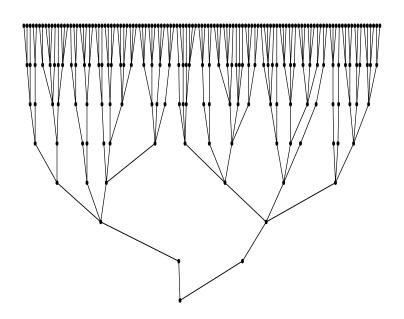
Marches aléatoires sur les arbres aléatoires

Pierre Rousselin

LAGA Université Paris 13

17 décembre 2018



Les arbres et leurs bords

Marche aléatoire λ -biaisée

Théorie ergodique sur les arbres de Galton-Watson

Arbres à longueurs récursives

Arbres pondérés aléatoires : cas transient

Arbres pondérés aléatoires : cas sous-diffusif

Les arbres et leurs bords

Marche aléatoire λ -biaisée

Théorie ergodique sur les arbres de Galton-Watson

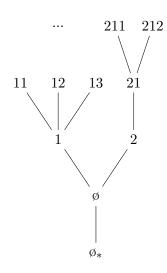
Arbres à longueurs récursives

Arbres pondérés aléatoires : cas transient

Arbres pondérés aléatoires : cas sous-diffusif

Arbres plans : notation de Neveu

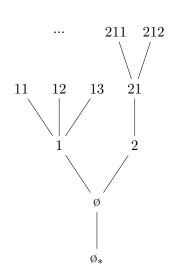
... ...



- Arbre t: partie de l'ensemble des mots finis sur \mathbb{N}^* ;
- enraciné en ø;
- ▶ parent artificiel de la racine ϕ_* ;
- ▶ hauteur dans l'arbre : |212| = 3.
- \triangleright parent : $(212)_* = 21$;
- ▶ nombre d'enfants : $\nu_t(1) = 3$;
- hypothèse : $\forall x \in t, \ \nu_t(x) \in [1, \infty[.$

Sous-arbre réindexé

... ...

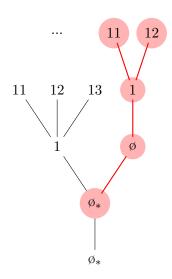


t un arbre et x dans t.

$$t[x] = \{y \in t \colon \! xy \in t\}.$$

Sous-arbre réindexé

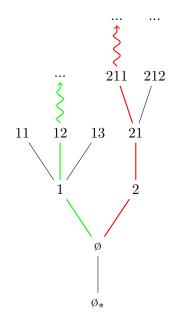
... ...



t un arbre et x dans t.

$$t[x] = \{y \in t : xy \in t\}.$$

Bord d'un arbre



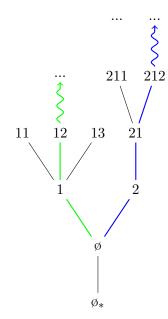
Rayon ξ de l'arbre t: suite infinie de sommets

$$\xi = (\xi_0 = \emptyset, \xi_1, \xi_2, ...)$$

telle que pour tout i, ξ_{i+1} est un enfant de ξ_i ;

- ▶ Bord ∂t de t: ensemble de ses rayons;
- ▶ $\xi \neq \eta \in \partial t \mapsto \xi \wedge \eta$: plus grand préfixe commun de ξ et η .

Bord d'un arbre



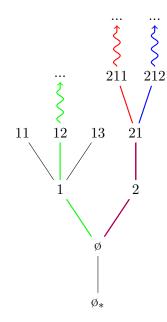
Rayon ξ de l'arbre t: suite infinie de sommets

$$\xi = (\xi_0 = \emptyset, \xi_1, \xi_2, ...)$$

telle que pour tout i, ξ_{i+1} est un enfant de ξ_i ;

- ▶ Bord ∂t de t: ensemble de ses rayons;
- ▶ $\xi \neq \eta \in \partial t \mapsto \xi \wedge \eta$: plus grand préfixe commun de ξ et η .

Bord d'un arbre



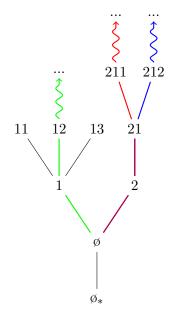
Rayon ξ de l'arbre t: suite infinie de sommets

$$\xi = (\xi_0 = \emptyset, \xi_1, \xi_2, ...)$$

telle que pour tout i, ξ_{i+1} est un enfant de ξ_i ;

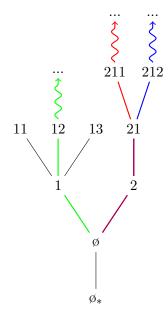
- ▶ Bord ∂t de t: ensemble de ses rayons;
- ▶ $\xi \neq \eta \in \partial t \mapsto \xi \wedge \eta$: plus grand préfixe commun de ξ et η .

Topologie sur ∂t



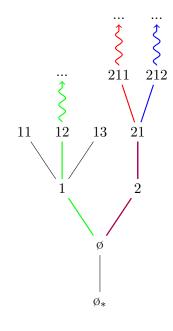
- ▶ $t \ni x \mapsto [x]_t \subset \partial t$, ensemble des rayons de t qui passent par x: cylindre issu de x dans t.
- ➤ Si deux cylindres ne sont pas disjoints, alors l'un est inclus dans l'autre.

Topologie sur ∂t



- ▶ $t \ni x \mapsto [x]_t \subset \partial t$, ensemble des rayons de t qui passent par x: cylindre issu de x dans t.
- ➤ Si deux cylindres ne sont pas disjoints, alors l'un est inclus dans l'autre.
- ➤ Topologie engendrée par les cylindres ;
- Métrisable par exemple par : $d_{\mathcal{U}_{\infty}}(\xi, \eta) = \exp(-|\xi \wedge \eta|).$
- $ightharpoonup (\partial t, d_{\mathcal{U}_{\infty}})$ est ultramétrique et compact.

Probabilités boréliennes sur le bord d'un arbre



- ➤ Tribu borélienne (aussi engendrée par les cylindres).
- ▶ À M, probabilité borélienne sur ∂t , on associe $\theta_M : t \to [0, 1]$ définie par

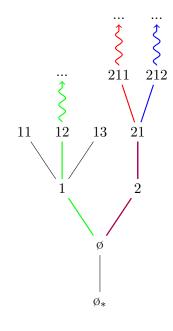
$$\theta_M(x) = M[x]_t.$$

 $ightharpoonup heta_M(\emptyset) = 1$ et pour tout x dans t,

$$\theta_M(x) = \sum_{i=1}^{\nu_t(\emptyset)} \theta_M(xi)$$

Une telle fonction est appelée un flot (unitaire) sur l'arbre t.

Probabilités boréliennes sur le bord d'un arbre



- ➤ Tribu borélienne (aussi engendrée par les cylindres).
- ▶ À M, probabilité borélienne sur ∂t , on associe $\theta_M : t \to [0, 1]$ définie par

$$\theta_M(x) = M[x]_t.$$

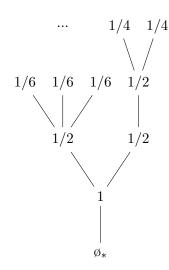
 $ightharpoonup heta_M(\emptyset) = 1$ et pour tout x dans t,

$$\theta_M(x) = \sum_{i=1}^{\nu_t(\emptyset)} \theta_M(xi)$$

- Une telle fonction est appelée un flot (unitaire) sur l'arbre t.
- ▶ $M \mapsto \theta_M$ est une bijection.

Un exemple : la mesure de visibilité

... ...

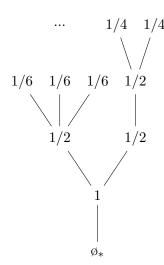


Définition récursive :

- $ightharpoonup VIS_t(\emptyset) = 1$
- pour tout sommet x et tout enfant y de x, $VIS_t(y) = VIS_t(x)/\nu_t(x)$.

Un exemple : la mesure de visibilité

... ...



