TP nº 1: Variables aléatoires discrètes

Exercice 1 Espérance et variance

Soit $\vec{x} = (x_1, x_2, \dots, x_N)$ un vecteur de N réels et soit X une variables aléatoires à valeurs dans l'ensemble $\{x_1, x_2, \dots, x_N\}$. Soit, pour tout k entier entre 1 et N, $p_k = \mathbb{P}(X = x_k)$ et $\vec{p} = (p_1, p_2, \dots, p_N)$.

- 1. \mathscr{O} Si X suit la loi de Bernoulli de paramètre $p \in [0;1]$, peut-on l'écrire sous cette forme? Dans ce cas, que valent N, \vec{x} et \vec{p} ?
- 2. \mathscr{O} Même question si X suit la loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0;1]$.
- 3. \mathscr{O} Exprimer l'espérance de X et sa variance en fonction de $x_1, ..., x_N$ et $p_1, ..., p_N$.
- 4. Écrire une fonction Matlab EspVar(Vals, Probs) qui prend comme arguments deux vecteurs lignes Vals et Probs de même taille N contenant respectivement les valeurs $x_1, ..., x_N$ et $p_1, ..., p_N$ et qui retourne l'espérance et la variance de X.
- 5. Appliquer cette fonction dans les cas
 - (a) de la loi de Bernoulli de paramètre p = 1/4;
 - (b) de la loi Binomiale de paramètres n = 7 et p = 0.2;
 - (c) de la loi uniforme sur $\{1, 2, ..., n\}$, pour n = 10, 100 et 1000;
 - (d) où $\vec{x} = (-0, 3; 4; -6; 4, 5)$ et $\vec{p} = (0, 1; 0, 3; 0, 15; 0, 35)$.

Exercice 2 Pile ou face

- 1. Tester la fonction rand dans Matlab ou Octave.
- 2. Comment jouer à pile ou face avec Matlab ou Octave?
- 3. Écrire une fonction pile_ou_face qui n'a pas d'argument et renvoit un résultat aléatoire égal à true pour pile et false pour face, ces deux résultats étant équiprobables.
- 4. On veut maintenant simuler le cas où la pièce est éventuellement truquée. Modifier la fonction $pile_ou_face$ pour que son premier argument p soit la probabilité de faire pile.
- 5. On veut simuler beaucoup de parties d'un seul coup. Modifier la fonction pile_ou_face pour ajouter comme deuxième argument une ligne L = [m n] et que la valeur de retour de la fonction pile_ou_face soit un tableau de taille [m n] dont toutes les entrées sont des résultats de pile ou face.
- 6. Simuler un échantille de taille N=10000 de pile ou face, avec p=0,4. Calculer le nombre de piles obtenus, puis la proportion de pile dans votre échantillon. Pouvait-on s'attendre à un tel résultat?

Exercice 3 Loi binomiale

- 1. Avec la fonction $pile_ou_face$ de l'exercice précédent, écrire une fonction binomiale (\leftarrow n,p, taille) qui simule un vecteur ligne de taille taille contenant des nombres entiers indépendants aléatoires suivant la loi binomiale de paramètres n et p.
- 2. Simuler un échantillon de taille 10000, pour n=7 et p=0,4. Calculer la moyenne de cet échantillon. Pouvait-on s'attendre à ce résultat?
- 3. Lire la documentation des fonctions binocdf et binopdf et tester ces fonctions.
- 4. À l'aide de la fonction binocdf, écrire une nouvelle fonction binomiale2(n,p, taille) qui n'utilise pas pile_ou_face et fait un seul appel à rand par simulation.

Exercice 4 Loi géométrique

- 1. À l'aide de la fonction pile_ou_face, écrire une fonction geometrique(p) qui simule la loi géométrique de paramètre p.
- 2. Faire un échantillon de taille 10000 de nombres suivant la loi géométrique de paramètre p=0,2. Calculer sa moyenne. Commenter.