reflection 7;
of R associated to &; — g41.
An easy computation shows that, for 1 <7 </,

Ti(e’:“i) = €j+1, Ti(5i+1) =¢;, and Ti(Ek) =¢p, 1<k</l+1,k#i kF#i+1

Lemma II1.8.1 — Keep the above notation. Then,
1. ® is an irreducible root system and A a base of ®;
2. W 1is isomorphic to Gyyq.

Proof. The fact that ® is a root system and A a base of ® is a straightforward verification.
The irreducibility of ® is easy to prove using Proposition III1.7.8. (Suppose that we are given
a partition A = A; LU As with Ay L Ay and &1 — e9 € Ay, Since €1 — g9 and g9 — €3 are not
orthogonal, we must have €5 — €3 € Ay, etc; so that Ay = (.)

By Theorem I11.6.4, Wy is generated by the simple reflections o1, ..., 0. On the other hand,
there exists a morphism of groups

OE) — ORH
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mapping an orthogonal automorphism of E onto its extension as an orthogonal automorphism of
R acting by the identity on E+. This morphism is clearly injective. Hence, it identifies W
with the subgroup of O(R*1) generated by the reflections 7;, 1 < i < . But, the above shows
that, for 1 <4 < ¢, 7; permutes €; and ¢;41 leaving invariant any other vector of the canonical
basis of R‘T!. Thus, the image of Wg is the subgroup of O(R*!) of those automorphisms that
permute the canonical basis of R‘1. Therefore, Wy identifies with the symmetric group &1,
as requierred. n

Definition II1.8.2 — The root system of Lemma II1.8.1 is called the root system of type Ay,
e N

Type By, £ € N, { > 2.
We let €1, .

We put E = RY and endow it with its standard euclidean structure.
.., ¢ be the canonical basis of R and put

I= @ Zei.

1<i<e
We then denote ® the set of those elements in I whose norm is 1 or v/2. Clearly,
®={te;, 1 <i<lU{te; +e;]1<i<j<i}

Put now
A:{Ei_5i+la lgigﬁ—l}l_l{sg}.
It is clear that A is a basis of the R-vector space R.

For1<i</{ put 7 =0, Forl<i</{¢-1,puto;=o The action of the above

e
reflections on the canonical basis is as follows.
€k if k#14,i+1
For 1 < ) < /- 1, Ui(Ek) = Ei+1 if k=1 (111.8.1)
€ if k=i+1
) . e i kEF#4
For1<i</?, mi(ex)= { el if ke (I11.8.2)

There is an injective morphism of groups &, — O(R?), which sends a permutation p to the
linear automorphism, denoted fp, that sends € to €,4). Let S be its image.

There is an injective morphism of groups (Z/2Z)* — O(RY), which, for (z1,...,2) € Z¢,
sends x = (21 +2Z,...,20+27) € Z/ 27! to the linear automorphism, denoted fx, that sends ¢,
to (—1)*keg. Let Z be its image.

Denote by Autgroup ((Z/2Z)") the group of automorphisms of group of (Z/2Z)*. There is a
morphism of groups as follows:

@ 6( — AUtgroup ((Z/2Z)Z)

,xe) € (Z/22)", o()((x1,---.x0) = (Xp-1(1)> -+ Xp-1(0))- 1t
allows to form the semidirect product (Z/ 2Z)Z X, &y. Combining the two maps of groups above,
we can define a map

where, for p € &y and (x1,...

(Z/QZ)Z Xp Gy — O(RZ)
(X7p) = fxfp

which, as one easily verifies, is an injective morphism of groups.

(111.8.3)
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Lemma I11.8.3 — Keep the above notation. Then,

1. ® is an irreducible root system and A a base of ®;

2. We is isomorphic to the semi-direct product (7./27)" x, &y, where &, acts on (Z/2Z)" via the
map ¢ above (that is, by permutation of factors).

Proof. 1. It is not difficult to show that ® is a root system with base A. The argument used in
type A works again to show that & is irreducible.

2. The group morphism (II1.8.3) sends the canonical generators of the group (Z/2Z) to the
orthogonal automorphisms 7;, 1 < ¢ < ¢, and the elementary transposition (i,i + 1) to the
orthogonal automorphism o;, 1 < ¢ < ¢ — 1. Hence, its image is included in Wg, since all these
automorphisms belong to Wg. On the other hand, Wg is generated by the simple reflections (cf.
Theorem I11.6.4) which are 7y, 01,...,0,—1 and all belong to the image of the group morphism
(I11.8.3). Therefore, the image of this injective group morphism is Wg. This proves Point 2. =

Definition I111.8.4 — The root system of Lemma II1.8.8 is called the root system of type By,
feN, L>2.

Type Cy, L € N, ¢ > 2. We put E = R’ and endow it with its standard euclidean structure.
We retain the notation used for the description of the root system of type By, f € N, £ > 2.

Definition III.8.5 — Let ¢ € N*. The dual root system (see Exercise II11.2.9) of the root system
of type By is called the root system of type Cy.

Remark II1.8.6 — Let £ € N, ¢ > 2. It is easy to describe the root system of type Cy. Denote
it by @, then, the following holds.
1. We have

O ={£2, 1 <i</l}U{fe;te;|1<i<y <L}

2. The subset
A:{&“Z‘—e’:‘i_;,_l, 1§i§€—1}|_|{2€g}

is a base of ®, by Proposition I11.3.18.

3. The root system @ is irreducible, since the root system of type By is (see Proposition III.7.8).
4. The Weyl group of ® is isomorphic to the semi-direct product (Z/27Z)¢ x &, where &, acts
on (Z/27Z)* by permutation of factors (because it is equal to the Weyl group of the root system
of type By).

Type Dy, { € N, ¢ > 4. We put E = R and endow it with its standard euclidean structure.
We let e1,...,e, be the canonical basis of R and put I = ®1§i§€ Ze;. We then let:

O={zvecl|(r,x)=2}={xe; £¢;|1 <i<j<{},
a; =e; — g1, for 1 <i <l —1, ap = o1 + €y,
A={ay,...,oq},

and 0; = 04, for 1 < ¢ < /{. It is easy to see that A is a basis of the R-vector space RE.
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Using direct calculations, the action of the reflections associated to elements of ® on the
canonical basis are as follows.

e — e if k#i4,j

For1 <i<j<{, o0 1Q & + & . (I11.8.4)
gj = &
EL +— €k if k 75 i,j

For1<i<j</{, 0c4e :1q € = —€j . (I11.8.5)
gj = =&

Consider the two maps
(2/22)* - O(E) nd & L O(F)
(Z,,?@) — [e’;‘i'—> (—l)zi&‘i, 1 SZSK] P = [Eﬂ—)é‘p(i), 1 §z§£]

These are injective morphisms of groups. We have the following identity:
V(... ) € (Z/22), Vp € &, jp)il(FT, .. 7)) =iz, ..., 7)) (IL8.6)

where the dot in the rightmost term is the natural action of &, on (Z/2Z)" by permutation of
factors:
&, x (2)22)" — (Z/27)* .
(p7 (5,727) = (Zp_l(l)v"'azp_l(ﬂ)) ’
notice that this is an action by automorphisms of groups.
Let P denote the subgroup of (Z/2Z)" of those elements (Z1, . . . , Z) such that (—1)*F~+2 =1

(that is, among the coordinates, 1 appears an even number of times). The action of &, clearly
stabilises P. So, we may form the semi-direct product relative to this action:

(I11.8.7)

PNG@.

In addition, relations (II1.8.6) show that the subgroup of O(E) generated by i(P) and j(&) is just
i(P)j (&) and that ¢(P) is a normal subgroup of i(P)j(Sy). Since, in addition, the intersection
of i(P) and j(&;) is clearly reduced to the identity, we get that the map

PxG6, — O(E)

(71,....7),p) +— i((z7,...,7))i(p) (I11.8.8)

is an injective group morphism with image i(P)j(Sy).

Lemma II1.8.7 — Keep the above notation. Then,

1. ® is an irreducible root system and A a base of ®;

2. Ws is isomorphic to the semi-direct product P x &y, where &y acts on P by permutation of
factors.

Proof. 1. Tt is easy to verify that ® is a root system and A a base of ®. If we suppose that A
is the disjoint union of two orthogonal subsets : A = Aj L Ay with a1 € Ay, the orthogonality
condition forces «s,...,ay_o to be in Ay and then ay_; and ay as well. Hence, we must have
Ay = () from which the irreducibility of ® follows, by Proposition II1.7.8.

2. Recall the injective group morphism of (II1.8.8). It follows easily from (II1.8.4) and (IIL.8.5)
that the image of this morphism is just Wg. Hence the result. ]

Definition ITI.8.8 — The root system of Lemma II1.8.7 is called the root system of type Dy,
feN, >4,
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III.9 Weights associated to a root system.

In this section, (E,(—,—)) is a euclidean space, ® a root system and Wy the Weyl group of ®.

Recall the notation:
(z,y)

(v,y)
Definition IT1.9.1 — A weight is an element A € E satisfying the following property:

(z,y) =2 V(z,y) €E?, y#0.

Vae®, (M\a)elZ
The set of weights of (E, ®) will be denoted Ag.
Remark IT11.9.2 — Clearly, Ag is a subgroup of E and ® C Ag C E.

Lemma II1.9.3 — Let A be a base of ®. The following description of Ag holds: A = {\ €
E|(\ o) € Z, Va € A}.

Proof. We may reformulate the definition of Ag via the dual root system of & (see Exercise
II1.2.9). We have to show that

IANeE|(N\aY)€Z, Vaed)={N€eE|(\aY)€Z, Vaec A}

The inclusion C is trivial. The converse inclusion follows immediately from the fact that AV is a
base of ®V, as Proposition I11.3.18 establishes. ]

Remark IT1.9.4 - It follows immediately from the existence of a base of ® that Spany(®) is a
free Z-module. More precisely, any base of ® is a Z-basis of Spany(®).

Definition II1.9.5 — The set Spany(®) is called the root lattice of ® (see Remarque I11.9.4); it
is denoted by Ag ;.

Definition IT1.9.6 — Let A be a base of ®.

1. A dominant weight (relative to A) is a weight X € Ag such that (A\,a) > 0, Yoo € A. We
denote by Ag the set of dominant weights.

2. A strongly dominant weight (relative to A) is a weight X\ € Ag such that (A, a) >0, Va € A.

Remark IT1.9.7 - Let A be a base of .

1. The set of dominant weights is A N Ch(A). That is, AJ = A N Ch(A). Further, A is a
submonoide of Ag.

2. The set of strongly dominant weights is Ag N Ch(A).

(See Lemma II1.5.8 and Notation I11.6.1).

Remark II1.9.8 — Let A = {ay,...,a,} be a base of ®.

1. The set AY = {ay,..., .} is a basis of E. We denote {w1,...,w,} the dual basis of AV with
respect to the euclidean structure of E; in other words, for 1 < j < n, we define w; as the unique
element of E such that

Vie {1, .. .,n}, <wj,ai> = (Wj,()d;/) = (51'7]‘.

2. By Lemma I11.9.3, Vj € {1,...,n}, w; € A}.
3. For 1 <1i <n, put 0; = 0,,. Then

V 1<i,j<n, oi(wj)=w;— ;.
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Definition II1.9.9 - Let A be a base of ®. The weights wj, 1 < j < n, are called the funda-
mental dominant weights relative to A. (See Remark I11.9.8.)

Lemma II1.9.10 - Let A be a base of ®.
1. The set {wi,...,wn} is a basis of the Z-module Ag.
2. For all N € Ag:

A= Z <)\,ai)wi.

1<i<n

Ay = P N

1<i<n

3. We have:

Proof. By definition, the set {wi,...,wy,} is a basis of the R-vector space E and, by Remark
II1.9.8, its elements all are in Ag. Further, for all A € Ag,

A= > Naymie @ Zwi.
1<i<n 1<i<n
The result follows. L]
Definition IT1.9.11 — Let A = {a1,...,an} be a base of ®. The Cartan matriz of ® relative to

A is the n x n matriz with coefficients in Z whose coefficient in row i and column j is (o, o),
1<4,5<n.

Remark IT1.9.12 — Let A = {a1,...,a,} be a base of ®. The above shows that we have an
inclusion of free Z-modules of rank n as follows:

(0) € Agp, C Ag.

1. By the structure Theorem of finitely generated abelian groups, the quotient group Ag/Ag . is
finite.
2. By Lemma II11.9.10:

o= Y (ajoi)mi, Vi€ {1 n}

1<i<n
Hence, the j-th column of the transpose of the Cartan matrix relative to A gives the coordinates
of a; in the basis {wy,...,w,}.
3. It follows from Point 2 that the absolute value of the determinant of the Cartan matrix bounds
the order of any element of Ag/Ag .
Lemma I11.9.13 - The Weyl group stabelises the set of weights.

Proof. Let A\ € Ag and w € Wg. For all a € @, (w()\),a) = (A, w~(a)). The result follows, since
the Weyl group stabelises ®. ]

Let A be a base of ®. Recall the order on E defined by:
Ve,ycE <y si y—xzecNA=NOT.

(see Definition II1.3.5 and Proposition II1.3.6).
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Proposition 111.9.14 — Let A be a base of .

1. Let A € Ag. The orbit of A under the action of Wg contains exactly one dominant weight.
2. If X is a dominant weight, for all w € Wg, w(\) < A.

3. If X is a strongly dominant weight, for w € Wg, w(\) = X implies w = id.

Proof. 1. By Lemma I11.9.13 and Remark II1.9.7, it is an immediate consequence of Proposition
I11.6.10.

2. We proceed by induction on the length of w. If ¢(w) = 0, the result is trivial. Suppose ¢(w) > 1
By Proposition II1.6.9, there exists w’ € Wg and o € A such that w = w'o,, {(w) = £(w') —|—
and w(«) € . We then have:

A—wA) =A=' (A) +w' (N —wd) =X —w'(\) +w(oa(N) = A) =X —w'(A) — (A, a)w(a).

The induction hypothesis gives 0 < A — w’(\) and, since w(a) € &=, 0 < —(\,a)w(a). So,

0 < XA —w(A). This terminates the proof of Point 2.

3. Suppose ¢(w) > 1. Proceeding as in Point 2 and with the same notation, we have that
< (N a)=(wt(\),a) = (A, w(a)) <0, which is absurd. Hence, ¢(w) = 0, that is w =id. =

Exercise 111.9.15 — Let E be an R-vector space of finite dimension n € N*, equipped with a
norm N. Let B = {by,...,b,} be a basis of E. For all r € R>¢, the set

P Nb; | N{z € E|N(x) <r}

1<i<n

is finite. (Hint: there is a convenient euclidean structure on E with respect to which B is
orthonormal; the associated norm is equivalent to N.)

Lemma II1.9.16 — Let \ € A$. The set of dominant weights p such that p < X is finite.

Proof. Let u be a dominant weight such that © < A. Then, A+ p is a dominant weight and A — p
is a sum of simple roots. It follows that 0 < (A4, A —pu) = [|A||? —||x||?. Hence u belongs to the
set AfN{z € E|||z|| < ||Al|}. But, by Lemma II1.9.10 and Exercise I11.9.15 the latter set is finite.m

Recall from Notation I11.4.3 the element

:%ZﬁeE.

Bed+t

Lemma IT1.9.17 - § is a dominant weight — Let A = {«1,...,a,} be a basis of ®. Then, §
is a strongly dominant weight and

1<i<n

Proof. Let 1
lently, (0, o)
o,

Zl<z<n

We now come to the notion of saturated set of weights which will turn out to be very useful
in the representation theory of semisimple Lie algebras.

i < n. By Proposition II1.4.4, we have that 0,,(6) = d — «; or, equiva-
1. Hence, ¢ is a strongly dominant weight. In addition, by Lemma II1.9.10,
;) ;i

Zl<z<n Wi u

<
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Definition I11.9.18 - Saturated set of weights — A subset Il of Ag is called saturated if,
for all X € 11 and all a € ®, we have A — ia € 11 for all integers i between 0 and (X, ).

Remark II1.9.19 - It is clear from the definition that any saturated set of weights is stable
under Wg. Indeed, if IT is such a set, for all A € IT and all & € @, 04(A) = A — (A, @)a € 1L

Definition IT1.9.20 — Highest weight of a saturated set of weights — Let A be a base of
®. Let 11 be a saturated set of weights and X\ € Ag. We say that 11 has highest weight \ if \ is a
mazimum element of II with respect to =<, that is, A € Il and for all p € II, p < A.

Example I11.9.21 - Let A be a base of ®.

1. It is clear that the set {0} is a saturated set of weights, with highest weight 0.

2. It is easy to deduce from Proposition I11.2.15 that ® U {0} is a saturated set of weights.
Suppose in addition that & is irreducible. By Lemma III.7.9, the ordered set (®,=<) has a
maximum element; denote it by p. Clearly, 0 < p. We have that x4 € A, by Lemma I11.2.14 and
the maximality of u. So, @ is a saturated set of weights with highest weight .

Lemma II1.9.22 — Let A be a base of ®. A saturated set of weights with highest weight must
be finite.

Proof. Let II be a saturated set of weights with highest weight A\ € A;ﬁ.

Being stable under Wg (see Remark I11.9.19), II is a union of Wg-orbits, each of which
contains exactly one element in A, by Proposition I11.9.14. Hence, there exists a (non empty)
set I and dominant weights \;, ¢ € I such that

= |Wa(\).
el

But, A being an highest weight for II, we have \; < X for all ¢ € I. So, by Lemma II1.9.16, I
must be finite. Since Wg-orbits are finite, the statement is proved. n

Lemma II1.9.23 — Let A be a base of . Let 11 be a saturated set of weights with highest weight
A€ Ag. Then, any dominant weight p such that p < A belongs to II.

Proof. Consider an arbitrary v € Ag. We first study the set
(v + Spany(A)) NII C Ag

of weights greater than or equal to v (with respect to <) and in II. Let v/ € (v 4 Spany(A)) N1II.
Then v/ = v+ A Na, ng €N, for all & € A. Suppose that v/ # v. Then )~ nac # 0, so
that (3°,ca a2 qen Na@) > 0. Therefore, there exists f € A such that (3, ca nac, ) > 0
and ng > 0. Since v is dominant, we have

V', B) = (v,B) + <Z naa,6> > 0.

a€cA

Now, by definition of a saturated set of weights, and since (¢/, 8) > 0, we must have that, for all
0<i<{V/,B), v —ip €ll. We may apply this with i = 1 and thus get that

V—-B=v+ Z noa + (ng —1)8 € ILN (v + Spany(A)) .
a€A,a#L
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Consider now p as in the statement. Notice first that A € (u+ Spany(A)) N 1II, since
= A. Then the above shows the existence of a finite decreasing sequence of elements of
ITN (v + Spany(A)) as follows:

W= X S g = A

In particular, p € II. -

Exercise 111.9.24 — Saturated sets of weights with prescribed highest weight — Let
A€ AS. Put

= || Wep
pEAT u=A

1. The set II is stable under Wg and Il = {v € Ag |w(v) = A, Yw € Wa}.

2. Let p € II, « € ® such that (u,a) > 0. Let C = {p —ia, 0 < i < (u,a)}.

2.1. Let w € Wg. All the elements of w(C') are bounded above by A with respect to <.
2.2. We have C' C1I.

3. Let pu € II, o € ® such that (u, ) <0. Let C = {p —ia, (1, ) <i <0}. Then C CII.
4. The set II is saturated.

Remark II1.9.25 — Structure of saturated sets of weights with highest weight —

Let A be a base of ®.

1. Suppose II is a saturated set of weights with highest weight A € Ag. By Remark I11.9.19, IT is
a union of Wg-orbits. If O is such an orbit, it meets Ag exactly once (cf. Proposition I11.9.14),
say in p € II and A being a highest weight for II, u < A. But, conversely, any dominant weight v
such that v < X must be in II, by Lemma I11.9.23. All in all, we get that

= || Wep
HEAL n=X

2. Conversely, let A € Ag. Put

= || Wep
HEAL 1=A

By Exercise 111.9.24, 1I is a saturated set of weights and, by Point 2 of Proposition I111.9.14, it
has highest weight A.

3. The two points above show that there is a one-to-one correspondance between Ag and saturated
sets of weights with highest weight, given by A — I—'yeAfg,ujx\ Wa. .

Proposition 111.9.26 — Let A be a base of ©. Let 11 be a saturated set of weights with highest
weight . Then, for all p € 11:

1. (p4+6,u+06) < (A+0,A+0);

2. (p+0,u+6)=(AN+6,X+06) implies p = A.