Définition récursive :

- $ightharpoonup VIS_t(\emptyset) = 1$
- pour tout sommet x et tout enfant y de x, $VIS_t(y) = VIS_t(x)/\nu_t(x)$.

Point de vue probabiliste : Loi d'un rayon Ξ (partant de \emptyset) obtenu par « marche aléatoire simple vers l'avant » depuis \emptyset .

Mesures et dimensions de Hausdorff: motivation

Si $\xi \in \partial t$ n'est pas un atome de θ ($\theta(\xi_n) \to 0$), on s'intéresse à :

$$\lim_{n\to\infty} \left\{ \sup_{\inf} \right\} \frac{\theta(\xi_n)}{\varphi(\xi_n)} \text{ ou, (plus facile) } \lim_{n\to\infty} \left\{ \sup_{\inf} \right\} \frac{\log \theta(\xi_n)}{\log \varphi(\xi_n)},$$

avec $\varphi: t \to \mathbb{R}_+$ définie, par exemple, par

- $ightharpoonup \varphi(x) = e^{-\alpha|x|} \text{ pour } \alpha > 0;$
- $\varphi(x) = (\operatorname{diam}^d[x]_t)^{\alpha}$ pour $\alpha > 0$ et une « bonne » distance d sur ∂t ;
- une autre quantité d'intérêt du modèle...

Mesures et dimensions de Hausdorff: motivation

Si $\xi \in \partial t$ n'est pas un atome de θ ($\theta(\xi_n) \to 0$), on s'intéresse à :

$$\lim_{n\to\infty} \left\{ \sup_{\inf} \right\} \frac{\theta(\xi_n)}{\varphi(\xi_n)} \text{ ou, (plus facile) } \lim_{n\to\infty} \left\{ \sup_{\inf} \right\} \frac{\log \theta(\xi_n)}{\log \varphi(\xi_n)},$$

avec $\varphi: t \to \mathbb{R}_+$ définie, par exemple, par

- $ightharpoonup \varphi(x) = e^{-\alpha|x|} \text{ pour } \alpha > 0;$
- $\varphi(x) = (\operatorname{diam}^d[x]_t)^{\alpha}$ pour $\alpha > 0$ et une « bonne » distance d sur ∂t ;
- une autre quantité d'intérêt du modèle...

Les mesures et dimensions de Hausdorff et de packing permettent de faire le lien entre ces notions *locales* et des notions plus *globales*.

$\varphi\text{-densit\'e}$ supérieure et $\varphi\text{-mesure}$ de Hausdorff

 φ -densité supérieure de θ en $\xi \in \partial t$:

$$\overline{\mathrm{d}}_{\theta}^{\varphi}(\xi) = \limsup_{n \to \infty} \frac{\theta(\xi_n)}{\varphi(\xi_n)}.$$

Pour $n \geq 1$ et $E \subset \partial t$, $t \supset \mathcal{C} \in \mathsf{Cov}_n(E)$ ssi

$$\blacktriangleright \ \forall x \in \mathcal{C}, |x| > n;$$

$$ightharpoonup E \subset \bigcup_{x \in \mathcal{C}} [x]_t.$$

 φ -mesure de Hausdorff de E :

$$\mathscr{H}^{\varphi}(E) = \lim_{n \to \infty} \inf \left\{ \sum_{x \in \mathcal{C}} \varphi(x) : \mathcal{C} \in \mathsf{Cov}_n(E) \right\}.$$

$\varphi\text{-densit\'e}$ supérieure et $\varphi\text{-mesure}$ de Hausdorff

 φ -densité supérieure de θ en $\xi \in \partial t$:

$$\bar{\mathbf{d}}_{\theta}^{\varphi}(\xi) = \limsup_{n \to \infty} \frac{\theta(\xi_n)}{\varphi(\xi_n)}.$$

Pour $n \geq 1$ et $E \subset \partial t$, $t \supset C \in \mathsf{Cov}_n(E)$ ssi

- $\forall x \in \mathcal{C}, |x| \geq n;$
- $ightharpoonup E \subset \bigcup_{x \in \mathcal{C}} [x]_t.$

 φ -mesure de Hausdorff de E:

$$\mathscr{H}^{\varphi}(E) = \lim_{n \to \infty} \inf \Big\{ \sum_{x \in \mathcal{C}} \varphi(x) : \mathcal{C} \in \mathsf{Cov}_n(E) \Big\}.$$

Théorème de la densité supérieure :

$$\inf_{\xi \in E} \overline{\mathrm{d}}_{\theta}^{\varphi}(\xi) \, \mathscr{H}^{\varphi}(E) \leq \theta(E) \leq \sup_{\xi \in E} \overline{\mathrm{d}}_{\theta}^{\varphi}(\xi) \, \mathscr{H}^{\varphi}(E).$$

φ -dimension de Hausdorff d'une partie de ∂t

Ici, on pense à $\varphi: x \mapsto e^{-|x|}$ ou $\varphi: x \mapsto \operatorname{diam}^d[x]_t$.

$$\mathcal{H}^{\varphi^{\alpha}}(E)$$

$$0 \xrightarrow{\vdots} \vdots$$

$$0 \xrightarrow{\downarrow} \vdots$$

$$0 \xrightarrow{\downarrow} \vdots$$

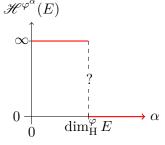
$$0 \xrightarrow{\downarrow} \alpha$$

La φ -dimension de Hausdorff de E est

- la borne inférieure des $\alpha > 0$ tels que $\mathscr{H}^{\varphi^{\alpha}}(E) = 0$ et
- ▶ la borne supérieure des $\alpha > 0$ tels que $\mathscr{H}^{\varphi^{\alpha}}(E) = \infty$.

φ -dimension de Hausdorff d'une partie de ∂t

Ici, on pense à $\varphi: x \mapsto e^{-|x|}$ ou $\varphi: x \mapsto \operatorname{diam}^d[x]_t$.



La φ -dimension de Hausdorff de E est

- la borne inférieure des $\alpha > 0$ tels que $\mathcal{H}^{\varphi^{\alpha}}(E) = 0$ et
- ▶ la borne supérieure des $\alpha > 0$ tels que $\mathscr{H}^{\varphi^{\alpha}}(E) = \infty$.

Théorème (Hawkes 1981, Lyons 1990)

Si T est un arbre de Galton-Watson infini, et m est la moyenne de sa loi de reproduction, alors,

$$\dim_{\mathrm{H}}^{\varphi} \partial T = \log m \quad p.s.$$

$$\varphi$$
-dimension(s) d'un flot

 $ightharpoonup \varphi$ -dimension locale inférieure en $\xi \in \partial t$:

$$\underline{\dim}_{\mathrm{loc}}^{\varphi}\theta(\xi) = \liminf_{n \to \infty} \frac{\log \theta(\xi_n)}{\log \varphi(\xi_n)};$$

 \triangleright φ -dimension de Hausdorff (supérieure) de θ :

$$\overline{\dim}_{\mathrm{H}}^{\varphi}\theta=\min\{\dim_{\mathrm{H}}^{\varphi}(C): C \text{ borélien tel que } \theta(C)=1\}.$$

► Théorème de la dimension locale inférieure :

$$\theta - \sup \operatorname{ess} \underline{\dim}_{\operatorname{loc}}^{\varphi} \theta = \overline{\dim}_{\operatorname{H}}^{\varphi} \theta.$$

Exacte-dimensionnalité

Definition

S'il existe $\alpha \in [0,\infty]$ tel que pour $\theta\text{-presque}$ tout ξ dans ∂t ,

$$\lim_{n \to \infty} \frac{\log \theta(\xi_n)}{\log \varphi(\xi_n)} = \alpha,$$

 θ est dit φ -exactement dimensionnel et on écrit dim $^{\varphi} \theta = \alpha$. Si $\varphi(x) = e^{-|x|}$ et $\Xi \sim \theta$, cela revient à dire que la variable aléatoire

$$\lim_{n\to\infty}\frac{-1}{n}\log\theta(\Xi_n)$$

existe et est dégénérée.

