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1 Tensor product in the general framework.

1.1 Tensor product in the noncommutative setting.

In all this subsection, R is a ring.

Definition 1.1.1 — Let M be a right R-module, N be a left R-module and G be an abelian group.
A balanced map from M x N to G is a map f : M x N — G such that, for all m,m’' € M,
n,n' € N andr € R :

(7’) f(m + mlv TL) = f(m,n) + f(mlvn)f

(7’7’) f(mv n+ n/) = f(mv n) + f(m’ n,);

(iii) f(mr,n) = f(m,rn).

Definition 1.1.2 — Let M be a right R-module and N be a left R-module. A tensor product f
M and N is a pair (T,t) where T is an abelian group adt : M x N — T a balanced map such
that, for all abelian group G and oll balanced map f : M x N — G, there exists a unique group
morphism ¢ : T — G such that the diagram

M x N ¢ T

18 commutative.

To start with, we first show that, if a tensor product exists, then it must be unique, up to
isomorphism.

Proposition 1.1.3 -~ Let M be a right R-module and N a left R-module. If (T,t) and (T',t")
are tensor products of M and N, then there exists an isomorphism of groups between T and T .

Proof: By definition, we have commutative diagrams

M x N ¢ T and M x N v T’
T’ T

which give rise to two other diagrams

M x N t T and M x N v T’

\ \LQS/O(;S \ id)oqs/
T T/




But then, the unicity of the morphism requierred by the definition of the tensor product leads to
¢po¢d =idp and ¢’ o ¢ = idy. "

We now show the existence of a tensor product.

Proposition 1.1.4 — Let M be a right R-module and N be a left R-module. Then, there exists
a tensor product of M and N.

Proof: Denote by F' the free abelian group on the set M x IN, that is, the set of maps with finite
support from M x N to Z, endowed with the (abelian) group structure inhereted from that of
Z. For all (m,n) € M x N, denote by J(,, ,,) the map wich takes value 1 on (m,n) and 0 on any
other element of M x N. Then, the set of elements {(y, n), (m,n) € M x N} is a Z-basis of F'
and we have a canonical injection M x N — F', (m,n) + (1, 5). In the sequel, we will abuse
notation identifying (m,n) € M x N with its image in F.

Let S be the subgroup of F' generated by the elements (m+m/,n) — (m,n) — (m/,n), (m,n+
n') — (m,n) — (m,n’) and (mr,n) — (m,rn), for all m,m’ € M, n,n’ € N and r € R. In addition,
consider the map

t o M x N OB p el pg.

which, clearly, is balanced.

We intend to show that (F'/S,t) is a tensor product of M and N.

Let G be an abelian group and f : M x N — G a balanced map. There exists a group
morphism ® : F — G such that, for all (m,n) € M x N, ®((m,n)) = f((m,n)). It is
immediate that ®(S) = 0, so that ® induces a group morphism ¢ : F'/S — G such that, for all
(m,n) € M x N, ¢(t(m,n)) = f((m,n)). Hence, pot = f.

In addition, any group morphism ¢ : F/S — G such that ¢ ot = f must coincide since
they coincide on the elements t(m,n), (m,n) € M x N, which form a set of generators of the
group F/S. "

Remark 1.1.5 - Let M be a right R-module and N a left R-module.

1. Seen the unicity, up to isomorphism, we will speak of the tensor product of M and N.

2. The tensor product of M and N constructed in Proposition 1.1.4 will be denotes M ®r N (or
sometimes M ® N if no confusion can arise). For (m,n) € M x N, we put m ®n = t((m,n)). A
pure tensor is, by definition, an element of M ®r N of the form m ® n, where (m,n) € M x N.
3. It m,m’ € M,n,n" € Nandr € R, we have (m+m')@n=men+m'@n, m® (n+n') =
men+men and (mr) ®n = m® (rn) in M ® N. In particular, for (m,n) € M x N,
0@dn=m®0=0and —(m®n)=(—m)@n=m® (—n).

4. Pure tensors form a set of generators of the Z-module M ®r N, but not a basis in general.
Therefore, any element of M ®r N may be written as a linear combination of pur tensors, but,
in general, not in a unique way.

