
École doctorale Galilée

Laboratoire Analyse, Géométrie et Applications, UMR 7539

Thèse
presentée par

Pierre ROUSSELIN

le 17 décembre 2018

pour obtenir le grade de

docteur de l’Université Paris 13

en spécialité : Mathématiques.

Marches aléatoires sur les arbres aléatoires

Thèse dirigée par : MM. Julien Barral et Yueyun HU,

soutenue publiquement devant les membres du jury :

M. Élie AÏDÉKON
M. Julien BARRAL
M. Nicolas CURIEN
M. Ai-Hua FAN
Mme Bénédicte HAAS
M. Yueyun HU
M. Quansheng LIU

s’appuyant sur le rapport de Mme Nina GANTERT

examinateur,
directeur de thèse,
rapporteur,
examinateur,
examinatrice,
directeur de thèse,
examinateur,

rapportrice.



Thèse de doctorat

Marches aléatoires sur les arbres aléatoires

Pierre Rousselin
LAGA, Université Paris 13; Labex MME-DII

17 décembre 2018





Table des matières

Remerciements 5

Introduction (en français) 11

Introduction (in English) 23

1 Trees and their boundaries 35
1.1 Finite and infinite words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2 Trees and Neveu’s formalism . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3 The boundary of a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4 A class of metrics on the boundary of a tree . . . . . . . . . . . . . . . . . 40
1.5 Flows on a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6 Random walks on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.7 Transient random walks and the harmonic measure . . . . . . . . . . . . . 46
1.8 Upper density theorem and Hausdorff measures . . . . . . . . . . . . . . . 48
1.9 Lower density theorem and packing measure . . . . . . . . . . . . . . . . . 52
1.10 Hausdorff and packing measures on a metric space . . . . . . . . . . . . . 56
1.11 Dimension(s) of a flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2 Ergodic theory on marked Galton-Watson trees 65
2.1 Galton-Watson trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2 The boundary of an infinite Galton-Watson tree . . . . . . . . . . . . . . 67
2.3 Marked trees and inheritance . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4 Flow rules and harmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5 Marked trees with rays : exact-dimensionality for a class of flow rules . . 74
2.6 Marked Galton-Watson trees and flow rules . . . . . . . . . . . . . . . . . 78
2.7 The limit uniform measure . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.8 Non-uniform flow rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.9 Invariant measures for a class of flow rules . . . . . . . . . . . . . . . . . . 88

3 Galton-Watson trees with recursive lengths 93
3.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2 Invariant measure and dimension drop for the natural distance . . . . . . 95
3.3 Dimension and dimension drop for the length metric . . . . . . . . . . . . 100

4 Transient λ-biased random walk on a Galton-Watson tree 111
4.1 The dimension of the harmonic measure . . . . . . . . . . . . . . . . . . . 111

3



Table des matières

4.2 Comparison of flow rules on a Galton-Watson tree . . . . . . . . . . . . . 113
4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Transient random walk on a weighted Galton-Watson tree 121
5.1 Presentation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Basic facts of ergodic theory . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Regeneration Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Tower construction of an invariant measure for the shift at exit times . . . 129
5.5 Invariant Measure for the Harmonic Flow Rule . . . . . . . . . . . . . . . 133

6 Subdiffusive random walk on a weighted Galton-Watson tree 137
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Subdiffusive weighted Galton-Watson trees . . . . . . . . . . . . . . . . . 138

6.2.1 Weighted trees and effective conductance . . . . . . . . . . . . . . 138
6.2.2 The additive martingale on a weighted Galton-Watson tree . . . . 140
6.2.3 Subdiffusive random walk on a weighted Galton-Watson tree . . . 142

6.3 Useful inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.1 Elementary analysis lemmas . . . . . . . . . . . . . . . . . . . . . . 143
6.3.2 Moments of a sum of independent random variables . . . . . . . . 145
6.3.3 Renormalized positive random variables . . . . . . . . . . . . . . . 145

6.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.5 Upper bound and almost-sure convergence . . . . . . . . . . . . . . . . . . 150

4



Remerciements

Le voici venu, le temps d’écrire les remerciements ! Tous les thésards doivent se prendre
à y penser parfois, avant de se rendre compte, déçus, que pour qu’il y ait remerciements,
il faut déjà qu’il y ait thèse. Ayant été souvent dans ce cas, je me trouve pourtant assez
démuni (et à court de temps) devant cet exercice. Je me lance.
Je commence par Maman. Tu me manques. Un peu avant que tu partes en 2013,

j’avais acheté un livre de maths pour m’occuper l’esprit. C’était un livre sur les modules
de Grégory Berhuy. Beau refuge que les mathématiques. Je sentais que la dose nécessaire
serait forte et que j’aurais besoin d’accompagnement (mathématique). Au lycée Jacques
Feyder d’Épinay-sur-Seine où j’enseignais, je donnais aussi des colles en CPES, une
classe préparatoire où les enseignements étaient donnés pour moitié par l’université Paris
13. J’ai choisi (un peu au hasard) une adresse électronique math.univ-paris13.fr sur
un mail collectif concernant ces colles. C’était celle de Farell Brumley. Bouteille à la
mer reçue. Il s’est montré très compréhensif et m’a redirigé vers Pascal Boyer qui m’a
immédiatement proposé un rendez-vous et rassuré sur le fait que je pourrais m’inscrire
en M1 malgré mon travail à plein temps. Je les remercie, eux et tous ceux, au LAGA
ou à l’institut Galilée (je pense notamment à Séverine Girod) qui ont rendu possible ma
reprise d’étude.
Après un été studieux (le premier d’une longue série) à relire Perrin ou Rudin (dur

après tout ce temps !), j’ai donc consacré mes mardis (et mes soirs et mes week-ends) au
M1 où nous étions seulement trois inscrits. Merci à mes deux camarades, Rali et Franck,
avec qui, malgré la différence d’âge, nous avons pu souvent échanger (sérieusement ou
non). Merci aussi aux enseignants du M1 qui s’acquittaient de leur tâche avec sérieux
et talent malgré le nombre très peu élevé d’étudiants : Jean-Stéphane Dhersin et Phi-
lippe Marchal en probabilités ; Julien Barral, Thomas Duyckaerts, Emmanuel Schenck
et Giona Veronelli en analyse et (double merci, donc) Pascal Boyer en algèbre et arith-
métique. Je me souviens de ma joie, fin décembre quand je me suis rendu compte que
j’avais réussi à suivre tous les cours et TD de deux modules sans être largué, de l’an-
goisse des premiers examens, du sentiment de décalage que j’avais aussi en retournant
travailler au lycée (et inversement quand je repassais dans la position d’élève). Pour le
mémoire de M1, j’avais envie de découvrir une nouvelle partie des mathématiques. Un
peu au hasard (encore) je me suis tourné vers les systèmes dynamiques et c’est Julien
Barral qui l’a encadré. Il a dès ce moment montré toute sa bienveillance, sa capacité
à me rassurer (j’en ai souvent besoin), son soutien aussi pour demander un congé de
formation (malheureusement refusé) pour étudier en M2 dans de meilleures conditions,
et a finalement évoqué la possibilité de faire une thèse à mi-chemin entre les probabilités
et la théorie ergodique. Mille mercis.
C’est donc avec cette perspective que j’ai étudié en M2 l’année suivante en travaillant à

5



Remerciements

mi-temps au lycée. Je remercie d’ailleurs l’administration de l’époque pour avoir accepté
ce mi-temps ainsi que mes collègues de mathématiques qui ont dû « absorber » mes
heures. Merci aux enseignants de M2 qui ont donné d’excellents cours. À Paris 13, ce sont
Anne Quéguiner et Charles De Clercq sur les algèbres simples centrales ; Marc Bonino
sur les systèmes dynamiques ; Francis Nier et Emmanuel Schenck sur la théorie spectrale.
Après ce semestre, on n’est pas tout à fait au niveau en probabilités. Et le projet de thèse
commence à se dessiner. Il inclut un deuxième directeur de thèse : Yueyun Hu, qui ne
me connaissait pas du tout mais a tout de même accepté de co-encadrer mon mémoire
de M2 puis ma thèse. Mille mercis. Julien et Yueyun m’ont donc envoyé apprendre
des probabilités au second semestre avec Giambattista Giacomin à l’université Denis
Diderot sur les systèmes de particules en intéraction et avec Nicolas Curien à l’IHES
sur les graphes aléatoires. Je les remercie tous les deux de m’avoir accepté dans leurs
cours de grande qualité. Un deuxième merci pour Nicolas Curien, qui s’est montré très
disponible et dont les conseils m’ont beaucoup aidé.
L’été arrive et des gens ont, comme toujours, œuvré dans l’ombre pour que ma thèse

soit financée (pour moitié par le labex MME-DII, pour moitié par l’école doctorale
Galilée). Je les en remercie profondément. Avant cela, le rectorat de Créteil a accepté
ma mise en disponibilité, sans doute grâce à l’intervention de Julien, puis de celle de la
présidence de l’université. Merci, merci, merci ! Nouvel été studieux, cette fois pour le
mémoire de M2. Premier contact avec Lyons, Pemantle et Peres et premier contact avec
la programmation car je devrai donner des TP en Matlab à la rentrée aux étudiants de
L3 informatique.
Ceci n’a pas été sans conséquence. Pendant ma première année de thèse je me suis jeté

de façon obsessionnelle, désordonnée et solitaire dans la programmation, au point que
Yueyun a dû me rappeler (bien sûr, gentiment, comme toujours !) que je ne faisais pas
une thèse d’informatique mais de mathématiques. Finalement, programmer m’a servi
dans ma recherche et m’a permis d’avoir un poste d’ATER cette année au département
d’informatique de Paris 13, donc ce n’était pas complètement perdu.
C’est devenu un cliché, mais c’est vrai : ces trois années de thèse se sont écoulées à

toute vitesse. Elles ont eu leur lot de frustrations et d’angoisses, mais j’ai toujours pu
compter sur la bienveillance de Julien et de Yueyun. D’autres au LAGA ont été à certains
moments des tuteurs officieux et leurs conseils m’ont été précieux. Je pense en particulier
(mais je m’excuse auprès de ceux que j’aurais oublié) à Hakim Boumaza, Éric Hoffbeck,
Gilles Scarella et François Cuvelier, Laurent Tournier, grâce à qui je tape jk partout tout
le temps, Bénédicte Haas, Bastien Mallein et plus généralement la chaleureuse équipe de
probabilités et statistiques. Merci aussi à Emmanuel Roy et Isabelle Gaudron-Trouvé qui
ont bien voulu partagé cette année leur bureau (donc un peu de leur vie) avec moi. Merci
à Frédéric Clerc et Gwenola Madec qui m’ont souvent remonté le moral ou avec qui j’ai
tout simplement eu des activités et discussions intéressantes. Merci aussi à l’éthologue
Christophe Féron pour ces innombrables pauses clope agréables et instructives sur la
passerelle du 3ème.
Mes enseignements de moniteur m’ont beaucoup apporté et le contact avec les étu-

diants m’a souvent remis les pieds sur terre et donné le sentiment d’être utile à certaines
périodes où ce n’était pas si clair. Merci aux étudiants de L3 informatique et aux quelques

6



étudiants de la préparation à l’agrégation. Vous enseigner un peu du peu que je sais a été
un grand plaisir. Merci à Jiaping Wang de m’avoir fait confiance pour donner les TD et
les TP de probabilités et statistiques pendant 3 ans et à Pascal Boyer et François Béguin
pour m’avoir confié pendant 2 ans l’enseignement de la modélisation aux agrégatifs.
Je remercie également Isabelle, Yolande, Jean-Philippe Dru et ses gif animés, Jean-

Philippe Domergue, Gilles, Xavier et Marisol pour leur travail et leur humanité. J’ai aussi
une pensée pour la mémoire de Michaël Fortier qui m’avait aidé de nombreuses fois, en
seulement un an ! Merci à Daniel Ernoult, reprographiste infatigable et perfectionniste
qui a imprimé cette thèse.
Bien sûr, je remercie du fond du cœur toute la petite famille des doctorants du LAGA.

Sans nos délires, nos angoisses partagées, nos échanges, je ne pense pas que j’aurais pu
venir à bout de cette aventure. Je pense à Tom toujours calme, Mattia toujours calme
aussi (mais au début tu mangeais trop lentement, ça m’agaçait), Carlos, seul autre sur-
vivant du M2, Nicolas, sans qui les repas au douze (on s’y retrouve) ont perdu beaucoup
de leur saveur, Anna-Laura la taulière qui, bien que ne m’ayant jamais pardonné de lui
avoir « pris son bureau » a été une amie pendant ces trois ans, Irène, Didier, Amin le dy-
namicien, Giuseppe, son accent des Pouilles et son rire inimitable et contagieux, Éva, la
meilleure voisine de bureau, Bruno avec qui on faisait des séances de thérapie de groupe
à deux et qui m’a fait découvrir le groupe Death (que j’écoute au moment où j’écris ces
lignes), Jean-Michel (le vendu) et Ana (contrebandière de cigares cubains), Marta (qui
trace des droites avec Matlab), Xiaoyu (qui m’a appris une phrase en chinois), Kieu Hieu
(qui n’a pas réussi à m’apprendre une phrase en viêtnamien) du bureau B410, vous qui
n’avez pas connu vos glorieux « ancêtres » Amine, Liza, Julien et Taiwang.
Parenthèse : dans ce bureau B410, il y a souvent eu presque autant de nationalités

différentes que de doctorants (exception notable : l’invasion italienne de l’année dernière).
J’espère que le projet d’augmentation drastique des frais d’inscription à l’université
pour les étrangers extra-communautaires sera abandonné et que cette situation pourra
perdurer.
Les doctorants de probabilités occupent une place particulière : j’ai eu avec eux, en

plus de tout le reste, des échanges scientifiques et des moments de vie en commun lors des
conférences et écoles d’été : Delphin (qui m’a accueilli dans son fief bordelais), Marion
(« positive attitude ») et Thuy (« fighting ! »).
Ces conférences ont été l’occasion de faire de belles rencontres. J’en oublie beaucoup,

mais je pense à Thomas Budzinski, Michel, Nathan, mon grand-frère de thèse Thomas
Madaule, Olivier, Pascal, Camille, Cyril, Romek, Paul, Joseba, Marta et tant d’autres.
Merci pour tous ces bons moments.
L’école doctorale Galilée doit être aussi remerciée pour avoir toujours contribué fi-

nancièrement à ces escapades scientifiques. Dominique Ledoux et Olivier Bodini, ses
directeurs, font des efforts importants pour proposer aux doctorants des formations et
journées scientifiques intéressantes. Merci à eux !
Merci à Xinxin Chen qui a manifesté de l’intérêt pour mes recherches (cela fait toujours

plaisir !), à Élie Aïdékon qui m’a encouragé à écrire ce qui est maintenant le chapitre 5
de cette thèse, à mon grand-père de thèse Jacques Peyrière avec qui j’ai eu d’agréables
conversations, mathématiques ou non (il a aussi essayé de m’enseigner le chinois, mais

7



Remerciements

ça n’a pas marché) et plus généralement à tous les chercheurs nombreux qui m’ont aidé
d’une façon ou d’une autre et traité avec bienveillance.
Mes amis m’ont soutenu pendant ce travail qui pourtant m’éloignait d’eux. Merci à

Olivier, Noémie, Sophie, Laetitia et Steph’ (du groupe « thérapie, pédagogies alternatives
et course à pied », faut qu’on s’y remette !), Nathalie, Jean-Marcel, Marie, Stéphane et
Chloé, Nico et Lorena, j’ai hâte qu’on se retrouve tous pour chanter dans une maison
quelque part. Merci à Tristan, Thibault pour ces moments partagés quand j’en avais
tant besoin. Merci à Juloss, Tek et Tandyys pour les encouragements et les parties de
Starcraft. Merci à Guillaume, Charline, Colas, Typhaine, Germain, les amis de toujours
et j’espère pour toujours. Merci à Laurin et Pici qui m’ont supporté (dans les deux sens
du terme) pendant toutes ces années. À tous, j’espère pouvoir vous consacrer un peu
plus de temps maintenant. Merci aussi à Éric qui écoute patiemment mes jérémiades et
me donne souvent de bons conseils.
Il y a aussi ma famille : mes tantes, mes oncles, mes cousins et cousines. Et surtout mes

frères Paul et Jean et leurs compagnes Alice et Élyse. Merci pour tout, et promis, aux
vacances de Noël j’essaie d’arrêter de travailler. Un grand merci aussi à ma belle-famille,
à Marcel, Mireille, Lucie et Nicolas.
(J’ai bientôt fini.) Merci au département d’informatique qui a bien voulu m’accueillir

pour cette année d’ATER. Des remerciements particuliers à Christine Choppy, Sophie
Toulouse et Sylvie Borne qui n’ont pas eu froid aux yeux en me proposant des enseigne-
ments pour lesquels je dirais pudiquement que j’apprends beaucoup. Merci à Antoine et à
Virgile avec qui il est très agréable de discuter des contenus ou de la pédagogie des cours.
Je ne pouvais rêver mieux pour une formation accélérée d’enseignant d’informatique.
C’est le moment de remercier mon jury. Un immense merci à Nicolas Curien (encore)

et à Nina Gantert pour avoir accepté de rapporter ma thèse dans un délai si court.
C’est aussi un très grand honneur de soutenir ma thèse devant un tel jury. Je remercie
profondément Élie Aïdékon (encore), Nicolas Curien (encore), Ai-Hua Fan, Bénédicte
Haas (encore) et Quansheng Liu d’avoir accepté d’en faire partie.
C’est peut-être aussi le moment de remercier proprement Julien et Yueyun. Vous

m’avez accordé un soutien sans faille et une confiance permanente pendant tout ce temps.
Vous avez su m’encadrer lorsqu’il le fallait et me lâcher totalement la bride lorsqu’il le
fallait. Au cœur de l’été 2017, vous vous êtes relayés pour me conseiller à distance
pendant la rédaction de mon premier article. Vous avez souvent passé entre 3 et 5 heures
d’affilée avec moi lorsque j’essayais de vous expliquer ce que je comprenais des obscurs
articles de Lyons, Pemantle et Peres. Vous ne vous êtes jamais découragés (ou ne l’avez
pas fait paraître, ce qui est déjà un exploit) devant mon regard vitreux lorsque vous
m’expliquiez des notions basiques qui m’échappaient. Vous ne vous êtes pas fatigués (ou
ne l’avez pas fait paraître, ce qui est déjà un exploit) par mon manque pathologique de
confiance en moi. Pour toutes ces raisons et encore beaucoup d’autres, merci. J’espère
pouvoir continuer à travailler avec vous.
Enfin, il y a Mélanie, qui, malgré tout ce que ça implique pour elle, m’a toujours

poussé à continuer et qui porte en elle, un peu seule, l’enfant que nous avons fait à deux.
Je finis par Maman. Donc, tu vois, tu me manques mais je ne suis pas seul pour autant.

Et en partant, sans le savoir, tu m’as fait ce dernier cadeau en me remettant en selle

8



sur le chemin des mathématiques. Je ne sais pas combien de temps encore je pourrai le
suivre, mais je suis déjà content du périple accompli. Je sais que Papa et toi auriez été
fiers et heureux pour moi.

9





Introduction (en français)
Une courbe de Jordan est une injection continue du cercle unité dans le plan com-

plexe C. Un théorème de Camille Jordan affirme que le plan complexe privé d’une telle
courbe comporte deux composantes connexes, dont l’une est bornée et l’autre non. Ar-
thur Moritz Schoenflies affine ce résultat en montrant qu’une courbe de Jordan peut
être prolongée en un homéomorphisme du disque unité fermé dans C dont l’image du
disque ouvert est la composante bornée. En particulier, celle-ci est simplement connexe.
Appelons domaine de Jordan une telle partie et notons-la Ω.
Le problème de Dirichlet sur Ω est la recherche, pour une fonction continue donnée u

sur la courbe de Jordan ∂Ω d’une fonction û sur la fermeture Ω de Ω qui prolonge u et
est harmonique sur Ω, c’est-à-dire vérifie, pour tout x dans Ω et tout r > 0 tel que la
boule fermée B(x, r) est incluse dans Ω, û(x) = E[û(X)], où la variable aléatoire X est
de loi uniforme sur le cercle ∂B(x, r). Le domaine Ω étant simplement connexe, il vérifie
la condition du cône de Poincaré (voir par exemple [9, Chapitre II, Proposition 1.14]) et
l’unique solution du problème de Dirichlet est donnée par

û(x) = Ex[u(Bτ )],

où (Bt)t≥0 est, sous Px, un mouvement brownien dans le plan issu de x et τ est le temps
d’atteinte par (Bt) de ∂Ω.
Le lien entre mouvement brownien et équation de la chaleur remonte au moins à 1905,

annus mirabilis d’Einstein et à son article Sur le mouvement de petites particules en
suspension dans un liquide immobile, comme requis par la théorie cinétique moléculaire
de la chaleur ([16]) ou à Bachelier et sa théorie de la spéculation ([8]). Ce lien est
progressivement exploré par les mathématiciens pendant la première moitié du XXème

siècle, voir les notes de [48, Chapitre 3] pour un historique plus détaillé.
D’après le théorème de représentation de Riesz-Markov, pour x0 fixé dans Ω, la fonc-

tion u 7→ û(x0) peut s’écrire comme l’intégrale de u par rapport à une mesure borélienne
µx0 et cette mesure s’appelle la mesure harmonique sur ∂Ω. Le point de vue probabiliste
est d’identifier µx0 à la loi de Bτ sous Px0 . Lorsque la courbe de Jordan ∂Ω est rectifiable,
un théorème des frères Riesz affirme que pour tout x0 dans Ω, µx0 est équivalente à la
longueur d’arc (c’est-à-dire la mesure de Hausdorff 1-dimensionnelle) sur ∂Ω. Cependant,
on peut vouloir considérer des courbes non rectifiables.
Un exemple de telle courbe est le flocon de Koch inventé par le mathématicien suédois

Helge von Koch en 1904. La courbe de Koch est construite itérativement de la façon
suivante. Initialement, on considère un segment [AB] du plan que l’on découpe en trois
parties égales [AC], [CE] et [EB] puis on construit le triangle équilatéral CDE, de
sorte que la ligne brisée ACDEB est composée de 4 segments de même longueur, voir
figure 1. On itère la construction en recommançant à chaque étape les mêmes opérations
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Introduction (en français)

A C E B

D

Figure 1 – Première étape de la construction de la courbe de Koch

Figure 2 – Flocon de Koch

sur chaque segment de la ligne brisée. Pour obtenir le flocon, une courbe fermée, il suffit
de joindre 3 copies de la courbe de von Koch, voir figure 2. Dans l’article [59], von
Koch prouve que son flocon est bien une courbe de Jordan mais, faisant ainsi écho aux
fonctions de Weierstrass, que celle-ci n’admet nulle part de tangente. À cette époque,
un objet comme celui-ci était vu comme une curiosité (voire une monstruosité) mais
les travaux de Benoît Mandelbrot ont contribué à faire de ces objets, qu’il a qualifiés
de fractals, des sujets d’étude de premier plan. En particulier, Mandelbrot propose de
quantifier le degré d’irrégularité d’un tel objet par sa dimension de Hausdorff. Pour le
flocon, la valeur qu’il calcule en utilisant des arguments géométriques est log(4)/ log(3).
Plus tard, le mathématicien australien John Hutchinson dans l’article fondateur [29]
donnera un autre point de vue sur le flocon en le faisant entrer dans la catégorie des
attracteurs de systèmes de similitudes itérées pour lesquelles, sous la condition dite de
l’ensemble ouvert, il établit que la dimension de similarité, facile à calculer, est égale à
la dimension de Hausdorff.
Revenons au problème de Dirichlet. On pourrait s’attendre à ce que la mesure harmo-

nique µx0 sur une courbe de Jordan non rectifiable soit absolument continue par rapport
à une mesure de Hausdorff s-dimensionnelles pour s > 1 (ou un raffinement de celle-ci).
Nikolai Georgievich Makarov, dans [47] montre qu’il n’en est rien. Son théorème, d’une
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précision remarquable énonce que quelle que soit la courbe de Jordan, la mesure har-
monique est absolument continue par rapport à la mesure de Hausdorff de fonction de
jauge ϕ (voir 1.10 pour une définition) définie par

ϕ(t) = t exp
(
C
√

log(1/t) log log log(1/t)
)
,

où C est une constante universelle et que, par ailleurs, pour toute fonction de jauge ψ
négligeable devant t quand t tend vers 0, la mesure harmonique et la mesure de Hausdorff
relativement à ψ sont mutuellement singulières. De la première partie de cet énoncé, il
découle que la dimension de Hausdorff inférieure de la mesure µx0 (voir section 1.11 pour
une définition) est supérieure ou égale à 1 et de la deuxième partie, que sa dimension
de Hausdorff supérieure est inférieure ou égale à 1. Ainsi, on a dimH µx0 = 1 tandis que
la mesure µx0 a un support plein dans ∂Ω qui peut être de dimension strictement plus
grande que 1, comme c’est le cas, par exemple, avec le flocon de Koch.
Ce phénomène plutôt surprenant a été appelé chute de dimension (dimension drop)

par Russell Lyons, Robin Pemantle et Yuval Peres dans [43] en 1995. L’objet de cet
article, qui par bien des aspects est à la base du présent travail, est l’étude de la marche
aléatoire simple sur un arbre de Galton-Watson surcritique conditionné à survivre, cadre
que nous allons introduire dans les prochains paragraphes.
Pour définir un arbre de Galton-Watson T , on se donne une loi de reproduction, c’est-

à-dire une suite (pk)k≥0 de réels positifs ou nuls de somme 1 et de façon informelle (pour
une définition plus précise, voir le chapitre 2) la racine ø de l’arbre a un nombre aléatoire
d’enfants suivant (pk), puis ses enfants eux-même se reproduisent de façon indépendante
suivant la même loi et ainsi de suite, voir la figure 3. Si l’on note q la probabilité que T
soit fini et m =

∑
k≥0 kpk la moyenne de la loi de reproduction , il est bien connu que

q < 1 équivaut à m > 1. La loi de reproduction (pk) est dite surcritique (respectivement
critique, sous-critique) lorsque m > 1 (respectivement m = 1 , m < 1).
Pour un réel λ > 0, la marche aléatoire λ-biaisée sur un arbre enraciné est une marche

aléatoire aux plus proches voisins avec poids λ vers le parent et poids 1 vers les enfants,
voir figure 4. On parle de marche aléatoire simple lorsque λ = 1. Sur l’événement de non-
extinction, c’est-à-dire lorsque T est infini, une marche aléatoire aux plus proches voisins,
toujours irréductible, est soit récurrente soit transiente. Dans [39], Russell Lyons montre
que la marche λ-biaisée sur T conditionné à survivre est récurrente si et seulement si
λ ≥ m. Le bord ∂T de l’arbre T est l’ensemble des rayons dans T , c’est-à-dire les chemins
infinis (ξ0 = ø, ξ1, ξ2, . . . ) partant de la racine et tels que pour tout i ≥ 1, ξi+1 est un
enfant de ξi. On peut le munir d’une distance naturelle d en posant, pour deux rayons
ξ et η, d(ξ, η) = exp(−n) si n est le maximum des indices i tels que ξi = ηi. Cela fait
de ∂T un espace ultramétrique compact. La dimension de Hausdorff de cet espace vaut
presque sûrement logm, d’après un théorème de John Hawkes ([25]) amélioré par Lyons
(toujours dans [39]). Lorsqu’une marche aléatoire (Xn) sur T est transiente, la mesure
harmonique associée à cette marche est la loi de l’unique rayon Ξ partageant une infinité
de sommets avec la trajectoire (Xn). C’est une mesure de probabilité borélienne sur ∂T .
On peut maintenant énoncer les principaux résultats de [43]. Dans le cas d’un arbre
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Figure 3 – 10 générations d’une simulation d’un arbre de Galton-Watson de loi de
reproduction uniforme sur {0, 1, 2, 3}

x∗

x

x1 x2 ... xνt(x)

λ

1
1

1

Figure 4 – Poids associés à la marche λ-biaisée : ici x est un sommet d’un arbre enraciné
t, x∗ est son parent et x1, ..., xνt(x) sont ses enfants.
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de Galton-Watson tel que m < ∞, p1 < 1 et p0 = 0 1, la marche aléatoire simple (qui
est nécessairement transiente) va vers l’infini à vitesse linéaire : presque sûrement, on a

lim
n→∞

|Xn|
n

= E
[
ν − 1
ν + 1

]
,

où |Xn| désigne la hauteur de la n-ième position de la marche aléatoire et ν est une
variable aléatoire de loi (pk). De plus, si la loi de reproduction n’est pas dégénérée,
la mesure harmonique a une dimension strictement inférieure à logm, la dimension de
∂T . Autrement dit, le phénomène de chute de dimension se produit également dans ce
cadre. Sur le plan des outils développés pour démontrer ces résultats, les apports de
cet article sont également considérables. Notons en particulier l’invention des arbres de
Galton-Watson augmentés (augmented Galton-Watson trees) dont la racine a un enfant
supplémentaire pour obtenir un environnement stationnaire par rapport à la marche
aléatoire et le concept de règle cohérente de flot permettant d’utiliser la théorie ergodique
sur des arbres de Galton-Watson munis d’un rayon. Cette théorie sera détaillée dans le
chapitre 2 de cet ouvrage.
L’année suivante, ces mêmes auteurs traitent le cas de la marche λ-biaisée transiente.