Chute de dimension

Définition

Si $\overline{\dim}_{H}^{\varphi}\theta < \dim_{H}^{\varphi}\partial t$, on dit que la phénomène de chute de dimension se produit pour θ .

Phénomène de concentration : existence d'un borélien C_{θ} de ∂t tel que

- ▶ si $\Xi \sim \theta$, alors $\Xi \in C_{\theta}$, p.s.

Les arbres et leurs bords

Marche aléatoire λ -biaisée

Théorie ergodique sur les arbres de Galton-Watson

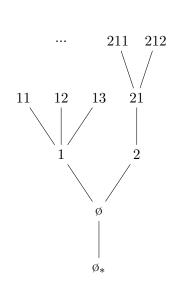
Arbres à longueurs récursives

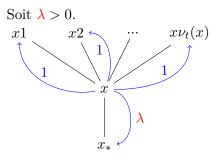
Arbres pondérés aléatoires : cas transient

Arbres pondérés aléatoires : cas sous-diffusif

Marche aléatoire $\lambda\text{-biaisée}$ sur un arbre

... ...





Exemple:

$$P_{\emptyset}^{t}(X_{1}=1, X_{2}=\emptyset, X_{3}=2)$$
$$=\frac{1}{\lambda+2} \times \frac{\lambda}{\lambda+3} \times \frac{1}{\lambda+2}.$$

Conductance

Définition

Soit, pour y dans t, $\tau_y = \inf\{n \ge 0 : X_n = y\}$. La conductance de l'arbre t est

$$\beta(t) = P_{\emptyset}(\tau_{\emptyset_*} = \infty).$$

Conductance

Définition

Soit, pour y dans t, $\tau_y = \inf\{n \ge 0 : X_n = y\}$. La conductance de l'arbre t est

$$\beta(t) = P_{\emptyset}(\tau_{\emptyset_*} = \infty).$$

 $\beta(t) > 0$ ssi la marche aléatoire est transiente.

$$\beta(t) = \frac{\sum_{j=1}^{\nu_t(\emptyset)} P(\emptyset, j) \beta(t[j])}{P(\emptyset, \emptyset_*) + \sum_{j=1}^{\nu_t(\emptyset)} P(\emptyset, j) \beta(t[j])}.$$

Conductance

Définition

Soit, pour y dans t, $\tau_y = \inf\{n \ge 0 : X_n = y\}$. La conductance de l'arbre t est

$$\beta(t) = P_{\emptyset}(\tau_{\emptyset_*} = \infty).$$

 $\beta(t)>0$ ssi la marche aléatoire est transiente. Pour la marche ${\color{black} \lambda}\textsc{-biaisée},$

$$\beta(t) = \frac{\sum_{j=1}^{\nu_t(\emptyset)} \mathbf{1} \times \beta(t[j])}{\mathbf{\lambda} + \sum_{j=1}^{\nu_t(\emptyset)} \mathbf{1} \times \beta(t[j])}.$$

Marche aléatoire λ -biaisée sur un arbre de Galton-Watson

Moyenne de la loi de reproduction : $m = \sum_{k \geq 1} k p_k$.

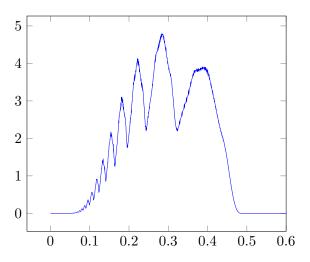
Théorème (Lyons, 1990)

La marche aléatoire λ -biaisée est presque sûrement transiente si $0 < \lambda < m$ et est presque sûrement récurrente sinon.

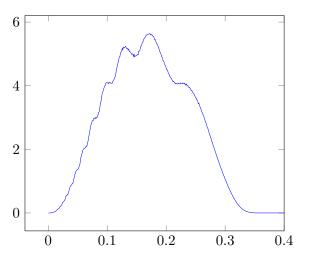
La conductance de T vérifie l'équation distributionnelle récursive :

$$\beta(T) = \frac{\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}{\lambda + \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}.$$

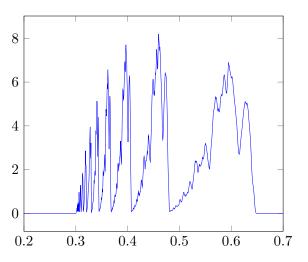
Densité apparente de β pour $\lambda = 1$ et $p_1 = p_2 = 1/2$



Densité apparente de β pour $\lambda=1,2$ et $p_1=p_2=1/2$

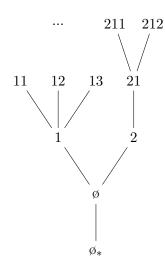


Densité apparente de β pour $\lambda = 0.7$ et $p_1 = p_2 = 1/2$



Temps de sortie

... ...



Soit $\mathbf{X} = (X_0, X_1, \dots)$ une trajectoire transiente issue de la racine \emptyset dans t.

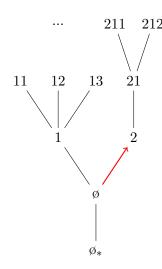
ightharpoonup Ensemble des temps de sortie de X:

$$\operatorname{et}\left(\mathbf{X}\right)\coloneqq\{s\geq0:\forall k>s,\,X_{k}\neq(X_{s})_{*}\},$$

- $\blacktriangleright \ \ \mathrm{num\acute{e}rot\acute{e}s} \ \mathsf{et}_0 \left(\mathbf{X} \right) < \mathsf{et}_1 \left(\mathbf{X} \right) < \cdots.$
- Points de sortie : $\begin{aligned} & \mathsf{ep}_0\left(\mathbf{X}\right) = X_{\mathsf{et}_0\left(\mathbf{X}\right)} = \emptyset, \\ & \mathsf{ep}_1\left(\mathbf{X}\right) = X_{\mathsf{et}_1\left(\mathbf{X}\right)}, \ \dots \end{aligned}$

Temps de sortie

... ...



Soit $\mathbf{X} = (X_0, X_1, \dots)$ une trajectoire transiente issue de la racine \emptyset dans t.

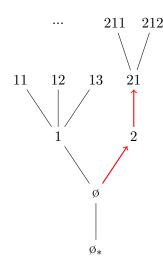
ightharpoonup Ensemble des temps de sortie de X:

$$\operatorname{et}\left(\mathbf{X}\right)\coloneqq\{s\geq0:\forall k>s,\,X_{k}\neq(X_{s})_{*}\},$$

- $\blacktriangleright \ \ \mathrm{num\acute{e}rot\acute{e}s} \ \mathsf{et}_0 \left(\mathbf{X} \right) < \mathsf{et}_1 \left(\mathbf{X} \right) < \cdots.$
- Points de sortie : $\begin{aligned} &\mathsf{ep}_0\left(\mathbf{X}\right) = X_{\mathsf{et}_0\left(\mathbf{X}\right)} = \emptyset, \\ &\mathsf{ep}_1\left(\mathbf{X}\right) = X_{\mathsf{et}_1\left(\mathbf{X}\right)}, \ \dots \end{aligned}$

Temps de sortie

... ...



Soit $\mathbf{X} = (X_0, X_1, \dots)$ une trajectoire transiente issue de la racine \emptyset dans t.

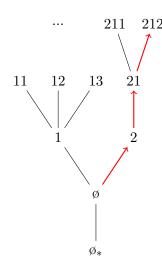
ightharpoonup Ensemble des temps de sortie de X:

$$\operatorname{et}\left(\mathbf{X}\right)\coloneqq\{s\geq0\,;\forall k>s,\,X_{k}\neq\left(X_{s}\right)_{*}\},$$

- $\blacktriangleright \ \ \mathrm{num\acute{e}rot\acute{e}s} \ \mathsf{et}_0 \left(\mathbf{X} \right) < \mathsf{et}_1 \left(\mathbf{X} \right) < \cdots.$
- Points de sortie : $\begin{aligned} &\mathsf{ep}_0\left(\mathbf{X}\right) = X_{\mathsf{et}_0\left(\mathbf{X}\right)} = \emptyset, \\ &\mathsf{ep}_1\left(\mathbf{X}\right) = X_{\mathsf{et}_1\left(\mathbf{X}\right)}, \ldots \end{aligned}$

Temps de sortie

... ...