Proof. !

'LAURENT. A écrire en suivant [Humphreys ; Lemma 13.3.B et Lemma 13.4.C, pp. 70-71]. Il n’y a pas de
difficulté. D’apres les commentaires de Humphreys, cette Proposition est utile pour la formule de multiplicités de
Freudenthal.
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II1.10 Classification of root systems.

Our aim in this section is to classify the root systems (up to isomorphism). By Proposition
II1.7.5, any root system can be partitioned into irreducible root systems (see that proposition for
a precise statement). Hence, the study of root systems reduces to that of irreducible ones.

It turns out that the key ingredient to this aim is a data consisting of so-called Cartan integers.
More precisely, the knowledge of the Cartan integers for simple roots is enough to recover the
root system.

Definition II1.10.1 - Let (E,(—, —)) be a euclidean space and ® a root system of E. The Cartan
integers of the root system ® are the integers (a, ), o, 8 € .

Remark I11.10.2 — Let ® be a root system of E and A a base of ®. Let a, 8 € A, a # .

1. By Lemma II1.3.7, we have that («, 3) < 0.

2. Suppose now that ||a|| < ||3||, by Point 1 above, the possible values for the Cartan integers
involving v and f3 are as follows (cf. Remark I11.2.13):

(o, B) | (B, ) | angle | [IBI1/]|ed|?
0 0| 7/2 | undetermined | case where a and (3 are orthogonal

-1 -1 27/3 1

-1 —2 | 3mw/4 2

-1 -3 | 57/6 3

3. It is clear from the above array that, if we know that ||a|| < ||3]|, then we can recover each of
the Cartan integers («, ) and (3, ) from their product (o, 8)(8, ). This easy observation will
be at the origine of the definition of the Coxeter graph of the pair (®,A).

Definition I11.10.3 - Let (E,(—, —)) be a euclidean space of dimension £ € N*, ® a root system
of E and A a base of ®. Given an ordering A = {a,...,ap} of A, the Cartan matriz of the
pair (P, A) (with respect to this ordering) is defined to be the £ x £ matriz with coefficients in 7Z:

({a, aj))i<ij<e-

Remark I11.10.4 — Independence of the Cartan matrix with respect to the base —
Keep notation as in Definition I11.10.3.

1. Clearly, the Cartan matrix associated to (®, A) depends on the ordering of the elements of A.
2. Suppose A’ is a base of ®. By Theorem III.6.4, there exists w € Wg such that A’ = w(A).
It follows that the Cartan matrix of the pair (®, A’) is the same as that of (®,A) (up to the
orderings of A and A’). Hence, the Cartan matriz only depends on ®. For this reason, from now
on, we will speak of the Cartan matriz of ®.

3. We have

2 2
i7 . Z . — i’ . 'Z/ . d' g ey .
(i, aj))1<ij<e = (i, aj))1<i j<o diag ((Oq, ar) (cw, aﬁ))

Hence, the Cartan matrix of ® is invertible.

The following statement shows that the Cartan matrix determines the root system up to
isomorphism.

93



Proposition I11.10.5 - Let (E,(—, —)) and (E', (—, —)) be euclidean spaces of dimension { € N*.
Let @ and @' be root systems of E and E', respectively. Let A = (o, ..., ap) and A" = (o}, ..., ap)
be (ordered) bases of ® and ®’, respectively.

If, for all 1 <i,j < {, (a4, ) = (af, ), then the isomorphism ¢ : E— E', oy — o is an

j
isomorphism of the pairs (E, ®) and (E',®’).

Proof. Observe that, since A and A’ are bases of the vector spaces E and E’, respectively, ¢
is well-defined and an isomorphism of vector spaces. By the hypotheses, we have that, for all
a € A, the following diagram is commutative:

P

T S F

E
lo'a ialﬂ(a)
E

-  _F

Since Wy and Wy are generated by the simple reflections (cf. Theorem II1.6.4), it follows that
the group isomorphism GL(E) — GL(E’), w + ¢ o w o ¢!, induces an isomorphism of groups
We —> chl
w +— powop !
(which sends o4 t0 04 (), for all a € A).

Now, let § € ®. By Theorem III.6.4, there exists & € A and w € Wy such f = w(«a) and we
have:

p(B) = p(w(a)) = powo ™ (p(a)),

which shows that ¢(3) is the image under p o w o p~! € Wg: of p(a) € A’. Hence, ¢(3) € @'.
We have shown that ¢(®) C ®'. Exchanging the role of (E,®) and (E/,®’), we get the reverse
inclusion. So p(®) = P'.

It remains to show that, for all «, 5 € @, (p(a),p(B)) = (o, ). This is true by hypothesis
whenever «, 8 € A. Observe then that the result follows when o € ® and 5 € A, by the linearity
of (—, —) with respect to its first entry and the linearity of ¢. Let us now consider any element
B € ®. By Theorem II1.6.4, there exists w € Wg such that w(f) € A. We then have,

(p(a), v(B)) = (pow(a),pow(B)) = (plw()), p(w(B))) = (w(a), w(B)) = (a, F).

Indeed, the first (resp. fourth) equality holds since p ow o ¢~! € Wy (resp. w € Wg) and the
third because of the above observation, since w(f) € A. This completes the proof. L]

We now introduce the Coxeter graph of a root system. It is a first step in encoding the Cartan
matrix of a root system into a diagramatic form. The Dynkin diagram, to be introduced a little
latter, will complete it.

We adopt a somewhat intuitive definition, as a formal one would require to specify what we
mean by a graph. However, this approach is quite common and do not create serious problems:
a formal definition adapted to our context is quite easy to concoct.

Definition I11.10.6 — Let (E,(—,—)) be a euclidean space of dimension £ € N*, ® a root system
of E and A a base of ®. The Cozeter graph associated to (®,A) is the graph with vertex set A
and, for all a, B € A, a # 3, (o, B){(B, ) edges joining o and .
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Remark IT11.10.7 — Keep the notation of Definition II1.10.6. Making use of Remark I11.10.2,
we see that, for distinct simple roots «, 3, the Coxeter graph has 0 edges linking o and $ if and
only if they are orthogonal. Further, if they are not orthogonal, it has 1 edge linking them when
they have the same length, 2 edges when one has length equal to v/2 times the length of the
other, and 3 edges when one has length equal to v/3 times the length of the other. However, in
the case of simple roots linked by 2 or 3 edges, the Coxeter graph does not allow to decide which
is the longest, which the shortest. (This lack will be repared in the Dynkin diagram.)

Remark II1.10.8 - Let (E,(—, —)) be a euclidean space, ® a root system of E and A, A" bases
of ®. It is easy to see that the Coxeter graphs (®,A) and (®, A’) are the same (or rather, are
isomorphic, in a sense that would need to be made precise). Indeed, by Theorem II1.6.4, there
is an element w of the Weyl group of ® such that A" = w(A). The rest follows from the obvious
equality (w(a),w(B)) = («, 5). Hence, in the sequel, we will often speak of the Coxeter graph of
® (when dealing with properties of graphs which are invariant under graph isomorphisms).

Remark II1.10.9 - Dynkin diagram of a root system —

1. Let E be a euclidean space and ® a root system of E. Choose an arbitrary base A of ®. Then,
we have the Coxeter graph of (E, ®, A). On this graph, for each pair of vertices linked by at least
2 edges, add between the vertices an inequality sign < pointing to the shortest root. This new
diagram will be called the Dynkin diagram of ®. (Indeed, the diagram obtained that way do not
depend on the choice of A.)

2. In the context of Point 1 above, it is clear, using Remark I11.10.2 that we can recover the
Cartan integers associated to simple roots of the pair (®, A). Hence, the Dynkin diagram contains
enough information to reconstruct the Cartan matrix of ®.

3. Let E and E’ be euclidean spaces, ® a root system of E and ® a root system of E’. The
Dynkin diagrams obtained from (E, ®) and (E’, ®’) are the same if and only if these root systems
are isomorphic.

In one direction, we want to prove that, if (E, ®) and (E’, ®') are isomorphic, then their Dynkin
diagram is the same. Now, using Exercise II1.7.7, the problem reduces to the case where these
root systems are irreducible. Hence, suppose (E,®) and (E’, ®') are isomorphic and irreducible.
We already saw that their associated Coxeter graphs are the same. But, on the other hand, by
Exercise I11.7.12, the isomorphism between them must be an isometry, up to multiplication by a
positive real number, so that their associated Dynkin diagrams must coincide.

Conversally, suppose the two Dynkin diagrams are the same. Then, consider arbitrary bases
A and A’ of ® and @', respectively. By hypothesis, applying the process described in Point 1 to
(®,A) and (®’, A’) leeds to the same Dynkin diagram. This means that there exists an ordering
of A and A’ leading to the same Cartan matrices. Hence, Proposition I111.10.5 proves that (E, ®)
and (E’, ®') are isomorphic.

The irreducibility of a root system can be read out of its Coxeter graph. Intuitively, we may
define a path between two vertices of a Coxeter graph as a finite sequence of vertices of this graph
with the property that any two consecutive vertices in the sequence are linked by at least one
edge (that is, any two consecutive vertices in the sequence are not orthogonal). Then, we may
define a equivalence relation in the set of vertices: two vertices being equivalent if there exists a
path starting with one of the vertices and ending with the other. This gives rise to equivalence
classes, which we call connected components of the graph. Then, the graph is called connected if
it has a unique connected component.

Lemma IT11.10.10 - Let (E,(—,—)) be a euclidean space and ® be a root system of E. The root
system ® is irreducible if and only if its Coxeter graph is connected.
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Proof. Suppose the Coxeter graph is not connected. Consider a connected component, which we
denote Aj, and put Ay = A\ A;. Consider « € Aj and 8 € Ay. By hypothesis, they belong to
distinct connected components of the graph and hence are not linked by a path. In particular,
there must be no edge of the graph linking these roots. This means that («, 8)(5,«) = 0, that
is, (v, 8) = 0. This shows that A; L As. By Proposition II1.7.8, we have that ® is reducible.
Suppose now that & is reducible. By Proposition I11.7.8, there exists a partition A = Aj U A,
of A into nonempty subsets A; and As such that A; L As. Let a € Ay and 8 € A,y. Suppose
there exists a path between o and 5. This means that there is a finite sequence oy, ..., 11,
n € N* such that a1 = o, a1 = B and, for all 1 < i < n, a; f @;+1. An obvious induction
shows that a; € Aq for all 1 <i <n+ 1. In particuler, 8 € A; which is absurd. Thus, « and 3
are not in the same connected component and the Coxeter graph of ® must be disconnected. m

As mentionned before, the study of root systems reduces to that of irreducible ones. For this
reason, by Lemma II1.10.10, we will be primarily interested in connected Coxeter graphs.

Our objective now is the classification of Coxeter graphs associated to irreducible root systems.
To reach this aim, we first introduce the convenient notion of admissible set of a euclidean space.

Definition I11.10.11 - Let (E,(—,—)) be a euclidean space.

1. An admissible set of E is a subset, A, of linearly independant unit vectors such that, for all
e, e €A, e#¢, (e,¢) <0 and 4(e,€)? € {0,1,2, 3}.

2. The graph associated to an admissible set A is the graph with vertex set A and, for all distinct
e, ¢ €A, 4(e,€)? € {0,1,2,3} edges linking € and €.

Remark IT1.10.12 - Let (E,(—, —)) be a euclidean space, ¢ a root system of E and A a base
of ®.

1. Denote by 2 the subset of E whose elements are a/||a||, @« € A. Let € and € be distinct
elements of 2. By Lemma II1.3.7, we have that (¢,¢) < 0. In addition, if o, ' are elements of A
such that e = o/||a|| and € = &//||d/||, then

N2 __ (alva) (04,0/)
4(e, €) 72(04,04) (o)

= <a/7a><a7al> € {07 172’3}'

Since, in addition, A is linearly independent, 2l is an admissible set.
2. Obviously, the Coxeter graph of (®,A) is isomorphic to the graph of 2.

Theorem I11.10.13 - Let (E,(—,—)) be a euclidean space, ® an irreducible root system of E
and A a base of ®. The Dynkin diagram of (®,A) is one, and only one, of the following list.
Type Ay, £ > 1:

Type By, £ > 2:

Type Cp, £ > 3:

Type Dy, £ > 4:

Type Eg:

Type E7:

Type Eg:

Type Fy:

Type Go:

© RSO oo~

Proof. See [Humphreys; section 11.4]. "
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Part 1V

Classification of semi-simple Lie
algebras.
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IV.1 Cartan and Borel subalgebras.

Assume k is algebraically closed of characteristic 0.

We are now in position to extend Theorem 1.8.12 to arbitrary finite dimensional Lie algebras
(under the above assumption on k). This will be done using Borel subalgebras (see Definition
1.8.13).

We first investigate Borel subalgebras of semisimple Lie algebras using the Cartan-Chevalley
decomposition of the latter. Recall first that maximal toral subalgebras and Cartan subalgebras
are the same in a semisimple Lie algebra, as established in Proposition I1.5.19.

Consider a nonzero finite dimensional semisimple Lie algebra g and a Cartan subalgebra § of
g. Let @ be the set of roots of the pair (g, ) which we consider as a root system in Eg. Let, in
addition, A be a base of the root system ®. Then we have the Cartan-Chevalley decomposition
of g:
g=n @®Hhdn, where n=@,cp+0a-

(Details may be found in Example II1.3.19). Put, in addition,
b=5hdn.

We know (cf. Example 111.3.19) that n and b are Lie subalgebras of g, that n is nilpotent and
that b is solvable.

Lemma IV.1.1 - Keep the above notation. Then, the Lie subalgebra b of g is a Borel subalgebra
of g.

Proof. We already mentioned that b is a solvable subalgebra of g. So, it remains to prove that,
as such, it is maximal.

Consider a Lie subalgebra p of g such that b C p. In particular h C p, so that the endomor-
phisms in adg(h) stabilise p. Further, h being a maximal toral subalgebra of g, the endomorphisms
in adg(h) are pairwise commuting and diagonalisable endomorphisms. It follows that the same
holds for the endomorphisms of p that they induce. From this, we get easily that

p= @AEh*p)\a

where, for all A € b*, py = {z € p|[h,2] = A(h)x}. On the other hand, we have that g =
h @ (Drcagn), with h = go and dimy(gy) = 1, for all A € & (see Propositions 11.5.9 and I1.5.15).
From this, it follows easily that

p=bD (Drcusy),

where U is a subset of ® such that ®T C U C &.

Now, suppose b C p (strict inclusion). Then there must exist in ¥ an element « of ®~. Then,
using the notation of Remark I1.5.14, we must have S, C p, where S, is a nonzero semisimple
Lie subalgebra of g. Therefore, p cannot be solvable (by Corollary 1.7.20, Point 1). "

Definition IV.1.2 - Keep the above notation. The subalgebra b = b ®n™ is called the standard
Borel subalgebra of g associated to h and A.

We now prove that two standard Borel subalgebras of a semisimple Lie algebra are conjugate
under the group £(g) (defined in Remark 1.8.11).
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Lemma IV.1.3 — Let g be a semisimple Lie algebra, h be a Cartan subalgebra of g and ® be
the root system associated to (g,h). If A and A’ are two bases of ®, and if b and b' are the
respectively associated standard Borel subalgebras, then there exists o € E(g) such that b’ = o(b).

Proof. Recall the Weyl group Wg of the root system ®. Let w € Wg. By definition of Wg, w is
the product of reflections of Eg associated to roots. Fix now a decomposition of w as a product
of such reflexions:

w=81...8¢,

where t € N and, for 1 <14 <t, s; = s,, for some o; € ®. Now, in the notation of Section II.7,
for 1 <i <t, put ©; = O4, € £(g) and consider

6261@t€€(g>

The results of Section I1.7 show that the automorphism w sends gg, 8 € @, to g,,(g) and stabilises
b.

Recall from Theorem II1.6.4 that the Weyl group acts transitively on the set of bases of ®.
Start now with the base A of ®. Then, w(A) is a base of ® and positive roots associated to A
are sent by w to positive roots associated to w(A). Therefore, it follows from the above that the
standard Borel subalgebra of g associated to h and A is sent to the standard Borel subalgebra
of g associated to h and w(A). But, there exists w € Wg such that A’ = w(A). The proof is
therefore complete. m

We are now in position to prove the following statement.

Theorem IV.1.4 — Assume k is algebraically closed and of characteristic 0. Let g be a finite
dimensional Lie algebra and denote by E(g) the group of Lie algebra automorphisms of g introduced
in (1.8.4). If by and by are Borel subalgebras of g, then there exists o € E(g) such that by = o(by).

Proof. See [Humphreys], Theorem 16.4. n
And, from Theorem IV.1.4, we deduce the following fundamental result.

Theorem IV.1.5 — Assume k is algebraically closed and of characteristic 0. Let g be a finite
dimensional Lie algebra and denote by E(g) the group of Lie algebra automorphisms of g introduced
in (1.8.4). If b1 and by are Cartan subalgebras of g, then there exists o € £(g) such that by =

o(bh1).

Proof. As b1 and by are Cartan subalgebras of g, they are nilpotent and hence solvable. Therefore,
there exists Borel subalgebras by and by of g such that h; C by and ha C bs. Now, Theorem
IV.1.4 provides o € £(g) such that by = o(b1). On the other hand, o(h;) is a Cartan subalgebra
of ba. So, Theorem 1.8.12 provides an element of £(bs) that sends hs to o(hy). But, as point 3.1
of Remark 1.8.11 shows, elements of £(by) are restrictions to bs of elements of £(g) that stabilise
ba. So, there exists 7 € £(h) such that ha = 7(c(h1)). The proof is complete. "

IV.2 From semisimple Lie algebras to root systems.

Assume k is algebraically closed of characteristic 0.
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We come back to the context of Section II.6, taking into account Example I11.3.19.

Hence, we consider a semisimple Lie algebra g, a maximal toral subalgebra (equivalently a
Cartan subalgebra) b of g, the correponding set ® C h* of non zero linear forms « on h such that
9o = {z €g|Vh e, [h,z] = a(h)x} # (0). Recall that go = {z € g|Vh € b, [h,2] =0} = .

The Killing form on h gives rise to a nondegenerate form on h*: (—,—) : h* x h* — k,
via the identification + : h — b*. Then, putting Eg = Spang(®) C h*, we get a Q-subspace
of dimension dimg(h*) on which (—,—) induces a positive, definite, symmetric bilinear form

(—,—)o : Eg x Eg — Q wich, in turn, defines a positive, definite, symmetric bilinear form
(—,—)r : Er xEg — R on the R-vector space Eg = R®q Eq, turning it into a euclidean space.

Thus, we have
h*
/
“
E

Then, Theorem I1.6.1 shows that, seen as a subset of Er, ® is a root system of Eg.

(Iv.2.1)
d C EQ

R

Choose a basis A of @, write ® = ®TU®~ and put n™ = P - 9o and n =nt =P 4+ ga-
Then, the Cartan-Chevalley decomposition of g writes

g:h@<@9a> =n @hont.

acd

Exercise IV.2.1 - Root systems and isomorphisms — Keep the above notation. Suppose,
in addition, that g’ is a Lie algebra and © : g — ¢’ an isomorphism of Lie algebras. Hence, g’ is
a semisimple Lie algebra and, putting h’ = ©(h), b’ is a maximal toral subalgebra of g’. Clearly,
© induces an isomorphism of vector spaces from h to b’ (that we still denote ©) which, in turn,
induces an isomorphism of vector spaces

(t@)—l . b* N (b/)*
A = o0

For all yu € (h')*, put g, = {z € g'[Vh € ¥, [h, 2] = p(h)z} and @' the subset of (h')* of those
elements 4 such that g, # (0). Finally, we denote by (Ep, ®’) the root system associated to the
pair (g/, ). In addition, we denote " the Killing form on g'.

1. Sets of roots.

L.1. For all A € b*, ©(gy) = g\ g-1-

1.2. We have (10)~}(®) = @'

2. Killing forms.

2.1. For all z € g, ady (O(x)) = © o adg(x) 0 O~ L.

2.2. For all x,y € g, ' (©(x),0(y)) = k(z,y).

2.3. Recall the isomorphism ¢ : h — h* and denote t) the element whose image under ¢ is

A € b*. Adopt a similar notation for g’. Then, for all A € b*, t} o, = O(ty).
2.4. Recall that (—, —) is the symmetric bilinear form on h* correponding to x via the identifica-

tion ¢. Denote (—, —) its analogue for (h')*. Then, for all A\, u € b*, (Ao O~ po O~ 1) = (A, pu).
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3. There is an isometry between Er and Ej that sends ® to ®’. In particular, the root systems
(Egr, ®) and (Eg, @) are isomorphic.