Ils démontrent dans [44] que le phénomène de chute de dimension a encore lieu et que
lorsque λ est plus grand qu’une valeur critique λc dépendant de la probabilité d’extinc-
tion q (et nulle si p0 = 0), la marche aléatoire va encore vers l’infini à vitesse linéaire.
Cependant, le manque d’un environnement stationnaire par rapport à la marche aléa-
toire fait que d’une part, les résultats obtenus sont moins précis (pas de formule explicite
pour la vitesse et la dimension) et que d’autre part les techniques utilisées sont très dif-
férentes du cas λ = 1. C’est l’étude de temps particuliers de la marche appelés temps de
régénérations qui permet finalement d’obtenir la chute de dimension. Nous détaillerons
ces arguments dans le chapitre 5, dans un cadre plus général. L’article se termine sur
des questions qui sont toujours largement ouvertes :

1. Si p0 = 0, est-ce que la vitesse de la marche est une fonction monotone de λ ?
2. Est-ce que la dimension de la mesure harmonique est une fonction monotone de λ ?
3. Quelle est la régularité de ces fonctions ?

L’année 2013 voit avec l’article [3] un grand progrès dans la compréhension des marches
λ-biaisées transientes sur les arbres de Galton-Watson infinis. Dans cet article, Élie
Aïdékon utilise certaines particularités de ces marches (de façon cruciale, le fait qu’à un
temps frais, c’est-à-dire un temps où la marche découvre un nouveau sommet, retourner
la trajectoire et le temps s’annulent en un certain sens), pour obtenir un environnement
asymptotique vu de la particule. Il en déduit une formule exprimant la vitesse en fonction
de la loi de la conductance de l’arbre

β(T ) = PTø (τø∗ =∞),

1. Cette hypothèse n’est présente que pour simplifier l’exposition, les résultats de [43] sont plus
généraux.
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Figure 5 – Vitesse `λ de la marche λ-biaisée en fonction de λ dans le cas p1 = p2 = 1/2.

où PTø est la loi de la marche λ-biaisée sur T partant de ø, ø∗ est un parent artificiel de
ø et τø∗ est son temps d’atteinte par la marche aléatoire. Si `λ désigne la vitesse de la
marche sur T conditionné à survivre, pour λc < λ < m, alors

`λ = E
[

(ν − λ)β0
λ− 1 + β0 +

∑ν
j=1 βj

]/
E
[

(ν + λ)β0
λ− 1 + β0 +

∑ν
j=1 βj

]
.

Dans cette expression, les variables aléatoires β0, β1, ... sont des copies i.i.d. de β(T )
et ν est distribuée suivant (pk) et est indépendante des βi. Malheureusement, la loi
de β(T ) est encore très mal comprise et cette formule n’a pour le moment permis de
prouver la monotonie de la vitesse que sur l’intervalle [0, 1/2]. On peut cependant vérifier
numériquement la validité de la conjecture de Lyons, Pemantle et Peres sur la vitesse. En
effet, la conductance est la plus grande solution de l’équation distributionnelle récursive

β(T ) d=
∑ν
j=1 βj

λ+
∑ν
j=1 βj

.

On peut donc, à λ fixé se servir de cette égalité en loi pour calculer numériquement la
loi de β(T ) et ainsi obtenir une valeur numérique de `λ. Pour p1 = p2 = 1/2, la courbe
obtenue est la figure 5 qui semble confirmer la conjecture (la valeur 1/6, pour λ = 1, est
donnée par la formule de Lyons, Pemantle et Peres).
Notre premier résultat, obtenu de façon indépendante par Shen Lin ([35]) est une for-

mule similaire à celle d’Aïdékon pour calculer la dimension de la mesure harmonique.
En utilisant une idée de Nicolas Curien et Jean-François Le Gall dans [10] 2 nous avons

2. Ces auteurs précisent que cette idée provient d’un « passage à la limite non rigoureux » de l’envi-
ronnement d’Aïdékon
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Figure 6 – Dimension dλ de la mesure harmonique en fonction de λ, pour p1 = p2 =
1/2.

donné des conditions algébriques suffisantes pour qu’une règle de flot admette une pro-
babilité invariante de densité explicite par rapport à la loi de T . Ce résultat abstrait est
donné à la fin du chapitre 2. Il s’applique au cas de la marche λ-biaisé (voir le chapitre 4
ou [55]) et, avec la théorie ergodique sur les arbres de Galton-Watson, permet d’obtenir
le résultat suivant sur la dimension dλ de la mesure harmonique en fonction du biais :

dλ = log(λ)− C−1E
[
log(1− β0)

β0
∑ν
j=1 βj

λ− 1 + β0 +
∑ν
j=1 βj

]
,

où la constante de renormalisation C est égale à l’espérance de la fraction ci-dessus. De
façon similaire, on peut mener des expérimentations numériques pour tester la validité
de certaines conjectures apparaissant dans [44, 45]. Dans la figure 6, les deux limites
en 0 et m sont données par un théorème de Shen Lin et valent respectivement E[log ν]
et logE[ν] = logm. S’il est vrai que logm est une borne supérieure stricte (d’après le
théorème de chute de dimension de Lyons, Pemantle et Peres), il n’est pas prouvé en
toute généralité que E[log ν] est une borne inférieure. Bien sûr une preuve de la continuité
et de la monotonie de la fonction λ 7→ dλ impliquerait cette propriété.
Nous continuons cette histoire en revenant sur l’article [10] de Curien et Le Gall. Il est

ici question de marche aléatoire simple (Xk) sur un arbre de Galton-Watson T (n) critique
conditionné à survivre au moins jusqu’à la génération n. On suppose ici que la variance
de la loi de reproduction est finie. Si l’on note τ (n) le premier temps où la marche atteint
la hauteur n, et, pour x à hauteur n dans T (n), µn({x}) = PT (n)

ø (Xτ (n) = x), alors on peut
voir en µn l’analogue de la mesure harmonique pour ce modèle. Les auteurs démontrent
que, bien que l’ensemble des sommets à hauteur n ait de l’ordre de n éléments, la
mesure harmonique est presque entièrement portée par une partie ayant de l’ordre de nδ
éléments, où δ ≈ 0, 78 est une constante universelle, ce qui est encore un résultat de chute
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de dimension. Pour ce faire, ils réduisent (de façon hautement non triviale) le problème à
un problème de chute de dimension sur un arbre infini muni de longueurs d’arêtes (nous
avons dans [55] appelé ces arbres « arbres à longueurs récursives »). Notons T̃ (n) l’arbre
obtenu à partir de T (n) après élagage (on ne garde que les arêtes appartenant à un plus
court chemin entre la racine et un sommet de hauteur n), et réduction (on ne conserve
que les sommets à hauteur n, la racine et les points de branchement dans l’arbre) mais
en gardant la distance de graphe héritée de T (n). Alors, au sens de Gromov-Hausdorff,
on a convergence de 1

n T̃
(n) vers ce que les auteurs appellent l’arbre réduit continu défini

de la façon suivante : la loi de reproduction est donnée par p2 = 1 et pour chaque mot x
sur l’alphabet {1, 2} on tire une variable aléatoire Ux uniforme sur (0, 1), puis on donne
à l’arête reliant x à son parent x∗ la longueur

Ux(1− Ux∗) · · · (1− Uø),

où le produit ci-dessus est indexé par les ancêtres stricts de x. La marche aléatoire
simple sur T (n) correspond à la limite à une marche aléatoire aux plus proches voisins
sur cet arbre réduit continu, où les poids de transitions sont les inverses des longueurs des
arêtes (pour plus de précision voir le chapitre 3). Cette marche est transiente. Curien et
Le Gall parviennent ensuite, par deux méthodes très différentes (l’une d’elle utilisant le
calcul stochastique) à obtenir une mesure invariante par rapport au flot harmonique puis
montrent que la dimension de la mesure harmonique est δ < 1 tandis que la dimension
du bord (pour la métrique associée aux longueurs d’arêtes) vaut 1. Dans [34], Shen
Lin, alors en thèse sous la direction de Le Gall, étend ce résultat au cas où la loi de
reproduction de l’arbre de départ est dans le bassin d’attraction d’une loi α-stable avec
α ∈ (0, 1], le principal changement étant le fait que les sommets de l’arbre réduit continu
peuvent avoir plus de 2 enfants.
Dans le chapitre 3, nous généralisons une partie de ces résultats et nous intéressons

au cas où la loi de reproduction dans l’arbre à longueur récursive vérifie uniquement
l’hypothèse p0 = 0 (et p1 < 1) et en remplaçant la distribution uniforme sur (0, 1) par
une distribution quelconque sur (0, 1), voir la figure 7 (où pour une raison pratique on
considère les variables i.i.d. à valeurs dans (0, 1) comme les inverses de variables i.i.d.
(Γx)x∈T à valeurs dans (1,∞)). Nous montrons, en réécrivant une partie de la théorie
ergodique sur les arbres de Galton-Watson dans ce cadre, que sous des hypothèses peu
restrictives, le phénomène de chute de dimension a encore lieu et la dimension du bord
de l’arbre pour la distance associée aux longueurs est le paramètre de Malthus α défini
par

E[(1− Γ−1
ø )α] = 1/m.

Les deux derniers chapitres de cette thèse sont consacrés à l’étude d’un modèle très
étudié (et très riche par la diversité des comportements possibles) appelémarche aléatoire
en milieu aléatoire sur un arbre de Galton-Watson 3 et introduit dans [41]. Il s’agit de
considérer non pas seulement une loi de reproduction mais une variable aléatoire A
à valeurs dans l’ensemble Tuples =

⋃
k≥0(0,∞)k des suites finies de réels strictement

3. Cette appélation est assez maladroite car une marche aléatoire sur un arbre de Galton-Watson est,
de fait, une marche aléatoire en mileu aléatoire.
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Figure 7 – Une représentations schématique d’un arbre de Galton-Watson à longueurs
récursives

positifs, où l’on convient que (0,∞)0 contient la suite vide (). On construit un arbre
pondéré aléatoire de la façon suivante : on commence par tirer Aø de même loi que A,
on donne à la racine ø un nombre d’enfants égal à la longueur de la suite Aø et pour
chaque enfant i de la racine, on donne à l’arête {ø, i} un poids AT (i) égal à la i-ième
composante de Aø, puis on réitère ce procédé de façon indépendante pour chaque enfant
i de ø et ainsi de suite. On obtient ainsi un arbre de Galton-Watson T ainsi qu’une
fonction AT : T \ {ø} → (0,∞) donnant, pour chaque x de T \ {ø}, le poids de l’arête le
reliant à son parent. On peut alors définir une marche aléatoire aux plus proches voisins
en posant

PT (x, y) =


AT (xi)

1 +
∑νt(ø)
j=1 AT (xj)

si y = xi, pour un 1 ≤ i ≤ νT (x) ;

1
1 +

∑νT (ø)
j=1 At(xj)

if y = x∗,

où νT (x) désigne le nombre d’enfants de x dans T et x∗ son parent, voir la figure 8. La
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x∗

x

x1 x2 ... xνT (x)

1
AT (x1)

AT (x2)

AT (xνT (x))

Figure 8 – Poids de la marche aléatoire sur l’arbre pondéré aléatoire T

fonction ψ : [0,∞)→ (−∞,∞] définie par

ψ(s) = logE
[νT (ø)∑
i=1

AT (i)s
]

joue un rôle important dans l’étude de ce modèle. En particulier, si min[0,1] ψ > 0, alors
la marche aléatoire sur l’arbre pondéré T est presque sûrement transiente. Se pose alors
la question de la chute de dimension. Dans le chapitre 5, nous appliquons la méthode
esquissée dans [44] pour démontrer que sous l’hypothèse m <∞, la chute de dimension
a toujours lieu, sauf si le modèle se réduit à une marche λ-biaisée sur un arbre régulier.
Pour présenter brièvement cette méthode, on doit introduire les temps de sortie et les
temps de régénération. Pour une trajectoire (Xk) de la marche aléatoire, un entier s ≥ 1
est un temps de sortie si Xs−1 est le parent de Xs et pour tout k > s, Xk 6= (Xs)∗. Après
un tel temps de sortie, la marche aléatoire est condamnée à rester dans le sous-arbre
issu de Xs. Si de plus, s est un temps frais, c’est-à-dire que s est le premier temps de
visite du sommet Xs, alors s est appelé un temps de régénération de (Xk). On montre
qu’il y a presque sûrement une infinité de temps de régénérations et qu’à ces temps
l’environnement qui est devant la marche est stationnaire. Pour revenir aux temps de
sortie, qui sont ceux qui nous intéressent, suivant l’idée de [44], on construit une tour
de Rokhlin. L’examen minutieux de cette tour nous conduit à introduire une nouvelle
fonction κ sur l’espace des arbres pondérés qui sera la densité par rapport à la loi de T
d’une mesure invariante par rapport au flot harmonique, nous permettant de conclure.
Dans le dernier chapitre de cette thèse, nous quittons les marches transientes pour

nous consacrer à un cas récurrent dans le modèle précédent appelé le cas sous-diffusif.
Nous travaillons sous les hypothèses suivantes : on suppose qu’on est dans le cas dit
normalisé

ψ(1) = log E
νT (ø)∑
i=1

AT (i) = 0.

et pour pouvoir appliquer le théorème de Biggins (voir aussi [32] de Kahane et Peyrière,
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Figure 9 – Comportement schématique de ψ sous les hypothèses du chapitre 6

ou la preuve de Lyons [40]), on fait d’abord l’hypothèse

ψ′(1) := E

νT (ø)∑
i=1

AT (i) log AT (i)

 ∈ [−∞, 0);

et, si
κ = inf{s > 1 :ψ(s) = 0} ∈ (1,∞],

on suppose que

E
[(νT (ø)∑

i=1
AT (i)

)κ]
+ E

[νT (ø)∑
i=1

AT (i)κ log+ AT (i)
]
<∞, si 1 < κ ≤ 2,

E
[(νT (ø)∑

i=1
AT (i)

)2]
<∞, si κ ∈ (2,∞].

Ces hypothèses sont rappelées dans la figure 9. La martingale additive (Mn(T ))n≥0
(parfois aussi appelée martingale de Mandelbrot ou martingale de Biggins) est définie
par

Mn(T ) =
∑
|x|=n

∏
ø≺y�x

AT (y).

D’après le théorème de Biggins, elle converge presque sûrement et dans L1 vers une
variable aléatoire M∞(T ) non dégénérée. Si l’on désigne par Cn(T ) la conductance entre
la racine de T et ses sommets à hauteur n, la récurrence de la marche implique que Cn(T )
tend presque sûrement vers 0 et nous nous demandons à quelle vitesse. Nous montrons
que

0 < lim inf
n→∞

n1/(κ−1)E[Cn(T )] ≤ lim sup
n→∞

n1/(κ−1)E[Cn(T )] <∞ si 1 < κ < 2 ;

0 < lim inf
n→∞

n lognE[Cn(T )] ≤ lim sup
n→∞

n lognE[Cn(T )] <∞ si κ = 2 et

lim
n→∞

nE[Cn(T )] = ‖M∞(T )‖2 si κ > 2.
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et dans tous les cas que, presque sûrement et dans Lp pour p ∈ [1, κ), si 1 < κ ≤ 2 et
dans L2 si κ > 2,

lim
n→∞

Cn(T )/E[Cn(T )] = M∞(T ).

Le reste de cette thèse ne dépend pas de cette introduction et toutes les définitions
seront rappelées dans un cadre plus formel.
Le chapitre 1 présente les arbres planaires tels qu’ils ont été formalisés par Jacques

Neveu ([50]) et leurs bords. On y caractérise une famille de « bonnes » distances sur le
bord d’un arbre et on donne une définition un peu originale des mesures de Hausdorff
et de packing sur ces espaces en les motivant par la recherche de théorèmes de densité.
Ensuite, on rappelle les définitions classiques de ces mesures sur les espaces métriques et
on fait le lien avec celles que nous avons introduites en utilisant notre caractérisation des
distances. Enfin on définit et étudie différentes notions de dimensions pour les mesure
boréliennes sur le bord d’un arbre.
Le chapitre 2 est quant à lui consacré à la théorie ergodique sur les arbres de Galton-

Watson marqués. On y établit avec beaucoup de précision les résultats principaux parus
dans [43] ou [46]. Certains détails sont un peu originaux, au moins dans leurs formes. La
dernière partie de ce chapitre est consacrée au critère algébrique d’existence de mesure
invariante dont nous avons déjà parlé précédemment.
Les chapitres 3 à 6, déjà présentés, comportent l’essentiel des nouveautés de cette

thèse, mais nous n’avons pas hésité à présenter des démonstrations de théorèmes déjà
connus, pour que ce texte soit aussi autonome que possible.
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Introduction (in English)
A Jordan curve is a continuous one-to-one mapping from the unit circle to the complex

plane C. A theorem of Camille Jordan claims that the complement of such a curve in
C is made of two connected components, one being bounded, the other one unbounded.
Arthur Moritz Schoenflies sharpens this result by showing that a Jordan curve can be
extended to a homeomorphism from the closed unit circle to C whose image of the open
unit disk is the bounded connected component. As a consequence, this component is
simply connected. We call it a Jordan domain and denote it by Ω.
The Dirichlet problem on Ω is to find, for a given function u on the Jordan curve

∂Ω, a function û on the closure Ω of Ω, which extends u and is harmonic on Ω, that
is, satisfies, for all x in Ω and all r > 0 such that the ball B(x, r) is included in Ω,
û(x) = E[û(X)], where the random variable X is uniform on the circle ∂B(x, r). Since
Ω is simply connected, it satisfies the Poincaré cone condition (see [9, Chapitre II,
Proposition 1.14]) and the unique solution of the Dirichlet problem is given by

û(x) = Ex[u(Bτ )],

where (Bt)t≥0 is, under Px, a Brownian motion in the plane starting from x and τ is the
first hitting time by (Bt) of ∂Ω.
The link between Brownian motion and the heat equation goes back at least to 1905,

annus mirabilis of Einstein and his article On the Motion of Small Particles Suspended
in a Stationary Liquid, as Required by the Molecular Kinetic Theory of Heat ([16])
or to Bachelier and his theory of speculation ([8]). This link is progressively expored
by mathematicians during the first half of the twentieth century. See the notes of [48,
Chapitre 3] for a more detailed historical account.
By Riesz-Markov’s representation theorem, for a fixed x0 in Ω, the function u 7→ û(x0)

may be written as the integral of u with respect to a Borel measure µx0 and this measure
is called the harmonic measure. With a more probabilistic point of view, µx0 is the
distribution of Bτ under Px0 . When the Jordan curve ∂Ω is rectifiable, a theorem by
the Riesz brothers asserts that for all x0 in Ω, µx0 is equivalent to arc length (that is,
the 1-dimensional Hausdorff measure). We may however consider non rectifiable curves.
An example of such a curve is the Koch snowflake invented by the swedish mathe-

matician Helge von Koch in 1904. The Koch curve is iteratively built in the following
way. First consider a segment [AB] of the plane and cut it in three equal parts [AC],
[CE] and [EB] and build the equilateral triangle CDE so that the broken line ACDEB
is made of 4 segments of the same length, see 1. Iterate the previous construction by
doing the same operations on each segment of the broken line, and so on and so forth.
To obtain a closed curve, it then suffices to glue together 3 Koch curves, see figure 2.
In the article [59] von Koch shows that his snowflake is indeed a Jordan curve, but, in
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A C E B

D

Figure 1 – First step of the construction of the Koch curve

Figure 2 – Koch snowflake
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a way reminiscent to the Weierstrass functions, there is no point of this curve at which
there exists a tangent. At that time, such an object was seen as a curiosity (if not a
monstruosity) but the work of Benoît Mandelbrot made these objects, which he called
fractals, subjects of study in their own right. In particular, Mandelbrot suggests to
quantify the degree of irregularity of such an object by its Hausdorff dimension. For the
snowflakes, he computes, using geometric arguments, the value log(4)/ log(3). Later, the
australian mathematician John Hutchinson in the seminal paper [29] will give another
point of view on the snowflake, by classifying it in the category of attractors of iterated
function systems for which, under a condition called the open set condition, he shows
that the similarity dimension, easy to compute, is equal to the Hausdorff dimension.
Let us go back to the Dirichlet problem. We could expect the harmonic measure

µx0 on a non-rectifiable Jordan curve to be absolutely continuous with respect to a
s-dimensional Hausdorff measure (or a slight modification of it), with s > 1. Nikolai
Georgievich Makarov, in [47] proves this to be wrong. His remarkably precise theorem
states that for any Jordan curve the harmonic measure is absolutely continuous with
respect to the Hausdorff measure associated to the gauge function

ϕ(t) = t exp
(
C
√

log(1/t) log log log(1/t)
)
,

where C is a universal constant and that, on the other hand, for any gauge function
ψ such that ψ(t) = ot→0(t), the harmonic measure and the ψ-Hausdorff measure are
mutually singular. The first part of this statement entails that the lower Hausdorff
dimension of the measure µx0 (see section 1.11 for a definition) is greater or equal to 1
and the second part of the statement implies that its upper Hausdorff dimension is less
or equal to 1. So we have dimH µx0 = 1 while the measure µx0 has full support in ∂Ω
which may have dimension greater than 1, as is the case with the Koch snowflake.
This rather surprising phenomenon has been called dimension drop by Russell Lyons,

Robin Pemantle and Yuval Peres in [43] in 1995. The subject of this article, which in
many ways is the foundation of the present work, is the study of the simple random walk
on a supercritical Galton-Watson tree conditioned to survive. We describe this setting
in the next two paragraphs.
In order to define a Galton-Watson random tree T , we consider a reproduction law,

that is a sequence (pk)k≥1 of non-negative real numbers adding up to 1 and in an informal
way (a more precise definition is given in Chapter 2), the root ø of T has a random number
of children with distribution (pk), then its children reproduce independently with the
same distribution and so on and so forth, see Figure 3. Denoting by q the probability
that T is finite and by m =