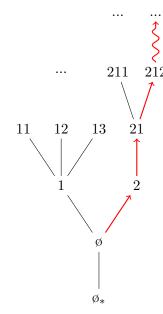
Soit $\mathbf{X} = (X_0, X_1, \dots)$ une trajectoire transiente issue de la racine \emptyset dans t.

ightharpoonup Ensemble des temps de sortie de X:

$$\operatorname{et}\left(\mathbf{X}\right)\coloneqq\{s\geq0\,;\forall k>s,\,X_{k}\neq\left(X_{s}\right)_{*}\},$$

- $\blacktriangleright \ \ \mathrm{num\acute{e}rot\acute{e}s} \ \mathsf{et}_0 \left(\mathbf{X} \right) < \mathsf{et}_1 \left(\mathbf{X} \right) < \cdots.$
- Points de sortie : $\begin{aligned} &\mathsf{ep}_0\left(\mathbf{X}\right) = X_{\mathsf{et}_0\left(\mathbf{X}\right)} = \emptyset, \\ &\mathsf{ep}_1\left(\mathbf{X}\right) = X_{\mathsf{et}_1\left(\mathbf{X}\right)}, \ldots \end{aligned}$

Temps de sortie



Soit $\mathbf{X} = (X_0, X_1, \dots)$ une trajectoire transiente issue de la racine \emptyset dans t.

ightharpoonup Ensemble des temps de sortie de X:

$$\operatorname{et}\left(\mathbf{X}\right)\coloneqq\{s\geq0\,;\forall k>s,\,X_{k}\neq\left(X_{s}\right)_{*}\},$$

- ▶ numérotés $\mathsf{et}_0\left(\mathbf{X}\right) < \mathsf{et}_1\left(\mathbf{X}\right) < \cdots$.
- Points de sortie : $ep_0(\mathbf{X}) = X_{et_0(\mathbf{X})} = \emptyset,$ $ep_1(\mathbf{X}) = X_{et_1(\mathbf{X})}, ...$

On note

$$\Xi = (\mathsf{ep}_0\left(\mathbf{X}\right), \mathsf{ep}_1\left(\mathbf{X}\right), \dots)$$
.

On note

$$\Xi = (\mathsf{ep}_0(\mathbf{X}), \mathsf{ep}_1(\mathbf{X}), \dots).$$

 Ξ est un rayon aléatoire.

Sa loi notée HARM_t^λ est appelée la $mesure\ harmonique\ \mathrm{sur}\ \partial t.$

On note

$$\Xi = \left(\mathsf{ep}_0\left(\mathbf{X}\right), \mathsf{ep}_1\left(\mathbf{X}\right), \dots\right).$$

 Ξ est un rayon aléatoire.

Sa loi notée HARM_t^λ est appelée la mesure harmonique sur $\partial t.$ Pour tout $x \in t,$

$$\begin{split} \mathsf{HARM}_t^\lambda(x) &= P_{\scriptscriptstyle \emptyset}^t(x \prec \Xi) \\ &= P_{\scriptscriptstyle \emptyset}^t \left(\exists s \geq 0, \, X_s = x \text{ et } \forall k > s, \, X_k \neq x_* \right). \end{split}$$

On note

$$\Xi = \left(\mathsf{ep}_0\left(\mathbf{X}\right), \mathsf{ep}_1\left(\mathbf{X}\right), \dots\right).$$

 Ξ est un rayon aléatoire.

Sa loi notée HARM_t^λ est appelée la mesure harmonique sur $\partial t.$ Pour tout $x \in t,$

$$\begin{split} \mathsf{HARM}_t^\lambda(x) &= P_{\varnothing}^t(x \prec \Xi) \\ &= P_{\varnothing}^t \left(\exists s \geq 0, \, X_s = x \text{ et } \forall k > s, \, X_k \neq x_* \right). \end{split}$$

$$\forall 1 \leq i \leq \nu_t(\emptyset), \quad \mathsf{HARM}_t^{\lambda}(i) = \frac{P^t(\emptyset, i)\beta(t[i])}{\sum_{j=1}^{\nu_t(\emptyset)} P^t(\emptyset, j)\beta(t[j])}.$$

On note

$$\Xi = \left(\mathsf{ep}_0\left(\mathbf{X}\right),\mathsf{ep}_1\left(\mathbf{X}\right),\dots\right).$$

 Ξ est un rayon aléatoire.

Sa loi notée HARM_t^λ est appelée la mesure harmonique sur $\partial t.$ Pour tout $x \in t,$

$$\begin{split} \mathsf{HARM}_t^\lambda(x) &= P_{\wp}^t(x \prec \Xi) \\ &= P_{\wp}^t \left(\exists s \geq 0, \, X_s = x \text{ et } \forall k > s, \, X_k \neq x_* \right). \end{split}$$

Pour la marche λ -biaisée,

$$\forall 1 \le i \le \nu_t(\emptyset), \quad \mathsf{HARM}_t(i) = \frac{\frac{1 \times \beta(t[i])}{\sum_{j=1}^{\nu_t(\emptyset)} 1 \times \beta(t[j])}.$$

Dimension de la mesure harmonique

Théorème (Lyons, Pemantle, Peres, 1995, $\lambda = 1$)

Si $\widetilde{\mathscr{C}}$ est une copie indépendante de $\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])$, alors

$$\dim \mathsf{HARM}_t^1 = C_1^{-1} \mathbb{E}\left[\left(-\log \right) \left(1 - \beta(T) \right) \frac{\beta(T) \widetilde{\mathscr{C}}}{\beta(T) + \widetilde{\mathscr{C}}} \right]$$

 $< \log(m) = \dim_{\mathrm{H}} \partial t \quad \textit{pour GW-presque tout } t.$

Dimension de la mesure harmonique

Théorème (Lyons, Pemantle, Peres, 1995, $\lambda = 1$) $Si\ \widetilde{\mathscr{C}}\ est\ une\ copie\ indépendante\ de\ \sum_{j=1}^{\nu_T(\mathscr{O})}\beta(T[j]),\ alors$ $\dim\mathsf{HARM}^1_t = C_1^{-1}\mathbb{E}\left[(-\log)\left(1-\beta(T)\right)\frac{\beta(T)\widetilde{\mathscr{C}}}{\beta(T)+\widetilde{\mathscr{C}}}\right]$ $<\log(m) = \dim_{\mathsf{H}}\partial t\quad pour\ \mathbf{GW}\text{-}presque\ tout\ t.$

Théorème (Lyons, Pemantle, Peres, 1996, $0 < \lambda < m$) Il existe $d_{\lambda} \in (0, \log m)$, telle que pour GW-presque tout t, dim $\mathsf{HARM}_t^{\lambda} = d_{\lambda}$.

Dimension de la mesure harmonique

Théorème (Lyons, Pemantle, Peres, 1995,
$$\lambda = 1$$
)
$$Si \, \widetilde{\mathscr{C}} \, est \, une \, copie \, indépendante \, de \, \sum_{j=1}^{\nu_T(\mathscr{O})} \beta(T[j]), \, alors$$

$$\dim \mathsf{HARM}_t^1 = C_1^{-1} \mathbb{E} \left[(-\log) \, (1-\beta(T)) \, \frac{\beta(T) \widetilde{\mathscr{C}}}{\beta(T) + \widetilde{\mathscr{C}}} \right]$$

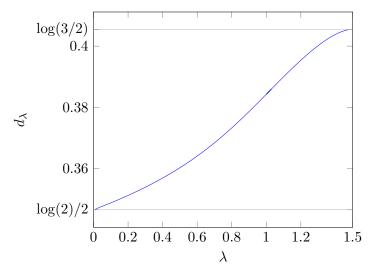
$$< \log(m) = \dim_{\mathsf{H}} \partial t \quad pour \, \mathbf{GW}\text{-}presque \, tout \, t.$$

Théorème (Lyons, Pemantle, Peres, 1996, $0 < \lambda < m$) Il existe $d_{\lambda} \in (0, \log m)$, telle que pour **GW**-presque tout t, $\dim \mathsf{HARM}_t^{\lambda} = d_{\lambda}$.