Exercise IV.2.2 - Root systems and maximal toral subalgebras — Keep the above no-
tation. Suppose b’ is a maximal toral subalgebra of g. The root systems attached to the pairs
(g,h) and (g, ') are isomorphic (by means of an isometry of the corresponding euclidian spaces).
(Hint: use Theorem IV.1.5 and Exercise IV.2.1.)

Notation IV.2.3 -

1. Denote by Ay the set of finite dimensional semisimple Lie algebras over k and by ~ the
equivalence relation on Ay given by isomorphism of Lie algebras.

2. Denote by R the set of root systems and by ~ the equivalence relation on R given by
isomorphism of root systems.

It follows from Exercises IV.2.1 and IV.2.2 that there is a well-defined map
A — R/ ~

which, to each semisimple Lie algebra g, associates the isomorphism class of the root system
(Er, ®) associated to (g,h) for an arbitrary choice of a maximal toral subalgebra h and that this
map factorises through the quotient A/ ~ to give rise to a map

r : Ay/~ — R/~ . (IvV.2.2)
We will eventually prove that this map is actually a bijection.

For the moment, we show that it sends (isomorphism classes of) simple Lie algebras to irre-
ducible root systems.

Proposition 1V.2.4 — Keep the above notation. If g is simple, then ® is irreducible.

Proof. Assume g is a simple Lie algebra. Suppose ® is reducible and consider a partition & =
®1 UPs of & with &1 and P, orthogonal to each other and nonempty. For all a € ®; and 8 € ®o,
we have that (a+ 5,a) # 0 and (a+ 3, 8) # 0. It follows from this observation that a4 § is not
a root: gotp = 0. Thus, [ga,gs] = 0, by Lemma I1.5.6.

Let [ be the Lie subalgebra of g generated by the subspaces g, a € ®1. Using Exercise 1.2.10,
the Jacobi identity and the above observation, an easy induction shows that, for all 5 € &,
[[,gg] = 0. And, since g is semisimple, it has trivial center. So, we must have [ C g (strict
inclusion). In addition, for all & € ®;, we have trivially [l,g,] € [. But, on the other hand,
[h,1] C [ (cf. Exercise 1.2.10 the Jacobi identity and an easy induction). It follows that [g,!] C [;
that is [ is an ideal of g. Since [ must be nonzero, this is a contradiction since g is simple. m

In the next statement, we will make an extensive use of the content of Remark I11.6.2.

Let g be a nonzero semisimple Lie algebra g. Recall from Theorem 1.7.19 that g is the direct
sum of its simple ideals and that the latter pairwise commute. That is, there exists t € N* and
simple, pairwise distincts ideals gq,...,g; of g such that g=g1 ®... D g and, for 1 <i < j <t
[9i,9;) = 0. Hence, we are in position to apply Remark I1.6.2, which we do using the notation of
that remark. Let h be a maximal toral subalgebra of g and, for 1 < ¢ < ¢, put h; =hnNg;. We
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have h = @19’9& h; and b; is a maximal toral subalgebra of g;, 1 < i <t. Recall the isometry of
Remark 11.6.2:
0 : ER — @ Fi,]Ra

1<i<t

and, for 1 <14 <, let E; g be the image of F; g in Eg under 671, So that, Eg is the orthogonal
direct sum of the subspaces E; g, 1 <17 <.

But, for 1 <i <t, &; = 5‘1(\I/,~) C E;r and ¥; is the root system associated to the pair
(gi, b;) where g; is a simple Lie algebra. Hence, by Proposition IV.2.4, ¥, is an irreducible root
system of F; g and, therefore, ®; is an irreducible root system of E; . Since ® = Uj<;<;®;, we

have proved the following statement.

Theorem IV.2.5 - Let g be a semisimple Lie algebra and by a mazximal toral subalgebra. Then, in
the above notation, Er = ®1<i<tEir and ® = U1<;<;P; is the decomposition of ® into irreducible
components in the sense of Proposition III.7.5 (and Definition II1.7.6).

Proof. The above proves the statement. m

Corollary IV.2.6 — Let x be an isomorphism class of semisimple Lie algebras. Then, its el-
ements are simple Lie algebras if and only if the image of x under r : Ax/ ~— R/ ~ is an
isomorphism class of irreducible root systems.

Proof. This follows immediately from Theorem IV.2.5. n

At this stage, we are in position to give a first result towards the classification of finite di-
mensional semisimple Lie algebras over an algebraically closed field of characteristic 0.

The first statement deals with simple Lie algebras. We do not give a proof of it as we will be
able to give a more satisfactory one latter.

Theorem IV.2.7 — Assume k is algebraically closed of characteristic 0. Suppose g and g’ are
finite dimensional simple Lie algebras and b and b’ mazximal toral subalgebras of g and g, respec-
tively. Let ® be the root system of the pair (g,h) and " be the root system of the pair (g',b'). If
(Er, ®) and (Eg, ®') are isomorphic root systems, then g and g’ are isomorphic Lie algebras.

Proof. For a more detailled statement and a complete proof, see [Humphreys; section 14.2]. m

From Theorem IV.2.7 and the above discussion, the following statement follows.

Theorem IV.2.8 — Assume k is algebraically closed of characteristic 0. Suppose g and g’ are
finite dimensional semisimple Lie algebras and b and b/ mazimal toral subalgebras of g and g,
respectively. Let ® be the root system of the pair (g,h) and ®' be the root system of the pair
(¢'.0'). If (Er,®) and (Eg,®') are isomorphic root systems, then g and g’ are isomorphic Lie
algebras.

Proof. Write g = @ <;<; 9i and ¢’ = P, 0; , t,s € N*, the decompositions of g and g’ as the
direct sum of their simple ideals (cf. Theorem 1.7.19).

Let Er and Ep be the euclidean spaces attached to the pairs (g, h) and (g’,h’), respectively.
We adopt the notation of Theorem IV.2.5 and its proof for both the pairs (g, ) and (¢’,b’). So,
we have a decomposition Er = ®1<;<;E; g into pairwise orthogonal subspaces and a partition
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¢ = Uy<i<;®; with E; g = Spang (®P;) which gives the reduction of ® into irreducible components.
Similarly, we have a decomposition E = 691§,~§5E;7R into pairwise orthogonal subspaces and a
partition ® = Lij<;<s®; with E{ p = Spang(®;) which gives the reduction of ¢ into irreducible
components.

Let ¢ be an isomorphism between the root systems (Eg, ®) and (Eg, ®’). By Exercise IIL.7.7,
t = s and (up to renumbering summands), for all 1 < i < ¢, p(E;r) = Ejp and ¢(®;) = @,
so that the root systems (E;r,®;) and (E,, ®;) are isomorphic. But, on the other hand, for
1 <i<t, (Eir,®;) is isomorphic to the root system of (g;,h;), while (E] , ®) is isomorphic to
the root system of (g}, h}) (see the proof of Theorem IV.2.5 and the notation introduced there).
By Theorem IV.2.7, we deduce that, for all 1 <i <, g; and g} are isomorphic Lie algebras (up
to renumbering summands). The result follows, as g = @, ,;-, 9; and ¢’ = P, ,, 9. .

IV.3 Universal enveloping algebra.

In this section, unless otherwise specified, k is arbitrary.

We start by recalling the definition and basic properties of the tensor algebra of a k-vector
space. Extensive details may be found in [BBK-Algebre-1-3], Chap. III, §5.

Let V be any k-vector space. For all i € N*, denote T%(V) the k-vector space V ® ... ®y V
(i copies). In particular, T*(V) = V. Put also T%(V) = k and

T(V)=ET1(V).

1€EN

We will freely identify T%(V) with its image in T(V), i € N. In particular, we have canonical
injections of k-vector spaces:

can.inj. can.inj.
— —

k (V) and Vv (V)
Then, we can endow T'(V') with an associative algebra structure as follows (see [BBK-Algebre-1-3;

p. II1.55]): there exists a unique bilinear map
m : T(V)xT(V) —T(V)

such that,
(1) for all 4,5 € N* and a1,...,a;4; €V, m(a1 ® ... ® 0j, 0441 @ ... @ @jyj) = a1 Q... ® Uity
(2) VA ek, foralli € N*and ay,...,a; € V, m(A a1®...Qa;) = m(a1®...Qa;, \) = Aa1®. . .Qa;;
(3) for all A\, € TO(V), m(\, p) = A

It is not difficult to show that, equipped with the map m, the vector space T'(V') becomes a
unital, associative k-algebra with unit 1. Clearly, 7'(V') is an N-graded k-algebra with homoge-
neous subspace of degree i € N (the image of) T%(V). It is clear that any generating set of the
k-vector space V is a set of generators for the k-algebra T'(V).

Definition IV.3.1 — The k-algebra T(V) is called the tensor algebra of V' and the map V can-1pJ
T (V) the associated canonical injection.

Proposition IV.3.2 - Universal property of the tensor algebra —
Let V' be any k-vector space, A be any associative, unital k-algebra and ¢ : V. — A be any
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morphism of k-vector spaces. Then, there exists a unique morphism of associative, unital algebras
Y T(V) — A such that the following diagram commutes:

% inj.can. T(V)
A
Proof. Exercise. (See [BBK-Algebre-1-3; p. I11.56].) "
Suppose B is a basis of V. To any finite sequence s = (b1,...,bp), p € N*, of elements of B we

associate the pure tensor by = b1 ® ... ® b, € TP(V). Further, to the empty sequence of elements
of B, denoted (), we associate by = 1, € T(V).

Proposition IV.3.3 — Keep the notation as above. The set of all elements bs, where s is a finite
sequence of elements of B, is a basis of the k-vector space T'(V).

Proof. See [BBK-Algebre-1-3; p. II1.62]. "

We now recall the definition and basic properties of the symmetric algebra of a k-vector space.
Extensive details may be found in [BBK-Algebre-1-3], Chap. III, §6.

Retain the above notation and let I be the two-sided ideal of T'(V') generated by the elements
TQYU—yQx,z,yecV.

Definition IV.3.4 — The symmetric algebra of the k-vector space V is the k-algebra S(V) =
T(V)/I.

Since [ is generated by homogeneous elements (of degree 2) of the N-graded algebra T'(V),

we have that '
I= B (InT(V)).
i€N, 2<i
and S(V') inherits a grading from that of T'(V'). More precisely, let 7 : T(V) — S(V) be the
canonical projection. For all i € N, put S*(V) = 7(T%(V')). Then, we have
SV)=Psv)
€N

and the following isomorphisms of k-vector spaces

k=T%V)=S%V), THV)=SY V) and THV)/INTYV)=S V), i>2,

all of which are induced by 7. Therefore, the canonical injection associated to 7'(V') induces a
canonical injection

VBT (v) s S(V).

It is then clear that the image under this canonical injection of any generating set of the k-vector
space V is a set of generators of the k-algebra S(V'). From this latter fact it follows that S(V) is
a commutative k-algebra.
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Proposition IV.3.5 — Universal property of the symmetric algebra —

Let V' be any k-vector space, A be any commutative, associative, unital k-algebra and ¢ : V — A
be any morphism of k-vector spaces. Then, there exists a unique morphism of associative, unital
algebras 1 : S(V) — A such that the following diagram commutes:

inj.can.

Vv S(V)
\\ iw
A
Proof. Exercise. (See [BBK-Algebre-1-3; p. 1I1.67].) n

Further, let B be a basis of V. Choose a total order on B (this is possible since, by Zermelo’s
Theorem, any set has a well-order, see [BBK-Ensembles; pp. III.15, II1.20]). Let b € B. Then,
b may be seen as elements of T (V) and we consider its image under 7 in S1(V), that we still
denote b. Thus, following the above definition, to any finite sequence s = (by < ... <b,), p € N*
of elements of B, we may associate the image 7(bs) of bs in S(V') that we still denote bs, by abuse
of notation. Thus bs = by ...b, € SP(V). In particular, by = 1 € SO(V).

Proposition IV.3.6 — Keep the above notation. The set of all bs, with s a finite increasing
sequence of elements of B, is a basis of the k-vector space S(V').

Proof. See [BBK-Algebre-1-3; p. II1.75] and [BBK-Algebre-4-7; p. IV.2]. "
We now introduce the enveloping algebra of a Lie algebra.

Let g be a Lie algebra over the field k. We may consider the tensor algebra T'(g) of the k-vector
space g. Then, for all z,y € g, we have the elements * ® y —y @ x € T?(g) and [z, y] € T'(g).
Therefore, we may consider the elements 1 @ y —y ® x — [x,y] € T'(g) ® T?(g) C T(g), for all
x,y € g, and then the two-sided ideal J of T'(g) generated by these elements:

J=(rey-—yor—|z,y], z,ycg) CT(g).

Put then
Ulg) =T(a)/J

and denote ¢ : T'(g) — U(g) the canonical projection. Together with U(g), we have a canonical
morphism of k-vector spaces

ja - 0" T(g) 5 Ug).
It is clear by definition that this map is actually a morphism of Lie algebras, where the associative
algebra U(g) is considered as a Lie algebra in the standard way.

Since the images in T'(g) of the elements x € g generate T'(g) as a k-algebra, we get that the
set {jg(z), = € g} is a generating set of the algebra U(g). Further, put T (g) = @,y T(g). It
is clear that J C T (g). In particular, J Nk = {0}. From this observation, it follows that the
restriction to k of the canonical projection 7'(g) — U(g) is injective. Hence, U(g) is not the
zero algebra: Oy (g) # 1y (g)-

Definition IV.3.7 — Keep the above notation. Let g be a Lie algebra over the field k. The
universal enveloping algebra of the Lie algebra g is the k-algebra U(g) = T(g)/J. The map
Jg + 8 —> U(g) is called the canonical morphism (of Lie algebras) associated to it.
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Remark IV.3.8 — Keep the above notation. It is clear that if g is an abelian Lie algebra, then
its enveloping algebra is just its symmetric algebra. In this case, U(g) is thus graded (this is not
true in general) and the canonical morphism is injective (this will still hold in general but is far
from obvious).

Proposition IV.3.9 - Universal property of the enveloping algebra — Let g be any Lie
algebra over k, A be any associative, unital, k-algebra. If ¢ : g — A is any morphism of Lie
algebras (where the associative k-algebra A is considered as a Lie algebra in the standard way).
Then, there exists a unique morphism of associative, unital k-algebras ¢ : U(g) — A such that
the following diagram commutes:

g : Ulg)
\ lw
A
Proof. By the universal property of the tensor algebra of g, we know that there exists a morphism
of k-algebras ¢’ : T(g) — A such that the following diagram commutes:

can.inj.

g T(g)
\ id"
A
Now, let x,y € g. We have
Prey—yor—|ry) = ¢@y—yz— [ﬂ%y])
= d(@)d(y) - &' (Y (x) = ¢/([z,4])

)
= 0(x)o(y) — ¢(y)o(x) — o([x, y])
=0

Indeed, the first equality is just the definition of the product in T'(g), the second follows from
the fact that ¢’ is a morphism of k-algebras, the third is due to the commutativity of the later
diagram and the fourth comes from the fact that, by hypothesis, ¢ is a morphism of Lie algebras.
As a consequence, the ideal J is in the kernel of ¢/, from which it follows that ¢’ induces a
morphism ¢ : U(g) — A of k-algebras such that the following diagram commutes

g inj.can. T(g) proj.can. U(g)
¢ ¢ iw
A

This proves the existence of the morphism @ of the statement.

The uniqueness of 9 is easy. Indeed, the commutativity of the diagram in the statement forces
the image of jg(x), for all = € g, under ¢. But, these elements generate U(g) as an algebra. So
1) is unique. m

Remark IV.3.10 — Let g be a Lie algebra. It turns out that U(g) is determined, up to iso-
morphism, by its universal property. More precisely, suppose we are given an associative, unital,
k-algebra A together with a morphism of Lie algebras 7 : g — A such that, for all algebra A
and all morphism ¢ : g — A of Lie algebras, there exists a unique morphism 1 of associative
algebras ¢ : A — A such that ¢ o j = 1), then the k-algebras A and U(g) are isomorphic. The
proof is easy and left to the reader.
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Remark IV.3.11 - Representations of g versus U(g)-modules — Let g be a Lie algebra
over k. Suppose we are given a representation of g in the vector space V with structure morphism
p:g— gl(V).

1. By the universal property of the enveloping algebra of g, we have a commutative diagram

g & U(o)
\ P
gl(V)

where ¢ is a morphism of associative, unital, k-algebras. In particular, the map ¢ induces a
morphism of rings from U(g) to the ring Endz(V') of group homomorphisms of the abelian group
V. This amounts to say that the map

U@ xV — V
(z,0) = ox)(v)

defines a left U(g)-module structure on V. Notice, however, that since we started with the k-
algebras homomorphism ¢ : U(g) — gl(V), in addition to the usual axioms for (left) modules,
the map (IV.3.1) satisfies k-bilinearity.

2. If A is any (associative, unital) k-algebra. A linear representation of A is defined to be a
pair (V,¢) where V is a k-vector space, and ¢ : A — Endg(V) a morphism of k-algebras
from A to the k-algebra of endomorphisms of the k-vector space V. With this vocabulary, it
is equivalent to consider a representation of the Lie algebra g and a linear representation of its
universal enveloping algebra.

(IV.3.1)

To understand better the structure of the enveloping algebra of a Lie algebra, it is convenient
to link it with its symmetric algebra. This is done by filtering the enveloping algebra and con-
sidering the associated graded algebra. This is what we proceed to describe now.

First recall that, given an associative, unital k-algebra 4, an N-filtration (or simply a filtra-
tion) of A is a sequence of k-vector subspaces (A;);cn of A such that:
(1) 1 € Ayp;
(2) A; C Ajqq, for all i € N;
(3) AjA; C Aipj, for all i,j € N;
(4) A= UienA;.
It will be convenient to put A_; = {0} whenever we consider an N-filtration (A;);en on the
k-algebra A.

To an associative, unital k-algebra A filtered by F = (A;);en, we can associate its so-called
associated graded k-algebra as follows.

For all i € N, consider the k-vector space griz(A) = A;/A;—1 together with the canonical
projection

gre o A — AifAi1.

Further, consider the N-graded k-vector space

grr(A) = P Ai/Ai .
€N
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It is easy to check that, for all 7, j € N, there is a map
mij A/ Aicr X AjJAj—1 — Aiyj/ Aiviat
such that, for all a € A; and all b € A;
mij (g1’ (a), gri (b)) = gry” (ab).
These maps, in turn, give rise to a bilinear map
m @ gry(A) x grp(A) — grr(A)

such that, for all 4,5 € N, x € A;/A;—1, and £ € Aj/A;_1, m(x, &) = m; j(x,&). It is then easy to
check that, equipped with the map m, the N-graded k-vector space gr(A) becomes an N-graded,
associative, unital k-algebra whose unit is gr¥(1.4).

Definition 1V.3.12 - Keep the above notation. Then, the N-graded, associative, unital k-algebra
grr(A) is called the associated graded k-algebra of the filtered k-algebra (A, F).

This process does apply to the enveloping algebra of a Lie algebra.

Indeed, let g be a Lie algebra over k. First, notice that T'(g) is filtered by the N-filtration

(T'(9):i)ieny where, for all ¢ € N,
T(s)i = P T"(9)-
0<k<i

It follows at once that U(g) is filtered by the N-filtration F = (U(g)i)ien where, for all i € N,
U(g); is the canonical image of T'(g); in U(g). We are going to link the associated graded k-
algebra of the filtered k-algebra (U(g), F) with S(g). From now on, we forget the subscript F,
to simplify notation.

For all i € N, we have k-linear maps

can.proj.
—

i+ T(g) = T(g)s Ui and g : Ti(g) 25 U(g)i 2> U(g)i/U(g)i 1

and it is easy to check that ; is surjective. The direct sum of the maps ¢;, i € N, then define a
map
¢ T(g) — gr(U(g)).

Lemma IV.3.13 - Keep the above notation. The map ¢ is an N-graded, surjective morphism
of associative, unital, k-algebras and (r @y —y @z, z,y € g) C ker(p).

Proof. By construction, ¢ is a surjective morphism of N-graded k-vector spaces.