∑
k≥0 kpk the mean of the reproduction law, it is well

known that q < 1 if and only if m > 1. The reproduction law (pk) is called supercritical
(respectively critical, subcritical) when m > 1 (respectively m = 1, m < 1).
Now for a real number λ > 0, the λ-biased random walk on a rooted tree is a nearest-

neighbor random walk with weight λ to the parent and 1 to the children, see figure 4.
When λ = 1, we call this walk a simple random walk. On the event of non-extinction,
that is, when T is infinite, a nearest-neighbor random walk, which is always irreducible,
is either recurrent or transient. In [39], Russell Lyons shows that the λ-biased random
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Figure 3 – 10 generation of a simulated Galton-Watson tree of uniform reproduction law
on {0, 1, 2, 3}

x∗

x

x1 x2 ... xνt(x)

λ

1
1

1

Figure 4 – Weights associated λ-biased : here x is a vertex of a rooted tree t, x∗ is its
parent and x1, ..., xνt(x) are its children.
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walk on T conditioned to survive is recurrent if and only if λ ≥ m. The boundary ∂T
of the tree T is the set of all the rays in T , that is the infinite paths (ξ0 = ø, ξ1, ξ2, . . . )
starting from the root and such that for all i ≥ 1, ξi+1 is a child of ξi. We endow it
with a natural distance by setting for two distinct rays ξ and η, d(ξ, η) = exp(−n) if n
is the greatest index such that ξn = ηn. It makes ∂T into a compact ultrametric space.
The Hausdorff dimension of this space is almost surely logm, by a theorem of John
Hawkes ([25]) sharpened by Lyons (again in [39]). When a random walk (Xn) on T is
transient, the harmonic measure associated to this walk is the distribution of the unique
ray Ξ sharing infinitely many vertices with the trajectory (Xn). It is a Borel probability
measure on ∂T .
We may now state the main results of [43]. In the case of a Gaton-Watson tree T such

that m <∞, p0 = 0 4, and p1 < 1, simple random walk (which is necessarily transient)
goes to infinity with linear speed: almost surely,

lim
n→∞

|Xn|
n

= E
[
ν − 1
ν + 1

]
,

where |Xn| denotes the height of the n-th position of the random walk and ν is a random
variable distributed as (pk). Furthermore, if the reproduction law is not degenerated,
the dimension of the harmonic measure is strictly less than logm, the dimension of
∂T . In other words, the dimension drop phenomenon also occurs in this setting. The
tools developped to prove these results are also remarkable. In particular, the authors
invent the augmented Galton-Watson tree whose root has one more child to obtain an
invariant environment with respect to the random walk. They also create the concept
of consistent flow rules in order to build an ergodic theory on Galton-Watson trees with
a distinguished ray. This theory will be detailed in the second chapter of the thesis.
The following year, the same authors treat the case of transient λ-biased walks. They

show in [44] that the dimension drop phenomenon still holds and that when λ is greater
than a critical value λc (which equals 0 if p0 = 0) the random walk again goes to
infinity at linear speed. However, the lack of an invariant environment with respect to
the random walk entails that, on the one hand, the results they obtain are less precise
(no explicit formula for the speed or the dimension) and on the other hand that the
techniques they use are very different from the case λ = 1. The dimension drop is
proved by considering some particular random times associated to the trajectory called
regeneration times. These arguments will be detailes in Chapter 5, in a more general
setting. The paper [44] ends with several questions which are still vastly open:
1. If p0 = 0, is the speed a monotonic function of λ?
2. Is the dimension of the harmonic measure a monotonic function of λ?
3. What is the regularity of these functions?
In 2013 is published [3] which makes an important progress in the understanding of

transient λ-biased random walks on infinite Galton-Watson trees. In this paper, Élie
Aïdékon uses specific features of theses walks (most crucially that at a fresh time, that

4. This hypothesis is present only for simplicity, the results in [43] are more general.
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is, at a time where the walk discovers a new vertex, time reversal and trajectory reversal
cancel out each other in some way) to obtain an asymptotic environment seen from the
particle. From this, he deduces a formula expressing the speed as a function of the
distribution of the conductance of the tree

β(T ) = PTø (τø∗ =∞),

where under PTø , (Xk) is a λ-biased random walk on T starting from ø, ø∗ is an artificial
parent of ø and τø∗ is its first hitting time by the walk (Xk). If we denote by `λ the
speed of the walk on T conditioned to survive, then for λc < λ < m,

`λ = E
[

(ν − λ)β0
λ− 1 + β0 +

∑ν
j=1 βj

]/
E
[

(ν + λ)β0
λ− 1 + β0 +

∑ν
j=1 βj

]
,

In the above expression, the random variables β0, β1, . . . , are i.i.d. copies of β(T ) and
ν has distribution (pk) and is independent of the βi’s. Unfortunately, the distribution
of β(T ) is still very mysterious and this formula allowed only to prove the monotonicity
of the speed in the interval [0, 1/2]. One may however check numerically the validity of
the conjecture about the speed of Lyons, Pemantle and Peres. Indeed, the conductance
satisfies the following recursive distributional equation:

β(T ) d=
∑ν
j=1 βj

λ+
∑ν
j=1 βj .

and is the greatest (for the stochastic partial order) solution of this equation. We may
then, for any fixed λ use this equality in distribution to compute numerically the distri-
bution of β(T ) and thus obtain with Aidékon’s formula a numerical value for the speed.
When p1 = p2 = 1/2, we obtain the graph in figure 5 which seems to confirm the conjec-
ture. The value 1/6 is given by Lyons, Pemantle and Peres’ formula for simple random
walk.
Our first result, independently found by Shen Lin ([35]) is a formula to compute the

dimension of the harmonic measure, similar to that of Aïdékon. Using an idea from
Nicolas Curien and Jean-François Le Gall in [10] 5, we have given a set of algebraic
conditions that, if satisfied by a flow rule, allow us to build an invariant measure with
respect to this flow rule, with an explicit density with respect to the distribution of T .
This abstract result is stated at the end of Chapter 2. It can be applied to the case of
transient λ-biased walk (see Chapter 4 or [55]) and, together with the ergodic theory on
Galton-Watson trees, allows us to obtain the following formula for the dimension dλ of
the harmonic measure:

dλ = log(λ)− C−1E
[
log(1− β0)

β0
∑ν
j=1 βj

λ− 1 + β0 +
∑ν
j=1 βj

]
,

where the renormalization constant C equalis the expectation of the quotient above. In
a similar way, we may conduct some numerical experiments to check the validity of some

5. The authors indicate that this idea follows from a “non-rigorous passing to the limit” in the
environment of Aïdékon.
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Figure 5 – Speed `λ of the λ-biased random walk as a function of λ in the case p1 =
p2 = 1/2.

conjectures in [44, 45]. In figure 6, the limits at 0 and m are given by a theorem of Shen
Lin and equal, respectively, E[log ν] and logE[ν] = logm. We know that logm is a strict
upper bound (by the dimension drop theorem of Lyons, Pemantle et Peres), but it is not
proved in general that E[log ν] is a lower bound. Of course this would be a consequence
of continuity and monotonicity of the function λ 7→ dλ if we could prove it.
We continue this story by going back to the paper [10] of Curien and Le Gall. This

paper is about simple random walk (Xk) on a critical Galton-Watson tree T (n) condi-
tioned to survive at least until generation n, with the assumption that the variance of
the reproduction law is finite. Denoting by τ (n) the first hitting time of height n and
letting for x at height n in T (n), µn({x}) = PT (n)

ø (Xτ (n) = x), we have in µn an analogue
of the harmonic measure in this setting. The authors show that, while it is well-known
that T (n) has a number of vertices at height n of order n, the harmonic measure is almost
completely carried by a part of cardinality of order nδ, where δ ≈ 0, 78 is a universal
constant. This is to be understood as another dimension drop result. To prove it, they
reduce (not easily) the problem to a problem of dimension drop on an infinite tree with
random edge lengths. (we have in [55] called these trees “Galton-Watson trees with
recursive lengths”). Denote by T̃ (n) the tree obtained from T (n) after pruning (only
keeping the vertices that belong to a smallest path between the root and a vertex at
height n) and reduction (only keeping the vertices at height n, the root and the branch-
ing points of the tree) but still keeping the graph distance inherited from T (n). Then, in
the Gromov-Hausdorff sense, the metric space T̃ (n) converges to what the authors call
the continuous reduced tree defined in the following way: the reproduction law is given
by p2 = 1 and for each word x on the alphabet {1, 2} pick a random variable Ux uniform
on (0, 1) in an independent way, then give to the edge connecting x to its parent x∗ the
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Figure 6 – Dimension dλ of the harmonic measure as a function of λ, for p1 = p2 = 1/2.

length
Ux(1− Ux∗) · · · (1− Uø),

where the product above is indexed by the strict ancestors of x. The simple random walk
on T (n) corresponds in the limit to a nearest-neighbor random walk in the continuous
reduced tree, where the transition weights are the inverses of the edge lengths (see Chap-
ter 3 for a more precise definition). This random walk is transient. Then, Curien and
Legall, with two very different methods (one of which using stochastic calculus) obtain
an invariant measure with respect to the harmonic flow and show that the dimension of
the harmonic measure is δ < 1 whereas the dimension of the boundary (for the metric
associated to the edge lengths) is equal 1. In [34], Shen Lin, who was then a PhD student
of Le Gall, extended this result to the case where the reproduction law of the original
tree is in the basin of attraction of an α-stable law, with α ∈ (0, 1], the main difference
being the fact that in the continuous reduced tree, the vertices may have more than 2
children.
In Chapter 3, we generalize a part of these results to the case where the reproduction

law in the Galton-Watson tree with recursive lengths only satisfies p0 = 0 and p1 < 1
and we replace the uniform distribution on (0, 1) by an arbitrary distribution on (0, 1).
see figure 7 (where, for a practical reason the random variables used for the recursive
lengths are the inverse of the the random variables (Γx)x∈T with values in (1,∞)). We
show, by rewriting a part of the ergodic theory on Galton-Watson trees in this setting
that, under some fairly non-restricting hypotheses, the dimension drop phenomenon still
holds and the dimension of the boundary of the tree for the metric associated to the
lengths is the Malthusian parameter α defined by

E[(1− Γ−1
ø )α] = 1/m.

The last two chapters of this thesis are devoted to the study of a model, which has been
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Figure 7 – A schematic representation of a Galton-Watson tree with recursive lengths

the subject of many papers in the past two decades and, called Random walk in a random
environment on a Galton-Watson tree 6 introduced in [41]. To define this model, consider
not only a reproduction law, but a random element A of the space Tuples =

⋃
k≥0(0,∞)k

of finite sequences of positive numbers, where we agree that (0,∞)0 contains only the
empty sequence (). We then build a random weighted tree in the following way: we first
pick Aø distributed as A, give to the root ø a number of children equal to the length of
the sequence Aø and for each child i of the root, we give to the edge {ø, i} a weight AT (i)
equal to the i-th component of Aø, then we iterate this process in an independent way
for each child i of the root, and so on and so forth. We thus obtain a Galton-Watson
tree T , as well as a function AT : T \ {ø} → (0,∞) giving for each x of T \ {ø}, the
weight of the edge connecting it to its parent. We may then define a nearest-neighbor

6. This name is perhaps a bit ill-chosen since a random walk on a Galton-Watson tree is already a
random walk in a random environment.
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random walk by setting:

PT (x, y) =


AT (xi)

1 +
∑νt(ø)
j=1 AT (xj)

si y = xi, pour un 1 ≤ i ≤ νT (x);

1
1 +

∑νT (ø)
j=1 At(xj)

if y = x∗,

where νT (x) is the number of children of x in T and x∗ is its parent, see figure 8. The

x∗

x

x1 x2 ... xνT (x)

1
AT (x1)

AT (x2)

AT (xνT (x))

Figure 8 – Transition weights of the random walk on the weighted Galton-Watson tree
T

function ψ : [0,∞)→ (−∞,∞] defined by

ψ(s) = logE
[νT (ø)∑
i=1

AT (i)s
]

plays an important role in this model. In particular, if min[0,1] ψ > 0, then the random
walk on the weighted tree T is transient and we may ask whether the dimension drop
phenomenon holds in this setting. In Chapter 5 we apply the method sketched in [44]
to show that, under the hypothesis m < ∞, dimension drop occurs, unless the model
reduces to a λ-biased walk on a regular tree. To describe briefly this method, we in-
troduce the exit times and the regeneration times. For a trajectory (Xk) of the random
walk, an integer s ≥ 1 is an exit time if Xs−1 is the parent of Xs and for all k > s,
Xk 6= (Xs)∗. After such a time, the random walk is condemned to stay in the subtree
starting from Xs. If, furthermore, s is a fresh time, meaning that s is the first passage of
the walk at the vertex Xs, then we say that s is a regeneration time of (Xk). We show
that there are almost surely infinitely many regeneration times and that at these times
the forward environment from the particle is stationary. To get back to the exit times,
which are the ones that interest us, following the idea in [44], we build a Rokhlin tower.
A careful examination of this tower leads us to introduce a new function κ on the space
of weighted trees and this function is the density with respect to the distribution of T
of an invariant measure for the harmonic flow, entailing the result.
In the last chapter of this thesis, we leave transient random walks and study, still in

this setting of weighted Galton-Watson trees a recurrent case known as the subdiffusive
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Figure 9 – Schematic behavior of ψ under the hypotheses in Chapter 6

case. We work under the following hypotheses: first assume that we are in the normalized
setting

ψ(1) = log E
νT (ø)∑
i=1

AT (i) = 0.

and in order to apply Biggins’ theorem, that

ψ′(1) := E

νT (ø)∑
i=1

AT (i) log AT (i)

 ∈ [−∞, 0).

In this case, the following parameter plays a crucial role:

κ = inf{s > 1 :ψ(s) = 0} ∈ (1,∞],

and we assume that

E
[(νT (ø)∑

i=1
AT (i)

)κ]
+ E

[νT (ø)∑
i=1

AT (i)κ log+ AT (i)
]
<∞, si 1 < κ ≤ 2,

E
[(νT (ø)∑

i=1
AT (i)

)2]
<∞, si κ ∈ (2,∞].

These hypotheses are summed up in figure 9. The additive martingale (Mn(T ))n≥0 (also
called sometimes Mandelbrot’s martingale or Biggins’ martingale) is defined by:

Mn(T ) =
∑
|x|=n

∏
ø≺y�x

AT (y).

By Biggins’ theorem (see also [32] by Kahane and Peyrière, or [40]), it converges almost
surely and in L1 to a non-degenerate random variable M∞(T ). Denoting by Cn(T ) the
conductance between the root of T and its vertices at height n, by recurrence of the
walk, Cn(T ) converges almost surely to 0 and we are interested in its rate of decay. We
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show that

0 < lim inf
n→∞

n1/(κ−1)E[Cn(T )] ≤ lim sup
n→∞

n1/(κ−1)E[Cn(T )] <∞ if 1 < κ < 2 ;

0 < lim inf
n→∞

n lognE[Cn(T )] ≤ lim sup
n→∞

n lognE[Cn(T )] <∞ if κ = 2 et

lim
n→∞

nE[Cn(T )] = ‖M∞(T )‖2 if κ > 2.

And, in any case, almost surely,

lim
n→∞

Cn(T )/E[Cn(T )] = M∞(T ).

Moreover, this convergence also holds in Lp for p ∈ [1, κ/2), if 1 < κ ≤ 2 and in L2 if
κ > 2,
The rest of this thesis is independent of this introduction and all the definitions will

be recalled in a more formal setting.
Chapter 1 introduces the planar trees as they were formalized by Jacques Neveu ([50])

as well as their boundaries. We characterize a family of “good” metrics on the boundary
of a tree and we give a slightly original definition of Hausdorff and packing measures
with the density theorems as a starting point. We then recall the classical definitions
of these measures on metric spaces and connect them with our definition by using the
aforementioned characterisation of good metrics. Finally, we define and study different
notions of dimensions for the Borel measures on the boundary of a tree.
Chapter 2 is devoted to the ergodic theory on marked Galton-Watson trees. We

establish with many details the main results of [43] or [46, Chapter 17]. Some of these
details are slighlty original, at least in their forms. In the last section of this chapter,
we state and prove the already mentioned algebraic criterion of existence of an invariant
measure.
Chapters 3 to 6, already introduced, include most of the new results of this thesis,

but we did not hesitate to present proofs of known theorems, to make this text as
self-contained as possible.
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1 Trees and their boundaries

In this chapter, we define our (rooted, planar) trees, using Neveu’s formalism which
identifies trees with some particular sets of finite words on the alphabet N∗ = {1, 2, . . . }.
The boundary ∂t of an infinite tree t is the set of all non-backtracking, infinite paths
starting from its root. This boundary may be seen as a subset of the set of all infinite
words on N∗. We equip this set with a topology (two infinite words are “close” to each
other if they have a “long” common prefix) and the associated Borel σ-algebra. At this
point, we characterize a class of metrics on the boundary of an infinite tree which satisfy
a natural property and introduce the notion of diameter function.
We then proceed to describe the Borel probability measures on the boundary of a tree

by associating to each of them a unique unit flow. Random walks on trees are briefly
introduced, with an emphasis on the transient ones since they lead to the harmonic
measures on the boundary of a tree.
We then go back to the study of general unit flows on an infinite tree and see how

Hausdorff and packing measures arise from the study of the upper and lower densities of
a flow. We then proceed to connect our somewhat personnal definition of these measures
with the classical definitions of the literature, using the diameter functions. The study of
the local dimensions of a flow and their links with the Hausdorff and packing dimension
concludes this chapter.

1.1 Finite and infinite words
Let N∗ = {1, 2, . . . } be our alphabet. For an integer n ≥ 1, a word of length n, on the

alphabet N∗ is a finite sequence

x = (i1, i2, . . . , in) (not.)= i1i2 · · · in,

of elements of N∗. The empty word is denoted by ø and has length 0. We write |x| for
the length of a finite word x. The set of all finite words on N∗ is denoted by

U =
∞⊔
k=0

(N∗)k ,

with the convention (N∗)0 = {ø}. The concatenation of the non-empty words x =
i1i2 · · · im and y = j1 · · · jn is the finite word of length m + n, xy = i1i2 · · · imj1 · · · jm.
The concatenation with the empty word is defined by xø = øx = x, for all x in U . A
word x is called a prefix, or an ancestor, of a word y if and only if there exists a word
z such that y = xz. In this case, we write x � y (x ≺ y if x 6= y) and z = x−1y. The
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relation � is a partial order and we denote by x∧y the greatest common prefix of x and
y. Two words are said to be incomparable if neither of them is a prefix of the other. The
parent of a non-empty word x = i1i2 · · · i|x| is its greater strict prefix x∗ = i1i2 · · · i|x|−1
if |x| ≥ 2; otherwise it is the empty word ø. We also say that x is a child of x∗.
We will often need to add an artificial parent of the empty word, denoted by ø∗, and

set U∗ = U t {ø∗}. We let |ø∗| = −1 and, for x ∈ U , the concatenation of ø∗ with x is
defined by ø∗x = xø∗ = x∗.
A ray in U is an infinite sequence ρ = (ρ0, ρ1, . . . ) of words such that ρ0 = ø and

for each k ≥ 0, ρk+1 is a child of ρk. In particular, for each k ≥ 0, |ρk| = k. Let
U∞ = (N∗)N

∗
be the set of all infinite words on the alphabet N∗. The concatenation of a

finite word x with an infinite word ξ is denoted by xξ. For a non-negative integer k, The
k-th truncation of an infinite word ξ is the finite word composed of its k first letters and
is denoted by ξk, with ξ0 = ø. The mapping ξ 7→ (ξ0, ξ1, ξ2, . . . ) is a bijection between
infinite words and rays, therefore we will abuse notation and write ξ for both the infinite
word and the ray associated to it. When a finite word x is a truncation of an infinite
word ξ, we still say that x is a prefix of ξ and write x ≺ ξ, in this case, define x−1ξ as
the unique infinite word η such that xη = ξ. For two distinct infinite words ξ and η,
we may again consider their greatest common prefix ξ ∧ η ∈ U . For x in U , the cylinder
generated by x is the set

[x] = {ξ ∈ U∞ :x ≺ ξ} = {xη : η ∈ U∞}.

The set of all infinite words is endowed with the topology generated by all the cylinders.
We first remark that for a sequence (ξ(n)) of rays to converge to a ray ξ, it is necessary
and sufficient that

∀N ≥ 0, ∃n0 ≥ 0, ∀n ≥ n0, ξ(n) ∈ [ξN ]. (1.1)

Another important topological property is the fact that , for two finite words x and y,

— if x � y, then [y] ⊂ [x];
— if y � x, then [x] ⊂ [y];
— otherwise, [x] ∩ [y] = ∅.

In particular, the set
{[x] :x ∈ U} ∪ {∅}

covers U∞ and is stable under (finite) intersections thus forms a base of our topology
and any open set may be written as a union of cylinders. We actually have more: any
(non-empty) open set may be written as a union of pairwise disjoint cylinders. To prove
this, we use the following lemma, which plays the role of a covering lemma in this theory.

Lemma 1.1. Let Q be a non-empty subset of U . There exists a subset Q̃ of Q such that:
1. any two distinct elements of Q̃ are incomparable (for the prefix order �) and
2. any element of Q has a unique ancestor in Q̃.
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1.2 Trees and Neveu’s formalism

Proof. On Q we define the equivalence relation:

w ∼Q w′ ⇐⇒ ∃u ∈ Q, u � w ∧ w′

It is clearly reflexive and symmetric. To see that it is transitive, let w, w′ and w′′ be
such that w ∼Q w′ and w′ ∼Q w′′. By definition, this means that there exist u and u′
in Q such that u � w ∧ w′ and u′ � w′ ∧ w′′. Now, since u and u′ are both ancestors of
w′, they can be compared. Therefore, if u′′ is the minimum (for the order �) of u and
u′, we have u′′ � w and u′′ � w′′, hence w ∼Q w′′.
Let, for an equivalence class C in the quotient set Q

/
∼Q , ιQ(C) be the element of

the class C which has the smallest length. To see that this element is indeed unique,
assume that w and w′ are two such elements. Since they are both in the same class,
there exists an element u in C such that u � w and u � w′, thus, u = w = w′. Let
Q̃ = ιQ

(
Q
/
∼Q

)
to conclude the proof.

Lemma 1.2. Any non-empty open set of U∞ may be written as a countable union of
pairwise disjoint cylinders.

Proof. Let U be a non-empty open set of U∞. The cylinders form a base of the topology,
so we may write U =

⋃
x∈Q[x], for a subset Q of U . Let Q̃ be a subset of Q as in the

preceding lemma. The fact that any element of Q has an ancestor in Q̃ implies that
U =

⋃
x∈Q̃[x] and, since the element of Q̃ are pairwise incomparable, those cylinders are

pairwise disjoint.

The topology generated by the cylinders is metrizable by a large family of distances.
We will mostly (but not always) use the natural distance dU∞ defined by

dU∞ (ξ, η) = e−|ξ∧η|, for any ξ 6= η in U∞. (1.2)

This makes U∞ into a complete, separable, ultrametric space.

1.2 Trees and Neveu’s formalism
Following Neveu ([50]), we represent our trees as subsets of U .

Definition 1.1. A (rooted, planar, locally finite) tree t, is a subset of U such that:
1. ø is in t;
2. for any x 6= ø in t, x∗ is in t;
3. for any x in t, there exists a unique non-negative integer, denoted by νt(x) and called
the number of children of x in t, such that for any i ∈ N∗, xi is in t if and only if
1 ≤ i ≤ νt(x).

A tree is endowed with the undirected graph structure obtained by drawing an edge
between each word and its children, see Figure 2.1. In this context, we call ø the root
of t, and if x is an element of t, its length |x| is rather called its height in the tree. A
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1 Trees and their boundaries

vertex x of t such that νt(x) = 0 is called a leaf of t. For convenience, we add an empty
tree, denoted by †, to the family of all the trees. When, for a tree t, we need to add an
artificial parent to the root, we write t∗ = t ∪ {ø∗} ⊂ U∗.

ø∗

ø

1

11 12

...

13

2

21

211

...

212

...

Figure 2.1 – A representation of a tree t∗ with an artificial parent of the root

As a simple example of an infinite tree, for an integer m ≥ 1, define the m-regular tree
as the tree in which each vertex has exactly m children. As a set in Neveu’s formalism,
it consists of ø, and all finite sequences of elements of {1, 2, . . . ,m}.
An important operation on trees is to extract a subtree originated from a given vertex

x of a tree t. However, we need to reindex it if we want it to be a tree in our formalism.
The reindexed subtree t[x] is the empty tree † if x is not in t, and is

t[x] = {y ∈ U∗ :xy ∈ t};

otherwise. For example, if t is an m-regular tree, the reindexed subtrees t[x], for x in t,
are all equal to t.

1.3 The boundary of a tree

Recall that we identify rays in U with infinite words. The boundary of t is the set of
all rays ξ in U∞ such that for any k ≥ 0, ξk is in t. It is denoted by ∂t. For instance, in
the case of an m-regular tree, the boundary of the tree is the set of all infinite sequences
of elements of {1, 2, . . . ,m}.
The boundary ∂t of a tree t is endowed with the trace topology from U∞. Since our

trees are locally finite by definition, ∂t is a compact subspace of U∞. For any vertex x
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1.3 The boundary of a tree

in t, the cylinder [x]t is the set

[x]t = {ξ ∈ ∂t :x ≺ ξ} = [x] ∩ ∂t.

Notice that [x]t is empty if and only if the subtree t[x] is finite. We define the pruned
tree (from infinity) as

t∗ = {x ∈ t : t[x] is infinite} = {x ∈ t : ∃ξ ∈ ∂t, x ≺ ξ}.