Théorème (Lin 2018+, R. 2018)

$$d_{\lambda} = \log(\lambda) + C_{\lambda}^{-1} \mathbb{E} \left[(-\log) \left(1 - \beta(T) \right) \frac{\lambda \beta(T) \widetilde{\mathscr{C}}}{\lambda - 1 + \beta(T) + \widetilde{\mathscr{C}}} \right].$$

Calculs numériques de d_{λ} pour $p_1 = p_2 = 1/2$



Les arbres et leurs bords

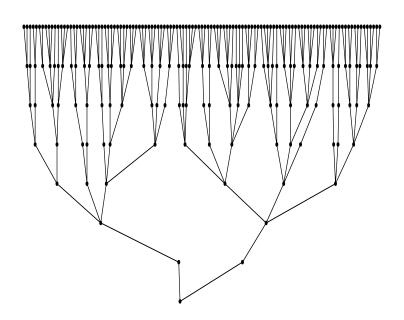
Marche aléatoire λ -biaisée

Théorie ergodique sur les arbres de Galton-Watson

Arbres à longueurs récursives

Arbres pondérés aléatoires : cas transient

Arbres pondérés aléatoires : cas sous-diffusif



Flot limite uniforme

 $m = \sum_{k>1} k p_k < \infty.$

Pour $n \geq 0$, $Z_n(T) = \#\{x \in T : |x| = n\}$.

Sous l'hypothèse $\sum_{k\geq 1} p_k k \log k < \infty$, (Kesten-Stigum)

$$\lim_{n \to \infty} Z_n(T)/m^n = W(T) \in]0, \infty[, \text{ p.s}$$

Comme $Z_{n+1}(T) = \sum_{i=1}^{\nu_T(\emptyset)} Z_n(T[i]),$

$$W(T) = \frac{1}{m} \sum_{|i|=1} W(T[i]) = \dots = \frac{1}{m^k} \sum_{|x|=k} W(T[x]).$$

Flot UNIF_T : pour tout x de génération k dans T,

$$\mathsf{UNIF}_T(x) = \frac{W(T[x])}{m^k W(T)}.$$

Arbres marqués

- ► Arbre marqué : (t, mk_t) avec $\mathsf{mk}_t : t \to (\mathsf{Marks}, d_{\mathsf{Marks}})$;
- ightharpoonup Marks = ?
 - ▶ un sous-intervalle J de $]0, \infty[$;
 - ightharpoonup l'ensemble des suites finies d'éléments de $]0,\infty[$;
 - **▶** {1};
 - ...
- ▶ arbre de Galton-Watson marqué : tirages i.i.d. de couples (N_x, M_x) à valeurs dans $\mathbb{N}^* \times \mathsf{Marks}$;
- les flots peuvent aussi dépendre des marques.

Règle de flot (Lyons, Peres, Pemantle, 1995)

- ▶ Soit $\phi: \mathscr{T}_{\mathrm{m}} \to [0, \infty]$.
- Exemples : $\phi = W$ (pour UNIF), $\phi = \beta$ (pour HARM^{λ}), $\phi = 1$ (pour VIS).
- $A = \{ t \in \mathscr{T}_{\mathbf{m}} : \phi(t) \in]0, \infty[\};$
- ▶ partie héritée : $A^{o} = \{t \in \mathcal{T}_{m} : \forall x \in t, \ t[x] \in A\};$
- ightharpoonup pour t dans A° , flot Θ_t défini par

$$\Theta_t(i) = \frac{\phi(t[i])}{\sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j])}, \quad \forall i \in t_1;$$

Règle de flot (Lyons, Peres, Pemantle, 1995)

- ▶ Soit $\phi: \mathscr{T}_{\mathrm{m}} \to [0, \infty]$.
- Exemples : $\phi = W$ (pour UNIF), $\phi = \beta$ (pour HARM^{λ}), $\phi = 1$ (pour VIS).
- $A = \{ t \in \mathcal{T}_{\mathbf{m}} : \phi(t) \in]0, \infty[\} ;$
- ▶ partie héritée : $A^{o} = \{t \in \mathcal{T}_{m} : \forall x \in t, t[x] \in A\};$
- ightharpoonup pour t dans A° , flot Θ_t défini par

$$\Theta_t(i) = \frac{\phi(t[i])}{\sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j])}, \quad \forall i \in t_1;$$

$$\Theta_t(x) = \prod_{\substack{\alpha \leq y \leq x}} \frac{\phi(t[y])}{\sum_{z_* = y_*} \phi(t[z])}, \quad \forall x \in t.$$

Règle de flot (Lyons, Peres, Pemantle, 1995)

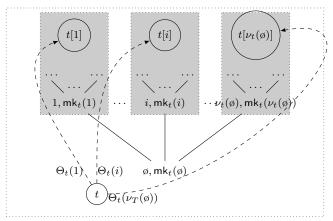
- ▶ Soit $\phi: \mathscr{T}_{\mathrm{m}} \to [0, \infty]$.
- Exemples : $\phi = W$ (pour UNIF), $\phi = \beta$ (pour HARM^{λ}), $\phi = 1$ (pour VIS).
- $A = \{ t \in \mathcal{T}_{\mathbf{m}} : \phi(t) \in]0, \infty[\} ;$
- ▶ partie héritée : $A^{o} = \{t \in \mathcal{T}_{m} : \forall x \in t, t[x] \in A\};$
- ▶ pour t dans A° , flot Θ_t défini par

$$\Theta_t(i) = \frac{\phi(t[i])}{\sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j])}, \quad \forall i \in t_1;$$

$$\Theta_t(x) = \prod_{\substack{\alpha \leq y \leq x}} \frac{\phi(t[y])}{\sum_{z_* = y_*} \phi(t[z])}, \quad \forall x \in t.$$

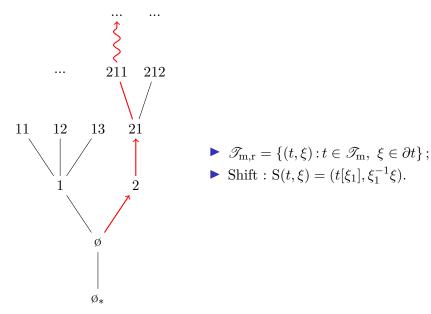
▶ Si $xy \in t$, alors $\Theta_t(xy) = \Theta_t(x)\Theta_{t[x]}(y)$.

Chaîne de Markov sur \mathcal{T}_{m}

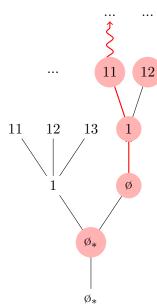


- $\blacktriangleright \mu$ probabilité borélienne sur \mathscr{T}_{m} tq $\mu(A^{\mathrm{o}}) = 1$;
- ► $T^{(0)} \sim \mu$;
- $\forall i \in t_1, \ \mathbb{P}(T^{(1)} = t[i] | T^{(0)} = t) = \Theta_t(i).$
- ► Si $T^{(1)} \sim \mu$, on dit que μ est Θ-invariante.

Arbres parcourus par un rayon

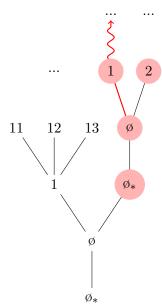


Arbres parcourus par un rayon



- $\blacktriangleright \ \mathcal{T}_{m,r} = \left\{ (t,\xi) \, ; t \in \mathcal{T}_m, \ \xi \in \partial t \right\};$
- Shift: $S(t,\xi) = (t[\xi_1], \xi_1^{-1}\xi).$

Arbres parcourus par un rayon



- $\blacktriangleright \ \mathcal{T}_{m,r} = \left\{ (t,\xi) \, ; t \in \mathcal{T}_m, \ \xi \in \partial t \right\};$
- ► Shift : $S(t,\xi) = (t[\xi_1], \xi_1^{-1}\xi)$.