In addition, ¢(17y) = o(lr)) = 8r°(ly(g) = la(u(g)- Consider now two homogeneous
elements of T'(g): ¢ € T™(g), t' € T"(g), m,n € N. Then, we have that ¢(t) = on(t) =
g™ (Ym(1), o(t") = @u(t) = " (¥n(t')) and @(tt') = Pman(tt’) = g™ " (Y (tt’)). But, by
the definition of the product in the associated graded k-algebra gr(U(g)), we also have

et)pt') = g™ (Wm(t))er" (Yn(t))
g™ (W (8) b (1))
gt (W(t)p(t)
gr T (y(tt")
= grmﬂb(wm#—n(tt/))
= o(tt).
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It is then obvious that the multiplicativity of ¢ extends to nonhomogeneous elements. Hence, ¢
is a morphism of unital algebras.
In addition, consider z,y € g. We have

P(x@y—y@T) = P2(a@y—yeT) = gr’ (2 (a@y—y®a)) = gr’(P(z@y—y®z)) = gr’(([z,y])) =0,

since ¥([z,y]) € U(g);. The statement is proved. n

Call 7 : T(g) — S(g) the canonical projection. Recall that 7 is a surjective morphism of
N-graded k-algebras which, then, induces morphisms of k-vector spaces 7, : T"(g) — S™(g),
n € N. By lemma IV.3.13, the N-graded algebra morphism ¢ : T(g) — gr(U(g)) factorises
through 7, giving rise to an N-graded, surjective morphism w : S(g) — gr(U(g)) of associative
k-algebras. We denote the k-linear maps induced by w between homogeneous components by w,,,
n € N. Hence, we get the following commutative diagrams

T(g) —— S(g) and  T"(g) — > S"(g) (ne€N) (IV.3.2)
o) ©n
\ lw \ in
er(U(g)) gr"(U(g))

All in all, we end up with the following commutative diagrams, for all n € N*:

(IV.3.3)

U(g)n
¥n gr"
T”(g)/ a \gr”(U(g))
RSH( | o
g

To obtain the nice description of U(g) that we are pursuing, we need to show that, for all
n € N, the maps w,, are actually isomorphisms or, equivalently, that w is an isomorphism. This
result is known as the Poincaré-Birkhoff-Witt Theorem. Our next task is to establish it.

It turns out that one possible approach is to construct a representation of the Lie algebra g
on its symmetric algebra S(g). For this, fix a basis (x), A € A) of g indexed by a set A. Given
any finite sequence M = (A1,...,\,) of n elements of A, with n € N*, we consider the tensor
Ty =Ty Q...Q0xy, € T"(g). (Hence, if M = (M) is a sequence of one element of A, then
xy =ax)\ €TT (g).) Further, to the empty sequence, we associate the tensor zy = Ir) € To(g).
We know by Proposition 1V.3.3 that these tensor form a basis of T'(g). Now, denote by zps the
canonical image of z)s in S(g). We have that zp = 1g(g) and, for all sequence M = (A1,...,\n)
of n elements of A, n € N*, we have

ZM = Zxp -2

Now, equip A with a total ordering. Then, by Proposition IV.3.6, the elements z,s, where M is
any finite (possibly empty) increasing sequence of elements of A, form a basis of S(g).

Below, we will denote the total ordering on A by <. Further, for A € A and M = (A1,...,\,)
a finite sequence of elements of A, we will write A < M whenever A < \;, for all 1 < i < n. By
convention, for all A\ € A, A < (). For n € N, we denote by S,, the set of all sequences of n elements
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of A and put S<,, = Up<g<nSy. We denote by S the set of all finite sequences of elements of A.

For all p € N, we put S(g), = @o<i<, Si(g). Hence, (S(g)p)pen is a filtration of the associative
algebra S(g).

Lemma IV.3.14 — For all p € N, there exists a unique K-linear map

fp 1 9@k S(9)p, — S(9)

satisfying the following conditions:

(Ap) for all X € A and M € S<, such that A < M, fp(zx ® 2p) = 2x2M;

(Bp) for all X € A, for all0 < g <p and M € S<q, fp(xx ® 20m) — 2x2m € S(8)q;

(Cp) for all A, € A and for all N € S<p_1, fp(xr ® fp(ry @ 2n)) = fo(zy @ fp(zn ® 2n)) +

So(lzr, 4] @ 2n)).
In addition, for all p € N*, f,_1 coincides with the restriction of f, to g @k S(g)p—1-

Proof. The reader is referred to [BBK-Lie-1 ; §2, no. 7] or [Humphreys ; §17.4, Lemma A]. "

Lemma IV.3.15 — There exists a morphism of Lie algebras o : g — gl(S(g)) such that:
(1) for all X € A and all M € S such that X < M, o(zx)(zm) = 2a2M -
(2) for all X € A, allp € N and all M € S, o(zx)(zm) — 2azm € S(9)p-

Proof. For all p € N, identify the k-vector space g ®k S(g), with a subspace of g @k S(g). Then,
we have an exhaustive, increasing filtration (g ®x S(g)p)pen of the k-vector space g ®i S(g). On
the other hand, Lemma IV.3.14 provides k-linear maps f, : g ®x S(g9)p, — 9 ®x S(g), p € N,
with the property that the restriction of f, to g ®x S(g)p—1 is fp—1 whenever p € N*. Thus, we
are in position to define a k-linear map

[ g®eS(g) — S(g)

such that the image under f of any element of g®y S(g) is its image under f, whenever g®y S(g),
contains that element. This map, in turn, gives rise to a k-linear map

o:g— gl(5(g))
such that, for all x € g, z € S(g), o(z)(2) = f(z ® z). It follows at once from conditions (C) of
Lemma IV.3.14 that ¢ is a morphism of Lie algebras, for the standard structure of Lie algebra of

the associative algebra gl(S(g)) (see Exercise 1.1.22). In addition, conditions (1) and (2) of the
statement clearly follow from conditions (A) and (B) of Lemma IV.3.14. "

Recall the canonical projections
T(g) — S(g) and  T(g) — Ul(g)

with respective kernels I and J.

Lemma IV.3.16 Let n € N. Ift € T(g), N J, then its homogeneous component of degree n
belongs to I.
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Proof. Denote by t,, the homogeneous component of degree n of t and write

tn = Z QNN

MeS,

where (ans)ares, is a family of elements of k, almost all of which are zero.

By the universal property of enveloping algebras and the universal property of tensor algebras,
o induces a morphism 7 : T'(g) — gl(S(g)) containing J in its kernel such that the following
diagram commutes

inj.can.

g A T (9)\
\Jawa[njg \
g 1o

|/

99)

By Lemma IV.3.15, 5 (t)(1g(q)) is an element of S(g),, whose component in S™(g) is /e am2zum-
On the other hand, ¢ € J, so that o(t) = 0. Hence, D> j/cs amzy = 0. In other terms,

ZMGSHO(M.%'MEI. |
Recall the map w : S(g) — gr(U(g)) from (IV.3.2).

Theorem IV.3.17 — Poincaré-Birkhoff-Witt — In the above notation, the map w : S(g) —
gr(U(g)) is an isomorphism of N-graded, associative, unital k-algebras.

Proof. It remains to show that w is injective and, since it is N-graded, it is enough to show that
an homogeneous element whose image is zero must be zero. By definition of w, this amounts to
showing that, if ¢ is an homogeneous element of T'(g) such that ¢(t) = 0, then ¢ must be in the
ideal I.

Let ¢ be such an element of 7" (g), for some n € N. Then its canonical image, 1 (t), in U(g)
must belong to U(g)n—1. Thus, there exists t' € T'(g),—1 such that ¢ (t) = ¢(t'), that ist—¢' € J.
Thus, by Lemma IV.3.16, the homogeneous component of degree n of ¢t — ¢’ belong to I. Since,
clearly this homogeneous component is ¢, we get that ¢ € I, as requierred. n

The Poincaré-Birkhoff-Witt Theorem has many fundamental consequences; we now list some
of them.

Corollary IV.3.18 — Let n € N and consider a subspace W of T"(g). If the restriction of T, to
W is an isomorphism from W to S™(g), then the restriction of v, to W is an isomorphism from
W to a complement of U(g)n—1 in U(@)n, that is

U(g)n = U(g)n—l S5 %(W)

Proof. We use the commutative diagram (IV.3.3). By the PBW Theorem, the map w, is an
isomorphism. Hence, the restriction of w, o7, to W is an isomorphism from W to gr'(U(g)) and,
by the commutativity of diagram (IV.3.3), the restriction of gr" o v, to W is an isomorphism
from W to gr™(U(g)). The result follows. "
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Suppose (), A € A) is a basis of the k-vector space g, where A is a totally ordered set. Abusing
notation, we still denote zy, A € A, the image by j; : g — U(g) of z). Now, to a finite sequence
M = (M\1,...,A) of elements of A, n € N*, we associate the product xpr = zy, ...z, € U(g).
In addition, we put g = 1y (g)-

Corollary IV.3.19 — Keep the above notation.

1. Suppose (xx, A € A) is a basis of the k-vector space g, where A is a totally ordered set. The
elements xpr, where M runs over the set of all finite increasing sequences of elements of A is a
basis of the k-vector space U(g).

2. The map jg : g — U(g) is injective.

Proof. To start with, observe the following: for all p,n € N, p < n, if M is any finite sequence of
p elements of A, xp; belongs to U(g),. We are going to show, by induction on n, that the set of
such elements x)s is a basis of U(g), when M runs over all finite increasing sequences of p < n
elements of A.

The case where n = 0 has already been proved (see the paragraph before Definition IV.3.7).
Now, let n € N*. Consider the k-vector subspace W of T"(g) with basis the set of pure tensors
Ty, ®...Q xy,, where (A,...,\,) is an increasing sequence of elements of A. Then, Corollary
1V.3.18 applies to W. Therefore, we have that

U(g)n =U(8)n—1 @ (@ kaM) )
M

where M runs over the set of increasing sequences of n elements of A. So that, if the statement
we want to prove holds for U(g),—1, it also holds for U(g)y.

This completes the proof of Point 1. Point 2 follows since Point 1 shows that jg sends a basis
of g to a linearly independent familly in U(g). "

The following Corollary provides a strong link between the enveloping algebra of a Lie algebra
and that of any Lie subalgebra. Fix the following notation: let g be a Lie algebra and h be a Lie
subalgebra of g. The universal property of the enveloping algebra of §j establishes the existence of
a unique morphism of k-algebras vy g : U(h) — U(g) such that the following diagram commutes

jhU

1; ib)
a—2- U(g)

Of course, the map ¢4 : U(h) — U(g) allows to provide a left U(h)-module structure on U(g),
by restriction of scalars.

Corollary IV.3.20 — Retain the above notation. The map vy 4 : U(h) — U(g) is injective.
Further, the left U(h)-module U(g) is free.

Proof. We may consider a basis (z), A € A) of g where A is a totally ordered set with a subset A’
such that (zy, A € A’) is a basis of h and any element of A’ is less than or equal to any element of
A\ A’. (Use Zermelo’s Theorem for the indexing set of any basis of i and for the indexing set of
any complement of this basis to a basis of g and then glue conveniently the two total orderings
obtained in that way.)
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Consider the basis of U(h) attached to the ordered set A’ by Corollary 1V.3.19 and the basis
of U(g) attached to the ordered set A in the same manner. By abuse of notation, we denote by
x s the elements of these two bases, with M a finite increasing sequence of elements of A’ or A
according to which basis we work with.

It is clear that, for all finite increasing sequence M of elements of A’, vy g(2pr) = . Hence,
tp,g Mmust be injective.

It is clear also that the set of all 237, with M a finite increasing sequence of elements of A\ A’
is a basis of U(g), considered as a left U(h)-module. "

Exercise IV.3.21 - Assume k is algebraically closed of characteristic zero. Let g be a finite
dimensional Lie algebra over k and h a maximal toral Lie subalgebra. Denote by ® the root
system associated to the pair (g,h), A a base of ® and let

g=n @hdn and b=HhPn

be the asssociated Cartan-Chevalley decomposition (see the end of Section II1.3). By Corollary
IV.3.20, U(n™) and U(b) identify with subalgebras of the k-algebra U(g).

1. There exists an isomorphism of k-vector spaces as follows:

Un) @ Ub) — Ulg)
rR®Yy — 2y

2. The above isomorphism is actually a morphism of left U(n~)-modules and of right U(b)-
modules (where the (U(n™),U(b))-bimodule structure of U(g) is given by the multiplication in

U(g))-

We conclude this section by introducing the notion of free Lie algebra over a set. Its construc-
tion is quite straightforward; however, its universal property depends on the Poincaré-Birkhoff-
Witt Theorem (or rather, the injectivity of the canonical morphism from a Lie algebra to its
enveloping algebra).

Let X be a set. We denote by k(%) the k-vector space of maps from X to k whose support is
finite. For all x € X, we let €, be the map

€ X —k

that sends = to 1 and all other elements of X to O. Clearly, the set (e, € X) is a basis of
k(X). In particular, we have an injective map X — k(X), 2 e,.

Then, we consider the tensor algebra T' (]k(X)) of the k-vector space k&X) together with the
canonical injection k&) — T (k(X )) (we will freely identify an element in k&) with its canonical
image in T (]k(X))).

Definition IV.3.22 — Retain the above notation. The free Lie algebra on the set X, denoted
L(X), is the Lie subalgebra of T (]k(X)) generated by the elements e, x € X. The natural map
X — L(X), x> ¢, is called the canonical injection.

The free Lie algebra over a set has the following universal property.
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Proposition IV.3.23 — Let X be a set and let L(X) be the free Lie algebra over X. If g is a
Lie algebra and ¢ : X — g any map, then there exits a unique morphism v : L(X) — g of
Lie algebras such that the following diagram commutes

can.inj.

ey i'e

Proof. Suppose such a morphism 1) exists, then we must have: for all x € X, 9(e;) = ¢(x). Since
the elements ¢,, z € X generate L(X) as a Lie algebra, 1) must be unique.
We now prove the existence. We have a commutative diagram as follows

X can.inj. ]k(X) can.inj.T (ﬂ((X)) B) L(X)

g U (9)

where ¢’ is a morphism of k-vector spaces whose existence is due to the universal property of
k() applied to the map ¢ : X — g, ¢" is a morphism of k-algebras whose existence is due
to the universal property of T’ (k(X)) applied to the map jg o ¢’ : kX)) — U(g), and 1 is the
morphism of Lie algebras obtained by restriction of ¢" to L(X).

Now, clearly, for all z € X, ¢(ez) = ¢"(€x) = jg(¢'(€2)). As these elements generate the Lie
algebra L(X) and jg(g) is a Lie subalgebra of U(g), it follows that 1(L(X)) C jq(g).

But, by the PBW Theorem, the Lie algebra g is isomorphic to its image in U(g) under j,.
So, identifying them, we may view ¢ as a morphism of Lie algebras from L(X) to g.

The proof is complete. n

IV.4 Generators and relations for semisimple Lie algebras.

In this section, we assume that k is algebraically closed and of characteristic 0.

Let g be a finite dimensional semisimple Lie algebra, let h be a maximal toral subalgebra
(equivalently a Cartan subalgebra). Let ® be the set of roots for the pair (g, ) and let A be a base
of the root system (Eg,®). Then, Proposition II1.4.2 establishes that the set > A (ga + 9-a)

generates g as a Lie algebra.
2

More precisely, put A = {a1,...,ar} and, forall 1 < i < ¢, h; = hy, = ———
K’g<t0¢i7tai)

to;. We

may consider elements z; € g,, and y; € g_,, such that
Oa; = kj, -, = ky; and [z, yi] = hi,

(cf. Theorem I1.5.13 and Proposition 11.5.15). In addition, the set {x;, y;, hi, 1 <1 < ¢} generates
the Lie algebra g. The next statement establishes relations among these generators.

Proposition IV.4.1 - Retain the above notation. Then, for 1 <i,j < /¥, the following relations
hold:
(1) [hi, hy] = 0;
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(2) @i, y;] = dizhi;

(3) [hi,zj] = <a37al>x] and [hi, yj] = —(ay, @i)y;;
(4) (adg(z:))~(* " (@) = 0, for i # j;

(5) (adg(y)) '@ (y ) =0, fori#j.

Proof. (1) This follows from the fact that b is abelian, by Lemma I1.5.2.

(2) The case where i = j is trivial. Suppose i # j. Then, a; — «; is not a root (since o; and «;
belong to the same base) so that ga, o, = 0. But, on the other hand, Lemma II.5.6 shows that
[9a:» 9—a;] € Ba;—a,- Hence the result.

(3) This is clear by definition of the root spaces.

(4) We have that a; — a; is not a root. So, the ay-string through «; is oy, aj + oy, ..., 5 + qay,
with —¢ = (a;, o), see Proposition 111.2.15. In particular, a; + (1 — (o, ;) )y is not a root.
But, by Lemma I1.5.6, the right hand side of relation (4) belongs t0 ga,1(1—(a;,a:))a;- S0, it must
be zero.

(5) The same argument as for relation (4) works. n

Remark IV.4.2 —In Proposition IV 4.1, relations (1), (2), (3) are called Weyl’s relations, while
relations (4) and (5) are called Serre’s relations.

The relations listed in Proposition 1V.4.1 only depend on the Cartan integers, that is on
the root system of (g,h). Hence, starting from a root system, we may construct a Lie algebra
by considering the free Lie algebra on a set with 3¢ elements, and factoring it out by the ideal
generated by the above relations. This is what we do now.

Fix a root system @ in a euclidean space E of dimension /, £ € N*, a base A = {a,..., o}
of ® and put
cij = (i), 1<4,5 </,

Consider a set {X?,Y;°, H?, 1 <i < ¢} and denote by L° the free Lie algebra on this set. Further,
consider the Lie ideal K° of L° generated by the elements

(HY, HY],  [X7,Y7] = 0Hy,  [HY, X7] —cuX; and  [HP, Y]] +e¢Y), 1<4,j <L

We denote by L the Lie algebra L°/K° and by X;,Y;, H; the respective images of X?,Y°, H?,
1 <14 </, under the canonical projection

L° — L.

Observe that the vector subspace generated by the H;, 1 < ¢ < ¢, is an abelian Lie subalgebra of L.

Now, let V' be a k-vector space with basis {vi,...,v;}. We consider the tensor algebra
T (V) of V. Recall that the set consisting of 1 together with the products v;, ...v;, t € N*,
1 < i1,...,iy < £ is a basis of the k-vector space T'(V'). We now consider the following 3¢
endomorphisms of T'(V'). Let 1 < j < £. Define

Hj : T(V) — T(V)
1 —» 0
Uiy .- Vi _(Cil,j =+ ... +Cit,j)vi1 R

Let Y; be left multiplication by v; in T'(V):

Y, « T(V) — T(V)
a — wvija
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And finally, define &; by induction on ¢ as follows

X V) — T(V)
— 0
Vs — 0
N N  ( i1 Xj + 51‘17]‘7{3') (Vig « - - ;)

By the universal property of L°, there is a Lie algebra homomorphism as follows:

¢° = L — gl(T(V))
H? — H;
X; — /Yl
Ye - Y

Remark IV.4.3 -

1. Let 1 < i < /. Clearly, the endomorphism #; stabilises the homogeneous components of T'(V),
while ); sends T4(V) into T9+(V), for all d € N. From this it follows, by an obvious induction,
that X; sends T(V) into 791 (V), for all d € N (with the convention that T~1(V) = {0}).

2. Let 1 <i,j < £. An obvious calculation shows that

Xi(vjvj) = —0ij¢jivj-
Lemma IV.4.4 - In the above notation, K° C ker(¢°).

Proof. By definition, the endomorphisms H;, 1 <+ < ¢, are simultaneously diagonalisable, hence
they pairwise commute:

forall 1<i4,j<4¢ HH;j—HjH;,=0. (Iv.4.1)

We then show that:
for all 1 é i,j S f, lej - y]XZ = 5i,jHi- (IV42)

Clearly, the left and right hand side of this equality send 1 to zero. Now, let ¢ € N, ¢t > 2 and
1 <iy,...,1% < ¢, by definition of X;, we have that X;);, (viy ... vi,) = (Vi, Xi + 0iy i Hi) (Vig - . . v3,).
So, the left and right hand side of the above equality take the same value on any pure tensor of
non zero degree in the elements v, 1 < k < £. So (IV.4.2) holds.