If need be, it can be made into a tree in Neveu’s formalism by reindexing its vertices in
such a way that the lexicographical order is preserved (and such a reindexing is unique).
A ray ξ in ∂t is isolated if and only if [ξn]t = {ξ} for some n ≥ 1. We denote by

Isolated(∂t) the set of isolated rays in ∂t. It is countable, since there are countably
many distinct cylinders. We extend the definition of the cylinders to the isolated rays
by setting

∀ξ ∈ Isolated(t), [ξ]t = {ξ}.

For x in t, define the number of infinite lineages from x in t by

ν∗t (x) = #{1 ≤ i ≤ νt(x) : t[xi] is infinite}.

If t[x] is infinite, this is the number of children of x in the pruned tree. One should
beware that, if ν∗t (x) ≤ 1, we have [x]t = [x1]t. Thus we introduce, if ∂t[x] has at least
2 elements, the first branching point above x in t,

bp↑t (x) = min{y � x : ν∗t (y) ≥ 2},

and extend it to the case where t[x] has only one ray ξ by setting bp↑t (x) = ξ. This gives
[x]t = [bp↑t (x)]t, for any x in t∗. It is convenient here to introduce the reduced tree (from
infinity)

reduced(t) = {y ∈ t : ν∗t (y) ≥ 2} = {ξ ∧ η : ξ 6= η ∈ ∂t},

and the skeleton of the tree t:

skel(t) = reduced(t) ∪ Isolated(∂t) ⊂ t ∪ ∂t.

From the skeleton of a tree we could rebuild the pruned tree. Furthermore,

bp↑t (x) = min{y ∈ skel(t) : y � x},

thus the mapping x 7→ [x]t is a one-to-one correspondance between skel(t) and the set of
all non-empty cylinders of ∂t.
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1 Trees and their boundaries

1.4 A class of metrics on the boundary of a tree
We may again use the distance dU∞ on ∂t to metrize its topology. Denoting by B(ξ, r)

the closed ball centered at ξ ∈ ∂t of radius r ∈ (0, 1], we have

B(ξ, r) = {η ∈ ∂t : |ξ ∧ η| ≥ d− log re} = [ξd− log re]t,

and we see that the balls for this metric are the cylinders of this topology:

{B(ξ, r) : ξ ∈ ∂t, r ≥ 0} ∪ {∅} = {[x]t :x ∈ t} ∪ {∅}. (1.3)

As remarked in [13], this property leads to nice results when we deal with Hausdorff
measures, and we want to characterize the metrics on ∂t that have this property (the
random metrics in Chapter 3 will satisfy it). Although they are not all the metrics that
metrize the topology of ∂t, we denote by Metrics(∂t) the set of all such metrics.
Let d be in Metrics(∂t). For ξ in ∂t and r ≥ 0, write Bd(ξ, r) for the closed ball of

radius r, centered at ξ, and diamd for the diameter with respect to d. First notice that
for any rays ξ 6= η in ∂t,

Bd(ξ, d(ξ, η)) = [ξ ∧ η]t = Bd(η, d(ξ, η)),

since it is the smallest ball that contains both ξ and η. This entails that d is ultrametric.
Indeed, let ζ ∈ ∂t and assume that d(ξ, ζ) ≥ d(η, ζ). Since Bd(ζ, d(ξ, ζ)) contains
Bd(ζ, d(η, ζ)), we have [ξ∧ζ]t ⊃ [ζ∧η]t, thus ξ∧ζ � η∧ζ ≺ η. Hence, ξ∧ζ � ξ∧η, which
implies that Bd(ξ, d(ξ, η)) is contained in Bd(ξ, d(ξ, ζ)). Now, since η ∈ Bd(ξ, d(ξ, ζ)),
we have d(ξ, η) ≤ d(ξ, ζ), as claimed. Next we see that for any ξ 6= η in ∂t,

d(ξ, η) = diamd[ξ ∧ η]t.

Indeed, if ζ and ζ ′ are in [ξ ∧ η]t, then, by the ultrametric inequality,

d(ζ, ζ ′) ≤ max(d(ξ, ζ), d(ξ, ζ ′)) ≤ d(ξ, η),

since ζ and ζ ′ both belong to Bd(ξ, d(ξ, η)). Hence, diamd([ξ ∧ η]t) ≤ d(ξ, η). The other
inequality is obvious. Let, for x in t ∪ Isolated(∂t),

ϕd(x) = diamd[x]t, (1.4)

so that, for any ξ 6= η in ∂t,
d(ξ, η) = ϕd(ξ ∧ η).

The function ϕd : t ∪ Isolated(∂t)→ R+ satisfies the following properties:
1. The function ϕd vanishes on Isolated(t) and is (strictly) decreasing on skel(t).
2. If ξ is in ∂t \ Isolated(t), and ξn0 ≺ ξn1 ≺ . . . is the infinite sequence of prefixes of ξ
that are in reduced(t), then as k goes to infinity, ϕd(ξnk) goes to 0.
3. For x in t \ t∗, ϕd(x) = 0, and for x ∈ t∗, ϕd(x) = ϕd(bp↑t (x)).
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1.5 Flows on a tree

The second property holds because the family of compact sets ([ξnk ]) is decreasing and
has intersection {ξ}. Of course, we also have, for any ξ in ∂t, limn→∞ ϕ(ξn) = 0. When
a function ϕ : t ∪ Isolated(∂t) → R+ satisfies these three conditions we say that ϕ is a
diameter function on t. A function ϕ defined only on skel(t) and satisfying the first two
properties may be extended in a unique way to t ∪ Isolated(∂t) by using the third one.
It is clear that, conversely, if ϕ is a diameter function on t, then, setting for ξ 6= η in

∂t,
dϕ(ξ, η) = ϕ(ξ ∧ η), (1.5)

one obtains a metric that satisfies (1.3). As a conclusion we have obtained:

Lemma 1.3. The mapping d 7→ ϕd defined by (1.4) is a bijection between Metrics(∂t)
and the set of all diameter functions on t, with inverse bijection ϕ 7→ dϕ defined by (1.5).

For future reference we prove here the following lemma.

Lemma 1.4. Let t be an infinite tree and let ϕ be a diameter function on t. For n ≥ 0,
let

δn = max{ϕ(x) : |x| = n}.

Then, limn→∞ δn = 0. For δ > 0, let

nδ = min{n ≥ 0 :∃|x| ≤ n, 0 < ϕ(x) ≤ δ},

and assume that ∂t is infinite. Then, limδ→0 nδ =∞.

Proof. The sequence (δn) is non-increasing. For any n ≥ 0, let xn ∈ t be such that
|xn| = n and δn = ϕ(xn). We may assume that for all n ≥ 0, ϕ(xn) > 0, otherwise
there is nothing to prove. Since ϕ vanishes outside of t∗, we may pick an element ξ(n)

in [xn]t, for each n ≥ 0. By compactness of ∂t, we may extract from ξ(n) a subsequence
ξ(nk) such that limk→∞ ξ

(nk) = ξ, and extracting again if necessary, we may assume that
for each k, ξ(nk)

k = ξk. Since ξ(nk) ∈ [xnk ]t, we have ϕ(xnk) = ϕ(ξk), thus the sequence
(ϕ(xnk)) converges to 0 and so does (ϕ(xn)) by monotony.
Now assume that ∂t is infinite and let the sequence (vn) be defined by

vn = min{ϕ(x) : |x| ≤ n and ϕ(x) > 0}.

This sequence converges to 0, is non-increasing and positive.

1.5 Flows on a tree
A flow θ on the tree t is a function θ : t→ R+ such that, for any x in t,

θ(x) =
νt(x)∑
i=1

θ(xi).

If additionally θ(ø) = 1, one says that θ is a unit flow. Notice that θ vanishes outside
of t∗. If M is a finite Borel measure on ∂t, we may define a flow θM on t by setting,
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1 Trees and their boundaries

for all x in t, θM (x) = M([x]t). Indeed, for any vertex x of t, the cylinder [x]t may be
partitioned as

[x]t =
νt(x)⊔
i=1

[xi]t,

so we have

θM (x) = M([x]t) =
νt(x)∑
i=1

M([xi]t) =
νt(x)∑
i=1

θM (xi).

By a monotone class argument (the set of all cylinders is stable by intersection and gen-
erates the Borel σ-algebra of ∂t) the mapping M 7→ θM is a one-to-one correspondance
and we will write θ for both the flow on t and the associated finite Borel measure on ∂t.
Unit flows correspond to Borel probability measures.
Notice that if t[x] is infinite,

θ(x) = θ(bp↑t (x)),

so that a flow is completely determined by its values on skel(t).

Example 1.1 (visibility measure). As a simple (yet important) first example of a unit
flow, let us consider the visibility measure VISt on an infinite tree. We name it after
[43], it was also studied at the same time in [38]. Informally, say a unit amount of water
enters in the tree from the root with a unit flow, and that every time the water reaches
a vertex it evenly spreads through the edges connecting this vertex to its children who
have an infinite lineage. For any vertex x of t∗, define VISt(x) as the water flow through
x, see Figure 5.2. More precisely,

VISt(x) =
∏

ø�y≺x

1
ν∗t (y) ,

with the usual convention that a product over an empty set is equal to 1.
The measure point of view of VISt is as follows: VISt is the law of a random ray Ξ,

such that, for any n ≥ 0, for any vertex x of height n in t, conditionally on the event
{Ξn = x}, the vertex Ξn+1 is chosen uniformly among the children of x who have an
infinite lineage. In other words, the probablity measure VISt can be seen as the law of
the trajectory of a non-backtracking simple random walk on t∗, starting from ø.
Notice that, for any vertex xz in t, we have by definition ν∗t (xz) = ν∗t[x](z), so we may

write, for any vertex xy in t,

VISt(xy) =
∏

ø�z�x

1
ν∗t (z)

∏
ø�z≺y

1
ν∗t[x](z)

= VISt(x)VISt[x](y).

In other words, conditionally on the event that the random ray Ξ (of law VISt) goes
through x, Ξ has the law of xΞ′, where Ξ′ has distribution VISt[x]. One says that VIS
satisfies the flow rule property. This will be made more precise and studied at length in
the next chapter.
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1

1/2

1/6 1/6

...

1/6

1/2

1/2

1/4

...

1/4

...

Figure 5.2 – The visibility measure VISt as a unit flow on an infinite tree without leaves

1.6 Random walks on trees
We now want to study random walks which are allowed to backtrack. We fix an in-

finite tree t and consider a transition matrix Pt on t∗ = t ∪ {ø∗}. We restrict ourselves
to nearest-neighbor random walks, that is we impose that, for x and y in t∗, Pt(x, y) is
positive if and only if either x is the parent of y or y is the parent of x. In particular,
Pt(ø∗, ø) = 1. For x in t∗, we denote by Ptx the probability measure under which the
random path X = (X0, X1, . . . ) in t∗ is a Markov chain starting from x with transition
matrix Pt. The associated expectation is denoted by Etx. Since we will later consider
random trees, Ptx and Etx will often be referred to as the “quenched” probabilities and ex-
pectations. Notice that, by our assumption that the transition matrix is always positive
between neighbors, the Markov chain (t∗,Pt) is irreducible.

Example 1.2 (simple random walk). Our first example is the simple random walk on
an infinite tree t∗. For x in t, define

Pt(x, y) = 1
νt(x) + 1

whenever y is either the parent of x, or one of its children. In words, the walker chooses
its next position uniformly among the neighbors of its current position.

Example 1.3 (λ-biased random walk). Our second example, introduced in [39], is called
the λ-biased random walk, where the parameter λ is a positive real number. For x 6= ø∗
in t let

Pt(x, y) =


1

λ+ νt(x) if y is a child of x

λ

λ+ νt(x) if y = x∗.
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1 Trees and their boundaries

Now the walker chooses a child of its current position with weight 1 and the parent of its
current position with weight λ, see Figure 6.3. If λ = 1, we recover the simple random
walk, while if we allowed λ = 0 (which we do not) and the t had no leaf, the model
would reduce to the study of the visibility measure VISt.

x∗

x

x1 x2 ... xνt(x)

λ

1
1

1

Figure 6.3 – Weights of the λ-biased random walk at a vertex x of a tree t

Our last example is the most general model of nearest-neighbor random walk on a
tree.

Example 1.4 (random walk on a weighted tree). Let t be a tree and consider a weight
function At : t \ {ø} → (0,∞). For any vertex x 6= ø∗, define

Pt(x, y) =


At(xi)

1 +
∑νt(ø)
j=1 At(xj)

if y = xi, for 1 ≤ i ≤ νt(x);

1
1 +

∑νt(ø)
j=1 At(xj)

if y = x∗.
(1.6)

For instance, we recover the λ-biased random walk if the weight function is constant
equal to λ−1. This model was introduced in [41], in the context of random weights.
In the other way around, assume that Pt is a transition kernel on t satisfying our

nearest-neighbor condition. Let, for all xi in t \ {ø},

At(xi) = Pt(x, xi)
Pt(x, x∗)

.

x∗

x

x1 x2 ... xνt(x)

1
At(x1)

At(x2)

At(xνt(x))

Figure 6.4 – Random walk on a weighted tree t with weight function At
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1.6 Random walks on trees

Summing over the children of x, we obtain

νt(x)∑
j=1

At(xj) = 1
Pt(x, x∗)

− 1,

which shows that the transition kernel Pt satisfies (1.6).
For x in t, define the weight function At[x] on t[x] by

At[x](y) = At(xy), for all xy in t,

and define the transition kernel Pt[x] accordingly. We see that, for any n ≥ 1 and any
xy0, xy1, ..., xyn in t \ {ø∗}

Ptxy0(X1 = xy1, . . . Xn = xyn) = Pt[x](X1 = y1, . . . , Xn = yn).

In general, when one studies reversible nearest-neighbor random walks on countable
graphs, the theory of electric networks comes in handy. Since a tree has no non-trivial cy-
cles, any nearest-neighbor random walk is reversible and we may express the probability
transitions in terms of conductance.
For a weighted tree t, and a vertex x in t \ {ø}, define the conductance of the (undi-

rected) edge {x∗, x} by
ct(x) =

∏
ø≺y�x

At(y).

The edge {ø∗, ø} has conductance ct(ø) = 1. With this notation, for any vertex x in t,
and any 1 ≤ i ≤ νt(x),

Pt(x, xi) = c(xi)/πt(x) and Pt(x, x∗) = ct(x)/πt(x),

where πt is the usual reversible measure

πt(x) = ct(x) +
νt(x)∑
i=1

ct(xi).

Example 1.5. For the λ-biased random walk on a tree t, any undirected edge {x, x∗},
for x ∈ t, has conductance λ−|x|.

For a vertex x of t, define the first hitting time and the first return time of x by

τx = inf{n ≥ 0 :Xn = x} and τ+
x = inf{n ≥ 1 :Xn = x},

with the convention that inf ∅ =∞.
Define the conductance β(t) of the tree t by

β(t) = Ptø(τø∗ =∞).

In electric networks terms this is the conductance between ø∗ and infinity, see [12], or
[46, chapter 2] for more information.
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1 Trees and their boundaries

By the Markov property at times 1 and τø (or electric networks considerations), we
have

β(t) =
∑νt(ø)
i=1 Pt(ø, i)β(t[i])

Pt(ø, ø∗) +
∑νt(ø)
i=1 Pt(ø, i)β(t[i])

=
∑νt(ø)
i=1 At(i)β(t[i])

1 +
∑νt(ø)
i=1 At(i)β(t[i])

. (1.7)

The same argument yields

Ptø(τ+
ø =∞) =

νt(ø)∑
i=1

Pt(ø, i)β(t[i]), (1.8)

hence
β(t) =

Ptø(τ+
ø =∞)

P(ø, ø∗) + Ptø(τ+
ø =∞)

,

and we see that the Markov chain
(
t,Pt

)
is transient if and only if β(t) > 0.

In [39], Lyons invented the branching number of a tree to give a recurrence/transience
criterion of the λ-biased random walk.

Definition 1.2. Let t be an infinite tree. A cutset in t (between the root and infinity)
is a finite set Π of vertices of t \ {ø} such that any ray in t has an element in Π. The
branching number of t is

br(t) = inf{λ > 1 : inf
Π

∑
x∈Π

λ−|x| = 0},

where the infimum is over all cutsets of t.

Informally, the branching number is, in some way, the average number of children in a
tree. For instance, if t is m-regular, its branching number is m. We will later relate this
number to the Hausdorff dimension, with respect to dU∞ , of the boundary of the tree.

Theorem 1.5 (Lyons, 1990). Let t be an infinite tree. If λ > br(t), then the λ-biased
random walk is recurrent on t. If λ < br(t), then the λ-biased random walk is transient
on t.

When λ is equal to the branching number, both cases may happen (but for the random,
Galton-Watson trees we will be interested in, the case λ = br(t) is known to be recurrent).
The proof of this theorem (see [39, Theorem 4.3] or [46, Chapters 2 and 3]) uses electric

networks theory in connection with Ford and Fulkerson’s max-flow/min-cut theorem.

1.7 Transient random walks and the harmonic measure
From now on, we assume that the Markov chain (t∗,Pt) is transient. Then, the random

exit times defined by
etn = inf{s ≥ 0 :∀k ≥ s, |Xk| ≥ n}

are Ptø-almost surely finite. We call Ξ = (Xetn)n≥0 the harmonic ray et denote by HARMt

its distribution. Another point of view is that Ξ is the only ray that shares infinitely
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many vertices with the random trajectory X0, X1, . . . . By definition, for x in t \ {ø∗},
the harmonic measure of the cylinder [x]t is

HARMt(x) = Ptø(x ≺ Ξ) = Ptø(∃s ≥ 0, Xs = x, ∀k ≥ s,Xs 6= x∗).

Define the Green function associated to the transient weighted tree t by

Gt(x, y) =
∑
k≥0

Ptx(Xk = y), ∀x, y ∈ t.

Applying successively the Markov property at times τy and τ+
y , we obtain

Gt(x, y) = Ptx(τy <∞)
Pty(τ+

y =∞)
. (1.9)

Now, for x in t, decomposing with respect to the last passage of the walk in x,

HARMt(x) =
∑
s≥0

Ptø(Xs = x, Xs+1 6= x∗, ∀k > s, Xk 6= x)

=
∑
s≥0

Ptø(Xs = x)
νt(x)∑
i=1

Pt(x, xi)Ptxi(∀k ≥ 0, Xk 6= x)

= Gt(ø, x)Pt[x]
ø (τ+

ø =∞). (1.10)

While, for 1 ≤ i ≤ νt(x),

HARMt(xi) =
∑
s≥0

Ptø (Xs = x,Xs+1 = xi, ∀k > s, Xk 6= x)

=
∑
s≥0

Ptø(Xs = x)Pt(x, xi)β(t[xi])

= Gt(ø, x)Pt(x, xi)β(t[xi]). (1.11)

In particular, when x = ø, using (1.9) and (1.8), for all 1 ≤ i ≤ νt(ø),

HARMt(i) = Pt(ø, i)β(t[i])∑νt(ø)
j=1 Pt(ø, j)β(t[j])

= At(i)β(t[i])∑νt(ø)
j=1 At(j)β(t[j])

. (1.12)

Now, equations (1.12), (1.11), (1.10) imply, for all x in t, and all 1 ≤ i ≤ νt(xi),

HARMt(xi) = HARMt(x)HARMt[x](i),

and by induction, for all xy in t,

HARMt(xy) = HARMt(x)HARMt[x](y) (1.13)

and we see that HARM satisfies the flow rule property. This property will play a crucial
role in this work.
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1 Trees and their boundaries

1.8 Upper density theorem and Hausdorff measures

The aim of most of this thesis is to establish qualitative and quantitative results about
the behavior of θ(ξn) as n goes to infinity, when θ is a particular flow on an infinite,
“typical” tree t and ξ is a “typical” ray in t.
Such questions include the computation of

lim
n→∞

{
sup
inf

}
θ(ξn)
φ(ξn) or, more realistically, lim

n→∞

{
sup
inf

}
log θ(ξn)
log φ(ξn) ,

where φ is a, more or less, “natural” rate of decay function. These include, for instance,
φ : x 7→ e−α|x| for α > 0, or φ : x 7→ (diam[x]t)α where the diameter is computed with
respect to some metric d, or other quantities of interest in the model (we have in mind
the random multiplicative structure involved in Section 3.2).
As it is the case in the more classical setting of the euclidean space, the theory of

Hausdorff and packing measures and dimensions is the right tool to relate these kinds
of local properties to more global ones. Unfortunately, the boundaries of trees are often
treated as second-class citizens when it comes to this theory. The general opinion seems
to be that since they are easier to deal with, everything should behave as in the euclidean
case. This is, more or less, true. But we think they deserve a proper treatment. With
this in mind, we try in the rest of this chapter to give a setting which is quite specific to
the case of the boundary of an infinite tree, but general enough to contain most of the
many different definitions of the litterature.
We reverse here the traditionnal point of view. Instead of defining first the Hausdorff

and packing measures and then establishing density theorem, we try to establish density
theorems and, by doing so, produce some measures which should, hopefully, look natural
to the reader. They will be related in Section 10 to the more classical definitions of
Hausdorff and packing measures on metric spaces.
This part of this chapter was mostly inspired by [11, 24, 56] and by [18, 19].

Definition 1.3. Let t be an infinite tree and let θ be a flow on t. Let φ : t → R+. Let
ξ ∈ ∂t and assume that ξ is in the support of θ or that φ(ξn) > 0 for all n ≥ 0. The
lower and upper φ-densities of the flow θ at ξ are, respectively,

dφθ (ξ) = lim inf
n→∞

θ(ξn)
φ(ξn) and dφθ (ξ) = lim sup

n→∞

θ(ξn)
φ(ξn) ,

If E is a Borel set of ∂t, we want to recover some information about θ(E) from
the upper and lower densities of θ on E. Since those densities involve the measure of
cylinders, the most natural idea is to cover E by small cylinders.

Definition 1.4. Let t be an infinite tree, and E any subset of ∂t. Let n ≥ 0, and C ⊂ t
such that

∀x ∈ C, |x| ≥ n and E ∩ [x]t 6= ∅.
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1.8 Upper density theorem and Hausdorff measures

We say that C is a (centered) n-cover of E (by cylinders) if E ⊂
⋃
x∈C [x]t. We call C an

n-packing of E if for any distinct elements x and y in C, [x]t ∩ [y]t = ∅. The set of all
n-covers of E is denoted by Covn(E) and the set of all n-packings of E by Packn(E).

By Lemma 1.1, for any element C of Covn(E), there exists C′ ⊂ C such that C′ ∈
Packn(E) ∩ Covn(E).
From now on we assume that E is included in the support of θ or that φ(ξn) is positive

for all ξ ∈ E and all n ≥ 0, so that the upper and lower φ-densities of θ are well-defined
on E. Now, let b = supξ∈E dφµ(ξ) and assume that b < ∞. We want to integrate on E,
in some sense, the inequality dφµξ ≤ b. Fix ε > 0 and let, for n ≥ 1,

En,ε = {ξ ∈ E :∀i ≥ n, θ(ξi)
φ(ξi)

≤ b+ ε}.

By assumption, as n goes to infinity, En,ε ↑ E. For any family C in Covn(En,ε),

θ(En,ε) ≤ θ(∪x∈C [x]t) ≤
∑
x∈C

θ(x) ≤ (b+ ε)
∑
x∈C

θ(x).

In the right hand side of this inequality, we want to take the infimum over all n-covers
of En,ε. This motivates the following definition: for any F ⊂ ∂t,

H φ
n(F ) = inf

{∑
x∈C

φ(x) : C ∈ Covn(F )
}
.

The set function H φ
n is non-decreasing. To prove this, let F ⊂ G ⊂ ∂t, and let C be

an n-cover of G. By Lemma 1.1, we may find C′ ⊂ C such that C′ is both an n-packing
and an n-cover of G. Let C′F be the set of all x in C′ such that F ∩ [x]t 6= ∅. Let ξ ∈ F .
There is a unique x in C′ such that ξ is in [x]t, and by definition of C′F , x is in C′F . This
proves that C′F is an n-cover of F . Hence,

H φ
n(F ) ≤

∑
x∈C′F

φ(x) ≤
∑
x∈C′

φ(x) ≤
∑
x∈C

φ(x),

and we can conclude by taking the infimum over all n-covers of G.
By monotonicity, we have, for all n ≥ 1,

θ(En,ε) ≤ (b+ ε) H φ
n(E).

Now, it is clear that for any fixed set F ⊂ ∂t, the sequence (H φ
n(F )) is non-decreasing.

Since we want to let n go to infinity, we define for any F ⊂ ∂t,

H φ(F ) = lim↑
n→∞

H φ
n(F ) ∈ [0,∞].

Letting first n go to infinity and then ε go to 0, we obtain

θ(E) ≤ sup
ξ∈E

dφθ (ξ) H φ(E),
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1 Trees and their boundaries

which is the first half of the upper density theorem on the boundary of a tree.
In the other direction, assume that a = infξ∈E dφθ (ξ) is positive and let ε > 0 be so

small that a − ε > 0. Let n ≥ 0. By definition of a, for any ξ ∈ E, we may choose an
integer k(ξ) ≥ n such that θ(ξk(ξ)) ≥ (a− ε)φ(ξk(ξ)). The set of all ξk(ξ) for ξ in E is an
n-cover of E, and by Lemma 1.1, we may extract from it a sub-cover C of E by pairwise
disjoint cylinders. Define the n-enlargement of E by:

E(n) =
⋃

|x|=n, [x]t∩E 6=∅
[x]t =

⋃
ξ∈E

[ξn]t.

and notice that, as n goes to infinity, E(n) ↓ E, the closure of E.
Since tx∈C [x]t ⊂ E(n),

θ(E(n)) ≥
∑
x∈C

θ(x) ≥ (a− ε) H φ
n(E).