Théorème central

Théorème (Lyons, Pemantle, Peres 1995)

Si μ est Θ -invariante et absolument continue par rapport à $\mathbf{GW},\ alors$:

- $\blacktriangleright \mu \ est \ \'equivalente \ \grave{a} \ \mathbf{GW} \ ;$
- ▶ le système $(\mathcal{T}_{m,r}, S, \mu)$ préserve la mesure et est ergodique ;
- ▶ pour GW-presque tout t, pour Θ_t -presque tout $\xi \in \partial t$,

$$\lim_{n \to \infty} \frac{-1}{n} \log \Theta_t(\xi_n) = \int \left(\int -\log \Theta_t(\xi_1) d\Theta_t(\xi) \right) d\mu(t)$$

$$= \dim \Theta_t.$$

Exemples de calculs de dimension

(On oublie temporairement les marques.)

▶ Pour VIS, **GW** est stationnaire. On a p.s.

$$\dim \mathsf{VIS}_T = \mathbb{E}[\log \nu_T(\emptyset)] \underbrace{<}_{\mathrm{Jensen}} \log m.$$

ightharpoonup Pour UNIF, la mesure de densité W par rapport à \mathbf{GW} est invariante. On trouve

$$\dim \mathsf{UNIF}_T = \log m \, (= \dim_{\mathrm{H}} \partial T), \quad \mathrm{p.s.}$$

Théorème (Lyons, Pemantle, Peres, 1995)

Sous les hypothèses du théorème précédent, pour GW-presque tout t, dim $\Theta_t < \log m$, sauf si Θ_t est presque sûrement égal à UNIF $_t$.

Une construction de mesures invariantes

Hypothèses:

- \bullet $\phi: \mathcal{T}_{\mathrm{m}} \to J, J \text{ sous-intervalle de }]0, \infty[;$
- ightharpoonup Marks = J;
- marques indépendantes des nombres d'enfants.
- ightharpoonup On peut récupérer la valeur de $\phi(t)$ avec seulement
 - la somme $\sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j])$ et
 - la marque $\overline{\mathsf{mk}}_t(\emptyset)$:

$$\phi(t) = h\Big(\mathsf{mk}_t(\emptyset), \sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j])\Big) = \mathsf{mk}_t(\emptyset) \odot \sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j]).$$

Une construction de mesures invariantes

$$\phi(t) = h\Big(\mathsf{mk}_t(\emptyset), \sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j])\Big) = \mathsf{mk}_t(\emptyset) \odot \sum_{j=1}^{\nu_t(\emptyset)} \phi(t[j]).$$

On suppose que \odot , loi de composition interne sur J, est commutative, associative et vérifie

$$\forall u, v \in J, \forall s \in \mathbb{R}_+, \quad \frac{(u+s) \odot v}{u \odot (s+v)} = \frac{(u+s)v}{u(s+v)}.$$

Exemple de lois \odot :

- ► $J =]0, \infty[$ et $u \odot v = \alpha uv$ pour un $\alpha > 0$;
- ▶ $J =]\max(0, -c), \infty[$ et $u \odot v = uv/(u + v + c)$, pour un c > 0.

Une construction de mesures invariantes

On pose, pour u > 0,

$$\kappa(u) = \mathbb{E}\left[u \odot \sum_{j=1}^{\nu} \phi(\widetilde{T}[i])\right].$$

Théorème (R. 2018)

Si, de plus, $\mathbb{E}\left[\kappa(\phi(T))\right] < \infty$, alors la mesure (renormalisée) de densité $\kappa(\phi(T))$ par rapport à **GW** est Θ -invariante.

Marche λ -biaisée : éléments de preuve

$$\beta(T) = \frac{\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}{\lambda + \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])} = \frac{1 \times \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}{\lambda - 1 + 1 + \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])},$$

$$\mathsf{HARM}_T(i) = \frac{\beta(T[i])}{\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}.$$

Marche λ -biaisée : éléments de preuve

$$\beta(T) = \frac{\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}{\lambda + \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])} = \frac{1 \times \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}{\lambda - 1 + 1 + \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])},$$

$$\mathsf{HARM}_T(i) = \frac{\beta(T[i])}{\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}.$$

- ▶ marques constantes égales à 1.

On cherche la bonne opération \odot :

Marche λ -biaisée : éléments de preuve

$$\beta(T) = \frac{\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}{\lambda + \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])} = \frac{1 \times \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}{\lambda - 1 + 1 + \sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])},$$

$$\mathsf{HARM}_T(i) = \frac{\beta(T[i])}{\sum_{j=1}^{\nu_T(\emptyset)} \beta(T[j])}.$$

- ▶ marques constantes égales à 1.

On cherche la bonne opération \odot :

$$u \odot v = \frac{uv}{\lambda - 1 + u + v}.$$

Les arbres et leurs bords

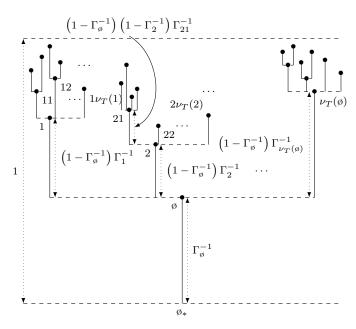
Marche aléatoire λ -biaisée

Théorie ergodique sur les arbres de Galton-Watson

Arbres à longueurs récursives

Arbres pondérés aléatoires : cas transient

Arbres pondérés aléatoires : cas sous-diffusif



Description du modèle

- Arbre de Galton-Watson de loi de reprodution \mathbf{p} ($p_0 = 0$ et $p_1 < 1$);
- ▶ famille i.i.d. de marques $(\Gamma_x)_{x \in T}$ à valeurs dans $]1, \infty[$;
- ▶ marche aléatoire aux plus proches voisins avec probabilités de transition *inversement proportionnelles aux longueurs d'arêtes*. Après simplification :

$$P^{t}(x,y) = \begin{cases} \Gamma_{xi} / \left(\Gamma_{x} - 1 + \sum_{j=1}^{\nu_{t}(x)} \Gamma_{xj} \right) & \text{si } y = xi, \\ \left(\Gamma_{x} - 1 \right) / \left(\Gamma_{x} - 1 + \sum_{j=1}^{\nu_{t}(x)} \Gamma_{xj} \right) & \text{si } y = x_{*}. \end{cases}$$

▶ Généralise un modèle utilisé et étudié par Nicolas Curien et Jean-François Le Gall (Γ^{-1} uniforme sur]0,1[et $p_2 = 1$), puis Shen Lin $(p_k = \frac{\alpha\Gamma(k-\alpha)}{k!\Gamma(2-\alpha)}, k \geq 2, \alpha \in]1,2[)$.

Mesure harmonique

- La marche est *transiente* donc la mesure harmonique est définie.
- ▶ Pour $1 \le i \le \nu_T(\emptyset)$,

$$\mathsf{HARM}_T^\Gamma(i) = \frac{\Gamma_i \beta(T[i])}{\sum_{j=1}^{\nu_T(\emptyset)} \Gamma_j \beta(T[j])}.$$

▶ On pose $\phi(T) = \Gamma_{\emptyset}\beta(T)$ et on a

$$\phi(T) = \frac{\Gamma_{\emptyset} \sum_{j=1}^{\nu_{T}(\emptyset)} \phi(T[j])}{\Gamma_{\emptyset} - 1 + \sum_{j=1}^{\nu_{T}(\emptyset)} \phi(T[j])} = \Gamma_{\emptyset} \odot \sum_{j=1}^{\nu_{T}(\emptyset)} \phi(T[j]),$$

ightharpoonup avec $u \odot v = uv/(u+v-1)$.