It is straightforward to show that

for all 1 S i,j S E, sz] - y]Hz = —Cjiyj. (IV.4.3)

We now comme to the following observation, for all 1 <4, 4,k < ¢:

0 = [’Hz,[%,yk]]
= [[Hi, X5], Ve]l + [, [Hi, V]
= [[HZ,X]] H C].“[X],yk] . (IV.4.4)
= [[/szX]]a k]] C]z[ yk;]
= [[Hi, &) - Vi]

Indeed, the first equality follows from relations (IV.4.1) and (IV.4.2), the second is the Jacobi
identity in gl (7'(V')), the third follows from relation (IV.4.3) and the fourth from relation (IV.4.2).

Now, let 1 <4,j < /¢, and put A = [H;, X;] —¢;;X;. It is obvious that A(1) = 0. But, relation
(IV.4.4) tells us that A commutes with any Mk, 1 < k < £. Hence, by an immediate induction
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on t, we get that A(v;, ...v;,) =0 for all t € N* and all 1 <4y,...,4 < ¢. Thus, we have shown
that

for all 1 < i,j < f, /HzX] — X]/Hz = Cjin. (IV45)

The proof is complete. L]

It follows from Lemma IV.4.4 that the representation of L° on T'(V') gives rise to a repre-
sentation of L on T(V) by means of the Lie algebra homomorphism ¢ such that the following
diagram commutes:

L* —" gl(T(V))
7

Theorem IV.4.5 Keep the above notation. Let H be the k-subspace of L generated by the
elements H;, 1 < i < {. Let X be the Lie subalgebra of L generated by the elements X;, 1 <i </,
and Y be the Lie subalgebra of L generated by the elements Y;, 1 < i < {. Then,

1. the family {Y;, H;, X;, 1 <1 < ¢} is linearly independant;

2. the family {H;, 1 <1i </} is a basis of H;

3. L=YOH®X.

Proof. 1. Clearly, it is enough to show that the family of endomorphisms {);, H;, X;, 1 < i < {4} is
linearly independant. In addition, by the first point in Remark IV.4.3, it is enough to show that
the three families {H;, 1 < < /¢}, {);, 1 <i </} and {X;, 1 <i < ¢} are linearly independant.
This is what we do know.

Suppose ai,...,a; € k satisfy > ., .,a;H; = 0 in gl (T'(V)). Applying the last equality to
v, 1 < j < ¢, it follows that -

Vlgjgf, Z aiCjViIO.
1<i<t

But, by Remark II1.10.4, the Cartan matrix is invertible. So, we must have a; = 0, 1 < ¢ < /.
Hence, the set {H;, 1 < i </} is linearly independant.

Next, suppose a1, ..., a; € ksatisfy > ;.,.,a;); = 0in gl(T(V')). Now applying this identity
to 1 provides >, ., ,a;v; = 0. So, we must have a; = 0, 1 < i < £. Hence, the set {Y;, 1 <i < (}
is linearly independant.

Now, suppose a1, ...,a; € k satisfy >, ,.,a;&; = 0 in gl(T(V')). Applying this identity to
vjv; for any 1 < j < £ provides a; = 0 by the second point of Remark IV.4.3. Hence, the set
{Xi, 1 <i < ¢} is linearly independant.

2. This is a particular case of 1.

3. For the rest of this proof, we consider the restriction ad : H — gl(L) of the adjoint action
of L to the abelian Lie subalgebra H of L. Of course, the adjoint action of H on L stabilises H.
Now, let (i1,...,4t), t € N* be a finite sequence of elements of {1, ..., ¢}. Recall the multibracket
[Xi,, .., X,] associated to this sequence and recall that the set of all such multibrackets generates
X. (Necessary details on multibrackets that we will use come from Exercise 1.2.10.) Then, the
following relations hold

V1< <Y, [Hj [Xiu‘-'aXitH = (Cil,j+"'+Cit,j)[Xi17"'7Xit]' (IV.4.6)
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Indeed, when t = 1, the above relation holds by definition of L. The general result then follows
by an obvious induction on ¢, using the Jacobi identity. Similarly, we get the following relation:

V1<j<U¥, [H] [}/iﬂ'“ 7}/;1]] = _(Cil,j +... +Cit7j)[1/%1?‘ . .,Yvit]. (IV47)

In particular, (IV.4.6) and (IV.4.7) show that the adjoint action of H stabilises both X and Y.
Let us now introduce useful linear maps on H. First, denote by (HY,..., H;) the dual basis
of the basis (Hy,..., Hy) of H. Then, for 1 < i < ¢, consider the linear form

v, + H — k
Hj = cij

7

in other terms,

*
Vv, = E Ci’ka.

1<k<l
The matrix that expresses the coordinates of the family (v1, ..., vy) in terms of the basis (H7, ..., H})
is invertible, since it is the transpose of the Cartan matrix. It follows that (v1,...,1y) is a basis

of H*. Introduce now the following subspace of L attached to A € H*:
Ly={x €L, hz]=Ah)x,Vhe H}

and recall that the sum of these subspaces is direct:
Z Ly = @ Ly CL. (IV.4.8)
AeH* AeH*

In the above notation, (IV.4.6) and (IV.4.7) show that
[Xi1; R ,Xl't] S LVi1+~~~+Vit and [Y;'l, ceey Y;t] S L_(Vi1+-~~+l/it)' (IV49)
From this it follows that

X C a Ly and YC a Ly (IV.4.10)
AE(X 1 <ice Np)\{0} AE(X1<i<o(N)vi)\{0}

since multibrackets in the X; (resp. Y;) generate X (resp. Y') as vector spaces. In addition,
clearly, H C Ly. Hence, from (IV.4.8), we get that

Y+H+X=YPHoX.

To conclude the proof of Point 3, it is now enough to prove that Y 4+ H + X is actually a Lie
subalgebra of L, since this subspace contains a family of generators of L. And, using Point 3 in
Exercise 1.2.10 this reduces to showing that Y + H + X is stable under ady(X;), adz(Y;) and
adr(H;), 1 <i < (. The case of adr(H;), 1 <1i < ¢, follows from (IV.4.6) and (IV.4.7). But, on
the other hand, we have that, for t € N, t > 2,

Y, X, ..., X5,]] e X and (X5, Y; Y]l €Y.

1900

Indeed, this follows from an easy induction on t using the Jacobi identity, the defining relations
of L and relations (IV.4.6) and (IV.4.7).
The proof is now complete. L]
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Remark IV.4.6 — We are now in position to strengthen easily the results obtained in Theorem
IV.4.5 and its proof. For this, retain the notation of that theorem and its proof.
1. It follows easily from inclusions (IV.4.10) and Point 3 of Theorem IV.4.5 that

H =Ly, X = EB Ly and Y= EB Ly. (IV.4.11)
(221 <ice Nwi)\{0} Ae(X1<i<e(=N)ri)\{0}

2. Let now \ € (Zlgz‘ge NI/Z'> \ {0} and write A = >, ;,pnivi, ni € N, 1 <i < £ (not all of them
being 0). Consider a nonzero multibracket [X; ,..., X;], t € N*, 1 <j, </, 1 <k <t. Then,
by (IV.4.9) and Point 1, if this multibracket belongs to L), then, the number of occurences of
i, 1 < i </, in the sequence (j1,...,J:) must equal n;. It follows at once that there are finitely
many such multibrackets. We have proved that,

Vxe [ ) Ny |\ {0}, dimy(Ly) < oo
1<i<t

Clearly, the same reasoning applies to any A € (Z1§ig£(_N)Vi) \ {0}.

Remark IV.4.7 — Keep the above notation. Fix an integer ¢, 1 < ¢ < £. Recall the canonical
basis (z,y, h) of sla(k). We can define a linear map from sly(k) to L as follows:

5[2 (]k)

.

N
s
s
s

el

.

x
Y
h

Since, by definition of L, we have [X;,Y;] = H;, [H;, X;] = 2X; and [H;,Y;] = —2Y}, it follows
from Exercise 1.1.22 that the above map is actually a morphism of Lie algebras. Moreover, it is
injective by Point 1 of Theorem IV.4.5. Hence, the Lie subalgebra of L generated by X;, Y; and
H; (which is just kY; ® kH; ® kX;) is isomorphic to sly(k).

We now come to the last step of the construction. It consists in factoring out L by the ideal
generated by Serre’s relation.

Denote by I (resp J) the Lie ideal of the Lie algebra X (resp. Y') generated by the elements
Xij, 1 <i#j </ (resp. Yij, 1 <i#j</{), where

VI<iz#j<t  Xig=(adp (X)) 9N(X;)  and Y, = (adp(Yi) "9 ().
In addition, denote by K the Lie ideal of L generated by X; ; and Y; ;, 1 <14 # j < (.

We consider the Lie algebra g = L/ K, the canonical projection 7 : L — g and put h = w(H),
n~ =7(Y) and nt = 7(X). Therefore, since L =Y + H + X, we have that g=n"+h+n'. In
addition, for 1 <14 < ¢, we put z; = 7(X;), yv; = 7(Y;) and h; = w(h;).

Lemma IV.4.8 — Foralll <k </l andalll <i# j <{, we have the identity adr,(Xy)(Y; ;) =0
in L.
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Proof. Suppose first that k # 4. In that case, [X}, Y;] = 0, so that adz,(X}) and adz(Y;) commute.
Hence

adp(Xi)(Yi;) = adp(Xg) o adp (Y;) "9 (Y)) = adp (Vi) "%t o adp (Xp) (Y)).

Now, if k& # j, [X,Y;] = 0 and the above displayed element is 0. And, if k = j, [X4,Y;] = Hj.
Thus

ad (Xi)(Yig) = adp(Xg)oadr (Yi) "9 1(Y)) = adp (V)= oady, (Xg)(Y;) = adp (Y;) =+ (Hj).

Now, ¢; ; < 0 since i # j. So, either ¢; ; = 0 (and thus ¢;; = 0) and the above element is zero
since [Y;,Hj} = ¢;;Y;. Or, —¢;; +1 > 2 and the above element is zero, again because of the
identity [Yl, Hj] = C’L',j}/i'

Suppose now that k = i. Recall Remark IV.4.7; it asserts that the subalgebra of L generated
by X;,Y;, H; is isomorphic to sla(k). Now, restricting ady, to this subalgebra, we get an action of
sly(k) on L to which we may apply Lemma I1.4.4. Now, [H;,Y;] = —¢;;Y; and [X;,Y;] = 0. So,
we may apply Lemma II.4.4 (with v = Y; and A = —¢;;) which shows that

adp,(X;) o adr (Y;) "9 T(Y;) =0,
as desired. -

Lemma IV.4.9 - In the above notation, the following holds:

1. I and J are ideals of L;

2. K=1+J;

3. the restriction, mg : H — b, is an isomorphism of Lie algebras.

Proof. 1. We deal with the case of J; the case of I is similar. We will make use of the results of
Exercise 1.2.10. By that exercise, it is enough to show that, for all 1 < k </,

(X4, J|CJ, [He,JJCJ and [V, J] CJ.

Of course, the last inclusion is clear since, by definition, J is an ideal of Y.
Consider now the elements of the form

lat,...,a¢], teN* ai,...,a; €Y ,a, =Y, , forsomel <i#j <UL (IV.4.12)

By Exercise 1.2.10, we know that J is the span of these elements. So, in order to show that J
is left stable by any adp(Hg), 1 < k < ¢, it is enough to show that, for all 1 < k < ¢, adp(Hy)
sends an element as in (IV.4.12) into J. We prove this by induction on ¢. First observe that,
for all 1 <i# j < /¢, Y;; is a multibracket of the type investigated in relation (IV.4.7). Hence,
this relation shows it is an eigenvector for ady, (Hy), 1 < k < ¢. This gives the result when ¢ = 1.
Now, consider an element as in (IV.4.12) for ¢ > 1. Then, by the Jacobi identity, we have

[Hy, a1, ..., 4] = [Hi, [a1,[a2, ..., a]] = —[lag, ..., a], [Hg, a1]] — [a1, [[ag, . . ., at], Hg].

Now, by the induction hypothesis, together with the fact that ady (Hy) stabilises Y, the left hand
side of the previous identity belongs to J. This finishes the induction, proving the desired result.

Finally, to show that J is left stable by any ad;(X%), 1 < k < ¢, we proceed in the same
manner. The case t = 1 of the induction is provided by Lemma IV.4.8. Further, as above, for
t > 1, we have

Xk, [a1,-..,a]] = [Xk, [a1, [a2, ..., a]]] = —[laz, ..., ad], [ Xk, a1]] — [a1, [[az, . . ., at], Xk].



By the induction hypothesis, the second term in the right hand side of the above equation is in
J. As to the first term, it must also be in J since [Xj, Y] C Y + H (by the proof of Point 3 of
Theorem IV.4.5). At this stage, Point 1 is proved.

2. Now, clearly, I + J C K. But, by Point 1, I 4+ J is an ideal of L which contains all the
generators of K. Hence, I + J = K.

3. This follows at once from Point 2; indeed: L=X®oH®Y and K =1+JC X PY. m

In view of the third point of Lemma IV.4.9, the restriction of m to H allows to identify the
Lie subalgebra H of L with the Lie subalgebra h of g. As a consequence, the linear forms v;,
1 <4 </, introduced above induce similar linear forms on §. To avoid accumulating notation,
we still denote them v;. So, we have now a basis of h* consisting of the following linear forms,
1 <1< ¢

v h — k

o o (IV.4.13)

For A\ € b*, put
gr = {z € g|[h,z] = A(h)z}.

Lemma IV.4.10 — In the above notation, the following holds:

Lg=n"&bon", b=go, 0" =@rer, .m0} 00 1 = Bire(s, e (om0} 947
2. the family {z;,yi, hi, 1 < i < £} is linearly independent;

3. for all 1 <1 <{, adg(x;) and adg(y;) are locally nilpotent derivations of g.

Proof. 1. Recall first that the sum of the subspaces gy, A € g* is direct (cf. Exercise 1.2.11).
Notice in addition that, for all A € H* = h*, w(Ly) C gx. Therefore, the first point follows from
(IV.4.10). (And actually, for all A € H* = h*, w(Ly) = gx.)

2. Using the same reasoning as in the second point of Remark IV.4.6, we get that L,, = Span(X;)
and L_,, = Span(Y;), 1 <i < /{. By the argument used in the proof of the first point, it follows
that g,, = Span(x;) and g_,, = Span(y;). Point 2 then follows by Point 1, the third statement
in Lemma IV.4.9 and the second point of Theorem IV.4.5.

3. Fix 1 <4 < { and let V' denote the subspace of g of those elements which are sent to zero by
a sufficiently high power of adg(x;):

V ={z €g, ady(z;)(x) =0, s> 0}.

By Exercise 1.3.3 applied to adg(x;), V is a Lie subalgebra of g. But, on the other hand, the
relations holding in g by construction show that x;,y; € V, for all 1 <4 < /. Hence, V = g. That
is, adg(x;) is locally nilpotent. Clearly, the same holds for adg(y;), 1 <i < Z. n

In view of Exercise 1.3.6 and the third point of Lemma IV.4.10, for all 1 < i < £, we may
introduce the following automorphism of the Lie algebra g:

©; = exp(adg(x;)) o exp(adg(—y;)) o exp(adg(z;)).
Lemma IV.4.11 — In the above notation, the following holds.
1. For all1 <i,j <, ©;(hj) = hj —c¢;jh;. In particular, for 1 <i </{, ©; induces an involutive
Lie automorphism of b, which we denote 0;.

2. For all 1 <1,7< f, I/ioej =V, —CjVj € b*
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Proof. Using Weyl’s relations in g, we get that adg(z;)(h;) = —¢; jx; and thus adg(w;)%(h;) = 0.
Thus,
exp(adg(xi))(hj) = hj — cijxi.

Similarly, we get that ad(—yi)(hj—ci,jazi) = —GCij (ylﬂ-hl), then that ad(—yi)Q(hj —CZ'JSCZ') = QCi,jyi
and finally ad(—y;)?(h; — ¢;jx;) = 0, so that

exp(adg(—y;)) o exp(adg(z;))(hy) = hj — ¢ijhi — ¢ ja;.
Further, adg(x;)(h; — ¢ jhi — ¢ijx;) = ¢;jx; and thus adg(xi)z(hj — ¢ijhi — cijx;) = 0. So that
exp(adg(z;)) o exp(adg(—y;)) o exp(adg(z;))(hs) = hj — ¢; jhi.

This establishes Point 1. Point 2 follows at once. n

In order to study the spaces gy occuring in the decomposition of g given by Lemma IV.4.10,
we need to transfer geometric properties of the root system @ of the euclidean space E. Actually,
we will also have to consider weights associated to (E, @) as in Section II1.9. For this, we introduce
the following notation.

Recall that (v4,...,vp) is a basis of the k-vector space h*. Put

bo = Spang{vi, ..., ve} and br = R®q hg-
We have an obvious R-linear isomorphism

L E o— by

(IV.4.14)
(674 — 12

This isomorphism allows to transfer the euclidean structure from E to hi. On both side, we
denote by (—, —) the corresponding scalar product. Recall from Section I11.9 the set of weights,
that we denote by A, associated to ®. At this stage, it is worth pointing out that all the linear
forms on b occuring in the decomposition given by Lemma IV.4.10 belong to ¢(A) (actually to
the image under ¢ of the root lattice associated to ).

Now, let W be the Weyl group of the root system (E, ®). Conjugating with ¢, we get an
action of W on hg. This action of W on by is thus given by the following formula:

YweW, YA€ bs, wh=ctowor L(N).
In particular, using Lemma IV.4.11, we have the following identity:
V1<1i,j <t Sq;Vj=108q,0 L_l(yj) =10 5q,(0) = 1o — ¢j05) = Vj — ¢j1 = Vo b,
from which we get that,

VI<i<t, VAe P Zwvi, sapA=Aob (IV.4.15)
1<i<e

We are now in position to study the spaces occuring in the decomposition of g given by Lemma
1vV.4.10.
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Lemma IV.4.12 — In the above notation, the following holds.

For all 1 <i <{ and for all X € @ <;<; Zvi, Oi(gx) = Grop; = O50, A

Let A\, pu € @<,y Zv; with € W.A, then dimg(gy) = dimg(g,,)-

For all A € u(®), then dimy(gy) =1 and, for all k € Z\ {—1,0,1}, dimy(ggy) = 0.

For all X € <21<z’<z Nlﬁ) U (El<i<g(—N)lﬁ), then gy # (0) implies that X € () U {0}.
We have that

SAERSENCES I

s=bEP | P a

Aeu(P)

and dimg(g) = £ + ||
Proof. 1. Consider z € gy. For all h € b, we have

[h,©:(w)] = ©:([6; (k) ]) = O4([6; (), 2]) = Ao 8 (W) (x) = Ao 6;(h)(x).

3 7

(The first equality follows from the fact that ©; is a morphism of Lie algebras, the third holds
because x € g, and the fourth becaus 6; is involutive.) Thus, we have that

O:(gx) € gaos;-
Now, let y € gaop, and put z = @i_l(y). Then, for all h € b,

[h,2] = [n, 07 (y)] = 7 ([0:(h), 4)) = ©7 ' (16:(h), y]) = M)O () = A(h)a.

3 3

Hence,
©i(gx) 2 Gros, -

This establishes Point 1.

2. The Weyl group is generated by the reflections (cf. Theorem II1.6.4) s,,, 1 < i < ¢. So the
result follows from Point 1 since the ©;, 1 < i < ¢, are automorphisms.

3. We have already proved that dimg(g,,) = 1 (see the proof of Lemma IV.4.10). A similar
argument actually shows that, for all k € Z \ {—1,0, 1}, dimg(gk,,) = 0. The result then follows
by Point 2, since any element of ¢(®) is in the W-orbit of some v;, 1 < i < ¢ (cf. Point 3 of
Theorem I11.6.4).