Letting n go to infinity, we obtain

θ(E) ≥ inf
ξ∈E

dφθ (ξ) H φ(E).

The other half of the upper density theorem is thus proved for closed sets. We will prove
later that H φ is a Borel measure on ∂t and that

H φ(E) = sup{H φ(F ) :F ⊂ E, F closed}, (1.14)

because the previous inequality implies that H φ(E) < ∞. Now θ is a finite Borel
measure and ∂t is metrizable, thus θ also satisfies this property (see for instance [53,
Chapter 2, Theorem 1.2]). For any closed subset F of E,

θ(F ) ≥ inf
ξ∈F

dφθ (ξ) H φ(F ) ≥ inf
ξ∈E

dφθ (ξ) H φ(F ).

Thus, taking the supremum over all closed subsets of E,

θ(E) ≥ inf
ξ∈E

dφθ (ξ) H φ(E),

which is the second half of the upper density theorem.
Let us sum up the previous discussion.

Definition 1.5 (Hausdorff measure). Let t be an infinite tree and E be any subset of
∂t. Let φ : t→ R+. For any n ≥ 0, let

H φ
n(E) = inf

{∑
x∈C

φ(x) : C ∈ Covn(E)
}
.

The Hausdorff φ-measure of E is

H φ(E) = lim↑
n→∞

H n(E).
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1.8 Upper density theorem and Hausdorff measures

We will later see how this definition of the Hausdorff measures is related with the
usual definition of the literature.

Theorem 1.6 (upper density theorem). Let t be an infinite tree, φ : t → R+, θ a flow
on t and E a Borel subset of ∂t. Assume that E is included in the support of θ or that
φ(ξn) is positive for all ξ ∈ E and all n ≥ 0. Then,

inf
ξ∈E

dφθ (ξ) H φ(E) ≤ θ(E) ≤ sup
ξ∈E

dφθ (ξ) H φ(E),

where we agree that the lower bound is 0 if one of the two terms of the product is 0 and
that the upper bound is infinite if one of the two terms of the product is infinite.

Before we move on to the lower density we need to prove that eq. (1.14) holds.

Proposition 1.7. Let t be an infinite tree, φ : t → R+ and n ≥ 0. The following
assertions hold.
1. The set functions H φ

n and H φ are outer measures on ∂t.
2. The Borel sets are H φ-measurable.
3. For any set E ⊂ ∂t, we may find a sequence (Ui)i≥1 of open sets containing E such
that H φ(E) = H φ(

⋂
i≥1 Ui).

4. For any H φ-measurable set E such that H φ(E) <∞,

H φ(E) = sup{H φ(F ) :F ⊂ E, F closed}.

Proof. 1. It is clear that H φ
n(∅) = 0 and we have already proved the monotonicity. To

see that H φ
n is countably subadditive, let (Ek)k≥1 be a sequence of subsets of ∂t and

E =
⋃
k≥1Ek. We may assume that

∑
k≥1 H φ(Ek) < ∞ otherwise there is nothing to

prove. Let ε > 0. For each k, let Ck be an n-cover of Ek such that∑
x∈Ck

φ(x) ≤H φ
n(Ek) + 2−kε.

The set C =
⋃
k≥1 Ck is an n-cover of E, thus

H φ
n(E) ≤

∑
x∈C

φ(x) ≤
∑
k≥1

∑
x∈Ck

φ(x) ≤
∑
k≥1

H φ
n(Ek) + ε.

Letting ε go to 0, we obtain the countable subadditivity of H φ
n. By monotone conver-

gence, it also holds for H φ.
2. It suffices to show that the cylinders are measurable by Caratheodory’s restriction
theorem. Let E ⊂ ∂t and x ∈ t. Let n ≥ |x|. If C is an n-cover of E, then we may write

C = {y ∈ C : y � x}︸ ︷︷ ︸
C1

t{y ∈ C : y 6� x}︸ ︷︷ ︸
C2

.

The sets C1 and C2 are n-covers of E ∩ [x]t and E ∩ [x]t
c respectively and∑

x∈C
φ(x) =

∑
x∈C1

φ(x) +
∑
x∈C2

φ(x) ≥H φ
n(E ∩ [x]t) + H φ

n(E ∩ [x]t
c).
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1 Trees and their boundaries

To conclude, take the infimum over all n-covers on the left hand side and let n go to
infinity.
3. Let E ⊂ ∂t. If H φ(E) = ∞, by monotonicity, H φ(E) = H φ(∂t) = ∞ and the
assertion is true with Ui = ∂t for all i ≥ 1. Now, assume that H φ(E) < ∞. For any
n ≥ 1, we may find an n-cover C of E such that

∑
x∈C

φ(x) ≤H φ
n(E) + 1

n
.

Let Un =
⋃
x∈C [x]t. Then Un is open, contains E and since C is also an n-cover of Un,

H φ
n(Un) ≤

∑
x∈C

φ(x) ≤H φ
n(E) + 1

n
.

Then, by monotony, for any n ≥ 1,

H φ
n(E) ≤H φ

n(
⋂
i≥1 Ui) ≤H φ

n(Un) ≤H φ
n(E) + 1/n,

and we conclude by letting n go to infinity.
4. We proceed as in [57, Lemma 5.1]. For a more direct proof see [17, Theorem 1.6].
The previous assertion implies in particular that H φ is Borel-regular, that is, for any
subset E of ∂t, there exists a Borel set B ⊃ E such that H φ(E) = H φ(B). Now, let E
be as in the assertion and let B be as above. Since E is H φ-measurable,

H φ(B) = H φ(E) + H φ(B \ E),

thus H φ(B \ E) = 0 because H φ(E) < ∞. Now let N ⊃ B \ E be a Borel set such
that H φ(N) = 0 and let B̃ = B \ N . Then B̃ is a Borel set contained in E and
H φ(B̃) = H φ(E). Let µ be the Borel finite measure defined by µ(A) = H (A ∩ B̃) for
any Borel set A. By metrizability of ∂t, for any ε, we may find a closed set F included
in B̃ such that µ(F ) ≥ µ(B̃)− ε which implies that

H φ(F ) = H φ(F ∩ B̃) = µ(F ) ≥ µ(B̃)− ε = H φ(B̃)− ε = H φ(E)− ε.

1.9 Lower density theorem and packing measure
We are now interested in the lower density. We work under the same assumptions as

in Theorem 1.6. Let a = infξ∈E dφθ (ξ) and assume that a > 0. Let ε be so small that
a− ε > 0. For n ≥ 0, let

En,ε = {ξ ∈ E :∀i ≥ n, θ(ξi) ≥ (a− ε)φ(ξi)},

Let C be an n-packing of En,ε. Notice that
⊔
x∈C [x]t ⊂ E(n), the n-enlargement of E.

Thus
θ(E(n)) ≥ θ

(⊔
x∈C

[x]t
)

=
∑
x∈C

θ(x) ≥ (c− ε)
∑
x∈C

φ(x).
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1.9 Lower density theorem and packing measure

We want to take the supremum over all n-packings in the lower bound, so we introduce,
for any subset F of ∂t,

Pφ
n(F ) = sup

{∑
x∈C

φ(x) : C ∈ Packn(F )
}
.

The sequence (Pφ
n(F ))n≥0 is non-increasing. We define for any F ⊂ ∂t,

Pφ
∞(F ) = lim↓

n→∞
Pφ

n(F ),

and we obtain, after we let n go to ∞ and ε go to 0,

θ(E) ≥ inf
ξ∈E

dφθ (ξ) Pφ
∞(E). (1.15)

We would like to proceed similarly as the proof of the upper density theorem. Unfortu-
nately, Pφ

∞ is not an outer measure. However, if for any subset F of ∂t, we set

Pφ(F ) = inf
{∑
k≥1

Pφ
∞(Fk) :F ⊂

⋃
k≥1

Fk
}
,

we obtain an outer measure called the packing φ-measure. We will later prove this fact
and show that the packing φ-measure also satisfies (1.14). To conclude this half of the
lower-density theorem, it suffices to see that, for any non-empty closed set F ⊂ E,

θ(F ) ≥ inf
ξ∈F

dφθ (ξ) Pφ
∞(F ) ≥ inf

ξ∈F
dφθ (ξ) Pφ(F ) ≥ inf

ξ∈E
dφθ (ξ) Pφ(F )

and to take the supremum over closed subsets of E on both sides (by (1.15) and the
assumption a > 0, Pφ(E) <∞).
We need to know more about the packing measures before we turn to the upper bound.

Definition 1.6 (packing measure). Let t be an infinite tree, φ : t → R+ and E any
subset of ∂t. For any n ≥ 1, let

Pφ
n(E) = sup

{∑
x∈C

φ(x) : C ∈ Packn(E)
}

and

Pφ
∞(E) = lim↓

n→∞
Pφ

n(E).

The packing φ-measure of E is

Pφ(E) = inf
{∑
k≥1

Pφ
∞(Ek) :E ⊂

⋃
k≥1

Ek
}
.

Proposition 1.8. The following assertions hold.
1. The set functions Pφ

n and Pφ
∞ are non-decreasing and finitely subadditive.

2. For any E ⊂ ∂t, Pφ
∞(E) = Pφ

∞(E).
3. The set function Pφ is an outer measure on ∂t.
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1 Trees and their boundaries

4. The Borel sets are Pφ-measurable.
5. For any E ⊂ ∂t, there is an Fσδ set B ⊃ E such that Pφ(B) = Pφ(E). In particular,
Pφ is Borel-regular.
6. For any Pφ-measurable set E such that Pφ(E) <∞,

Pφ(E) = sup{Pφ(F ) :F ⊂ E, F closed}.

7. For any E ⊂ ∂t, Pφ(E) = inf{lim↑k→∞Pφ
∞(Ek) :Ek ↑ E}.

8. For any E ⊂ ∂t, Pφ(E) ≥H φ(E).

Proof. 1. If E ⊂ F ⊂ ∂t, then, for any n ≥ 0, any n-packing of E is also an n-
packing of F , thus Pφ

n is monotonic. Furthermore, if C is an n-packing of E, letting
CE = {x ∈ C : [x]t ∩ E 6= ∅} and CF = C \ CE , we obtain n-packings of E and F . This
shows that ∑

x∈C
φ(x) ≤Pφ

n(E) + Pφ
n(F ),

hence the subadditivity of Pφ
n. Letting n go to infinity, we obtain the same properties

for Pφ
∞.

2. A cylinder intersects E if and only if it intersects E, therefore, for any n ≥ 0, any
n-packing of E is also an n-packing of E.
3. The construction of Pφ from the set function Pφ

∞ is classical (it is called “Method
1.” in [49, p. 47]) and leads to outer measures.
4. Let x ∈ t, E ⊂ ∂t and n ≥ |x|. Let C1 ∈ Packn(E ∩ [x]t) and C2 ∈ Packn(E ∩ [x]t

c).
Then C = C1 t C2 is an n-packing of E. This gives

Packn(E) ≥
∑
x∈C1

φ(x) +
∑
x∈C2

φ(x),

and after first taking the supremum over C1 and C2, and then letting n go to infinity,

Pack∞(E) ≥ Pack∞(E ∩ [x]t) + Pack∞(E ∩ [x]t
c).

Now let (Ek) be a sequence of sets such that E ⊂
⋃
Ek. By the previous inequality,∑

k

Pφ
∞(Ek) ≥

∑
k

Pφ
∞(Ek ∩ [x]t) +

∑
k

Pφ
∞(Ek ∩ [x]t

c) ≥Pφ(E ∩ [x]t) + Pφ(E ∩ [x]t).

Taking the infimum over all such sequences in the left hand side finishes the proof.
5. Let E ⊂ ∂t. We may assume Pφ(E) <∞. By the second property,

Pφ(E) = inf{
∑
k

Pφ
∞(Ek) :

⋃
Ek ⊃ E, Ek closed}.

For l ≥ 1, let (Elk)k≥1 be a sequence of closed sets such that

E ⊂
⋃
k≥1

Elk and
∑
k≥1

P∞
φ (Elk) ≤Pφ(E) + 1/l.
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1.9 Lower density theorem and packing measure

Let F l =
⋃
k E

l
k and F =

⋂
l F

l. Then, for all l ≥ 1,

Pφ(E) ≤Pφ(F ) ≤Pφ(F l) ≤Pφ(E) + 1/l.

Thus Pφ(F ) = Pφ(E) and by construction, F is an Fσδ, hence a Borel set.
6. This property follows from the Borel regularity and the metrizability of ∂t in the
same way as in Proposition 1.8.
7. Let Ek ↑ E. Since Pφ is Borel-regular,

Pφ(E) = lim↑
k→∞

Pφ(Ek) ≤ lim↑
k→∞

Pφ
∞(Ek).

For the other inequality, let
⋃
k≥1Ek ⊃ E. Set for k ≥ 1, Fk =

⋃k
i=1Ek ∩E. Then, as k

goes to infinity, Fk ↑ E. By finite subadditivity, for each k ≥ 1,

Pφ
∞(Fk) ≤

k∑
i=1

Pφ
∞(Ei ∩ E) ≤

k∑
i=1

Pφ
∞(Ei) ≤

∞∑
i=1

Pφ
∞(Ei).

This shows that
inf{lim↑

k→∞
Pφ
∞(Fk) :Fk ↑ E} ≤

∞∑
i=1

Pφ
∞(Ei).

8. Let n ≥ 0 and C be an n-cover of E which is also an n-packing. Then we have

H φ
n(E) ≤

∑
x∈C

φ(x) ≤Pφ
n(E),

and H φ(E) ≤Pφ
∞(E). Let

⋃
k≥1Ek ⊃ E. By subadditivity of H φ,

H φ(E) ≤
∑
k≥1

H φ(Ek) ≤
∑
k≥1

Pφ
∞(Ek).

We now state the lower density theorem and prove its remaining inequality.

Theorem 1.9 (lower density theorem). Let t be an infinite tree, φ : t → R+, θ a flow
on t and E a Borel subset of ∂t. Assume that E is included in the support of θ or that
φ(ξn) is positive for all ξ ∈ E and all n ≥ 0. Then,

inf
ξ∈E

dφθ (ξ) Pφ(E) ≤ θ(E) ≤ sup
ξ∈E

dφθ (ξ) Pφ(E),

where we agree that the lower bound is 0 if one of the two terms of the product is 0 and
that the upper bound is infinite if one of the two terms of the product is infinite.

Proof. We write θ∗ for the outer measure extension of θ, that is the outer measure
defined for any A ⊂ ∂t by

θ∗(A) = inf{
∑
k≥1

θ(Ak) :A ⊂
⋃
k≥1

Ak, Ak Borel} = inf{θ(B) :B ⊃ A, B Borel}.
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1 Trees and their boundaries

Let d = supξ∈E dφθ (ξ) and assume that d <∞. Let ε > 0. By assumption,

∀ξ ∈ E, ∃n ≥ 0, ∀i ≥ n, θ(ξi) ≤ (b+ ε)φ(ξi).

Let F be any subset of E and n ≥ 0. Consider the family C ⊂ t defined by

x ∈ C ⇐⇒ |x| ≥ n and ∃ξ ∈ F x ≺ ξ and θ(x) ≥ (b+ ε)φ(x).

Since F ⊂ E, C is an n-cover of F and we may extract from it C′ ∈ Covn(F )∩Packn(F ).
By subadditivity of θ∗,

θ∗(F ) ≤ θ∗
( ⋃
x∈C′

[x]t
)
≤
∑
x∈C′

θ∗([x]t) =
∑
x∈C′

θ(x) ≤ (b+ ε)
∑
x∈C′

φ(x) ≤ (b+ ε) Pφ
∞(F ).

Now, let Fk ↑ E. Since θ∗ is also Borel-regular and E is a Borel set,

θ(E) = θ∗(E) = lim↑
k→∞

θ∗(Fk) ≤ (b+ ε) lim↑
k→∞

Pφ
∞(Fk).

By property 7. of the previous proposition, this is enough to conclude.

Remark 1.1. We have used to a great extent the fact that any n-cover of a subset E of
∂t contains minimal n-covers which are also n-packings. It feels natural to ask, in the
other direction, if any n-packing C can be completed into an n-cover. By Zorn’s lemma,
there exists a maximal n-packing Cmax containing C. Now let ξ ∈ E and assume that
ξ /∈

⋃
x∈Cmax . Then, by maximality of Cmax, for all i ≥ n, there exists x ∈ Cmax such that

[x]t ∩ [ξi]t 6= ∅. This proves that E ⊂
⋃
x∈Cmax [x]t.

This is all we can get. Indeed, consider on the 2-regular tree the 1-packing of ∂t
{1; 21; 221; . . . }. This packing is maximal but does not cover the element 222 · · · .

1.10 Hausdorff and packing measures on a metric space

In this section, (X , d) denotes a metric space, endowed with its Borel σ-algebra. The
closed ball of center x in X and radius r ≥ 0 is denoted by B(x, r). For δ > 0, a δ-cover
of a subset E of X is a family E1, E2, ... of subsets of X such that E ⊂

⋃∞
i=1Ei and for

all i ≥ 1, diamEi ≤ δ. The set of all those δ-covers is denoted by covδ(E). A countable
family (x1, r1), (x2, r2), ... of elements of E × [0, δ] is

— a δ-packing of E if for any i 6= j, B(xi, ri) ∩B(xj , rj) = ∅;

— a centered δ-cover of E if E ⊂
⋃
i≥1 B(xi, ri).

We denote the set of all δ-packings of E by packδ(E) and the set of all centered δ-covers
by c-covδ(E).
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1.10 Hausdorff and packing measures on a metric space

A gauge function is a non-decreasing function g : R+ → [0,∞] such that g(0) = 0,
g(q) > 0, for all q > 0 and limq↓0 g(q) = 0. Let E ⊂X and define

Cg0(E) = lim↑
δ↓0

inf
{ ∑

(x,r)∈C
g(diam B(x, r)) : C ∈ c-covδ(E)

}
Pg0(E) = lim↓

δ↓0
sup

{ ∑
(x,r)∈C

g(diam B(x, r)) : C ∈ packδ(E)
}

Hg(E) = lim↑
δ↓0

inf
{∑
F∈C

g(diam(F )) : C ∈ covδ(E)
}
.

It is well known that Hh, which is called the Hausdorff h-measure, is an outer measure
on X and that it is even a metric outer measure (that is, Hh(A ∪B) = Hh(A) + Hh(B)
whenever d(A,B) > 0) and as such is a measure on the Borel σ-algebra of X . It is not
hard to see that Ch0 is countably subadditive and that Ph0 is monotonic, but they are not
outer measures in general. However, if we define

Cg(E) = sup
{

Cg0(F ) :F ⊂ E
}

and

Pg(E) = inf
{∑
k≥1

Pg0(Ek) :E ⊂
⋃
k≥1

Ek
}
,

then we obtain metric outer measures as well. These are called, respectively, the centered
covering g-measure and the packing g-measure.
The packing measures were first introduced in [58] and [57], in the context of the eu-

clidean space. Some authors point our that replacing diam B(x, r) by 2r in the definition
can lead to better properties in general metric space. See [24], who studied packing mea-
sures on ultrametric spaces and [11] for a detailed study on general metric spaces. The
centered covering measures appeared in [56] in order to obtain, in the euclidean space,
an upper density theorem symetric to the lower density theorem. Once again, a radius-
based definition is possible (see [52]) and may lead to different measures. A thourough
study of these radius-based measures and their many variations may be found in [14].
When the function g is defined by g(q) = qs, one simply writes Hs, Cs and Ps for

the associated so-called s-dimensional measures. Then, it is well known that for any
E ⊂X , there exist numbers α and β in [0,∞] such that

∀s < α, Hs(E) =∞ and ∀s > α, Hs(E) = 0;
∀s < β, Ps(E) =∞ and ∀s > β, Ps(E) = 0.

These are called, respectively, the Hausdorff dimension of E and the packing dimension
of E, denoted by dimH(E) and dimp(E) 1.
Let us get back to our trees. To define Haudorff, packing and covering measures on

the boundary of an infinite tree t, we need to choose a metric on ∂t. The distance dU∞
is the standard metric in the literature, it conveys the idea that “most infinite trees have

1. The covering dimension is absent of this theory because it always equals the Hausdorff dimension.
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1 Trees and their boundaries

an exponential growth” and only depends on the heights in the tree. An other choice
would be for instance

d(ξ, η) = 1
1 + max{k ≥ 0 : ξk = ηk}

,

which hardly seems less natural but would give infinite Hausdorff dimension to all trees
with exponential growth (it would however seem to be a reasonable choice to work on
trees with polynomial growth). Our conclusion is that the choice of a metric should
reflect the properties of the class of trees we work on.
Now we proceed to show how our previous metric-agnostic definition of Haudorff and

packing measures agrees with those usual metric definitions.

Proposition 1.10. Let t be an infinite tree and d ∈ Metrics(∂t), with associated diameter
function ϕ. Let g be a gauge function. Then, for all E ⊂ ∂t,

Pg0(E) = Pg◦ϕ
∞ (E) and Cg0(E) = Hg(E) = H g◦ϕ(E).

Proof. For short, we write φ = g ◦ ϕ. First let ξ ∈ ∂t. Since limn→∞ ϕ(ξn) = 0 and
limq→0 g(q) = 0, then

Pg0({ξ}) = Pφ
∞({ξ}) = Cg0({ξ}) = Hg({ξ}) = H φ({ξ}) = 0.

By finite subadditivity of all these set functions, this proves the proposition for finite
subsets of ∂t. Now we assume that ∂t is infinite. We use the notations δn and nδ from
Lemma 1.4. For ξ in ∂t and r > 0, we write f(ξ, r) for the unique element of skel(t) such
that B(ξ, r) = [f(ξ, r)]t.
First, we prove that Pg0(E) ≤Pφ

∞(E). Let C ∈ packδ(E). For (ξ, r) in C,

diam(B(ξ, r)) = diam[f(ξ, r)]t = ϕ(f(ξ, r)).

Since diam B(ξ, r) ≤ r, then ϕ(f(ξ, r)) ≤ δ. Now the set

C = {f(ξ, r) : (ξ, r) ∈ C, ϕ(f(ξ, r)) > 0}

is an nδ-packing of E, thus∑
(ξ,r)∈C

g(diam B(ξ, r)) =
∑
x∈C

φ(x) ≤Pφ
nδ

(E).

In turn this implies that Pgδ(E) ≤Pφ
nδ

(E) and by Lemma 1.4, the result follows.
Now we prove that Pφ

∞(E) ≤ Pg0(E). Let C ∈ Packn(E). For each x in C pick an
arbitrary ray ξ(x) ∈ [x]t and let

C = {(ξ(x), ϕ(x)) :x ∈ C} ∈ packδn(E).

Since B(ξ(x), ϕ(x)) = [x]t we have∑
x∈C

φ(x) =
∑

(ξ,r)∈C
g(diam B(ξ(x), φ(x))) ≤ Pgδn(E),
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1.10 Hausdorff and packing measures on a metric space

which gives Pφ
n(E) ≤ Pgδn(E) and by Lemma 1.4 proves this point.

To prove the inequality H φ
∞(E) ≤ Hg(E), we need to introduce, for any non-empty

F ⊂ ∂t, ∧
F = max{x ∈ t ∪ ∂t :∀ξ ∈ F, x � ξ}.

To see that this set is indeed totally ordered it suffices to see that it is a subset of the
totally ordered set {ξ0, ξ1, . . . }∪{ξ}, for any ξ ∈ F . This remark also shows that as long
as F has at least two elements, there exist ξ 6= η in F such that

∧
F = ξ ∧ η. Now, let

δ > 0 and C ∈ covδ(E). Consider

C = {
∧
F :F ∈ C, diam(F ) > 0} and G = {ξ : ∃F ∈ C, F = {ξ}}.

We claim that C ∈ Covnδ(E \ G). Indeed, assume that F ∈ C is not a singleton. Let
ξ 6= η ∈ F be such that

∧
F = ξ ∧ η. Then we have

0 < ϕ(ξ ∧ η) = d(ξ, η) ≤ diamF ≤ δ.

thus |ξ ∧ η| ≥ nδ. Finally,∑
F∈C

g(diamF ) =
∑
F∈C

g(ϕ(
∧
F )) =

∑
x∈C

φ(x) ≥H φ
nδ

(E \G) = H φ
nδ

(E),

since G is at most countable. Taking the infimum over all δ-covers gives Hg
δ(E) ≥

H φ
nδ

(E).
The inequality Hg(E) ≤ Cg0(E) is obvious so we are left with Cg0(E) ≤ H φ(E). Let

n ≥ 0 and C ∈ Covn(E). For each x ∈ C, let ξ(x) ∈ [x]t and recall that B(ξ(x), ϕ(x)) =
[x]t. Let

C = {(ξ(x), φ(x)) :x ∈ C} ∈ c-covδn(E).

Then we have ∑
x∈C

φ(x) =
∑

(ξ,r)∈C
g(diam B(ξ(x), φ(x))) ≥ Cgδn(E).

Taking the infimum over all n-covers and letting n go to infinity finishes the proof.

Remark 1.2. Our point of view is to study the space ∂t in an intrinsic way. In [60],
the author defines the packing measure on the whole metric space (U∞,dU∞) and then
views subsets of ∂t as subsets of U∞. This yields a priori different packing measures
(because diam[x]t is not always equal to diam[x]), but may still be expressed as Pφ,
with φ(x) = g(e−|x|) for x ∈ t and g the gauge function which is used.