Proposition 1.1.6 — Let f : M — M’ be a morphism of right R-modules and g : N — N’ a
morphism of left R-modules. There exists a unique morphism of groups h : M@rN — M'®@rN’
such that, for all (m,n) € M x N, h(m®mn) = f(m) ® g(n).

Proof: The map M x N — M’ ® N’', (m,n) — f(m) ® g(n) is clearly balanced, hence the
existence of h by definition of the tensor product. The unicity of h is obvious since it assigns the
image of a generating family of the group M ®p N. m



Notation 1.1.7 — Let f : M — M’ be a morphism of right R-modules and g : N — N’ a
morphism of left R-modules. The morphism h : M ® g N — M’ @ N’ defined in Proposition
1.1.6 will be denoted f ® g and called the tensor product of the morphisms f and g.

Remark 1.1.8 - In the notation of Proposition 1.1.6, it is clear that, if f : M — M’ and
g : N — N’ are surjective, then so is f ® g.

Proposnzlon 1.1.9 — Let M L5 M L5 M7 be morphisms of right R-modules and N -2+
N L N be morphisms of left R-modules. Then, one has (f'o f)® (g’ og) =(f'®@ f)o(f®Ryg).

Proof: This is immediate. m

Corollary 1.1.10 - Let M i> M’ be an isomorphism of right R-modules and N 25 N’ be an
isomorphism of left R-modules. Then, f @ g : M @r N — M’ ®@r N' is an isomorphism of
groupe.

Proof: 1t is immediate by Proposition 1.1.9. "

Proposition 1.1.11 -

1. Let M be a right R-module and N Lo N LN 500 be an exact sequence of left R-
modules. Then, M @r N 990y Qr N — 99 6 ® N” — 0 is an ezact sequence of groups.

2. Let N be a left R-module and M LMt L M 5 0 be an exact sequence of right
R-modules. Then, M g N — 18 g ®Qr N — e VG ®r N — 0 is an exact sequence of groups.

Proof: We only prove Point 1, the proof of Point 2 is similar.

The surjectivity of id ® f’ follows from that of f’ (cf. Remark 1.1.8). As f’ o f =0, we have
(id® f’) o (id ® f) = 0, which gives the inclusion im(id ® f) C ker(id ® f’). It remains to show
that im(id ® f) 2 ker(id ® f).

Put £ = im(id ® f). The morphism id ® f” induces a (surjective) morphism id ® f’ : (M ®g
N")JE — M @ N". Clearly, to conclude that im(id ® f) D ker(id ® f), it suffices to show that
id ® f’ is injective, whch we do by exhibiting a left inverse to id ® f.

Since f is surjective, it admits a section, that is, a map s : N” — N’ such that f'os = id .
Consider then the map

MxN' — (M®gN')/E
(m,n") — mesn")+E "
Using the facts that f’os = idy~ and ker(f’) = im(f), one easily checks that this map is balanced.
Therefore, it induces a group morphism

M®RN” — (M@RN/)/E
men” = mesh”)+FE’

Using again that f’ o s = idy» and ker(f’) = im(f), we get that the latter map is a left inverse
to id ® f’, which therfore is injective. ]

Remark 1.1.12 — Denote Ab the category whose objects are abelian groups and whose mor-
phisms are morphisms of groups.

1. We denote R — Mod the category whose objects are the left R-modules and whose morphisms
are morphisms of left R-modules. Let M be a right R-module. The preceding results show that



we may define a functor F' = M ®p — from R — Mod to Ab by putting that, for all object N of
R —Mod, F(N) = M ®r N and, for all morphism f : N — N’ of R — Mod, F(f) =id ® f.
Proposition 1.1.11 establishes that the functor M ®pr — is right exact.

2. We denote Mod — R the category whose objects are right R-modules and whose morphisms
are morphisms of right R-modules. Let N be a left R-module. The preceding results show that
we may define a functor G = — ®g N from Mod — R to Ab by putting that, for all object M of
Mod — R, G(M) = M ®p N and that, for all morphism f : M — M’ of Mod— R, G(f) = f®id.
Proposition 1.1.11 establishes that the functor — ® g N is right exact.

1.2 Additional structures on the tensor product.

Definition 1.2.1 — Let R and S be rings. An (R, S)-bimodule is an abelian group M endowed
with a left R-module structure and a right S-module structure satisfying the following compatibility
condition: for all € R, s € S and m € M, (rm)s = r(ms).