4. Let X € (Zl<i<€ Nw) U (Zl<i<€(_N)Vi) and suppose gy # (0). We are in position to apply
Exercise I11.6.11 to :~!(\). The decomposition of g given by Lemma IV.4.10 and Point 2 above
lead to A = &u(B) for some £ € R and some € ®. Now, [ is conjugate under W to some root in
A: there existe w € W and 1 < i < £ such that w(8) = «;. Now, we get that w.A = £r;. On the
other hand, by Point 2 above, we have that dimy(ge,,) = dimg(gy) # 0. It follows at once that
¢ € Z and by Point 3 above that £ € {—1,0,1}. All in all, we have shown that A € «(®) U {0}.
5. Point 4 and Lemma IV.4.10 give that

1=0P | D o
AEL(D)
Further, by Point 3, each summand in the sum Aeu(®) Ox is one dimensional. m

Remark 1V.4.13 — Keep the above notation.
1. Fix an integer 7, 1 < i < {. We already mentioned that g,, = kz; and g_,, = ky; (cf. the proof
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of Lemma IV.4.10). In addition, arguing as in Remark IV.4.7 by means of Point 2 in Lemma
1V.4.10, we have an isomorphism of Lie algebras

slo(k) — Span{y;, hi,z;} C g

r = x;
y o= Y
h hi

2. Let now A be any element of +(®). We know that there exists w € W and 1 < ¢ < £ such that
w(t™Y(\)) = oy and that w is a product of reflections associated to simple roots (cf. Theorem
I11.6.4). By Point 1 of Lemma IV.4.12, it follows that there exists and automorphism © of g such
that ©(gy) = gy, and O(g_») = g_,,. If in addition we put ©~1(h;) = h), we get that

O~ (Span{yi, hi, 1:}) = g-x @ khy @ ga.
Hence, g_) @ kh) @ g, is a Lie subalgebra of g which, by Point 1, is isomorphic to sla(k).

Theorem IV.4.14 - In the above notation, g is a semistimple Lie algebra, b a maximal toral
subalgebra of g and 1(®) is the set of roots associated to (g,bh).

Proof. We first show the semisimplicity of g. By Lemma 1.7.9, it suffices to prove that the only
abelian ideal of g is (0). Let i be an abelian ideal of g. By Lemma IV.4.12, we have that

s=bP | P o] (IV.4.16)

AEL(P)
Of course,
io2hn)P | P (@ni)
Aeu(P)
We first show that this inclusion is an equality. Denote by E the set of elements of i whose
components in the decomposition (IV.4.16) are not all in i. Suppose E is not empty and choose
in F an element x with a minimal number of nonzero components in the decomposition (IV.4.16).

Write © =3~ ¢, (#)u{0} Tus Where z, € gy, for all 1 € o(®)U{0}. Clearly, z # 0. Therefore, there
exists A € ¢(®) U 30} such that z) # 0. Then, we have that, for all € b, the element

hoa] =AWae = Y (u(h) = A(h)z,

peu(@)u{o}

is in i and, by the minimality hypothesis on x, it follows that all its components in the decompo-
sition (IV.4.16) lie in i. That is,

V heb, Vueu(®)u{o}, (u(h) = A(h))z, € i
But, for all p € «(®)U{0}, if p # A, there exists h € h such that p(h) # A(h). Hence, we get that
Ve o(@)U {0}, p# AN, z, €l

From which it follows that ) = x — Zy@(@)u{o},u;ﬁ)\ x,, € i. This shows that all the components
of z in the decomposition (IV.4.16) lie in i; a contradiction. Therefore, E is empty and we have
proved that

i=(n)P | P @ni

AEL(P)
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Now, let A € +(®). By Remark IV.4.13 (and using its notation), g_»@®kh) @ g, is a Lie subalgebra
of g isomorphic to sly(k). Since i is abelian, if follows that its intersection with i must be trivial.
In particular, i N gy = (0). Therefore, we have shown that

iCh.

Now, let h € i. For all 1 <14 < ¢, we have [h,x;] = v;(h)x; € i and hence v;(h) = 0. Since the
elements v;, 1 < i < £, form a basis of h*, it follows that h = 0. Therefore i = 0. We have proved
the semisimplicity of g.

We now prove that b is a maximal toral subalgebra of g. It is clear from the decomposition
(IV.4.16) that b is toral. The same decomposition shows that b is its own normalizer: Ny(h) = b.
Suppose now that h C b, where b’ is a toral subalgebra of g. Then, being toral, §’ must be
abelian, so that it is included in the normaliser of h that is, by the above, in . We have shown
that b is toral maximal.

The fact that «(®) is the set of roots associated to the pair (g, b) is also clear from decompo-
sition (IV.4.16). "

Notation IV.4.15 — Let (E,®) be a root system and A a base of ®. It will be convenient to
have a specific notation for the Lie algebras constructed above. So, from now on, the algebras g
and b will be denoted go A and he A, respectively.

Remark IV.4.16 - Independence of go Ao with respect to A — Let (E, @) be a root system.
Suppose that A and A’ are bases of ®. Then, we may consider the two pairs (go A, he.a) and
(90,A7, ha,A7), consisting of a semisimple Lie algebra and a maximal toral subalgebra. It follows
immediately from Remark II1.10.4 and the universal property of free Lie algebras that there exists
an isomorphism from ge A to go as that sends ho A onto ho A

Using Notation 1V.2.3, it follows from Remark IV.4.16 that there is a well defined map
R — A]k/ ~

that associates to any root system (E,®) the isomorphism class of the semisimple Lie algebra
9o, A obtained from an arbitrary choice of a base A of ®. Further, it readily follows from the
definition of isomorphism of root systems that this map factorises through R/ ~ to give rise to
a map

ax : R/~ — Ag/~ (IV.4.17)

Theorem 1V.4.17 — The maps r : Agx/~— R/~, c¢f. (IV.2.2), and ax : R/~— Ax/~, cf.
(IV.4.17) are bijective and inverse to each other.

Proof. We first show that ay o r = id. Let g be a finite dimensional semisimple Lie algebra.
Choose an arbitrary maximal toral subalgebra b of g. To the pair (g, ) associate the root system
(Er, ®) and choose an arbitrary base A of (Er,®). Then, by the universal property of free
Lie algebras, Proposition IV.4.1 and Proposition I11.4.2, we have a surjective morphism of Lie
algebras go A — g. On the other hand, we have dimy(ge a) = dimg(g), by Lemma IV.4.12 and
the discussion in Sections I1.5 and I1.6, so that the above morphism is actually an isomorphism.
This indeed proves that ax o r = id.

We now show that roay = id. Let (E, ®) be a root system and A an arbitrary base of (E, ®).
To this data, we associate the Lie algebra ge A, which is semisimple and finite dimensional, its
maximal toral subalgebra ho Ao and the set of roots ¢(A) associated to the pair (go A, be a); cf.
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Theorem 1V.4.14 and (IV.4.14). To simplify notation, put g = go.A and h = ha A. Therefore, we
may apply the process described in Section I1.6 to the pair (g,h). Let s be the Killing form of g.
We have the associated euclidean space Er as constructed in Section II.6, whose scalar product
we denote (—, —)g, to avoid ambiguity with the scalar product (—, —) of E. Correspondingly, we
will use the notation (—, —)g,. To each linear form v; € h*, 1 < i < ¢ (cf. (IV.4.13)) associate
ty, € b as in Notation I1.5.11. By the second point of Theorem II.5.13 and Remark IV.4.13, we
have:

V1<i<l, hi=2

So, for all 1 <i,5 < ¢,

(ViuVj)E ’i(tl/mtl/')
. 1. =92 R —9 17— k(t, h:)=v;(h:) =c¢; ; = . N
<V“V]>ER (Vjan)E]R H(tujatuj) Ii( w ]) VZ( j) 0 <a“aj>E
This shows that the isomorphism

t : E — Er= f)R

of (IV.4.14) is an isomorphism of root systems from (E, ®) to (Eg, ¢(®)), by Proposition II1.10.5.
We have proved that r o ax = id. m

126



Part V

Representations.
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V.1 Weight spaces.

In this section, we assume that k is algebraically closed and of characteristic 0.

Let g be a finite dimensional semisimple Lie algebra, h a maximal toral subalgebra of g and
® the set of roots of the pair (g,h). Thus we have the Cartan-Chevalley decomposition of g:

g=ha (@%) (V.1.1)

aed

In addition, let V' be a representation of g.

Definition V.1.1 - For all A € b*, put V) = {v € V|Vh € b, h.v = A(h)v}. If V) # {0}, we
say that X\ is a weight of the representation V' and we call Vy the weight subspace of V' of weight
A.

The following statement is basic.

Proposition V.1.2 - Keep the above notation.

1. Fora € ® and X € b*, go. V) C Voua.

2. The sum ZAeh* V\ is direct and is a subrepresentation of V.
8. If V is finite dimensional, then V = @ ycq« Va-

Proof. 1. Let x € go, h € h and v € V). Then, h.(x.v) = z.(hv) + [h,z].v = z.(A(h)v) +
(a(h)z).v = (A(h) + a(h))z.v. This proves Point 1.
2. It follows at once from Point 1 and (V.1.1) that 3, .. V) is a subrepresentation of V.

To show that this sum is direct, we prove the following statement, by induction on p € N*:
consider p € N*, \;, 1 < ¢ < p, pairwise distinct elements of h* and v; € Vy,, 1 < i < p, if
v +...+v, =0, then v; = ... = v, = 0. The statement is obvious for p = 1. Suppose it holds
for some p € N* and consider \;, 1 <1 < p+ 1, pairwise distinct elements of h* and v; € V),
1 <7 <p+1. Suppose v1 + ...+ vpr1 = 0. Then, for all h € b,

O=h{ D w|=2ua® | D wil|= D k)= Apa(h)vi.

1<i<p+1 1<i<p+1 1<i<p

Hence, by the induction hypothesis, for all h € h, and for all 1 < i < p, (A\i(h) — A\pt1(h))v; = 0.
But, for all 1 <i <p, \; # A\p41, hence there exists h € b such that A\;(h) # A\pt1(h). Therefore,
we get that, for all 1 <4 < p, v; = 0, from whitch it follows at once that, in addition, v,41 = 0.
This finishes the induction.

3. Suppose now that V is finite dimensional. We are in position to apply Theorem II1.3.8. It
asserts that all the elements of h act by diagonalisable endomorphisms. Since in addition b
is abelian and finite dimensional, then the elements of h act by simultaneously diagonalisable
endomorphisms: there exists a basis B = {b1,...,b,} of V such that any vector in B is an
eigenvector for the action of all h € hh. Now, for 1 <i <n and h € h, put

h.b; = Ni(h)b;,

Ai(h) € k. It is then obvious that, for all 1 <i <mn, \; : h — k, h — A;(h) is a linear form on
h. Point 3 follows. L]
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Example V.1.3 - If we consider the adjoint action of g on itself, we see that the Cartan-
Chevalley decomposition is nothing but the decomposition of g into weight spaces. In other
terms, the weights of (g,ady) are the roots of (g, h) together with 0.

Example V.1.4 — Suppose g = sly(k) and h = kh (cf. notation of Section I1.4).

Fix m € N. Recall from Section II.4 the (simple) representation (k™*!, p,,), and recall that
pm/(h) is diagonalisable with eigenvalues m — 2i, 0 < i < m. Clearly, we have an isomorphism of
vector spaces

¢t b — Kk
A = Ah)
Then, the weights of (k™*1, p,,) are the elements of the set {¢=*(m — 2i), 0 <i < m}.

V.2 Highest weight representations.

In this section, we assume that k is algebraically closed and of characteristic 0.

Let g be a finite dimensional semisimple Lie algebra h a maximal toral subalgebra of g and
® the set of roots of the pair (g,h). In addition, let A be a base of the root system ®. Then & is
the disjoint union of the set ®* of positives roots and the set ®~ of negative roots: & = ¢~ DT,
The Cartan-Chevalley decomposition of g then reads

g=n"@ohodn",

where 17 = @, cp- 9o and n = 0T = P4+ 9o are nilpotent Lie subalgebras of g and where
b=0b" =Hhdn' is a solvable Lie subalgebra of g. Finally, n = [b, b] (cf. Example 111.3.19).

Definition V.2.1 — Let V be a representation of g.

1. Let X € h*. An element v € V is called a highest weight vector of weight \ if it is a nonzero
element of Vy such that n.v = 0.

2. An element v € V is called a highest weight vector if it is a highest weight vector of weight A
for some X\ € h*.

Remark V.2.2 —In Humphreys’ book, a highest weight vector (of weight A) is called a maximal
vector (of weight \).

Remark V.2.3 — Highest weight vectors and finite dimensional representations — Let
(V, p) be a nonzero finite dimensional representation of g. Since b is a solvable Lie subalgebra of
g, p(b) is a solvable Lie subalgebra of gl(V'). Lie’s Theorem then ensures there is a full flag F of
V such that p(b) C bxr(V). Moreover, p(n) = p([b, b]) = [p(b), p(b)] C [b£(V),b£(V)] = ng(V).
Hence, there exists a nonzero vector v € V which is a common eigenvector of all the elements of
b and satisfies n.v = 0; such a vector is a highest weight vector of V. We have shown that every
finite dimensional representation of g has a highest weight vector.

The study of finite dimensional representations of g relies on that of the larger class of repre-
sentations generated by a highest weight vector.

Definition V.2.4 — Highest weight representations.

1. Let A € b*. A representation of g is called a highest weight representation of weight X\ if it is
generated (as a representation) by a highest weight vector of weight \.

2. A representation of g is called a highest weight representation if it is a highest weight repre-
sentation of weight A for some X € h*.
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Remark V.2.5 - In Humphreys’ book, a highest weight representation (of weight \) is called a
standard cyclic representation (of weight \).

The structure of highest weight representations is not difficult to describe.

For all a € &7, fix x4 € go \ {0} and consider h, € h and y, € g_o as in Theorem I1.5.13.
We may therefore consider the basis of g consisting of {y,, o € ®*}, {x4, @ € @} and any basis
of h and we may totally order it in such a way that each element g, be less than each element
of the chosen basis of h and that each element of the chosen basis of h be less than each element
Zo. Now, using (a right-hand side version of) Corollary IV.3.20 and its proof we get that U(g) is
a free right U(b)-module with basis the set B consisting of the ordered products of the (images
in U(g) of the elements) y,, a € ®T.

Finally, write NA (resp. N®T) for the set of linear combinations with coefficients in N of the
elements of A (resp. ®1). Hence, NA = N+,

Theorem V.2.6 — Let V' be a representation of g and v a highest weight vector of weight \ € h*
of V' that generates V' as a representation (hence, V is a highest weight representation of weight
A).

1. The elements of the set B.v are weight vectors and generate V' as a vector space. In particular,
V' is the direct sum of its weight spaces.

2. The weights of V' are all of the form A\ — p with p € NA.

3. All the weight spaces of V' are finite dimensional and dimy(Vy) = 1.

4. Any subrepresentation of V' is the direct sum of its weight spaces.

5. The representation V is indecomposable; it has a unique maximal strict subrepresentation and
a unique irreducible quotient.

6. Any nonzero quotient representation of V' is a highest weight representation of weight \.

Proof. By definition of a highest weight vector, it is clear that U(b).v = k.v and, by the P.B.W.
Theorem, it follows that V' = U(g).v = U(n™).v. The elements of B.v are weight vectors of weight
A — p, p € N®T_ by the first point of Proposition V.1.2 and they generate U(n~).v as a vector
space (since the elements of B generate U(n~) as a k-vector space). This proves points 1 and 2.

We now show Point 3. Put A = {ay,...,a/}. By Point 2, any weight of V' belongs to A — NA.
Let A — ) <;<p iy be such a weight, ¢; € N, 1 < ¢ < . Any element of B is of the form
b= [laco+ Yy pa € N for a € & and b.v is then of weight A — > aca+ Pact. Therefore, the
weight space of weight A — >, .., ¢;a; is generated as a vector space by the elements b.v with
b=Tlnco+ Yo", Pa € N for o € &, and

Z Pax = Z qi 0

acdt 1<i<e

(cf. Proposition V.1.2, Point 2). But, it is not difficult to see that the above equality implies
that, for all @ € &1, p, < max{q;, 1 <1i < ¢}. This entails that the set of families (p,) satisfying
the above identity is finite and that it reduces to the trivial family in case ¢; = 0 for all 1 <4 < /.
Point 3 follows.

4. By Point 1, V = GBueh* V,,. Let now W be a subrepresentation of V. We must show that W
is the direct sum of its weight spaces: W = b W NV,. This amounts to showing that, for all
w € W, the components of w in the decomposition of V' as the sum of its weight spaces are all in
W. Suppose, to the contrary, that there exist elements in W that do not satisfy this condition
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and choose one, denoted w, with a minimal number of nonzero components. Clearly, w is not a
weight vector. Therefore, w = w1 +... 4wy, with 1 < n, where the w; are weight vectors of weight
i € b*, the p;, 1 < i < n, being pairwise distinct. Let h € b such that puq(h) # pe(h). Then
haw — pi(h)w = (ua(h) — p1(h)ws + ... + (pn(h) — p1(h))w, € W. The minimality hypothesis
made on w forces, on the one hand, wy &€ W and, on the other hand, (uz2(h) — p1(h))ws € W,
which is absurd. Point 4 is proved.

5. It follows from the above that any strict subrepresentation of V' is contained in V' = @ uin Ve
Hence, the sum of all the strict subrepresentations of V' is a strict subrepresentation and, clearly,
it is maximum, for the inclusion, among strict subrepresentation. Obviously, this forces V to be
indecomposable. The rest of Point 5 clearly follows.

6. Any such quotient is the quotient of V' by a strict subrepresentation. Therefore, by (the proof
of) Point 5, the image of v in it is a nonzero vector which, clearly, is a highest weight vector of
weight A, which generates that quotient. m

Corollary V.2.7 — Let V be a highest weight representation of g. If V is irreductible, then two
highest weight vectors of V' are linearly dependent; in particular, all the highest weight vectors
have the same weight.

Proof. Suppose V' is a highest weight representation of weight A and let v € V) be a highest
weight vector of weight A. Let w be a highest weight vector of weight u € h*. By definition, w
is nonzero and, by the irreducibility of V, it must generate V. Hence, V is also a highest weight
representation of weight p. But then, by Point 2 of Theorem V.2.6, A — p and g — X\ both belong
to NA. As A is a basis of h*, this implies that A = u. It remains to apply Point 3 of Theorem
V.2.6 to conclude. m

We now come to the problem of the existence and unicity of highest weight representations
of a given weight. Unicity is not difficult.

Theorem V.2.8 — Let A € h*. Two irreducible highest weight representations of weight A are
tsomorphic.

Proof. Let V and W be irreducible highest weight modules of weight A and v € V', w € W highest
weight vectors of weight A such that V' = U(g)v and W = U(g)w. We consider the U(g)-module
V @ W. Clearly, the element (v, w) is a highest weight vector of weight A of V & W. Consider
the submodule S = U(g)(v,w) of V@ W that (v, w) generates in V @& W. We consider now the
restrictions to S of the natural projections of V& W on V and W:

p: SR VoW T Yy and g 8RBTy oW Y W,
Clearly, p and ¢ are morphisms of U(g)-modules and are surjective. Therefore, each of V' and
W is isomorphic to a quotient of S. But, S is a highest weight module. So, by Theorem V.2.6,
it has a unique irreducible quotient. Now, since V and W are irreducible and isomorphic to a
quotient of S, both of them must be isomorphic to the unique irreducible quotient of .S and, in
particular, they must be isomorphic between them. m

We now consider the problem of the existence of a highest weight representation of a given
weight.

Let A € h*. We consider the following representation (py, Dy) of the solvable subalgebra b of
g. By definition, D) = k and the structure morphism py : b — gl(k) = k maps any element
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B+ ot Ta € b =h& (Buca+ba) to A(h). The Lie bracket of any two elements of b is in n and,
hence, acts by 0. Since gl(k) is commutative, it follows that p) is a morphism of Lie algebras.
Therefore, D) is a linear representation of the k-algebra U(b) (see Remark IV.3.11) and we may
consider the left U(g)-module

Z(\) = U(g) ®u(s) Da

and put vy =1®1 € Z(A).

Remark V.2.9 — Retain the above notation and fix A € h*.

1. By definition, Z()\) is a left U(g)-module, hence in particular a k-vector space. More precisely,
U(g) acts on Z(A) by k-linear endomorphisms and Z(\) is endowed with the structure of a linear
representation of the k-algebra U(g) (see Remark IV.3.11). Therefore, we have a Lie algebra
homomorphism

8 2% Ug) — gl(Z(\)

which endows Z(\) with the structure of a representation of the Lie algebra g.
2. Recall from Exercise IV.3.21 that multiplication in U(g) defines an isomorphism

U(n™) @, U(b) — U(g)

as left U(n™)-modules and right U(b)-modules. Therefore, using standard results on tensor
products, we get an isomorphism of left U(n™)-modules as follows:

Z(N) U(g) @u(s) Da
(U(n™) @x U(b)) @) Da

Un™) @k (U(b) ®u() Dr)

(11111 11
-
il

which, for all y € U(n™), sends y ® 1 € Z(\) to y.