We may still simplify the expression of Hausdorff measures when the metric is simple
enough. Indeed, consider a function f : N → (0,∞) which is decreasing and vanishing
at infinity (for instance f(n) = e−n). Consider the metric df defined by

∀ξ 6= η ∈ ∂t, df (ξ, η) = f(|ξ ∧ η|).

Then we can get rid of the diameter in the definition of the Hausdorff measures.
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1 Trees and their boundaries

Proposition 1.11. Let t be an infinite tree, f and df as in the previous discussion, g
a gauge function. Endow ∂t with the metric df . Let, for x in t, φf (x) = f(|x|) and
ϕf (x) = diamdf [x]t. Then, for all n ≥ 0, H

g◦φf
n = H

g◦ϕf
n .

Proof. Let E be a subset of ∂t. The inequality H
g◦ϕf
n (E) ≤H

g◦φf
n (E) comes from the

fact that diamdf [x]t ≤ f(|x|) for all x in t. In the other direction, we may assume that
E has no isolated rays since Isolated(∂t) is at most countable, hence has 0 measure. Let
C be an n-cover of E and consider

C′ = {bp↑t (x) :x ∈ C}.

Then C′ is again an n-cover of E and∑
x∈C

g(diam[x]t) =
∑
x∈C′

g(diam[x]t) =
∑
x∈C′

g(f(|x|)) ≥H g◦φ
n (E).

Taking the infimum over all n-covers yields H g◦ϕ
n (E) ≥H g◦ϕ

n (E).

As already announced, there is a relation between the branching number of a tree and
the Hausdorff dimension of its boundary.

Proposition 1.12. Let t be an infinite tree. If its boundary ∂t is equipped with the
distance dU∞, then dimH(∂t) = log br(t).

Proof. For λ > 1, let

Lλ(∂t) = inf
{∑
x∈π

λ−|x| :π cutset of t
}
.

For x in t, let φλ(x) = λ−|x|. By compactness of ∂t, we may extract of any 1-cover of ∂t
a finite 1-cover of ∂t, that is, a cutset. Hence we see that Lλ(∂t) = H φλ

1 (∂t). Next we
claim that

H φλ
1 (∂t) > 0 ⇐⇒ H φλ(∂t) > 0.

One of the implications is obvious. Now assume that H φλ(∂t) > 0. Hence, there exists
n0 ≥ 1 such that H φλ

n0 (∂t) > 0. Now if C is a 1-cover,

∑
x∈C

φλ(x) ≥

H φλ
n0 (∂t) if C ∈ Covn0(∂t)

min
1≤|x|≤n0

φλ(x) otherwise,

which proves the claim.
Finally, when ∂t is endowed with the metric dU∞ , Hlog λ = H φλ , by the two previous

propositions.
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1.11 Dimension(s) of a flow
In this section, unless specified otherwise, t is an infinite tree, d is a distance in

Metrics(∂t) with associated diameter function ϕ and θ is a (not identically 0) flow on t.
So far, we have related upper and lower densities of θ on an infinite tree with Hausdorff
and packing measures. Unfortunately, knowing with precision the rate of decay of θ(ξn)
as n goes to infinity is often a difficult problem. A less ambitious approach may be to
study the functions

dimlocθ(ξ) = lim inf
n→∞

log θ(ξn)
log diam[ξn]t

, and dimlocθ(ξ) = lim sup
n→∞

log θ(ξn)
log diam[ξn]t

when they make sense (for instance when ξ is not isolated or is in the support of θ).
These are called, respectively, the lower and upper dimensions of θ at ξ. We will see
that they are related to the Hausdorff and packing dimensions.
A more global notion of dimension for the flow θ is to consider

dimHθ = inf{dimH(E) :E Borel, θ(E) > 0} and
dimHθ = inf{dimH(E) :E Borel, θ(E) = θ(∂t)},

which are the lower and upper Hausdorff dimensions of the flow θ. The lower and upper
packing dimensions of θ are defined in the same way.
As we did in Sections 8 and 9, we want to relate the local properties with the global

ones.

Proposition 1.13. The following equalities hold:

θ- ess inf dimlocθ = dimHθ and θ- ess sup dimlocθ = dimHθ;
θ- ess inf dimlocθ = dimpθ and θ- ess sup dimlocθ = dimpθ.

Proof. Let α = θ- ess inf dimlocθ. We first show that α ≤ dimHθ. We may assume α > 0
Let s ∈ (0, α) and Fs = {ξ ∈ supp θ : dimlocθ(ξ) > s}. Then, θ(Fs) = θ(∂t). Let E be a
Borel set such that θ(E) > 0. Then, for any ξ ∈ E ∩ Fs,

lim inf
n→∞

log(θ(ξn))
log(ϕ(ξn)) > s, hence lim sup

n→∞

θ(ξn)
ϕ(ξn)s < 1.

This proves that supξ∈E∩Fs dϕ
s

θ (ξ) < 1, thus by the upper density theorem that

Hs(E ∩ Fs) > θ(E ∩ Fs) > 0.

As a consequence, dimH(E) ≥ dimH(E ∩ Fs) ≥ s, for all E such that θ(E) > 0, hence
dimHθ ≥ s for all s < α.
Now we show that dimHθ ≤ α. We may assume α < ∞. Let s > α. Let Es = {ξ ∈

supp θ : dimlocθ(ξ) < s}. Then, θ(Es) > 0 and for any ξ ∈ Es,

dϕ
s

θ (ξ) > 1.
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1 Trees and their boundaries

Again by the upper density theorem, this proves that

Hs(Es) < θ(Es) <∞.

Hence dimHθ ≤ dimH(Es) ≤ s. Letting s go to α finishes the proof of this inequality.
The proof of the second equality is so similar that we feel free to omit it, and it suffices

to replace the upper density theorem by the lower density theorem to obtain the results
about packing measures.

Definition 1.7. If there exists α ∈ [0,∞] such that,

for θ-almost every ξ ∈ ∂t, lim
n→∞

log(θ(ξn))
log(ϕ(ξn)) = α,

we say that θ is exact-dimensional on ∂t for the metric d and we simply write dim θ = α,
since all our definitions of dimension of the flow θ coincide.

Remark 1.3. Some authors (see [20]), in a more general setting, reserve this term to
the case where for θ-almost every ξ,

lim
r→0

log(θB(ξ, r))
log(r) = α.

It is a stronger condition than ours. Indeed, if ξ is not isolated and such that the
previous limit converges to α, consider the sequence ξn1 ≺ ξn2 ≺ . . . of ancestors of ξ in
reduced(t). Then, for all i ≥ 1, B(ξ, ϕ(ξni)) = [ξni ]t, hence

lim
i→∞

log(θ(ξni))
log(ϕ(ξni))

= lim
r→0

log(θB(ξ, r))
log(r) = α.

Since for ni ≤ k < ni+1, we have θ(ξk) = θ(ξni) and ϕ(ξk) = ϕ(ξni) the whole sequence
(log(θ(ξn))/ log(ϕ(ξn))) also converges to α.

Remark 1.4. In the case d = dU∞ , we have, for all ξ ∈ ∂t, ϕ(ξn) ≤ e−n, thus

log(θ(ξn))
log(ϕ(ξn)) ≤

−1
n

log(θ(ξn)).

If ξ is not isolated, with the same notations as in the previous remark, we have, for all
i ≥ 1,

log(θ(ξni))
log(ϕ(ξni))

= −1
ni

log(θ(ξni)),

hence
lim inf
n→∞

−1
n

log(θ(ξn)) ≤ lim inf
n→∞

log(θ(ξn))
log(ϕ(ξn)) ,

which shows that these inferior limits are equal. The left hand side is called the Hölder
exponent of θ at ξ (see [46, Section 15.4]).
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Definition 1.8. When, for a metric d ∈ Metrics(∂t), we have dimHθ < dimH ∂t, then
θ-almost every ξ lies in a subset of ∂t which has a smaller dimension. In this case, we
shall say that the dimension drop phenomenon occurs for θ (with the metric d).

Such a phenomenon was first observed in the context of the harmonic measure in the
euclidean space by Makarov (see [47]).
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2 Ergodic theory on marked Galton-Watson
trees

The first two sections of this chapter introduce the Galton-Watson trees and, when
they are infinite, the boundaries of these random trees, with an emphasis on their Haus-
dorff and Packing dimension. The next sections of this chapter are devoted to the ergodic
theory on Galton-Watson trees, developed in [43]. There are some small differences be-
tween our treatment of this theory and the original. We work on the space of marked
trees (we need it for our applications) and we do not assume that p0 = 0. Fortunately,
this does not change the main ideas. Our more formal treatment leads to the definition
of the inherited part of a set. Some minor additional results are also presented. The last
section presents a theorem of the author which, though not as general as the rest of the
theory, seemed to belong in this chapter.

2.1 Galton-Watson trees
Since we want to define random trees, we wish to endow the set T of all trees with a

metric. Informally, we want to say that two trees are close to each other if they agree
up to a large height. Thus we set for all distinct trees t and t′,

d(t, t′) =
∑
r≥0

2−r−1δ(r) (t, t′) , where

δ(r)(t, t′) =
{

0 if ∀|x| ≤ r, x ∈ t ⇐⇒ x ∈ t′;
1 otherwise.

The space (T , d) is then a complete, ultrametric, separable space. We denote by T ∗

the set of all infinite trees.
Let p = (pk)k∈N be a non-negative sequence of real numbers such that

∑
k≥0 pk = 1

and p1 < 1. We denote by g the generated function of p defined on [0, 1] by

g(s) =
∑
k≥0

pks
k.

Let Ω = NU be the set of all functions from U to N, endowed with its product σ-algebra
F . Let P be the probability measure defined by

P{ω ∈ Ω :ω(x1) = n1, ω(x2) = n2, . . . , ω(xk) = nk} = pn1pn2 · · · pnk ,

for all k ≥ 1, all pairwise distinct x1, x2, ..., xk in U and all n1, n2, ..., nk in N. We
denote the associated expectation by E.
Now for ω ∈ Ω, let T (ω) be constructed as follows:
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2 Ergodic theory on marked Galton-Watson trees

— T0(ω) = {ø};
— for all n ≥ 0, Tn+1(ω) = {xi :x ∈ Tn(ω), 1 ≤ i ≤ ω(i)};
— T =

⋃∞
n=0 Tn(ω).

Then we see that T (ω) is a tree and that for all x in T (ω), the number of children of
x in T (ω) is νT (ω)(x) = ω(x). It is not hard to check that T : (Ω,F ,P) → (T , dT )
is measurable. The random tree T is called a Galton-Watson tree of reproduction law
p and its distribution is denoted by GWp (or simply GW when there is no risk of
confusion).
For x ∈ U and ω ∈ NU , define the translated function ωx by ωx(u) = ω(xu) for all

u ∈ U , and the Galton-Watson tree from x by T x(ω) = T (ωx). On the event that x ∈ T ,
we have T x = T [x]. It is clear that all the random trees T x have the same distribution
as T and moreover, whenever a subset Q of U is made of pairwise incomparable words,
the random trees (T x)x∈Q are independent and independent of the family of random
variables {ω 7→ ω(y) : y ∈ U , ∀x ∈ Q, y 6� x}. We call this property the branching
property whose most common avatar is the following proposition.

Proposition 2.1. Let T be a Galton-Watson tree of reproduction law p. Then for all
k ≥ 0, for all Borel sets B1, . . . , Bk of T ,

P(νT (ø) = k, T [1] ∈ B1, . . . , T [k] ∈ Bk) = pk

k∏
i=1

GW(Bi).

For n ≥ 0 and any tree t, we set

Zn(t) = #{x ∈ t : |x| = n}.

The stochastic process (Z0(T ), Z1(T ), . . . , Zn(T ), . . . ) is called a Galton-Watson process.
These processes were first introduced to model the survival of the family names of the

nobility, independently by Bienaymé and Galton and Watson during the 19th century.
The idea of considering not only the numerical process but the whole tree has progres-
sively emerged and has been formalised by Neveu ([50]). A sharp criterion to know
whether or not T can be infinite with positive probability may go back to Bienaymé (see
[33]). For a proof, we refer to [7, Section 1.3].

Theorem 2.2. Let T be a Galton-Watson tree of reproduction law p. Let m =
∑
k≥0 pkk

and q = P(T is finite). Then we have q < 1 ⇐⇒ m > 1.

Now assume that 1 < m < ∞. What can we say of the rate of growth of Zn(T )
on the event of non-extinction? It is easy to see that the process (Zn(T )/mn)n≥0 is a
martingale with respect to the filtration Fn = σ{ω(x) : |x| ≤ n, ω ∈ Ω}. Let W (T ) be
its almost-sure limit. In 1966, Kesten and Stigum published a sharp criterion on the
uniform integrability of this martingale.

Theorem 2.3 (Kesten-Stigum). Assume that 1 < m <∞. Then,

E[W (T )] > 0 ⇐⇒ E[W (T )] = 1 ⇐⇒ P(W = 0) = q ⇐⇒
∑
k≥1

pkk log k <∞
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2.2 The boundary of an infinite Galton-Watson tree

The first proofs of this theorem were analytical, see for instance [7, Section 1.10].
A strikingly simpler proof was found by Lyons, Pemantle and Peres in [42], where the
authors defined the size-biased Galton-Watson trees. When

∑
k≥1 pkk log k is infinite,

the rate of growth is slightly less than mn but a normalizing sequence still exists.

Theorem 2.4 (Seneta-Heyde). Assume that 1 < m < ∞. Then there exists a deter-
ministic sequence (cn)n≥0 of positive real numbers such that limn→∞ cn/cn+1 = m and
(Zn(T )/cn)n≥0 converges almost surely to a random variable W̃ (T ) which is positive and
finite on the event of non-extinction.

A theorem of Athreya ([6]) asserts that

E[W̃ (T )] <∞ ⇐⇒
∑
k≥1

pkk log k <∞.

In fact, when
∑
k≥1 pkk log k <∞, by asymptotic uniqueness of normalization sequences

(see [23, Section 10]), for any sequence (cn) as in the previous theorem, there is a constant
C ∈ (0,∞) such that limn→∞ cn/m

n = C and W (T ) = CW̃ (T ) almost surely. Since
there is no risk of confusion (up to a constant factor) we will always write W (T ).

2.2 The boundary of an infinite Galton-Watson tree
From now on we assume thatm > 1. Let GW∗ be the distribution of a Galton-Watson

tree conditioned on non-extinction. We also write P∗ for the probability measure P
conditioned on the event on non-extinction and E∗ for the associated expectation.

Lemma 2.5. For GW∗-almost every t, ∂t has no isolated rays.

Proof. First we claim that

α := P(∂T has exactly one ray) = 0.

By the branching property, this probability equals

α =
∑
k≥1

pk

k∑
i=1

P(T i has exactly one ray and the trees T j are finite for j 6= i ∈ J1, kK)

=
∑
k≥1

pkkq
k−1α = P(ν∗T (ø) ≤ 1)α,

where we recall that ν∗T (ø) denotes the number of infinite lineages from the root. Since
P(ν∗T (ø) ≤ 1) < 1, this proves the claim. Now the probability that ∂T has isolated rays
is

P(∃x ∈ T, #[x]t = 1) ≤
∑
x∈U

P(x ∈ T, #[x]t = 1) =
∑
x∈U

P(x ∈ T )α = 0.

We endow ∂T with the metric dU∞ and want to compute its Haudorff and packing
dimensions.
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2 Ergodic theory on marked Galton-Watson trees

Theorem 2.6 (Hawkes, Liu, Lyons, Watanabe). Almost surely on the event of non-
extinction,

dimH ∂T = dimp ∂T = logm.

We begin with the upper bound of the packing dimension. This is due to Watanabe
([60]). Liu proved it first in [36] under an additional integrability assumption. We shall
see in the proof that it does not matter whether we define the packing measure as the
restriction of the packing measure on U∞ or intrinsically on ∂T .

Lemma 2.7. Almost surely on the event of non-extinction, dimp ∂T ≤ logm.

Proof. If m =∞, there is nothing to prove. Assume m <∞ and let s > logm. Consider
for n ≥ 0, the random variable

Sn(T ) =
∑
k≥n

e−ksZk(T ).

The sequence (Sn(T )) is non-increasing. Let S∞(T ) be its limit. Since for any k ≥ 0,
E[Zk] = mk, we have

E[Sn] =
∑
k≥n

e−k(s−logm) −−−→
n→∞

0,

hence by Fatou’s lemma, S∞ = 0 almost surely. Now if C is an n-packing and φs is
defined on T by φs(x) = e−s|x| or by φs(x) = (diam[x]t)s,∑

x∈C
φs(x) ≤

∑
x∈C

e−s|x| ≤
∑
|x|≥n

e−s|x| = Sn.

Hence we see that Pφs
n (∂T ) ≤ Sn and Pφs

∞(∂T ) = 0 almost surely. Since Pφs(∂T ) ≤
Pφs
∞(∂T ), this concludes the proof.

We now turn to the Hausdorff dimension. We shall give two proofs of the fact that
almost surely on the event of non-extinction, dimH ∂T ≥ logm.
The first proof, due to Lyons [39], “from the book”, uses percolation on trees. Let p ∈

(0, 1). Consider, under a probability P, i.i.d. random variables (Bx)x∈U with Bernoulli
distribution of parameter p and let t be an infinite tree. The random tree Γ(t) is the
connected component of the root in the forest {x ∈ t :Bx = 1}. The critical parameter
pc(t) ∈ [0, 1] is defined by

pc(t) = sup{p > 0 :P(Γ(t) is infinite) = 0}.

Lyons showed ([39, Theorem 6.2]) that for any infinite tree t, pc(t) = 1/br(t).
Now if T is a Galton-Watson tree whose reproduction law has mean m > 1, and

if p > 1
m , then the tree Γ(T ) (suitably reindexed) has the distribution of a Galton-

Watson tree whose reproduction law has meanmp > 1 hence can be infinite with positive
probability. This shows that pc(T ) ≤ 1/m, hence that br(T ) ≥ m and by Proposition 1.12
that dimH(T ) ≥ logm, almost surely on the event of non-extinction.
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2.2 The boundary of an infinite Galton-Watson tree

In order to give a second proof of this inequality, we need to introduce the limit uniform
measure. Assume 1 < m < ∞. Recall the definition of W (T ) using the Seneta-Heyde
norming sequence (cn)n≥0. Let k ≥ 0. We may decompose Zn+k(T ) as the sum of the
terms Zn(T [x]) for |x| = k in T , therefore

W (T ) = lim
n→∞

Zn+k(T )
cn+k

= lim
n→∞

cn+k
cn

∑
|x|=k

Zn(T [x])
cn

= 1
mk

∑
|x|=k

W (T [x]). (2.1)

Therefore the function UNIFT defined by

UNIFT (x) = W (T [x])
m|x|W (T )

is a unit flow, which we call the limit uniform measure after [43]. Some authors consider
the flow W (T )UNIFT instead and call it the branching measure.
The first computation of dimH ∂T , due to Hawkes ([25]) used the following asymptotic

property:

Theorem 2.8 (Hawkes, Lyon-Pemantle-Peres). Assume that
∑
k≥1 pkk log k <∞, then

for GW∗-almost every t, for UNIFt-almost every ray ξ,

lim
n→∞

−1
n

log(UNIFt(ξn)) = logm.

Actually, Hawkes obtained this result with probabilistic methods under the assumption∑
k≥1 pkk(log k)2 <∞ and this stronger version was proved in [43] using ergodic theory.

We shall prove it later, once we have the right tools.
Let us just notice that it entails our lower bound. Indeed, by Proposition 1.13, this

implies that for GW∗-almost every t, dimHUNIFt = dimHUNIFt = logm. By definition
of these dimensions, this shows that for GW∗-almost every t, dimH ∂t ≥ logm as long as∑
k≥1 pkk log k < ∞. To remove this hypothesis, we may proceed as follows. Let ` ≥ 1

and, for a tree t, define t(`) as the tree t in which all the children of ranks greater than
` have been removed. Formally, t(`)0 = ø; for all n ≥ 0,

t
(`)
n+1 = {xi :x ∈ t(`)n , 1 ≤ i ≤ νt(x) ∧ `}

and t(`) =
⋃
n≥0 t

(`)
n . Then T (`) is a Galton-Watson tree of reproduction law (p(`)

k ) given
by

p
(`)
k =


pk if k < `;∑
k≥` pk if k = `;

0 if k > `.

Its mean is

m(`) =
∑̀
k=1

pkk + `
∑

k≥`+1
pk,
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2 Ergodic theory on marked Galton-Watson trees

which goes to m as ` goes to infinity and in particular is greater than 1 for ` large
enough. Now we want to prove that

P∗(∀` ≥ 1, T (`) is finite) = 0.

At this point we need the concept of inherited set. An inherited set is a Borel subset I
of T ∗ such that

∀t ∈ I, ∀x ∈ t∗, t[x] ∈ I.
Lemma 2.9. Any inherited set has GW∗ measure 0 or 1.

Proof. Let I be an inherited set and J be the union of I and the set of all finite trees.
Then, by the branching property:

GW(J ) = P(T ∈ J ) ≤
∞∑
k=0

pkP(T 1 ∈ J , ..., T k ∈ J )

≤
∞∑
k=0

pkGW(J )k = g(GW(J )).

By strict convexity of g (p1 < 1), for all s ∈ (q, 1), g(s) < s. Since GW(J ) ≥ q,
we must have GW(J ) ∈ {q, 1}. Now if GW(J ) = q, then GW∗(J ) = 0, otherwise
GW∗(J ) = 1.

Going back to our second proof, we see that the event {∀` ≥ 1, T (`) is finite} is
inherited. Its probability is less than 1 since whenever m(`) > 1, P(T (`) is infinite) > 0.
Hence, almost surely on the event of non-extinction, there exists a minimum random

N ≥ 1 such that for all ` ≥ N , T (`) is infinite. Now for any k ≥ 1, on the event N = k
we know that almost surely for all ` ≥ k, dimH ∂T

(`) ≥ logm(`) (the reproduction law
of T (`) has finite support) therefore dimH ∂T ≥ logm(`). Letting ` go to infinity finishes
this second proof (modulo the proof of Theorem 2.8).

2.3 Marked trees and inheritance
Let Marks be a Polish space with distance dMarks in which our marks will live. We

follow Neveu ([50]) and let it be completely abstract.
A marked tree t is a tree together with a function mkt : t → Marks. To lighten

notations, we will write t when we should write (t,mkt). We still, however, write x ∈ t
when we mean that a word x is a vertex of the marked tree t. Let Tm be the set of all
marked trees, with the distance

dm
(
t, t′
)

=
∑
r≥0

2−r−1δ(r)
m
(
t, t′
)
,

where δ(r)
m is defined by

δ(r)
m
(
t, t′
)

=
{

1 if t and t′ (without their marks) do not agree up to height r;
min (1,max{dMarks (mkt(x),mkt′(x)) :x ∈ t, 0 ≤ |x| ≤ r}) otherwise.
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2.3 Marked trees and inheritance

The set Tm is then a Polish space. Recall that † denotes the empty tree. We extend the
distance dm on Tm t {†} by setting dm(†, t) = 1 for any t in Tm.
For any marked tree t and any vertex x in t, recall that

t[x] = {y ∈ U :xy ∈ t},

is the reindexed subtree of t starting from x. Its marks are inherited from the original
tree:

mkt[x](y) = mkt(xy), ∀y ∈ t[x].

Recall that when a word x in U does not belong to t, we set t[x] = †. For any x in U ,
the map

Subx : Tm → Tm ∪ {†}
t 7→ t[x]

is continuous, hence measurable. We denote by T ∗m the set of all infinite marked trees.

Definition 2.1. Let A be a Borel subset of Tm. The inherited part of A is

Ao = {t ∈ Tm : ∀x ∈ t, t[x] is finite or t[x] ∈ A}.

We say that A is inherited if A = Ao. For a Borel probability measure µ on T ∗m, we say
that A is µ-inherited when µ(A) = µ(Ao).

In particular, Ao contains all finite marked trees (thus it is possible that Ao is not
contained in A; however, every infinite tree in Ao belongs to the set A). Notice that, by
continuity of the maps Subx, for x in U , the set

Ao =
⋂
x∈U

Sub−1
x

(
{†} ∪A ∪ (Tm \T ∗m)

)
, (2.2)

is again a Borel subset of Tm. The inherited part satisfies nice set-theoretical properties.

Lemma 2.10. Let I be any set, A, B and (Ai)i∈I be Borel subsets of Tm. Then,
1. (Ao)o = Ao ;
2. if A ⊂ B, then Ao ⊂ Bo;
3. (

⋂
i∈I Ai)

o =
⋂
i∈I Ai

o;
4. (

⋃
i∈I Ai

o)o =
⋃
i∈I Ai

o.

Proof. 1. Since Ao contains all finite trees, it is clear that (Ao)o is contained in Ao. On
the other hand, if t is in Ao and x is in t, then, for all xy in t, t[xy] is in A or is finite.
Thus, for all y in t[x], t[x][y] is in A or is finite, that is, t[x] is in Ao. Since this holds
for all x in t, t is in

(
Ao)o.

2. Straightforward.
3. It is a consequence of (2.2).
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2 Ergodic theory on marked Galton-Watson trees

4. The second property implies that for all i ∈ I, (Aio)o ⊂
(⋃

j∈I Aj
o)o, hence the first

inclusion, by the first property.
Now, we have

T ∗m ∩
(⋃
i∈I

Ai
o
)o
⊂ T ∗m ∩

⋃
i∈I

Ai
o,

hence the result, since both
(⋃

i∈I Ai
o
)o

and
⋃
i∈I Ai

o contain the set of finite trees.

Notice that in general we only have
⋃
i∈I Ai

o ⊂ (
⋃
i∈I Ai)

o. The last two statements
imply that the set of all inherited subsets of Tm is stable under any union and any
intersection.