Distance associée aux longueurs

ightharpoonup Γ -hauteur de x dans T:

$$|x|^{\Gamma} = \sum_{y \prec x} \left(\prod_{z \prec y} (1 - \Gamma_z^{-1}) \right) \Gamma_y^{-1}.$$

► On a la relation

$$1 - |x|^{\Gamma} = \prod_{y \prec x} (1 - \Gamma_y^{-1}).$$

▶ Pour deux rayons distincts ξ et η :

$$d^{\Gamma}(\xi, \eta) = 1 - |\xi \wedge \eta|^{\Gamma}.$$

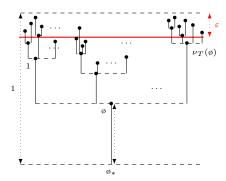
Paramètre de Malthus

▶ Unique $\alpha > 0$ tel que

$$\mathbb{E}[(1-\Gamma_{\emptyset}^{-1})^{\alpha}] = 1/m.$$

▶ Taille de la population (Jagers-Nerman 1984) : pour $\varepsilon > 0$,

$$A_{\varepsilon} = \{ x \in T : 1 - |x|^{\Gamma} \le \varepsilon \le 1 - |x_*|^{\Gamma} \}$$
$$\lim_{\varepsilon \to 0} \varepsilon^{\alpha} \# A_{\varepsilon} =: W^{\Gamma}(T) \in]0, \infty[\text{ p.s.}$$



Paramètre de Malthus

▶ Unique $\alpha > 0$ tel que

$$\mathbb{E}[(1-\Gamma_{\emptyset}^{-1})^{\alpha}]=1/m.$$

▶ Taille de la population (Jagers-Nerman 1984) : pour $\varepsilon > 0$,

$$A_{\varepsilon} = \{ x \in T : 1 - |x|^{\Gamma} \le \varepsilon \le 1 - |x_*|^{\Gamma} \}$$
$$\lim_{\varepsilon \to 0} \varepsilon^{\alpha} \# A_{\varepsilon} =: W^{\Gamma}(T) \in]0, \infty[\text{ p.s.}$$

▶ Mesure limite uniforme par rapport à la distance d^{Γ} :

$$\mathsf{UNIF}^{\Gamma}(i) = \frac{W^{\Gamma}(T[i])}{\sum_{j=1}^{\nu_T(\emptyset)} W^{\Gamma}(T[j])}.$$

▶ La dimension de ∂T et de UNIF^{Γ} pour la distance d^{Γ} est presque sûrement égale au paramètre de Malthus.

Dimension pour la distance associée aux longueurs

Chute de dimension pour toutes les règles de flots différentes de UNIF^Γ qui admettent une mesure invariante absolument continue par rapport à la loi de l'arbre.

Dimension pour la distance associée aux longueurs

Chute de dimension pour toutes les règles de flots différentes de UNIF^r qui admettent une mesure invariante absolument continue par rapport à la loi de l'arbre.

Théorème (R. 2018)

Si $\kappa(\phi(T))$ est intégrable, la dimension de la mesure HARM_T^Γ par rapport à d^Γ est presque sûrement égale à

$$\dim^{d^{\Gamma}}\mathsf{HARM}^{\Gamma}(T) = \frac{\mathbb{E}\left[\log\left(1-\Gamma_{\varnothing}^{-1}\phi(T)\right)\kappa\left(\phi(T)\right)\right]}{\mathbb{E}\left[\log\left(1-\Gamma_{\varnothing}^{-1}\right)\kappa\left(\phi(T)\right)\right]} - 1,$$

Elle est strictement inférieure à α sauf si Γ et la loi de reproduction sont toutes les deux dégénérées.

Les arbres et leurs bords

Marche aléatoire λ -biaisée

Théorie ergodique sur les arbres de Galton-Watson

Arbres à longueurs récursives

Arbres pondérés aléatoires : cas transient

Arbres pondérés aléatoires : cas sous-diffusif

Suites finies de réels positifs

Espace

Tuples =
$$\bigsqcup_{k>1}]0, \infty[^k]$$
.

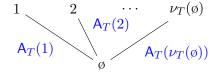
q une mesure borélienne de probabilité sur Tuples. Exemple :

- 1. N, A(1), A(2) v.a. indépendantes à valeurs dans $]0, \infty[$.
- 2. $\mathbb{P}(N=1) = \mathbb{P}(N=2) = 1/2$;
- 3. \mathbf{q} : loi du vecteur égal à (A(1),A(2)) si N=2, (A(1)) si N=1.

Arbres de Galton-Watson pondérés

Famille i.i.d. (\mathbf{A}^x) de loi commune \mathbf{q} .

$$\mathbf{A}^{\emptyset} = (\mathsf{A}_T(1), \mathsf{A}_T(2), \dots, \mathsf{A}_T(\nu_T(\emptyset))).$$

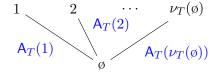


- ► Recommencer pour les enfants de \emptyset , avec $(\mathbf{A^i})_{1 \leq i \leq \nu_T(\emptyset)}$ puis ses petits-enfants, etc.
- ▶ T arbre aléatoire, avec $A_T : T \setminus \{\emptyset\} \to]0, \infty[$ fonction de poids, est un arbre pondéré aléatoire.

Arbres de Galton-Watson pondérés

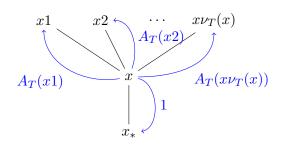
Famille i.i.d. (\mathbf{A}^x) de loi commune \mathbf{q} .

$$\mathbf{A}^{\emptyset} = (\mathsf{A}_T(1), \mathsf{A}_T(2), \dots, \mathsf{A}_T(\nu_T(\emptyset))).$$



- ► Recommencer pour les enfants de \emptyset , avec $(\mathbf{A^i})_{1 \leq i \leq \nu_T(\emptyset)}$ puis ses petits-enfants, etc.
- ▶ T arbre aléatoire, avec $A_T : T \setminus \{\emptyset\} \to]0, \infty[$ fonction de poids, est un arbre pondéré aléatoire.

Marche aléatoire sur un arbre pondéré



Noyau de transition P^T :

$$P^{T}(x, x_{*}) = \frac{1}{1 + \sum_{j=1}^{\nu_{T}(x)} A_{T}(x_{j})};$$

$$P^{T}(x, x_{i}) = \frac{A_{T}(x_{i})}{1 + \sum_{j=1}^{\nu_{T}(x)} A_{T}(x_{j})} \quad i = 1, \dots, \nu_{T}(x).$$

Transience

Soit, pour $s \ge 0$,

$$\psi(s) = \log \mathbb{E}\Big[\sum_{i=1}^{\nu_T(\emptyset)} \mathsf{A}_T(i)^s\Big] \in]-\infty, \infty].$$

Théorème (Lyons-Pemantle 1992, Faraud 2011)

 $Si \min_{s \in [0,1]} \psi(s) > 0$, alors la marche aléatoire sur l'arbre pondéré T est p.s. transiente.

Transience

Soit, pour $s \ge 0$,

$$\psi(s) = \log \mathbb{E}\Big[\sum_{i=1}^{\nu_T(\emptyset)} \mathsf{A}_T(i)^s\Big] \in]-\infty,\infty].$$

Théorème (Lyons-Pemantle 1992, Faraud 2011)

 $Si \min_{s \in [0,1]} \psi(s) > 0$, alors la marche aléatoire sur l'arbre pondéré T est p.s. transiente.

Questions:

- Existence d'une mesure HARM-invariante?
- ightharpoonup Chute de dimension pour $HARM_T$?

Chute de dimension

Théorème (R. 2018+)

Dans le cas transient, existence d'une mesure HARM-invariante absolument continue par rapport à la loi de l'arbre et si \mathbf{q} n'est pas une mesure de Dirac, il existe une constante $\alpha \in]0, \log(m)[$ telle que, presque sûrement,

$$\lim_{n\to\infty} -\frac{1}{n}\log(\mathsf{HARM}_T[\Xi_n]) = \dim_{\mathrm{H}} \mathsf{HARM}_T = \alpha.$$

- Stratégie de preuve évoquée dans un article de Lyons, Pemantle et Peres (1996) dans le cas de la marche λ-biaisée ($A_T = \lambda^{-1}$).
- ▶ Outils : théorie du renouvellement et théorie ergodique.
- Expression (peu explicite) pour la mesure invariante (et donc α .