Proposition 1.2.2 — Let R and S be rings.

1. If M is an (R, S)-bimodule and N a left S-module, there ezists a unique left R-module structure
on M ®g N such that, for r € R and (m,n) € M x N, r(m ®n) = (rm) @ n.

2. If M is a right S-module and N an (S, R)-bimodule, there exists a unique right R-module
structure on M ®g N such that, for allr € R and (m,n) € M x N, (m®@n)r =mQ (nr).

Proof: 1. Unicity is clear.

The datum of a left R-module structure on an abelian group is equivalent to the datum of a
ring morphism from R to the ring of endomorphisms of this abelian group. Therefore, we have
to build a ring morphism ¢ : R — Endz(M ®g N).

Let r € R. Tt is clear that the map M x N — M ®g N, (m,n) — (rm) ® n is balanced.
So, it induces an endomorphism p(r) : M ®s N — M ®g N of (abelian) groups such that, for
all (m,n) € M x N, p(r)(m ® n) = (rm) ® n. To conclude, it remains to show that the map
R — Endz(M ®g N), r +— p(r) is a ring morphism, which is easy.

2. The proof is similar to that of Point 1. ]

Corollary 1.2.3 — Let R and S be rings.

1. If M is an (R, S)-bimodule, the functor M ®g — from the category S — Mod in the category
Ab takes values in R — Mod.

2. If N is an (S, R)-bimodule, the functor — ®g N from the category Mod — S to the category Ab
takes values in Mod — R.

Proof: 1. By Proposition 1.2.2, the only think we have to prove is that, if f : N — N’ is a
morphism of left R-modules, then id® f : M ® N — M ® N’ is a morphism of left R-modules,
which is easy.

2. The proof is similar to that of Point 1. ]

Of course, a ring R is an (R, R)-bimodule. The next statement describe its behavior in a
tensor product.

Proposition 1.2.4 - Let R be a ring.

1. If M is a left R-module, there exists a unique isomorphism of left R-modules R®@p M — M
such that, for all (r,m) € R x M, r @ m — rm.

2. If M is a right R-module, there exists a unique isomorphism of right R-modules M@r R — M
such that, for all (m,r) € M x R, m @ r — mr.

4



Proof: 1. Unicity is clear. The map Rx M — M, (r,m) — rm is clearly balanced. Therefore, it
induces a group morphism p : R®r M — M such that, for all (r,m) € Rx M, u(r@m) = rm.
Further, @ is a morphism of left R-modules, as is easily verified. On the other hand, it is obvious
that the map M — R®gr M, m — 1 ®m is a morphism of left R-modules, which is a right and
left inverse of u.

2. The proof is similar to that of Point 1. ]

1.3 Case where the base ring is commutative.

In this subsection, R is a commutative ring.

Notice that, R being commutative, any (left) R-module may be seen as a right R-module and
as a (R, R)-bimodule.

Definition 1.3.1 — Let M, N and G be R-modules. A bilinear map from M x N to G is a map
f i M x N — G such that, for allm,m’ € M, n,n’ € N andr € R :

(i) f(m+ m/, n) = f(m,n)+ f(mlvn);

(7;7;) f(mvn + nl) = f(mvn) + f(m7n/);

(iii) f(rm,n) = f(m,rn) =rf(m,n).

We can consider the following universal problem. Let M and N be R-modules. Does there
exist a pair (7T,t) where T is an R-module and ¢t : M x N — T a bilinear map such that,
for all R-module G and all bilinear map f : M x N — G, there exists a unique morphism of
R-modules ¢ : T'— G such that the diagram

M x N

is commutative?

The proof of Proposition 1.1.3 adapts easily to show that, if such a module T exists, then it
is unique, up to isomorphism.

Next, given R-modules M and N, we may very well consider M as a right R-module, N as
a left R-module and consider their tensor product (M ®pr N,t), as definied in subsection 1.1.
Further, using Proposition 1.2.2 and considering M as an (R, R)-bimodule, we get an R-module
structure on M ®gr N. It is easy to see that, actually, the balanced map ¢t : M X N — M Qr N
is bilinear.

Proposition 1.3.2 — Let M and N be R-modules. The pair (M ®pN,t) as definied in subsection
1.1 is a solution to the above universal problem.