2.4 Flow rules and harmonicity
We endow the set RU of all functions from U to R with its product σ-algebra, that is

the smallest σ-algebra that makes all the functions θ 7→ θ(x), for x ∈ U measurable.

Definition 2.2. Let B be a (Borel) inherited subset of Tm. We say that a measurable
function Θ from B to RU is a (consistent, unit) flow rule if for all t ∈ B,
1. Θt is a unit flow on t;
2. for any xy in t,

Θt(xy) = Θt(x)Θt[x](y). (2.3)

We call B the domain of Θ and write dom Θ = B. If additionally, for all t ∈ B, for all
x ∈ t∗, Θt(x) > 0, we say that Θ is a positive flow rule (it always has full support).
If µ is a Borel probability measure on T ∗m, we say that Θ is a µ-flow rule, or that µ is

a Θ-probability measure whenever µ dom Θ = 1.

Remark 2.1. To construct a flow rule, it suffices to consider a measurable function
φ : Tm → [0,∞] such that φ(t) = 0 if t is finite. Then set A = {t ∈ Tm :φ(t) ∈ (0,∞)}.
Define a flow rule Θ of domain Ao by setting for all t ∈ Ao, for all 1 ≤ i ≤ νt(ø),

Θt(i) = φ(t[i])∑νt(ø)
j=1 φ(t[j])

,

and continuing recursively, giving for all x ∈ t∗,

Θt(x) =
∏

ø≺y�x

φ(t[y])∑
z∗=y∗ φ(t[z]) .

We have already seen some examples of flow rules: the three first examples in the list
below (since they do not involve marks, let Marks = {1} for them). The last example
shows a flow rule which depends on the marks.

Example 2.1.
1. As we have seen before in example 1.1, VIS is positive flow rule on T ∗m.
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2.4 Flow rules and harmonicity

2. Let λ > 0 and for an infinite tree t, let β(t) be the conductance of t for the λ-biased
random walk as in Section 1.6. Let A = {t ∈ T ∗ :β(t) > 0}. Then Ao = {t ∈ T ∗ : ∀x ∈
t∗, β(t[x]) > 0}. A tree in Ao is said to be everywhere transient. On Ao, as we have
seen in Section 1.7, HARM is a positive flow rule. If p is a reproduction law of mean
m > max(1, λ), then GW∗

p is a HARM-probability measure.
3. Let p be a reproduction law of finite mean m > 1. Let (cn) be a Seneta-Heyde
normalizing sequence. let B be the set of all infinite trees t such that, for all x ∈ t∗,
Zn(t[x])/cn converges to an element of (0,∞). Then UNIF is a positive flow rule on B
and GW∗

p is a UNIF-probability measure.
4. Let Marks = (0,∞) and B be the set of all infinite marked trees without leaves.
Define VIS on B by letting, for all t ∈ B, for all 1 ≤ i ≤ νt(ø),

VISt(i) = mkt(i)∑νt(ø)
j=1 mkt(j)

,

and continuing recursively, as in the previous discussion. This flow rule has been studied
in [38]. It is denoted there by ν.

By standard arguments, we may rewrite the flow rule property as the following change
of variable formula: for all t ∈ dom Θ, x ∈ t∗, f measurable functions from ∂t to R+:∫

1{x≺ξ}f(ξ)Θt(dξ) = Θt(x)
∫
f(xξ̃)Θt[x](dξ̃). (2.4)

We introduce the notation, for a tree t and i ≥ 0,

t∗i = {x ∈ t : |x| = i and t[x] is infinite}.

A flow rule Θ defines an operator on functions. Let f be a real measurable function on
dom Θ. The function Θf is defined by

Θf(t) =
νt(ø)∑
i=1

Θt(i)f(t[i]) =
∑
i∈t∗1

Θt(i)f(t[i]), ∀t ∈ dom Θ.

If µ is a Θ-probability measure, the probability measure µΘ is defined by∫
f d(µΘ) =

∫
Θf dµ,

for all non-negative measurable functions f : T ∗m → R (since µ dom Θ = 1, the integrand
in the right-hand side almost surely makes sense). We say that µ is Θ-invariant if
µΘ = µ. A measurable function f : T ∗m → R is called (µ,Θ)-harmonic when Θf = f ,
µ-almost surely. A Borel subset A of T ∗m is called (µ,Θ)-invariant when the indicator
function 1A is (µ,Θ)-harmonic.
The set of all (µ,Θ)-invariant sets is a σ-algebra which clearly contains all Borel

subsets of T ∗m which have 0 or full µ-measure. We denote it by Inv(µ,Θ). It can be
completely described in the case where Θ is positive and µ is Θ-invariant.
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2 Ergodic theory on marked Galton-Watson trees

Proposition 2.11. Let Θ be a positive flow rule and µ a Θ-invariant probability measure.
Then, a non-negative or bounded measurable function f on T ∗m is (µ,Θ)-harmonic if and
only if for µ-almost every t ∈ T ∗m, for all x in t∗, f(t[x]) = f(t).
In particular, a Borel subset A of dom Θ is in Inv(µ,Θ) if and only if,

µ(Ao t (Ac)o) = 1.

Proof. The “if” part is immediate, so let us assume that f is a bounded (µ,Θ)-harmonic
function. Let α be a rational number. By positivity of the operator Θ, we have

Θ(f ∧α) ≤ f ∧α, µ-a.s.

Integrating with respect to µ and using the fact that µ is Θ-invariant by assumption, we
obtain

Θ(f ∧α) = f ∧α, µ-a.s.

In particular, for µ-almost every t ∈ dom Θ,

(f ∧α)(t) ≤
∑
i∈t∗1

Θt(i)f(t[i])∧α.

Since for i ∈ t∗1, Θt(i) > 0 and
∑
i∈t∗1

Θt(i) = 1, this implies that µ-almost surely, for
every rational number α,

f(t) ≥ α =⇒ ∀i ∈ t∗1, f(t[i]) ≥ α,

which entails that, for µ-almost every tree t, for all i in t∗1, f(t) ≤ f(t[i]). Considering
−f instead of f shows that these inequalities are equalities.
To complete the proof by induction, consider, for n ≥ 1,

An = {t ∈ dom Θ :∀x ∈
⋃
k≤n

t∗k, f(t[x]) = f(t)} and

Bn = {t ∈ dom Θ :∀i ∈ t∗1, t[i] ∈ An}.

We have just proved that µ(A1) = 1. Notice that An ∩ Bn = An+1. Now if µ(An) = 1,
then

1 = µ(An) =
∫

Θt1Anµ(dt) =
∫ ∑

i∈t∗1

Θt(i)1An(t[i])µ(dt),

which shows that µ(Bn) = 1, hence that µ(An+1) = µ(An ∩Bn) = 1.

2.5 Marked trees with rays : exact-dimensionality for a class of
flow rules

We now turn to the space of infinite marked trees with a distinguished ray. Let

Tm,r = {(t, ξ) : t ∈ T ∗m, ξ ∈ ∂t}.
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We endow this space with the distance dm,r defined by

dm,r
(
(t, ξ), (t′, ξ′)

)
=
∑
r≥0

2−r−1δ(r)
m,r
(
(t, ξ), (t′, ξ′)

)
,

for all (t, ξ) and (t′, ξ′) in Tm,r, where the sequence of functions δ(r)
m,r, for r in N is defined

by

δ(r)
m,r
(
(t, ξ), (t′, ξ′)

)
=
{
δ

(r)
m (t, t′) if ξk = ξ′k, ∀0 ≤ k ≤ r;

1 otherwise.

The metric space (Tm,r,dm,r) is again a Polish space. The shift operator S on Tm,r is
defined by

S(t, ξ) = (t[ξ1], ξ−1
1 ξ).

In words, we look at the subtree selected by the ray ξ and the rest of the ray on it. The
shift is continuous with respect to dm,r.
Let Θ be a flow rule and µ a Θ-probability on T ∗m. Recall that for any marked tree

t in dom Θ, we may see Θt as a Borel probability measure on ∂t. Hence, we may build
a Borel probability measure µ n Θ on Tm,r in the following way: for any non-negative
measurable function f on Tm,r,∫

f d(µnΘ) =
∫ (∫

f(t, ξ) dΘt(ξ)
)

dµ(t). (2.5)

Lemma 2.12. The system (Tm,r,S, µnΘ) is measure-preserving if and only if µ is
Θ-invariant.

Proof. To prove the direct implication, let f : T ∗m → R+ be a measurable function and
define g(t, ξ) = f(t) for all (t, ξ) ∈ Tm,r. Then we have∫

f dµ =
∫ (∫

g(t, ξ)Θt(dξ)
)
µ(dt) =

∫ (∫
g ◦ S(t, ξ)Θt(dξ)

)
µ(dt).

Since g◦S(t, ξ) = f(t[ξ1]), decomposing with respect to the value of ξ1 gives, for µ-almost
every t, ∫

g ◦ S(t, ξ)Θt(dξ) =
∑
i∈t∗1

f(t[i])Θt(i) = Θf(t),

showing that µΘ = µ.
For the converse implication, let f be a non-negative measurable function on Tm,r.

For t ∈ dom Θ,∫
f ◦ S(t, ξ) dΘt(ξ) dµ(t) =

∑
i∈t∗1

∫
1{ξ1=i}f(t[i], i−1ξ) dΘt(ξ)

=
∑
i∈t∗1

Θt(i)
∫
f(t[i], ξ̃) dΘt[i](ξ̃),
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2 Ergodic theory on marked Galton-Watson trees

by the flow rule property (2.4). Hence, if we set for t in dom Θ,

g(t) =
∫
f (t, ξ) dΘt(ξ),

the fact that µ is Θ-invariant yields∫ (∫
f ◦ S(t, ξ) dΘt(ξ)

)
dµ(t) =

∫
Θg(t) dµ(t) =

∫
g(t) dµ(t).

Definition 2.3. Let h be a Borel non-negative or integrable function on Tm,r. One says
that h is (S, µ n Θ)-invariant, when h ◦ S = h, µ n Θ-almost surely. A Borel set A of
Tm,r is called (S, µnΘ)-invariant when its indicator function 1A is.

The family of (S, µnΘ)-invariant sets is a σ-algebra. We denote it by Inv(S, µnΘ).
In the case where µ is Θ-invariant and Θ is positive, it does not contain much more
information than the σ-algebra Inv(µ,Θ) that we have seen before:

Proposition 2.13. Let Θ be a positive flow rule and µ a Θ-invariant probability. A
Borel, non-negative or integrable function h on Tm,r is (S, µnΘ)-invariant if and only
if there exists a (µ,Θ)-harmonic function f on Tm such that

h(t, ξ) = f(t), for µnΘ-almost every (t, ξ).

In particular, a Borel set A is µ n Θ-invariant if and only if there exists a set Ã in
Inv(µ,Θ) such that,

(t, ξ) ∈ A ⇐⇒ t ∈ Ã, µnΘ-a.s. (2.6)

Proof. Denoting, for k ≥ 0, by Sk the k-th iterate of S, we first notice that

1{h◦S=h} ◦ S = 1{h◦S2=h◦S}.

Hence, by the fact that µnΘ is S-invariant, we also have

h = h ◦ Sk, ∀k ≥ 0, µnΘ-a.s. (2.7)

For a fixed infinite marked tree t ∈ dom Θ and n ≥ 0, let Gn be the σ-algebra on ∂t
generated by all the cylinders [x]t, for x ∈ t∗n. Then we have G0 ⊂ G1 ⊂ G2 ⊂ · · · , and
the σ-algebra generated by the union

⋃
n≥0 Gn is the Borel σ-algebra of ∂t. Under some

probability P with associated expectation E, let Ξ be a random ray on t of distribution
Θt. Then we have for all n ≥ 0,

E[h(t,Ξ) | Gn] = E[h(t,Ξ) |Ξn] =
∑
x∈t∗n

E[h(t,Ξ) |Ξn = x]1{Ξn=x}.

By the flow rule property (eq. (2.4)), for x ∈ t∗n,

E[h(t,Ξ) |Ξn = x] =
∫

1{x≺ξ}h(t, ξ)Θt(dξ)
Θt(x) =

∫
h(t, xξ̃)Θt[x](dξ̃),
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showing that
E[h(t,Ξ) | Gn] =

∫
h(t,Ξnξ̃)Θt[Ξn](dξ̃).

Hence, by the regular martingale convergence theorem, for Θt-almost every ray ξ,

h(t, ξ) = lim
n→∞

∫
h(t, ξnξ̃)Θt[ξn](dξ̃). (2.8)

Observe that, by the flow rule property, if a random ray Ξ in t is distributed according to
Θt and, conditionally on Ξn, Ξ̃ is a random ray in t[Ξn] distributed according to Θt[Ξn],
then the ray ΞnΞ̃ is distributed according to Θt. Thus, if t is such that (2.7) holds, we
have, for any n ≥ 0, for Θt-almost every ray ξ, for Θt[ξn]-almost every ray ξ̃,

h(t, ξnξ̃) = h ◦ Sn(t, ξnξ̃) = h(t[ξn], ξ̃). (2.9)

Plugging this into the previous limit, we obtain, for µnΘ-almost every (t, ξ),

h(t, ξ) = lim
n→∞

∫
h(t[ξn], ξ̃)Θt[ξn](dξ̃).

Now define when it makes sense (it does on a set of full µ-measure), for t ∈ T ∗m,

f(t) =
∫
h(t, ξ) dΘt(ξ).

Then, we claim that f is (µ,Θ)-harmonic. Indeed, for µ-almost every t ∈ T ∗m,

f(t) =
∫
h(t, ξ) dΘt(ξ) =

∫
h ◦ S(t, ξ)Θt(dξ)

=
∑
i∈t∗1

∫
h(t[i], i−1ξ)1{ξ1=i}Θt(dξ)

=
∑
i∈t∗1

Θt(i)
∫
h(t[i], ξ̃)Θt[i](dξ̃) = Θf(t).

Getting back to (2.8), and using Proposition 2.11, we finally obtain, for µ-almost every
tree t, for Θt-almost every ray ξ,

h(t, ξ) = lim
n→∞

f(t[ξn]) = lim
n→∞

f(t) = f(t).

Remark 2.2. It is clearly possible to write versions of Proposition 2.11 and Proposi-
tion 2.13 without the assumption that the flow rule is positive. This would however
complicate the statements of the propositions and all the applications we can think of
involve positive flow rules.

Corollary 2.14. Let Θ be a positive flow rule and µ be a Θ-invariant probability measure
on T ∗m. Then the measure-preserving system (T ∗m,r,S, µ n Θ) is ergodic if and only if,
for all Borel subsets A of T ∗m,

µ(Ao ∪ (Ac)o) = 1 =⇒ µ(A) ∈ {0; 1}. (2.10)
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2 Ergodic theory on marked Galton-Watson trees

Proof. Let B ∈ Inv(S, µ n Θ). By the previous proposition, there exists a set B̃ in
Inv(µ,Θ) such that µnΘ(B) = µ(B̃). By Proposition 2.11, µ(B̃o ∪ (B̃c)o) = 1. Hence,
if µ satisfies the above condition, the system is ergodic.
In the other direction, if A ⊂ T ∗m is such that µ(Ao ∪ (Ac)o) = 1 and 0 < µ(A) < 1,

then we set
B = {(t, ξ) : t ∈ A, ξ ∈ ∂t},

and by the previous proposition, B is in Inv(S, µ n Θ) but has measure µ n Θ(B) =
µ(A) ∈ (0, 1).

Thus we shall say that a Borel probability measure µ on T ∗m is Θ-ergodic when it is
Θ-invariant and satisfies (2.10) (this condition says that any Borel set A such that A
and its complement Ac are both µ-inherited must have measure 0 or 1).

Corollary 2.15. Let Θ be a positive flow rule and µ a Θ-ergodic probability measure.
Then, for µ-almost every t ∈ T ∗m, for Θt-almost every ξ ∈ ∂t,

lim
n→∞

−1
n

log(Θt(ξn)) =
∫
− logΘt(ξ1) d(µnΘ)(t, ξ).

Proof. Let t ∈ dom Θ and ξ ∈ ∂t. For n ≥ 1, we have, by the flow rule property,

Θt(ξn) =
n−1∏
i=0

Θt(ξi+1)
Θt(ξi)

=
n−1∏
i=0

Θt[ξi](ξ
−1
i ξi+1) =

n−1∏
i=0

Θt[ξi](ξ
(i+1)),

where ξ(1), ξ(2), . . . is the sequence of letters of the infinite word ξ. Set

f(t, ξ) = − log(Θt(ξ(1))).

We have for any i ≥ 0,

f ◦ Si(t, ξ) = − log Θt[ξi]((ξ
−1
i ξ)(1)) = − log Θt[ξi](ξ

(i+1)),

so that, for any n ≥ 1,

−1
n

log Θt(ξn) = 1
n

n−1∑
i=0

f ◦ Si(t, ξ),

and the pointwise ergodic theorem finishes the proof.

2.6 Marked Galton-Watson trees and flow rules
Under some probability P, let (N,M) be a random variable with values in N∗×Marks

such that P(N = 1) < 1. We build a marked Galton-Watson tree such that the joint
reproduction and mark law is the law of (N,M) in much the same way as in the first
section of this chapter. First we consider the set Ω = (N ×Marks)U endowed with its
product σ-algebra F . For an element ω ∈ Ω, we write ω = (ν,mk), with ν : U → N and
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2.6 Marked Galton-Watson trees and flow rules

mk : U → Marks We then define the probability measure P on the measurable space
(Ω,F) by:

P{ω ∈ Ω : ν(x1) = n1, mk(x1) ∈ A1, . . . , ν(xk) = nk, mk(xk) ∈ Ak}
=

∏
1≤i≤k

P(N = ni,M ∈ Ai),

for all k ≥ 0, all distinct x1, . . . , xk in U , all n1, . . . , nk in N and all borel sets A1, ..., Ak
of Marks. Now T (ω) is defined as the Galton-Watson tree associated to the function ν,
together with the restriction to the vertices of T of the mark function mk. We call the
random marked tree T a marked Galton-Watson tree, and denote its law again by GW
in order not to add yet another notation. The random marked trees T x, for x ∈ U are
defined in the same way as in Section 2.1. Of course, if we forget the marks, we obtain
a Galton-Watson tree as in the first section whose reproduction law is the law of N and
will again be denoted by p = (p0, p1, . . . ). The branching property is still valid in this
setting of marked trees. For instance we have:

Proposition 2.16. Let k be a non-negative integer, A a Borel set of Marks, and B1,
B2, . . . , Bk Borel sets of Tm. Then,

P(νT (ø) = k, mkT (ø) ∈ A, T [1] ∈ B1, . . . , T [k] ∈ Bk)

= P(N = k,M ∈ A)
k∏
i=1

GW(Bi).

As before, we denote by m the mean of p and assume from now on that m > 1, so
that T is infinite with positive probability. We again denote by GW∗ the distribution
of T on the event of non-extinction. We still have the following crucial 0-1 law.

Proposition 2.17. Any GW∗-inherited subset of Tm has GW∗-measure 0 or 1. More-
over, for any Borel subset A of T ∗m, GW∗(A) = 1 ⇐⇒ GW∗(Ao) = 1.

Proof. By definition, if A is GW∗-inherited, then GW∗(A) = GW∗(Ao). Proceed as
in the proof of Lemma 2.9 to show that GW∗(Ao) ∈ {0, 1}.
Now assume that GW∗(A) = 1. Then, P(T ∈ T ∗m ∩Ac) = 0 and by the union bound

and the branching property,

P(∃x ∈ T, T [x] ∈ T ∗m ∩Ac) ≤
∑
x∈U

P(x ∈ T )P(T ∈ T ∗m ∩Ac) = 0.

We are now ready to prove the central theorem of the ergodic theory on marked
Galton-Watson trees.

Theorem 2.18. Let Θ be a flow rule on marked trees. Let µ be a Θ-invariant probability.
If µ is absolutely continuous with respect to GW∗ (notation: µ � GW∗), then also
GW∗ � µ and the measure-preserving system (Tm,r, S, µ n Θ) is ergodic. Moreover,
such a measure µ, if it exists, is unique.
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2 Ergodic theory on marked Galton-Watson trees

Proof. First we claim that if A ∈ Inv(µ,Θ), then GW∗(A) is 0 or 1. Indeed, by
Proposition 2.11, this entails that µ(Ao ∪ (Ac)o) = 1. Since µ � GW∗, necessar-
ily GW∗(Ao ∪ (Ac)o) > 0. The rather subtle point is that the set Ao ∪ (Ac)o is
inherited by the last point of Lemma 2.10, therefore by Proposition 2.17 we have
GW∗(Ao ∪ (Ac)o) = 1. Hence,

GW∗(A) = GW∗(A ∩ (Ao ∪ (Ac)o)
)

= GW∗(Ao),

meaning that A is GW∗-inherited, hence by a second use of Proposition 2.17, GW∗(A) ∈
{0, 1}.
Now, if N is a Borel subset of T ∗m such that µ(N) = 0, then µ� GW∗ implies that

GW∗(N) < 1. But since N is in Inv(µ,Θ), this means that GW∗(N) = 0, which proves
that GW∗ � µ.
To prove the ergodicity, by Corollary 2.14, we only need to check that any set A in

Inv(µ,Θ) has µ-measure 0 or 1. But since it has GW∗-measure 0 or 1 and µ is absolutely
continuous with respect to GW∗, it is now established.
Finally 1, assume that a probability measure µ′ � GW∗ is Θ-invariant. Let A be a

Borel set of Tm. By the pointwise ergodic theorem and equivalence to GW∗, we have
for GW∗-almost every t, for Θt-almost every ξ,

1
n

n−1∑
k=0

1A (t[ξk]) −−−→
n→∞

µ(A).

Since the same holds for µ′, we must have µ(A) = µ′(A).

Corollary 2.19. Under the same assumptions as the previous theorem, for GW∗-every
tree t, if we endow ∂t with the metric dU∞, the flow Θt is exact-dimensional of dimension

dim Θt =
∫
− logΘt(ξ1) d(µoΘ)(t, ξ).

Proof. By the previous theorem, µ is Θ-ergodic and equivalent to GW∗. Hence, by
Corollary 2.15, for GW∗-almost every t, for Θt-almost every ξ ∈ ∂t,

lim
n→∞

−1
n

log Θt(ξn) =
∫
− logΘt(ξ1) d(µoΘ)(t, ξ) =: α.

By Lemma 2.5, we may assume that t has no isolated rays. Therefore, by remark 1.4,
we have for Θt-almost every ξ,

lim inf
n→∞

log Θt(ξn)
log diam[ξn]t

= lim inf
n→∞

−1
n

log Θt(ξn) = α.

On the other hand, the inequality diam[ξn]t ≤ e−n yields for Θt-almost every ξ,

lim sup
n→∞

log Θt(ξn)
log diam[ξn]t

≤ lim sup
n→∞

−1
n

log Θt(ξn) = α.

1. The last point is reminiscent of the classical fact that two distinct ergodic measures are mutually
singular, but does not quite fit in this box since it is the measure µ nΘ which is ergodic. However, we
prove it with the same classical arguments.
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2.6 Marked Galton-Watson trees and flow rules

We now examine the situation where two flow rules cohabit on the same Galton-
Watson tree.

Proposition 2.20. Let Θ and Θ′ be two GW∗-flow rules. Then, GW∗{t ∈ Tm : Θt =
Θ′t} ∈ {0; 1}. Furthermore, this probability is 1 if and only if

P∗(∀i ∈ T ∗1 , ΘT (i) = Θ′T (i)) = 1.

Finally, if there exist a Θ-invariant probability µ� GW∗ and a Θ′-invariant probability
µ′ � GW∗, then, either for GW∗-almost every t, Θt ⊥ Θ′t, or Θt = Θ′t for GW∗-almost
every t.

Proof. First consider the Borel subset of T ∗m:

A = {t ∈ dom Θ ∩ dom Θ′ : ∀i ∈ t∗1, Θt(i) = Θ′t(i)}.

By the flow rule property,

Ao = {t ∈ dom Θ ∩ dom Θ′ : Θt = Θ′t},

hence the first part of the proposition, by Proposition 2.17.
For the last part, we use the pointwise ergodic theorem. Let g be a non-negative

measurable function. By Theorem 2.18, for GW∗-almost every marked tree t, for Θt-
almost every ray ξ,

1
n

n−1∑
k=0

g(Sk(t, ξ)) −−−→
n→∞

∫ (∫
g(t, ξ)Θt(dξ)

)
µ(dt),

and the same is true when we replace Θ by Θ′ and µ by µ′. Thus we are done if we
can prove that, if Θt and Θ′t are not almost surely equal, then for some non-negative
measurable function g,∫ (∫

g (t, ξ) Θt(dξ)
)
µ(dt) 6=

∫ (∫
g (t, ξ) Θ′t(dξ)

)
µ′(dt).

If this is not the case, then the probability measures µnΘ and µ′nΘ′ on Tm,r are equal.
Projecting on the space T ∗m, we obtain that necessarily µ = µ′ and by equivalence with
GW∗, that GW∗ nΘ = GW∗ nΘ′.
This entails that for any x in U and any non-negative measurable function h on T ∗m,∫
h(t)1{x∈t}

(∫
1{x≺ξ} dΘt(ξ)

)
dGW∗(t) =

∫
h(t)1{x∈t}

(∫
1{x≺ξ} dΘ′t(ξ)

)
dGW∗(t),

thus for GW∗-almost every marked tree t,

1{x∈t}Θt(x) = 1{x∈t′}Θ′t(x).