Les arbres et leurs bords

Marche aléatoire λ -biaisée

Théorie ergodique sur les arbres de Galton-Watson

Arbres à longueurs récursives

Arbres pondérés aléatoires : cas transient

Arbres pondérés aléatoires : cas sous-diffusif

La martingale de Mandelbrot

Rappel: pour $s \ge 0$,

$$\psi(s) = \log \mathbb{E}\Big[\sum_{i=1}^{\nu_T(\emptyset)} \mathsf{A}_T(i)^s\Big].$$

Cas dit normalisé

$$\psi(1) = \log \mathbb{E} \sum_{i=1}^{T_{(r)}} \mathsf{A}_T(i) = 0.$$
 (H_{normalisé})

Martingale de Mandelbrot (1974) : pour $n \ge 1$,

$$M_n(T) = \sum_{|x|=n} \prod_{\emptyset \prec y \prec x} \mathsf{A}_T(y).$$

Existence d'une v.a. $M_{\infty}(T)$ telle que

$$\lim_{n\to\infty} M_n(T) = M_{\infty}(T) \quad \text{p.s.}$$

Théorème de Biggins

Question : quand est-ce que $M_{\infty}(T)$ est non-dégénérée ?

Théorème de Biggins

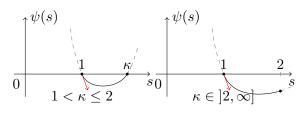
Question : quand est-ce que $M_{\infty}(T)$ est non-dégénérée ? Réponse (Kahane-Peyrière 1976, Biggins 1977, Lyons 1997) : Sous les hypothèses

$$\psi'(1) := \mathbb{E}\left[\sum_{i=1}^{\nu_T(\emptyset)} \mathsf{A}_T(i) \log \mathsf{A}_T(i)\right] \in [-\infty, 0[; \qquad (H_{\text{dérivée}})]$$

$$\mathbb{E}\left[\left(\sum_{i=1}^{\nu_T(\emptyset)} \mathsf{A}_T(i)\right) \log^+\left(\sum_{i=1}^{\nu_T(\emptyset)} \mathsf{A}_T(i)\right)\right] < \infty, \qquad (H_{X \log^+ X})$$

on a convergence dans L^1 et $M_{\infty}(T) > 0$ p.s. Si $\psi'(1)$ est fini, ces conditions sont aussi nécessaires.

Cas sous-diffusif



On pose $\kappa = \inf\{s > 1 : \psi(s) = 0\} \in]1, \infty]$. Hypothèses :

$$\begin{split} \mathbb{E}\Big[\Big(\sum_{i=1}^{\nu_T(\varnothing)}\mathsf{A}_T(i)\Big)^\kappa\Big] + \mathbb{E}\Big[\sum_{i=1}^{\nu_T(\varnothing)}\mathsf{A}_T(i)^\kappa\log^+\mathsf{A}_T(i)\Big] < \infty, \quad \text{si } 1 < \kappa \leq 2, \\ \mathbb{E}\Big[\Big(\sum_{i=1}^{\nu_T(\varnothing)}\mathsf{A}_T(i)\Big)^2\Big] < \infty, \quad \text{si } \kappa \in]2, \infty]. \end{split}$$

$$(H_\kappa)$$

Conductance entre \emptyset et le niveau n

Marche aléatoire sur $T \leftrightarrow$ réseau électrique sur T. Conductance de l'arête $\{x_*, x\} : \prod_{\emptyset \prec y \preceq x} \mathsf{A}_T(x)$. Conductance entre \emptyset et le niveau n:

$$\mathscr{C}_n(T) = \frac{P_{\emptyset}^T(\tau^{(n)} < \tau_{\emptyset}^+)}{P^T(\emptyset, \emptyset_*)}.$$

Par récurrence de la marche, $\mathscr{C}_n(T) \to 0$, p.s.

Conductance entre \emptyset et le niveau n

Marche aléatoire sur $T \leftrightarrow$ réseau électrique sur T. Conductance de l'arête $\{x_*, x\} : \prod_{\emptyset \prec y \preceq x} \mathsf{A}_T(x)$. Conductance entre \emptyset et le niveau n:

$$\mathscr{C}_n(T) = \frac{P_{\emptyset}^T(\tau^{(n)} < \tau_{\emptyset}^+)}{P^T(\emptyset, \emptyset_*)}.$$

Par récurrence de la marche, $\mathscr{C}_n(T) \to 0$, p.s.

- ▶ À quelle vitesse?
- ▶ Quelle loi limite si on renormalise $\mathscr{C}_n(T)$ par cette vitesse?

Réponse partielle :

Théorème (Rousselin 2018+)

Sous les hypothèse ($H_{\text{normalis\'e}}$), ($H_{\text{d\'eriv\'e}}$) et (H_{κ}),

$$si\ 1 < \kappa < 2$$
.

$$0 < \liminf_{n \to \infty} n^{1/(\kappa - 1)} \mathbb{E}[\mathscr{C}_n(T)] \le \limsup_{n \to \infty} n^{1/(\kappa - 1)} \mathbb{E}[\mathscr{C}_n(T)] < \infty;$$

$$si \kappa = 2$$
,

$$0 < \liminf_{n \to \infty} n \log n \mathbb{E}[\mathscr{C}_n(T)] \le \limsup_{n \to \infty} n \log n \mathbb{E}[\mathscr{C}_n(T)] < \infty;$$

$$\lim_{n \to \infty} n \mathbb{E}[\mathscr{C}_n(T)] = ||M_{\infty}(T)||_2 \quad si \ \kappa > 2.$$

Dans tous les cas, presque sûrement et dans L^p pour $p \in [1, \kappa[$, $si \ 1 < \kappa \le 2$ et dans L^2 $si \ \kappa > 2$,

$$\lim_{n\to\infty} \mathscr{C}_n(T)/\mathbb{E}[\mathscr{C}_n(T)] = M_{\infty}(T).$$

Questions: (liste non exhaustive...)

- Sur ce dernier modèle :
 - ightharpoonup $\lim \inf = \lim \sup ?$
 - ▶ théorème central limite (ou au moins taille des fluctations)?
 - ▶ lien avec les travaux de Aïdékon-de Raphélis?

Questions: (liste non exhaustive...)

- Sur ce dernier modèle :
 - ightharpoonup $\liminf = \limsup ?$
 - ▶ théorème central limite (ou au moins taille des fluctations)?
 - lien avec les travaux de Aïdékon-de Raphélis?
- Sur les arbres pondérés transients :
 - ▶ liens avec la vitesse?
 - possible d'obtenir (au moins dans certains cas particuliers) une formule « plus explicite » pour la dimension?

Questions: (liste non exhaustive...)

- ➤ Sur ce dernier modèle :
 - ightharpoonup $\liminf = \limsup ?$
 - ▶ théorème central limite (ou au moins taille des fluctations)?
 - ▶ lien avec les travaux de Aïdékon-de Raphélis?
- Sur les arbres pondérés transients :
 - ▶ liens avec la vitesse?
 - possible d'obtenir (au moins dans certains cas particuliers) une formule « plus explicite » pour la dimension?
- \triangleright Sur les marches λ -biaisées :
 - ightharpoonup monotonie, régularité de la dimension en fonction de λ ?
 - \triangleright est-ce que dim_H VIS_T est une borne inférieure?
 - ▶ vitesse de convergence de $\frac{-1}{n}\log(\mathsf{HARM}_T(\Xi_n))$?
 - ► calcul « moins magique » de la dimension?
 - entropie asymptotique = vitesse × dimension? monotonie de cette entropie?
 - Plus d'informations sur β ?

Merci pour votre attention!