Definition V.2.10 — Let A\ € h*. Then, the representation Z(\) of g is called the Verma module
associated to .

Lemma V.2.11 - Let A € h*. The representation Z(\) of g is a highest weight representation
of weight A of g and vy is a highest weight vector of Z(\) of weight X which generates Z(\).

Proof. By definition of Z(\), vy is a weight element of weight A of Z(\) and it is in the kernel of
the action of n. In addition, in the isomorphism of Remark V.2.9, vy maps to a nonzero element,
hence is itself nonzero. Since, in addition, vy obviously generates Z(\) as a U(g)-module, the
result is established. n

Notation V.2.12 - Let A € h*. By Theorem V.2.6 and Lemma V.2.11, the highest weight
representation Z(\) has a unique irreducible quotient. We will denote this quotient by V().

Corollary V.2.13 - For all A\ € h*, there exists an irreducible highest weight representation of
weight \ of g.

Proof. This follows from Lemma V.2.11 and Theorem V.2.6. m

The following Remark summarizes the results obtained so far.
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Remark V.2.14 -

1. For all A € h*, V(A) is an irreducible highest weight representation of weight A of g (cf.
Notation V.2.12 and Corollary V.2.13). In addition, it follows easily from Corollary V.2.7 that,
if A and p are distinct elements of h*, then V' (\) and V(u) are not isomorphic.

2. Let V be a finite dimensional irreducible representation of g. Since V is finite dimensional,
by Remark V.2.3, it must have a highest weight vector. Since, in addition, it is irreducible, this
highest weight vector must generate V' as a representation. Hence, there exists A € h* such that
V' is a highest weight representation of weight A. Now, by Theorem V.2.8, we deduce that V is
isomorphic as a representation to V().

3. Therefore, the exhaustive list of irreducible finite dimensional representations of g (up to
isomorphism) coincides with the list of representations V' (\) which are finite dimensional over k.

Example V.2.15 - Verma modules for sla(k) — Put g = sla(k). Recall the canonical ge-
nerators x, h, y of g from Section I1.4. Then, the Cartan-Chevalley decomposition of g reads
slo(k) =n~ @ h @ n, where n= = ky, h = kh and n = kx. Of course, h* identifies to k by means
of the isomorphism h* — k, A — A(h).

Since n~ is a one-dimensional Lie algebra, its enveloping algebra is just its symmetric algebra.
More precisely, U(n™) is generated, as a k-algebra, by (the canonical image of) y and has the set
{y’, i € N} as a k-basis.

1. Description of the Verma module Z()\) = U(g) ®u ) Da, A € b*.

Foralli e N, put ¢, =y*® 1 € Z(\) (and e_1 = 0, for convenience). By Remark V.2.9, the
set {e;, i € N} is a basis of the k-vector space Z(\). In order to decribe the representation Z(\)
of g, we give explicit expressions for the actions of z, h and y on the elements of this basis. First,
recall that (the images in U(g) of) z, h, y generate U(g) as a k-algebra and that the following
relations hold in U(g): 2y —yx = h, hx —xh = 2x and hy —yh = —2y. It is then easy to establish
the following identities in U(g):

VieN, zy' —y'z =iy Y (h—(i—1)) and hy' —y'h = —2iy".

From these relations, we get the following identities describing the action of x, h and y on the
above basis of Z(\), for all i € N:

xr.e; = 7 ()\(h) — (’L — 1)) €i—1; (V.Q.l)
h.e; = (A(h) — 2i)e;; (V.2.2)
Y.€; = €i41. (V23)

We notice that the weight spaces of Z(\) are the lines ke;, i € N (and they are nothing but the
eigenspaces of the action of h).

2. Simplicity of Z(\).

2.1. If M(h) ¢ N, Z(\) is irreducible. Details of the proof of this statement are left as an easy
and very interesting exercise. Here is a sketch of a proof. Consider a nonzero element v of Z(\).
By the hypothesis on A(h), the coefficients appearing in relations (V.2.1) for i € N* are not zero.
From this it follows that, if j is the greatest integer such that the coefficient of e; in the expression
of v in the above basis is nonzero, then x/.v is a nonzero scalar multiple of eg. Then, it obviously
follows that, for all £k € N, yk.(xj .0) is a nonzero scalar multiple of e;. This shows that any
nonzero element of Z(\) generates Z(\) as a representation. That is, Z(\) is irreducible.

2.2. Suppose A(h) =m € N. Put

M(X\) = Spany(e;, i € N, i >m +1).
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The identities (V.2.1), (V.2.2) and (V.2.3) show that M (\) is a subrepresentation of Z(\). It is
not difficult to show that the corresponding (finite dimensional) quotient representation is irre-
ducible, using the same strategy as in 2.1. But, actually, much more is true. Let Y be any strict
subrepresentation of Z(A). As Z(\) is a highest weight representation, Theorem V.2.6, Point
4, applies and Y must be the direct sum of its weight spaces. That is, Y must be the direct
sum of its intersections with the (weight spaces of Z(\), that is the) lines ke;, i € N. But, this
forces Y N'ke; = (0), whenever 0 < i < m for, otherwise, Y would contain a basis vector e;
for some 0 < j < m and therefore e itself, which would contradict the fact that Y is a strict
subrepresentation. All in all, we have proved that Y must be included in M (\). Hence, M(\)
is a maximum strict subrepresentation of Z(\) and the corresponding quotient is therefore the
simple representation V().

2.3. To sum up the above, according to whether A\(h) belongs to N or not, the simple represen-
tation V' (A) of g is finite dimensional or infinite dimensional. If A\(h) = m € N, then V(}) is a
finite dimensional representation of dimension m + 1 and it is easy to prove that it is isomorphic
to the representation (py,, k™) discussed in Section I1.4. If A(R) ¢ N, V(\) = Z()).

By Remark V.2.14 the question as to whether a representation V/(\), A € h*, is finite dimen-
sional is crucial. This is the point we now investigate.

Theorem V.2.16 — Let A\ € h*. If V/(A) is finite dimensional then, for all « € A, A(h,) € N.

Proof. Let v € A. Choose z4 € go \ {0} and yo € g—o \ {0} as in Theorem I1.5.13. Let S, be
the Lie subalgebra of g generated by x, and y,; S, is isomorphic to sly(k) via an isomorphism
sending hq to h and V' (\) becomes in that way a representation of sly(k).

Now let v € V(A) be a highest weight vector of weight A of the representation V() of g.
Then, clearly, v is an eigenvector of eigenvalue A(h,,) for the action of h, and an element of the
kernel of the action of z,. Now, by Weyl’s Theorem, the representation V' (\) of sly(k) decom-
poses as a sum of finite dimensional irreducible representations of sla(k). The description of the
finite dimensional irreducible representations of sly(k) then show that we must have A\(hy,) € N,
as requierred. m

Our aim now is to prove that the necessary condition of Theorem V.2.16 for V() to be finite
dimensional is actually sufficient. For this, preparatory results will be convenient.

Remark V.2.17 - Abstract weights versus concrete weights — At this stage, a remark is
in order to avoid ambiguities between various meanings of the word weight.

1. Recall the context. We are given a semisimple Lie algebra g and a maximal toral subalgebra
b of g. There is a set of roots ® C h* attached to the pair (g,h) and a corresponding root system
® C Eg in the euclidean space Eg. Fix, in addition, a base A = {aq,...,ay} of the root system
(Er, ®).

2. We have a notion of weight attached to the root system (Eg, ®), in the sense of section III.9.
These are elements A\ € Eg such that, for all a € ®, (A\,a) € Z (cf. Definition II1.9.1); the set of
weights is denoted Ag. By Lemma II1.9.3, we have

Ap ={N € Er|Va e A, (\a) € Z}.
Attached to A, we have the fundamental weights w;, 1 < i < n (cf. Definition 111.9.9). By

definition, w; € Ag and, actually, the set {w;, 1 <i < n} is a Z-basis of the (free) abelian group
Ag (Lemma I11.9.10). But, on the other hand, by Remark I11.9.12, the fundamental weights are
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elements of Eg = Spang(a;, 1 <4 < n), because the Cartan matrix is invertible, with coefficients
in Z. All in all, we get that
Agp C E@.

The same arguments actually show that {w;, 1 < i < n} form a Q-basis of Eg and a k-basis of
h* (cf. (I1.6.3)).
3. Let now A\ € h*.

Recall that the Killing form, g4, on b is nondegenerate and therefore allows the identification
t:h—b* h— kg(h,—). By transfer of structure via ¢, we get a nondegenerate bilinear form
(—,—) : b* x b* — k. Recall also that, for all a« € ®, (a, ) # 0 (Proposition 11.5.12).

Suppose that:

5 (A, o)

(ai, o)
We know that {w;, 1 < i < n} is a k-basis of h*. So, there exists ¢; € k, 1 < i < n, such that
A=) 1<i<n Ciww;. But then, by definition of the fundamental weights, for 1 <i < n,

V1<i<n,

€Z. (V.2.4)

()\, Ozi)

(i, i)

Ci = €.

So, by Point 2, we have that A € Eg C Er and, by hypothesis on A, we actually have A € Ag.

4. Point 3 above applies in particular to the following context. Let V be a finite dimensional
representation of g. Let A € h* be a weight of the representation V' (so, in the sense of Definition
V.1.1). Consider 1 <14 < n, and elements z; € gq,, ¥i € §—a, and h; € h as in Theorem I1.5.13:
the subalgebra of g generated by x; and y; is isomorphic to sla(k) and any element of the weight
space V) is an eigenvector for the action of h € sly(k), whose eigenvalue is A(h;). Since V is
finite dimensional, seen as a representation of slp(k) it is the direct sum of finite dimensional
irreducible representations of sla(k), so that we must have \(h;) € Z. But,

2 2 2
T Atay) = ————Fig(trs bay) = ———
HG(tOéi?tai) ( “ ) Hg(toéiatai) Q( e ) (Oéi,OéZ')
We have shown that the weights of any finite dimensional representation of g satisfies the hy-

pothesis (V.2.4). By Point 3, such a weight is a weight in the abstract sense, that is, belongs to
A(b C E]R.

)\(hl) = ()\,Oéi).

Lemma V.2.18 - For 1 < ¢ < n, consider elements x; € ga,, Yi € 9—a, and h; € b as in
Theorem 11.5.13. Then, for 1 <i,j <n and k € N, the following relations hold in U(g):

1. [xjayf+1] =0, if i # j;

2. [hj,yi ' = —(k + Dai(hy)yf ™t

3. iyt = —(k+ Uk (k1 — hy).

Proof. Recall the (injective) morphism of Lie algebras j; : g — U(g).

When k = 0 the relations in the statement hold in g and, therefore, in U(g). Indeed, the first
one follows from the fact that a; — a; is not a root (see Lemma II1.5.6) and the two others are
true by definition. The result now follows by a straightforward induction on k. m

Theorem V.2.19 — Let A € h*. Let V be an irreducible highest weight representation of g, of
weight X. Let II(V') be the set of weights of V. Suppose that A(h;) € N for all 1 < i < n, then
the following holds:

1. I(V) € Ap C Eg and II(V') (seen as a subset of Er) is stable under the action of Wa;

2. V 1is finite dimensional.
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Proof. We let v be a highest weight vector of weight A that generates V' and denote by ¢ : g —
gl(V) the Lie algebra morphism that defines the representation of g in V. For 1 < i < n, put
m; = A(h;) € N.

Step 1. Fix 1 < i < n and recall the elements x;, h;,y; € g and the subalgebra S; that they
generate. We first investigate the action of S; in V. It follows from the relations in Lemma
V.2.18 that the element 5™ v is a weight vector of weight \ — (m; + 1)a; annihilated by n (see

)

the proof of Proposition I11.4.2). But, V' being irreducible, Corollary V.2.7 applies to show that

y;”’*l.v =0, since A # X — (m; + 1)a;. Now, put

F; = Spany (yF.v, 0 <k < my}.

Using Lemma V.2.18 again as well as the above, we get that Fj is a nonzero finite dimensional
subrepresentation of V' seen as a representation of .S;.
Now, let F' be any finite dimensional subrepresentation of V' seen as a representation of S;.
Put
g.F' = Spany (g.w, g € g, w € F).

Since g and F' are finite dimensional, g.F is also finite dimensional. Further, since
VzeSi,geg, weF, z(gw)=g.(z.w)+][zglw,

g.F is a subrepresentation of V seen as a representation of S;. Therefore, if we let 7; be the
set of all finite dimensional subspaces of V' stable under the action of \S;, the subspace ) reT; F
is stable under the action of g and it is nonzero since it contains F; and therefore v. As V is
irreducible, we deduce that

V=> F

FeT;

That is: seen as a representation of S;, V' is the sum of finite dimensional subrepresentations.

Step 2. Since V is a highest weight representation of g of weight A, by Theorem V.2.6, it is the
sum of its weight spaces and all its weights belong to the set A — NA. Therefore, the hypothesis
on A implies that, for all weight p of V', we have that p(h;) € Z, for all 1 < i < n. This means
that we are in the hypothesis of Point 3 in Remark V.2.17 and we deduce (see Point 2 of the same
Remark) that all the weights of V' actually lie in Ap C Eg and may therefore be seen as weights
in the abstract sense. In particular, we are in position to use the action of the Weyl group on Egr
(which restrict to Ag).

Consider a weight p of V and w € V), \ {0}. Fix 1 <1i < n. By step 1, there exists a finite
dimensional subrepresentation E of V seen as a representation of 5; that contains w. By the
results of Section II.4, the representation E of S; may be written

E= P E., (V.2.5)

1<s<r

where r € N* and, for all 1 < s <r, F; is an irreducible finite dimensional representation of S,
which dimension we denote d; € N*. Write

where, for 1 < s < r, ws € F,. Since w # 0, there exists 1 < ¢ < r such that wy # 0. Clearly,
for all 1 < s < r, we have ¢(h;)(ws) = p(h;)ws, so that ws is an eigenvector of ¢(h;) in the
irreducible representation Eg of S;.
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Suppose first that p(h;) € N. The nonzero vector w; as eigenvalue p(h;) w.r.t. the endomor-
phism ¢(h;), and, we may consider the vector

(i) (wy).
By the structure of the irreducible representation E; of S; (as discribed in Section II.4), this
vector is therefore an eigenvector of eigenvalue p(h;) — 2u(h;) = —p(h;) for ¢(h;) and is nonzero.

From this, we deduce immediately that ¢(y;)"(")(w) is a nonzero element of E. But, w € V},. So,
applying the first statement of Proposition V.1.2, we get that ¢(y;)*)(w) is a nonzero element
of V', of weight © — p(hi)a;, since y; € g_q,. But

= phi)os = p— (1, 06) i = sa, ().

Therefore, we have shown that, if (k) € N, then s, (1) is a weight of V.

A similar argument deals with the case where —u(h;) € N. It is enough to consider the
element ¢(x;)~#") (w); it turns out that it is a nonzero vector of weight s, (i).

Hence, we have proved that, whenever p is a weight of V| then for all 1 < i < n, its image
under the simple reflection s,, is also a weight of V.
Step 3. As the Weyl group is generated by the simple reflections, it follows from the previous
step that Wg stabilises the set of weights of V. It only remains to establish that V is finite
dimensional.

Notice first that the hypothesis on A means that A is dominant, in the sense of section IIL.9.
As pointed out above, II(V) is a union of Wg-orbits. Let O be such an orbit. By Proposition
I11.9.14, O contains exactly one dominant weight p and, as p € II(V'), we must have that u < A,
by Theorem V.2.6. But A is dominant, so there are finitely many dominant weights v such that
v < A, as Lemma I11.9.16 establishes. All together, we have shown that II(V') is the disjoint
union of finitely many orbits, all of which are finite since W is finite. Therefore, II(V) is finite.
Now, Theorem V.2.6 shows that each weight space of V must be finite dimensional. Therefore,
V' is finite dimensional, as the sum of finitely many finite dimensional subspaces. m

Theorem V.2.19 establishes that, if V' is an irreducible highest weight representation of g, of
weight A such that A(h;) € N for all 1 <1 < n, then the set II(V') of weights of V' is a union of
Wg-orbits. However, it does not clearly link the weight spaces attached to weights belonging to
the same orbit. Such a link is the goal that we pursue now.

We start with the following remark, which relies on Section IL.7.

Remark V.2.20 - Some automorphisms of g associated to simple roots — Put A =
{ai,...,an}. For 1 <i <n, consider x; € go,, ¥i € §—qa, and h; € h as in Theorem I11.5.13.

1. The endomorphisms adg(x;) and adg(y;) are nilpotent derivations of g (cf. Lemma II.5.6).
Therefore, we may consider the following automorphism of the Lie algebra g:

6: = exp(ady(1)) expladg (1)) exp(ady (7).

2. Consider 1 < ¢ < n. The following as been established in Section II.7. First, ©; induces an
involutive automorphism of Lie algebra of h, that we still denote ©;. Second, the endomorphism
t@; of h* actually stabilises Eg. On the other hand, let s; be the simple reflection of Eg associated
to a;. We have that s; stabilise Eg and

vi<i<n, ('0i)g, = (s
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3. Suppose now that we are given a finite dimensional representation (V, ¢) of g.

Let 1 < i < n. By the representation theory of sla(k) (applied to V considered as a repre-
sentation of the Lie subalgebra of g generated by x;, y; and h;), we get that ¢(x;) and ¢(y;) are
nilpotent endomorphisms of V' (cf. Theorem I1.3.8). Thus, we are in position to consider the
automorphism of V' defined by

fi = exp((xi)) exp(d(—yi)) exp(¢(x:)).

By Point 3 in Exercise I1.7.1, we get that the following relations hold:

Vgea, ¢(Oi(g)=fioo(g)ofi'

Notice that, since the restriction of ©; to b is an involution, we actually have:
Vheb, ¢@i(h)=fiop(h)ofi ' =f"op(h)o fi. (V.2.6)

Theorem V.2.21 — Let V be an irreducible highest weight representation of g, of weight \.
Suppose that A(h;) € N for all 1 < i < n. Then, for all weight p of V and all 0 € Wy,
dimk(Vg(u)) = dlmk(vu)

Proof. We let v be a highest weight vector of weight A that generates V and denote by ¢ :
g — gl(V) the Lie algebra morphism that defines the representation of g in V. We will use the
notation of Remark V.2.20.

Recall from Theorem V.2.19 that the set II(V') of weights of V' satisfies II(V') C Ap C Eg and
is stable under the action of Wg and that V is finite dimensional.

Consider a weight y1 of V and w € V),. For all 1 <7 < n, we have that

Vheh, o()(f7H(w) = f7H(6(Oi(h)(w) = w(Oi(h) fiH (w) = (si(w) (W) f;H (w).

Indeed, the first equality above follows from the first equality in (V.2.6), the second holds because
w € V,,, and the third is Point 2 of Remark V.2.20. This shows that

S Vi) € V- (V.2.7)
Now, using the second equality in (V.2.6), rather than the first, the same argument leads to
fiVy) € V) (V.2.8)
for all weight v of V. In particular, the inclusion (V.2.8) applied with v = s;(u) leads to
£ V) = Viy)- (V.2.9)

As the Weyl group is generated by the simple reflections, the result follows. n

We are now in position to classify finite dimensional representations of g. Let Irrep(g) denote
the set of finite dimensional irreducible representations of g and by ~ the equivalence relation
on this set defined by isomorphism of representations. By Theorem V.2.19, we have a map as

follows:
{Aeph*|V1<i<n, A(h;) e N} — TIrrep(g)/ ~

Ao dv() (V.2.10)

where, for A € h*, cl(V(X)) stands for the isomorphism class of the representation V().
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Corollary V.2.22 - Classification of finite dim. irreducible representations — The map
(V.2.10) is a bijection.

Proof. The injectivity of this map follows from Point 1 in Remark V.2.14; its surjectivity follows
from Theorem V.2.16 together with Point 2 in Remark V.2.14. L]

Remark V.2.23 - Recall Remark V.2.17. It asserts that we have the following equalities be-
tween subsets of Eq:

Ap={Nebh*|V1<i<n, A(h;) €Z} and A ={Aebh*|V1<i<n, A(h;) € N}L
Therefore, Corollary V.2.22 actually gives a bijection:

Ay — Trrep(g)/ ~
A= c(V(N)

We conclude this section by showing that the set of weights of V()\), A € A, is actually a
saturated set of weights, in the sense of Section III.9.