Proof: Consider a R-module G and a bilinear (and therfore obvioulsy balanced) map M x N —
G. By definition of (M ®g N, t), there exists a unique morphism of groups ¢ : M ®g N — G
such that ¢pot = f. It only remains to show that ¢ is a morphisme of R-modules. Let » € R and
(m,n) € M x N. We have ¢(r(m @ n)) = ¢(rm @ n) = ¢ ot(rm,n) = f(rm,n) = rf(m,n) =
r¢(m ®@n). It follows that ¢ is a morphism of R-modules. "

Remark 1.3.3 — In a course on commutative algebra, the tensor product of two modules is de-
fined as a solution to the latter universal problem. Proposition 1.3.2 shows that this is consistant
with the noncommutative point of view.



1.4 Some useful isomorphisms.

We collect, in the present subsection, a result on the associativity of the tensor product and a
result on its distributivity with respect to direct sums.

Proposition 1.4.1 - Let R, S be rings. Consider a right R-module L, an (R, S)-bimodule M
and a left S-module N. Then, there exists a unique isomorphism of groups

¢ : Lop(MesN) — (L&rM)@sN ,
such that, for all ({,m,n) € Lx M X N, p({ @ (m®n)) = ({ @m)n.

Proof: Unicity is clear. Let £ € L. It is easy to check that the map M x N — (L®r M) ®g N,
(m,n) — (£ ®m) ®n, is balanced. Hence the existence of a morphism of groups

fo: M®s N — (L®r M)®g5 N

such that, for all (m,n) € M x N, fy(m®@n) = ({ ® m) ® n. Now, we are in position to define a
map
Lx(M®sN) — (LegpM)®gN
(4,p) = fep)
Let r € R and ¢,¢' € L, we have foip = fr+ fr and, for all p € M ®g N, fo.(p) = fe(rp). It
follows that the above map is balanced so that there exists a morphism of groups

¢ : LIp(M®sN) — (L®rM)®sN

which, for all (¢,m,n) € L x M x N, maps {® (m®mn) to ({ ® m) ®@n. In the same way, we can
define a morphism of groups

(LopM)®s N — L®g(M®gN)

which, for (¢,m,n) € L x M x N, maps ({®@m) @n to £ @ (m  n).
The result follows. "

Remark 1.4.2 — Consider the context and notation of Proposition 1.4.1 and its proof. Let in
addition @, T be rings.

1. If L is an (@, R)-bimodule, L ®p (M ®g N) and (L ® g M) ®s N are left @Q-modules and ¢ is
a morphism of Q-modules.

2. If N is an (S,T')-bimodule, L ®r (M ®s N) and (L ® g M) ®g N are right T-modules and ¢
is a morphism of T-modules.

Proposition 1.4.3 — Let R be a ring, M a right R-module and (N;);cr a family, indexed by the
nonempty set I, of left R-modules. There exists a unique isomorphism of groups

O : Mer(@,c;Ni) — PB;c;(M®rN)
such that, for m € M and (n;)ier € @,;c; Ni, O(m @ (n3)icr) = ((M @ ny)ier).
Proof: Exercise.

Remark 1.4.4 -

1. Retain the notation of Proposition 1.4.3. Lett @, S des anneaux. If M is a (@, R)-bimodule,
M®@Rr(B,c; Ni) and @, ; (M @R N;) are endowed with left Q-module structures and the map © is
a morphism of Q-modules. In addition, if, for all i € I, N; is an (R, S)-bimodule, M @ (B, Ni)
and ;. ;(M ®r N;) are right S-modules and the map © is a morphism of S-modules.

2. Of course, the results of Proposition 1.4.3 and of Point 1 above remain correct whenever the
direct sum appears on the left of the tensor product rather than on the right.



References.

[Jacobson-1989] N. Jacobson. Basic Algebra II. W.H. Freedman and Compagny, New-York,
1989.

[Rotman-2009] J.J. Rotman. An introduction to homological algebra. Second edition. Univer-
sitext. Springer, Berlin, 2009

[Rowen-1988] L. Rowen. Ring Theory, Volume I. Pure and Applied Mathematics, 127. Aca-
demic Press, Inc., Boston, MA, 1988.