Consider A € A, V()) the associated irreducible finite dimensional representation of g and
denote by II()A) the set of weights of V(\). As already noticed, we know that

II(\) C Ag.
Recall, on the other hand, the notion of saturated set of weights, as introduced in Section III.9.

We begin with a preparatory Lemma which, for all 4 € TI(\) and all o € @, describes the set
of weights of the form p + i which are also in II(\). Its statement and proof are parallel with
those of Proposition II1.2.15 about strings of roots.

Lemma V.2.24 — Retain the above notation. For all p € TI(\) and all o« € @, there existr,q € N
such that
I\ N {p+io, i € Z} = {p+io, i € Z, —r <i < ¢}.

In addition, r = q + (u, o).

Proof. Put V' = V (), to simplify notation. Consider p € II()\).

For o € ®, we consider elements x4, hq, Yo as in Theorem I1.5.13 and denote by S, the Lie
subalgebra of g that they generate (which is therefore isomorphic to sly(k)). Of course, V()
may be considered as a representation of S,. Let W = @,.; Viiria. By Proposition V.1.2, W is
a subrepresentation of the representation V() of S,. Of course, W is finite dimensional since
V() is. Therefore, we may consider r,¢ € N such that —r = min{i € Z|V,yin # (0) and
q = max{i € Z|Vy4ia # (0). Hence,

W= P Vitia:

—r<i<q

In addition, for all ¢ € Z, hy acts on V4o by scalar multiplication by p(hq) 4 2i. All in all, hq
acts diagonally on W, and the set of its eigenvalues is

{)u(h’a) =+ 227 i€ Za —r<i< q, Vu+ia 7& (0)}
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On the other hand, we may consider W as a representation of S, and, as such, it decomposes
as the sum of finitely many irreducible representations of S,, by Weyl’s Theorem. But, S, is
isomorphic to sla(k) as a Lie algebra, by an isomorphism which sends h, to h. So, we are in
position to use the structure of the finite dimensional irreducible representations of sly(k) (and
in particular the eigenvalues of the action of h in these representations) to conclude that, for all
i € Z, —r <11 < g, we must have V), ;o # 0. That is,

O\ N {p+ia,i € Z}y ={pu+ia,i€Z, —r <i<q}.

On the other hand, we know that the Weyl group stabilises II(A) (cf. Theorem V.2.19). In
particular, the reflection o, associated to the root « stabilises II(\) and, clearly, it stabilises the
set {u+ia, 1 € Z}. As, for all i € Z, oo(pn + i) = pp+ (=i — {(u, ), it follows that the map
Z — 7, i+ —i— {u,«) induces a bijection from {i € Z, —r < i < ¢} to itself which, clearly
is decreasing. Hence, this induced bijection must exchange ¢ and —r. From this, we get that
r=q-+ <M7 Oé>. m

Theorem V.2.25 — In the above notation, we have that:

1. TI(\) is a saturated set of weights with highest weight X of the root system (Eg,®) of g;

2. an element p € Ag belongs to II(N\) if, and only if, all the elements v of its Wg-orbit satisfy
V=

Proof. The first point is an immediate consequence of Lemma V.2.24. Therefore, II()\) is a
saturated set of weights with highest weight A, in the sense of Definition I11.9.20. The second
point then follows using Proposition I11.9.14 and Remark I11.9.25. ]

V.3 Freudenthal’s multiplicity formula.

In this section, we assume that k is algebraically closed and of characteristic 0.

Let g be a finite dimensional semisimple Lie algebra, ) a maximal toral subalgebra and ® the
associated root system.

We start this section by discussing Casimir operators of finite dimensional representations of
g. Such operators have already been introduced in Section II.1.

Consider a finite dimensional representation (V, f) of g. Let (x1,...,x,) be any basis of g.
As the Killing form x4 : g x g — k is non degenerate (cf. Theorem 1.7.16), we can consider the
basis (y1,...,yn) of g dual to (z1,...,x,) with respect to the Killing form; that is, defined by:
for all 1 <1i,j <n, Kkg(z,y;) = 0; ;. Then, we can consider the endomorphism

> fl@i)o f(yi) € Endy (V). (V.3.1)

1<i<n

Exercise V.3.1 - In the above notation, the endomorphism », ., f(x:) o f(y;) € Endg (V) is
independent of the basis (x1,...,2,).

Exercise V.3.1 now allows to put the following definition.

Definition V.3.2 - Retain the above notation. The endomorphism 3 ;o f(wi) o f(yi) €
Endg(V), where (x1,...,2,) and (y1,...,yn) are bases of g dual to each other with respect to
kg is called the Casimir operator of (V, f). It is denoted c(y,y).
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Proposition V.3.3 - Retain the above notation. The Casimir operator cqy, ) is an endomor-
phism of the representation (V, f).

Proof. This is Lemma I1.1.3. ]

Example V.3.4 - Retain the above notation. It will be convenient to define the Casimir op-
erator of the representation (V, f) by considering a basis of g adapted to its Cartan-Chevalley
decomposition. Such a basis is obtained as follows. We start with an arbitrary choice of a basis
B of h. As the restriction of k4 to b is nondegenerate, there exists a basis B* of f, dual to B with
respect to this restriction. Then, for all & € ®, we consider z, € go \ {0} and the associated

(@,0) Yo. Then, BU {z,, a € ®} and

B*U{zy, a € ®} are bases of g, dual to each other with respect to kg, as is easily verified (using
Lemma I1.5.6, Proposition 11.5.12 and Theorem I1.5.13). With respect to this choice, we have
the following expression for ¢y s):

triple (x4, ha,Yo) as in Remark I1.5.14 and we put z, =

cvy = >, F)o f)) + D f(xa) o f(2a),

1<4i<t aed

where B = (bi)lgigg and B* = (bf)lgigg.

At this point, we consider a dominant weight A € AT, put V' = V(A) and denote by ¢ : g —
gl(V) the morphism of Lie algebras associated to the representation V. By the results of Section
V.2, we know that V is a finite dimensional, irreducible representation of g. It enjoys a weight
space decomposition

V=P Vi M) C A,
HeEII(N)

where II(A) is the set of weights of V. Further, we know that II(\) is stable under the action of
the Weyl group Wy and that,

Yw € W, Y € H(A), dlmk<vw(u)) = dlmk(vu)
For all i € Ag, we denote by m(u) the multiplicity of p in V; that is:

Vp e Ap, my(p) = dimg (V).

Our objective now is to prove Freudenthal’s formula which expresses (inductively) the multi-
plicity of any weight p. This will be achieved by computing the traces of certain endomorphisms
(arising from Casimir operators) on weight spaces. To make this strategy a little clearer, we
notice the following facts that will be of central use.

Remark V.3.5 — Denote by ¢y the Casimir operator of the representation V. First, V being
irreducible, the endomorphism ¢y of the representation V' is just scalar multiplication, by Schur’s
lemma. Second, the expression of ¢y that we obtain using a basis as in Example V.3.4 is very
convenient. Indeed, it expresses ¢y as the sum of dimg(h) + |®| endomorphisms of V', all of which
stabilise any weight space of V' (cf. Proposition V.1.2).

The following proof of Freudenthal’s formula will be based on these observations.
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Proposition V.3.6 — Retain the notation above. Fiz p € II(A) and o € ® such that pn+ « ¢
II(X\). (Hence, (1, ) € N, by Lemma V.2.24.) Then, the following holds:

1. for all k € N, the endomorphism ¢(xq)P(2a) stabilises the subspace Vy_pq;

2. for all 0 < k < (u,a), the trace of the restriction of ¢(xa)P(2a) on V,_ra is given by the
following formula:

Try, . (0(2a)(2a)) = Z m(p — ia)(p — i, ).

0<i<k

Proof. The statement of Point 1 follows immediately from Proposition V.1.2, as already noticed.

Put r = (i, @). By the assumptions on p and «, the a-string through pis {p—ia, 0 <i <r}
(see Lemma V.2.24). That is, for i € N, V},_;, is nonzero if and only if 0 < ¢ < r. Now, put
So = Span{zq, Ya, ha}, so that S, is a Lie subalgebra of g isomorphic to sly(k). In addition,

consider
W= Viia-

0<i<r

Then clearly, V' is a representation of S, by restriction of ¢ and W is a subrepresentation of V'
considered as such. We are in position to use the representation theory of sly(k) (cf. Section
I1.4). For p € N, denote by V(p) the unique (up to isomorphism) simple representation of S, of
dimension p + 1. By Weyl’s Theorem, W decomposes as the direct sum of subrepresentations of
Sq of the form V(p), for appropriate integers p € N. More precisely, as the action of h, on a
simple representation V' (p), p € N, is diagonalisable with eigenvalues p — 2i, 0 < i < p, and since,
on the other hand, the action of h, on W is diagonalisable with eigenvalues (1 —ka)(hq) = r—2k,
0 < k < r, we have that a simple representation V' (p), p € N, may arise as a summand of W only
if 0 < p < r. Therefore, putting pr = r — 2k, 0 < k < r/2, there exist integers ny € N such that

W= P Vien)™. (V.3.2)
0<k<r/2

(Notice that the integers ny may very well be zero.) Examining again the possible eigenvalues
for the action of h, we get in addition that:

VO<E<7/2, no+...4+n,=dimg(V,—ra) = mir(p — ko). (V.3.3)

By the representation theory of sly(k), each V(p), 0 < k < r/2, has a distinguished basis on
which the action of x4, ha, Yo is given by Lemma I1.4.5. Considering such a basis for all the
summands appearing (with nonzero multiplicity) in (V.3.2), and taking the union of all these
bases, we get a basis of W, which we denote by B. Further, the elements of B are all eigenvectors
for the action of h, and, the elements of B whose eigenvalue for this action is r — 2¢ form a basis
of Viia, 0 < i < r. We are now ready to prove Point 2. The idea is to compute the desired
traces using the basis B.

We first establish the second point of the statement in the case where 0 < k < (u, ) /2.
Consider an element of B belonging to V,_ro. By construction of B, there exists 1 < i < r/2
such that this element belongs to one of the n; summand V' (p;) and it is easy to see that we must
have ¢ < k (and n; # 0). Now, by the choice of basis made for each of the summands of (V.3.2),
we have that this vector is indexed (as an element of the basis of the summand it belongs to) by
k — i and therefore that ¢(x,)d(ya) acts on it by multiplication by (k — i + 1)(p; — (k — 1)) (cf.
Lemma I1.4.5). It follows that the matrix of the restriction of ¢(z4)@(ya) to V,—ga in the basis
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consisting of the elements of BN V),_j, is diagonal with n; terms equal to (k —i+1)(p; — (k —1))
on the diagonal. So, we have:

Try, . (3(@a)d(a) = Y nilk—i+1)(pi— (k—4) = Y ni(k—i+1)((p, ) —i—k)).

0<i<k 0<i<k
Rewriting (V.3.3) as
VO <i<r/2, mn;=my(u—ia)—my(p—(i—1a),
we get

Trv e (O(20)0(Ya)) = Zogigk ma(p —ia)(k—i+1)((p,a) —i—k))
— Y o<ickma(p = (i = Da)(k —i+ 1) ({p, ) —i — k))
= Yo<ickma(p —ia)(k —i+1)((p, o) —i —k))
=2 i<k ma(p —ia)(k —i)((p, ) —i — 1 —k))
= Zogzgkmk(ﬂ—m)( —i+1)({p, a>—z—k))
- Zogigk mx(p — i) (k —i
> o<i<k Ma(p —ia) [(k — i+ 1)(
> o<i<k Ma(p —ia) [(k — i+ 1)((u,
Zogigk ma(p — ia)((p, a) — 21).

) (s, @) =i = 1= k))
(ny ) =i = k) = (k=) ((p, ) =1 = 1 = k)]
(o) —i = k) = (k= i) ((, ) =1 = 1 — k)]

Hence, we have that

VO<k<(ua)/2, Try,_, (d(za)p(2a)) = Z ma(p —ia)(p — o, @). (V.3.4)
0<i<k

We now come to the case where (p,a)/2 < k < (u, ). A reasoning similar to that of the
previous case first leads to the following equality:

Try, . (0(1a)0(Wa) = D malp — io)({u, a) — 20). (V.3.5)

0<i<r—k—1

But, for all j € N, we have that s (u— ja) = p— (r — j)a. So, by Theorem V.2.21, for all j € N:

m(p = ja)(r = 27) +ma(p — (r = j)a)(r —2(r — j)) = ma(p — ja)[(r — 27) + (r = 2(r — j))] = 0.

It follows that

Trv, 4o (G(2a)d(ya)) = D malp— ia)((p, a) - 2i),

0<i<k

since the terms we added to the summation in (V.3.5) pairwise sum to 0.
Therefore, we have proved that (V.3.4) extends as follows:

YOS k< (ma), oy, (6@a)d(za)) = 3 malu—ia)(u— ia,a). (V.3.6)
0<i<k

The proof is now complete. n

Corollary V.3.7 — Retain the above notation. For all v € TI(\) and all a € ®, V, is stable
under ¢(xq)P(za) and the trace of the endomorphism of V,, induced by ¢(x4)d(24) is given by

Try, p(x0)0(24) = Z my(v + i) (v + ia, a).

1€EN
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Proof. Let v € TI(\) and o € ®. The stability of V,, under ¢(z4)¢p(z4) as already been noticed
(cf. Proposition V.1.2).

Now, according to Lemma V.2.24, there exist r,q € N such that II(\) N {v + ia, i € Z} =
{v+ia,ie€Z, —r <i<gq} and further, r = ¢ + (v, ). Put now p = v + ga. Then p is in II(A)
while p + « is not. Hence, we may apply Proposition V.3.6 to u and get

Try, ¢(za)P(20) = TrVu_qaﬁb(ma)Qs(za)
= Zogigq ma(p —ia)(p — ia, a)
= Zogigqm,\(u—kqa—za)(l/—kqoz—ia a)
= D o<i<q m,\(( + (g =) (v + (¢ — i), )

Zogqu ma(v+ ja)(v + ja, a)

But, for all integer j such that ¢ < j, my(v + ja) = 0. So,

Try, ¢(2a)d(2a) = D ma(v + jo) (v + jo, ),
JEN

as desired. n

Consider bases of g as in Example V.3.4 and recall the Casimir operator of (V| ¢):

¢):Z¢(b b*+z¢l‘a d(za)-

1<i<t aed

By Proposition V.3.3, c(y,4) is an endomorphism of the representation (V,¢) and is therefore an
homothetie, by Schur’s lemma, since (V, ¢) is irreducible. Let ¢ € k such that

C(V,d)) =cC ldV

Lemma V.3.8 — Retain the above notation. Let yn € TI(X). Then,

Try, cv) = malp) () + > malp+ia) (i + i, ).
acd ieN

Proof. Recall that, in the notation of Example V.3.4, (b;)1<i<¢ is a basis of h and that (b])1<;<¢ is
its dual with respect to the restriction of the Killing form to h. By definition, the endomorphisms
¢(b;) and ¢(b}) stabilise V,, and act on it my multiplication by pu(b;) and (b)), respectively.
Consider t, € b; by definition, u = k4(tu, —). Let a1,...,a; € k such that ¢, = Z1§j§z a;b;.
Then, for 1 <i </,

plbi) = > ajrg(b,bi) and p(b)) = > ajrg(b;, b)) = a;.

1<j<e 1<j<e
Thus,
Zlgigz Trvﬂs(bz’)QS(bf) = mx(p) Zl<z<€ 1) (7))
= m(p) Zl<z G<e a;ajrig(bj, bi)
= m()rg(tus t)
= m(w)(p, 1)
It remains to use Corollary V.3.7 to conclude. n
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Remark V.3.9 — Retain the above notation. Let u € II(A). Then,

Try, crg) = ma(i) () + Y > ma(p+ia)(u+ ia, ). (V.3.7)
acd jeN*

Indeed, for all @ € ®, we have —a € ® and the terms corresponding to ¢ = 0 and « cancel with
the term corresponding to ¢ = 0 and —«

It will be convenient to extend the above trace formulas to all weight. This is easy once the
following result is established. (Notice that the sum appearing in Lemma V.3.10 does make sense
since all the summands are zero except a finite number.)

Lemma V.3.10 - Retain the above notation. For all « € ® and all p € A,

ZmA(u +ia)(p + ta, ) = 0.

€L
Proof. Put D = {u+ia, i € Z} C Eg. Since p € A, (u,a) € Z, so that o, stabilises D and, thus,
induces by restriction an involution on D.

Suppose first that D does not contain fixed points of o,. Then we can write D as the disjoint
union of subsets of two elements of the form {u+ic, oo (p+ia)}, for some i € Z. More precisely,
we have that

D= |_| {p+ia,00(p +ic) }.
i€Z, i>—(p,a) /2
But, the Weyl group stabilises A, (cf. Lemma I11.9.13). And, further, it stabilises II(\) sending
a weight of V' to a weight of the same multiplicity (cf. Theorem V.2.21). So, we have

> icz ma(p +ia) (p + io, )
= Dien, i>—(uay 2 A (B + i) (p + ia, a) + ma(oa(p + ia)) (oa(p + i), a)]
=D icz,i>—(uay /2 [Malp + 1) (p + i, ) + ma(p + io) (1 + ia, —a)]
=0.

Suppose now that D contains fixed points of o,. As, for i € Z, 04(pu+ia) = p+ic if an only
if (u+ i, ) = 0, such a fixed point is unique and the corresponding summand in the sum of
the statement is zero. So, we can use, in this second case, the same trick as in the first one and
conclude.

This finishes the proof. n

Theorem V.3.11 - Trace formula for Casimir operators - Retain the above notation.
Then,

Ve, Try,cug) =ma(p)(p, 1)+ Z Zm)\(,u +ia)(pu + i, ).
acd ieN
Proof. The case where p € II(\) has already been established (cf. Lemma V.3.8).

Suppose now that p ¢ II(A). We must show that > .4 > ;cnma(p + ia)(p + ia,a) = 0.
Fix o € ®. Let [ = {i € Z|p +ia € II(A\)}. As p is not a weight, we have either I C N* or
I C (-N)*, by Lemma V.2.24. If I C (=N)*, then trivially, >, ma(p + i) (g + i, ) = 0. If
I C N*, then

Z ma(p + ia)(p +ia, ) = ZmA(u +ia)(p + ia,a) = 0.

ieN i€z
Indeed, the first equality if trivial and the second is the content of Lemma V.3.10. The result is
established. "

145



Corollary V.3.12 - Trace formula for Casimir operators - Retain the above notation.
Then,

Vi eN, Trycwe =ma(w)mm) + > ma(w)(pa) +2 > Y malp+ic)(n+ ia, o).

acdt aedt 1eN*

Proof. By theorem V.3.11, and using the same argument as in Remark V.3.9,

Try, cvg) = mali) (e, )+ Y > ma(ptio) (ptio, o) = ma(p) (, w)+ Y D ma(ptia) (ptio, o).
aced ieN acd ieN*

And, by Lemma V.3.10, for all « € P,

D ma(p— i) (p — ia, —a) = ma(p) (@) + Y ma(u + i) (p+ ia, ).
i€EN* iEN*

Since ® = & U (—®™T), the result follows. .

We are now ready to prove Freudenthal’s formula. Recall the observation of Remark V.3.5
and the notation introduced there. Recall also (cf. Lemma II1.9.17) the weight

1
acdt

The identity of Corollary V.3.12 can now be rewritten:

Ve, Trycwg =mal)(mp+20)+2 > Y ma(p+io)(u+ io, a). (V.3.8)
acdt ieN*

Theorem V.3.13 - Freudenthal’s formula — Let A\ € AT. For all u € A,

ma(p) (A + A +9) — (u+0,u+9)) =2 Z Z m(p+ia)(p+ia, «).
acdt ieN*

Proof. By Remark V.3.5, there exists ¢ € k such that ¢y = cidy. On the other hand, X is a weight
of multiplicity 1 such that, for all @« € ® and all i € N*, X\ + i« is not a weight (cf. Theorem
V.2.6). So, by (V.3.8) applied with u = A, we have

Now, for all p € A, Try, c(v,4) = cma(p). The result follows. =

Remark V.3.14 - It should be noted that, in Freudenthal’s formula, the coefficient of m(u)
in the right hand side term is nonzero whenever A\ # pu, as Proposition I11.9.26 shows. So that,
Freudenthal’s formula does provide an expression of my (@) in terms of the multiplicities of weights
v such that g < v. As the multiplicity of the highest weight A is known to be 1, Freudenthal’s
formule does provide a way to compute inductively all the multiplicities of V().
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