Since this holds for any x in U and U is countable, this implies that for GW∗-almost
every tree t, Θt = Θ′t.
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2 Ergodic theory on marked Galton-Watson trees

At this point, we go back to the construction in remark 2.1. That is, we consider
a function φ : Tm → [0,∞] such that φ(t) = 0 whenever t is finite. We let A =
{t ∈ T ∗m :φ(t) ∈ (0,∞)}, and assume that GW∗(A) = 1, so that, by Proposition 2.17,
GW∗(Ao) = 1. Then we define the flow rule Θ of domain dom Θ = Ao by: for all
t ∈ dom Θ, for all x ∈ t∗,

Θt(x) =
∏

ø≺y�x

φ(t[y])∑
z∗=y∗ φ(t[z]) .

The first examples that come to mind are UNIF, with φ(t) = lim supn→∞ Zn(t)/cn,
VIS, with φ(t) = 1{t is infinite} and HARM for the λ-biased random walk of bias λ < m
with φ(t) = β(t), the conductance of the tree as defined in Section 1.7. Notice that in
general, φ may also depend on the marks of the marked tree.
First we prove a criterion for two flow rules built this way to be equal, with arguments

similar to those in the proof of [43, Proposition 8.3].

Lemma 2.21. Assume that Θ and Θ′ are two GW∗-flow rules constructed respectively
from φ and φ′ as above. Then, P∗(ΘT = Θ′T ) = 1 if and only if, there is a constant
C ∈ (0,∞) such that P∗-almost surely, φ(T ) = Cφ′(T ).

Proof. The converse implication is obvious. So assume that

P∗(∀i ∈ T ∗1 , ΘT (i) = Θ′T (i)) = 1.

We reason conditionally on the event A that νT (ø) ≥ 2 and T [1] and T [2] are infinite.
Let PA be the conditional probability with respect to A. Under PA, T [1] and T [2] are
independent and have distribution GW∗. However, PA-almost surely,

φ(T [1])
φ′(T [1]) =

∑νT (ø)
j=1 φ(T [j])∑νT (ø)
j=1 φ′(T [j])

= φ(T [2])
φ′(T [2]) .

Hence, by independence, the random variable φ(T [1])/φ′(T [1]) is degenerated, that is
there exists C > 0 such that PA-almost surely φ(T [1]) = Cφ′(T [1]). Since the law of
T [1] under PA is the law of T under P∗, the proof is complete.

The next proposition gives the local dimension of a flow Θ′T on a set of full ΘT -measure.

Proposition 2.22. Let Θ and Θ′ be as in the previous lemma. Let Ξ be distributed
according to ΘT . Assume that there exists a probability measure µ � GW∗ which is
Θ-invariant and that the random variable

log φ′(T [Ξ1])− log φ′(T )

is bounded from below by a (µ n Θ)-integrable random variable then, for GW∗-almost
every tree t, for Θt-almost every ray ξ, we have

−1
n

log Θ′t(ξn) −−−→
n→∞

E∗µ
[
log

∑νT (ø)
i=1 φ′(T [i])
φ′(T )

]
,
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2.7 The limit uniform measure

and if P∗(ΘT = Θ′T ) < 1, then this limit is almost surely greater than dim ΘT , the exact
dimension of ΘT with respect to dU∞.

Proof. By the same arguments as in the proof of Corollary 2.15, we have for GW∗-almost
every tree t, for Θt-almost every ray ξ,

−1
n

log Θ′t(ξn) −−−→
n→∞

E∗µ
[
log 1

Θ′T (Ξ1)
]
,

Now it suffices to write

Θ′T (Ξ1) = φ′(T [Ξ1])
φ′(T )

φ′(T )∑νT (ø)
i=1 φ′(T [i])

and to apply Lemma 2.24 to obtain the first part of the proposition. The final part of
the proposition is simply an application of Gibbs’ inequality as in Proposition 2.27.

2.7 The limit uniform measure
In this section, we assume that m > 1 and that

∑
k≥1 pkk log k < ∞. Recall that we

want to prove that for GW∗-almost every t, for UNIFt-almost every ξ ∈ ∂t,

lim
n→∞

−1
n

log UNIFt(ξn) = logm.

In light of what we have seen, we want to find a UNIF-invariant measure µUNIF � GW∗.
Not so surprisingly, this task is handled by the size-biased Galton-Watson tree.

Lemma 2.23. Let T be a Galton-Watson tree such that m > 1 and
∑
k≥1 pkk log k <∞.

Then, the Borel probability measure µUNIF defined by∫
f(t)µUNIF(dt) = (1− q)E∗[W (T )f(T )],

for all measurable functions f : T ∗m → R+ is UNIF-invariant.

Proof. We need to show that for all measurable f : T ∗m → R+,

E[W (T )f(T (Ξ1))] = E[W (T )f(T )],

where Ξ is a random ray in ∂T of law UNIFT . Recall that W (T ) = W (T )1{T is infinite}.
Decomposing with respect to the values of νT (ø) and Ξ1, we have

E[W (T )f(T [Ξ1])] =
∑
k≥1

E
[
1{νT (ø)=k, T∈T ∗m}

k∑
i=1

1{Ξ1=i}W (T )f(T [i])
]
.

We may replace 1{Ξ1=i} by its conditional expectation given T , which is

1{T [i] is infinite}
W (T [i])∑νT (ø)

j=1 W (T [j])
= W (T [i])∑νT (ø)

j=1 W (T [j])
.
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2 Ergodic theory on marked Galton-Watson trees

Since W (T ) = 1
m

∑νT (ø)
i=1 W (T [j]), this gives

E[W (T )f(T [Ξ1])] = 1
m

∑
k≥1

k∑
i=1

E
[
1{νT (ø)=k, T∈T ∗m}W (T [i])f(T [i])

]
= 1
m

∑
k≥1

kE
[
1{νT (ø)=k, T∈T ∗m}W (T [1])f(T [1])

]
,

by symmetry. Now observe that for any k ≥ 1,

1{νT (ø)=k, T∈T ∗m}W (T [1]) = 1{νT (ø)=k, T∈T ∗m, T [1]∈T ∗m}W (T [1]).
= 1{νT (ø)=k, T 1∈T ∗m}W (T 1).

So we may use the branching property and obtain

E[W (T )f(T [Ξ1])] = 1
m

∑
k≥1

kpkE
[
1{T 1∈T ∗m}W (T 1)f(T 1)

]
,

= E[W (T )f(T )].

By Theorem 2.18, µUNIF is also UNIF-ergodic. By Corollary 2.19, we already know
that, for GW∗-almost every t, for UNIFt-almost every ξ,

lim
n→∞

−1
n

log UNIFt(ξn) = −
∫

log UNIFt(ξ1) d(µnΘ)(t, ξ)

=
∫

(logm+ logW (t)− logW (t[ξ1]) d(µnΘ)(t, ξ).

We are done with the proof of Theorem 2.8 if we can show that, by stationarity,∫
(logW (t)− logW (t[ξ1])) d(µUNIF n UNIF)(t, ξ) = 0.

This is the purpose of [46, Lemma 17.20], whose statement and proof are reproduced
here for the reader’s convenience.

Lemma 2.24. Let (X ,A,S, µ) be a measure-preserving system and g a measurable func-
tion from X to R. Then,

∫
(g− g ◦ S)+ dµ =

∫
(g− g ◦ S)− dµ. In particular, if g− g ◦ S

is bounded from below by an integrable function, then both these integrals are finite and∫
(g − g ◦ S) dµ = 0.

Proof. When g is integrable, the result is a direct consequence of the assumption that
the system is measure-preserving.
To prove the general case, we remark that if f : R→ R is a contraction, then, for all

x and y in R,

(f(x)− f(y))+ + (f(x)− f(y))− ≤ (x− y)+ + (x− y)−,
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2.8 Non-uniform flow rules

and if additionally f is non-decreasing, the positive (resp. negative) parts vanish at the
same time in the two sides of the inequality, thus

(f(x)− f(y))+ ≤ (x− y)+ and (f(x)− f(y))− ≤ (x− y)−.

Now, for n ∈ N∗ the function Fn : R→ R defined by

Fn(x) =


n if x > n;
−n if x < −n;
x otherwise,

is a non-decreasing contraction. Since the function gn = Fn ◦ g is bounded, we have for
all n ≥ 1, ∫

(gn − gn ◦ S)+ dµ =
∫

(gn − gn ◦ S)− dµ.

Since Fn = Fn ◦ Fn+1 the previous inequalities yield that the sequences (gn − gn ◦ S)+

and (gn−gn ◦S)− are non-decreasing and we can conclude by the monotone convergence
theorem.

Going back to the proof of Theorem 2.8, we set for t ∈ dom UNIF and ξ ∈ ∂t, g(t, ξ) =
log(W (t)). Then,

g(t, ξ)− g ◦ S(t, ξ) = logW (t)− logW (t[ξ1])

≥ log W (t[ξ1])
m

− logW (t[ξ1]) ≥ − logm, (2.11)

and the proof of Theorem 2.8 is now complete.
A lot more could be said about UNIF. Under more assumptions, it can be shown (see

[13] and [61]) that there exists a constant c ∈ (0,∞) such that for GW∗-almost every
T , the Hausdorff measure H φ on ∂T equals cW (T )UNIFT , where φ(x) = m−|x|α|x| and
(αn) are the quantiles of W defined by P(W > αn) = 1/n. The article [60] contains a
result in the other direction with the proportionality to a non-trivial packing measure
under the assumption that p0 = p1 = 0.

2.8 Non-uniform flow rules

We first turn to the flow rule VIS.

Proposition 2.25. The probability measure GW∗ is VIS-invariant (hence also VIS-
ergodic) and for GW∗-almost every tree t, for VISt-almost every ξ,

lim
n→∞

−1
n

log VISt(ξn) = E∗[log(ν∗T (ø))].

85



2 Ergodic theory on marked Galton-Watson trees

Proof. Let Ξ be a random ray on T , distributed according to VIST and f : T ∗m → R+
be a measurable function. Then by definition of the flow rule VIS,

E[f(T [Ξ1])1{T∈T ∗m}] =
∑
k≥1

E
[
1{νT (ø)=k, T∈T ∗m}

k∑
i=1

1{T [i]∈T ∗m}∑k
j=1 1{T [j]∈T ∗m}

f(T [i])
]

=
∑
k≥1

kE
[
1{νT (ø)=k, T∈T ∗m, T [1]∈T ∗m}

1
1 +

∑k
j=2 1{T [j]∈T ∗m}

f(T [1])
]
,

by symmetry. Now we first observe that for any k ≥ 1,

1{νT (ø)=k, T∈T ∗m, T [1]∈T ∗m} = 1{νT (ø)=k, T 1∈T ∗m},

so by the branching property,

E[f(T [Ξ1])1{T∈T ∗m}] =
∑
k≥1

pkkE
[
1{T 1∈T ∗m}

1
1 +

∑k
j=2 1{T j∈T ∗m}

f(T 1)
]

Then we see that for any k ≥ 1, the random variable

1
1 +

∑k
j=2 1{T j∈T ∗m}

is independent of T 1, thus may be replaced by its expectation which equals

1
k

1− qk

1− q ,

because the random variable
∑k
j=2 1{T [j]∈T ∗m} has a binomial distribution of parameters

k − 1 and (1− q). So finally, we obtain

E[f(T [Ξ1])1{T∈T ∗m}] = 1
1− qE[f(T )1{T∈T ∗m}](g(1)− g(0)− (g(q)− g(0))

= E[f(T )1{T∈T ∗m}].

Now, by Corollary 2.15, we have for GW∗-almost every t, for VISt-almost every ξ,

lim
n→∞

−1
n

log VISt(ξn) = E∗[− log(VIST (Ξ1))] = E∗[log ν∗T (ø)].

Now we remark that, by Jensen’s inequality, as long as the reproduction law is not
degenerated and

∑
k≥1 pk log k < ∞, E∗[log ν∗T (ø)] < log E∗[ν∗T (ø)] = logm (the fact

that the law of ν∗T under P∗ also has mean m is classical and very well explained in [1]).
Hence we have dim VIST < dimH ∂T almost surely and the dimension drop phenomenon
occurs for VIST , although it has full support.
Now we assume that m <∞. We will establish that it is in fact a general fact for any

flow rule Θ such that there exists a Θ-invariant probability µ � GW∗. First we need
Gibbs’ inequality.
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Lemma 2.26 (Gibbs’ inequality). Let n ∈ N∗. Assume that the finite sequences p1, p2,
. . . , pn and q1, q2, . . . , qn of positive real numbers both add up to 1. Then,

n∑
i=1

pi(− log)(pi) ≤
n∑
i=1

pi(− log)(qi),

with equality if and only if pi = qi for all 1 ≤ i ≤ n.

Proof. Under some probability P, let X be a random variable such that, for any 1 ≤ i ≤
n, P(X = i) = pi. By Jensen’s inequality and strict concavity of log,

∑
1≤i≤n

pi(− log qi
pi

) = E[− log(qX/pX)] ≥ − logE[qX/pX ] = − log(
n∑
i=1

qi) = 0,

giving our inequality. The equality may only happen when the random variable qX/pX
is degenerated.

Proposition 2.27. Assume that 1 < m < ∞. Let Θ be a flow rule such that there
exists a Θ-invariant probability µ� GW∗. Then, if P∗(ΘT = UNIFT ) < 1, we have for
GW∗-almost every t,

dim Θt < logm.

Proof. By Proposition 2.20, we have

P∗(∀i ∈ T ∗1 , ΘT (i) = UNIFT (i)) < 1.

Let Ξ be a random ray of distribution ΘT on ∂T . We denote by κ the density of µ with
respect to GW∗. Then, almost surely

dim ΘT = E∗[κ(T )(− log ΘT (Ξ1))]

= E∗
[
κ(T )

∑
i∈T ∗1

ΘT (i)(− log ΘT (i))
]

< E∗
[
κ(T )

∑
i∈T ∗1

ΘT (i)(− log UNIFT (i))
]
,

by Gibbs’ inequality. The upper bound is

E∗[κ(T )(− log UNIFT (Ξ1))] = E∗[κ(T )(logm+ logW (T )− logW (T [Ξ1])],

which equals logm by the same arguments as those used in the end of Section 2.7.
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2.9 Invariant measures for a class of flow rules
We have seen that much can be said about a GW∗-flow rule Θ, as long as we can

prove that there exists a Θ-invariant probability µ � GW∗. Unfortunately, we know
no necessary and sufficient condition for such an invariant measure to exist. We exhibit
here a class of GW∗-flow rules for which this problem is solved. This will have practical
applications in the following two chapters. The content of this section is largely taken
from [55, Section 3], with the small improvement that we do not assume that p0 = 0.
We work in the context of remark 2.1 with the flow rule Θ associated to a function

φ : Tm → [0,∞] and dom Θ = {t ∈ T ∗m :φ(t) ∈ (0,∞)}o. We assume that GW∗ dom Θ
equals 1.
We now make some assumptions on the model. First we assume that the marks and

the number of children are independent, that is, with the notations of the beginning of
Section 2.6, we assume that N and M are independent. Second we assume that the
marks and the function φ have their values in the same sub-interval J of (0,∞) and that
there exists a measurable function h from J × J to J such that, P∗-almost surely,

φ(T ) = h
(

mkT (ø),
νT (ø)∑
i=1

φ(T [i])
)
.

In words, φ is an observation on the tree T which can be recovered from the mark of
the root and the sum of such observations on the subtrees T [1], . . . , T [νT (ø)]. It will
be convenient to extend the definition of h by saying that it is 0 whenever one of its
argument is.
We now make algebraic assumptions on the function h:

symmetry ∀u, v ∈ J, h(u, v) = h(v, u);
associativity ∀u, v, w ∈ J, h(h(u, v), w) = h(u, h(v, w));

position of summand ∀u, v ∈ J, ∀a > 0, h(u+ a, v)
(u+ a)v = h(u, a+ v)

u(a+ v) .

These assumptions, as well as the next theorem, are inspired by the proofs of [10, Propo-
sition 25] and [34, Proposition 8]. Here are examples of functions satisfying these prop-
erties:
1. J = (0,∞) and h(u, v) = αuv, for some α > 0 ;
2. for c > 0, J = (c,∞) and h(u, v) = uv

u+v−c ;
3. for d ≥ 0, J = (0,∞) and h(u, v) = uv

u+v+d .
We treat the second case. By writing

h(u, v) =
(
u−1 + v−1 − cu−1v−1

)−1
=
(
u−1

(
1− cv−1

)
+ v−1

)−1
,

and noticing that (1− cv−1) > 0, we see that

h(u, v) >
(
c−1

(
1− cv−1

)
+ v−1

)−1
> c.
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2.9 Invariant measures for a class of flow rules

Symmetry is clear, so is the last property because h(u, v)/(uv) only depends on the sum
of u and v. Associativity follows from the following identity :

h(h(u, v), w) =
((
u−1 + v−1 − cu−1v−1

)
+ w−1 − c

(
u−1 + v−1 − cu−1v−1

)
w−1

)−1

=
(
u−1 + v−1 + w−1 − c

(
u−1v−1 + u−1w−1 + v−1w−1

)
+ c2u−1v−1w−1

)−1
.

The fist example is satisfied by UNIF, with α = 1/m and the marks all equal to 1.
Another application of this first example with random marks will be given in the next
chapter. The second and third examples have applications to harmonic measures in the
following two chapters.
We enlarge the probability space (Ω,F ,P) so that we may consider random variables

(ν̃, T̃ 1, T̃ 2, ...) which are independent and independent of T , ν̃ having the same law as
N and T̃ 1, T̃ 2, ... having law GW. For u in J , define

κ(u) = E
[
h
(
u,
∑ν̃

i=1
φ(T̃ i)

)]
.

Theorem 2.28. Assume that C := E∗[κ(φ(T ))] < ∞. Then the probability measure µ
with density C−1κ(φ(T )) with respect to GW∗ is Θ-invariant.

Before we start the proof, we adopt some notations to make it more digest. For short,
we let ν = νT (ø) and write φ1, φ2, φ̃1, ... instead of φ(T [1]), φ(T [2]), φ(T̃ 1), ... And we
denote, for u and v in J , u� v = h(u, v), with the extension 0� u = u� 0 = 0. Recall
that, by assumption, 1{T is infinite} = 1{φ(T )>0}, almost surely.
Now let f be a measurable function from T ∗m to R+ and Ξ a random ray distributed

according to ΘT . We need to show that

E[1{T∈T ∗m}f(T [Ξ1])κ(φ(T ))] = E[1{T∈T ∗m}f(T )κ(φ(T ))].

By definition of κ, Tonelli’s theorem yields

E[1{T∈T ∗m}f(T [Ξ1])κ(φ(T ))] =
∑
k≥1

E
[
1{T∈T ∗m,ν=k}

k∑
i=1

f(T [i]) φi∑k
j=1 φj

κ(φ(T ))
]

=
∑
k≥1

E
[
1{T∈T ∗m, ν=k}

k∑
i=1

f(T [i]) φi∑k
j=1 φj

mkT (ø)�
( k∑
i=1

φi
)
�
( ν̃∑
j=1

φ̃j
)]
.

By symmetry, for all k ≥ 1,

E
[
1{T∈T ∗m, ν=k}

k∑
i=1

f(T i) φi∑k
j=1 φj

mkT (ø)�
( k∑
i=1

φi
)
�
( ν̃∑
j=1

φ̃j
)]

= kE
[
1{T∈T ∗m, ν=k, T 1∈T ∗m}f(T 1) φ1∑k

j=1 φj
mkT (ø)�

( k∑
i=1

φi
)
�
( ν̃∑
j=1

φ̃j
)]

= kpkE
[
1{T 1∈T ∗m}f(T 1) φ1∑k

j=1 φj
mkT (ø)�

( k∑
i=1

φi
)
�
( ν̃∑
j=1

φ̃j
)]
,
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2 Ergodic theory on marked Galton-Watson trees

by independence of ν and T 1. Now consider the marked tree T̃ defined by: mk
T̃

(ø) =
mkT (ø), ν

T̃
(ø) = ν̃ and T̃ [i] = T̃ i for all 1 ≤ i ≤ ν̃. Then we have

φ̃ := φ(T̃ ) = mkT (ø)�
( ν̃∑
j=1

φj
)
,

and the random marked trees (T̃ , T [1], T [2], . . . , T [k]) are i.i.d.. Using the commutativity
and the associativity of �, we first have

mkT (ø)�
(
φ1 +

k∑
i=2

φi
)
�
( ν̃∑
j=1

φ̃j
)

= φ̃�
(
φ1 +

k∑
i=2

φi
)
.

Then by the third property (“position of summand”) of �,

1{
φ̃>0, φ1>0

}φ̃� (φ1 +
k∑
i=2

φi
)

= 1{
φ̃>0, φ1>0

}φ1 �
(
φ̃+

k∑
j=2

φj
) φ̃(φ1 +

∑k
i=2 φi

)
φ1
(
φ̃+

∑k
j=2 φj

) ,
and the last expectation now becomes

E
[
f(T [1])1{

T [1]∈T ∗m, T̃∈T ∗m
} φ̃

φ̃+
∑k
j=2 φj

φ1 �
(
φ̃+

k∑
j=2

φj
)]
.

Now set T ′ = T [1], T 1 = T̃ and T j = T [j] for 2 ≤ j ≤ k with similar notations for the
function φ. By symmetry, for all 1 ≤ i ≤ ν,

E
[
f(T ′)1{T ′∈T ∗m, T∈T ∗m}

φi∑k
j=1 φj

φ′ �
( k∑
j=1

φj

)]

= E
[
f(T ′)1{T ′∈T ∗m, T∈T ∗m}

φ1∑k
j=1 φj

φ′ �
( k∑
j=1

φj

)]
,

so that finally,

kE
[
f(T ′)1{T ′∈T ∗m, T∈T ∗m}

φ1∑k
j=1 φj

φ′ �
( k∑
j=1

φj

)]
,

= E
[
f(T ′)1{T ′∈T ∗m, T∈T ∗m}

k∑
i=1

φi∑k
j=1 φj

φ′ �
( k∑
j=1

φj

)]

= E
[
f(T ′)1{T ′∈T ∗m}φ

′ �
( k∑
j=1

φj

)]
.

90



2.9 Invariant measures for a class of flow rules

Summing over k, we obtain

E[1{T∈T ∗m}f(T [Ξ1])κ(φ(T ))] =
∑
k≥1

pkE
[
f(T ′)1{T ′∈T ∗m}φ

′ �
( k∑
j=1

φj

)]

=
∑
k≥1

E
[
f(T ′)1{T ′∈T ∗m, ν=k}φ

′ �
( ν∑
j=1

φj

)]

= E
[
f(T ′)1{T ′∈T ∗m}φ

′ �
( ν∑
j=1

φj

)]
.

To conclude the proof, we replace φ′ �
(∑ν

j=1 φj

)
by its conditional expectation given

T ′, which is κ(φ′).
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3 Galton-Watson trees with recursive
lengths

3.1 Description of the model
We generalize a model of trees with random lengths (or resistances) that can be found

in [10, Section 2] and [34, Section 2]. It appeared as the scaling limit of the sequence
(Tn/n)n≥1, where Tn is a reduced critical Galton-Watson tree conditioned to survive at
the nth generation.
In this chapter, we work on marked trees and the space of marks is Marks = (1,∞).

The marks should be interpreted as conductances so, as a reminder, we will write γt(x)
(instead of mkt(x)) for the mark of a vertex x in a marked tree t. We build a marked
Galton-Watson tree T under the following assumptions:
1. The reproduction law p = (pk)k≥1 of the Galton-Watson tree T satisfies p0 = 0 1 and
p1 < 1.
2. For the marks, we consider a random variable Γ with values in (0, 1) and let (Γx)x∈U
be i.i.d. with the same distribution as Γ. The mark of a vertex x in T is then

γT (x) = Γx
(in the notations of Section 2.6, this corresponds to the case whereM = Γ is independent
of N).
In this chapter, we call T a (Γ,p)-Galton-Watson tree and denote its distribution by
GW.
In both [10] and [34], the marks have the law of the inverse of a uniform random

variable on (0, 1). The reproduction law is p2 = 1 in [10], whereas in [34] it is given by

pk =


0 if k ≤ 1;
α Γ (k − α)
k! Γ(2− α) otherwise,

(3.1)

where α is a parameter in (1, 2), and Γ is the standard Gamma function.
Let t be a marked infinite tree with marks in (1,∞). We associate to each vertex x

in t, the resistance, or length, of the edge (x∗, x):

rt(x) = γt(x)−1 ∏
y≺x

(
1− γt(y)−1

)
.

1. Actually, if p0 > 0 and m > 1, we can, conditionally on non-extinction, consider the pruned tree
T ∗. It is then (modulo reindexing) a Galton-Watson tree without leaves and much, if not all, of what
we say in this chapter still holds for T conditioned on non-extinction.
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3 Galton-Watson trees with recursive lengths

Informally, the edge between the root and its parent has length γt(ø)−1 ∈ (0, 1). Then
we multiply all the lengths in the subtrees t[1], t[2], . . . , t[νt(ø)] by

(
1− γt(ø)−1) and we

continue recursively see Figure 1.1.

1

ø∗

•ø

Γ−1
ø

•
1

(
1− Γ−1

ø
)

Γ−1
1

•
11

•
•

•
12

•
•

. . .
•

1νT (1)

. . .

• (
1− Γ−1

ø
)

Γ−1
2

2

•
21

(
1− Γ−1

ø
) (

1− Γ−1
2

)
Γ−1

21

•

•

•
•

•
22

. . .
•

2νT (2)

. . .

•

(
1− Γ−1

ø
)

Γ−1
νT (ø)

νT (ø)

•
• •

•
•
•
•
•

. . .

Figure 1.1 – A schematic representation of a Galton-Watson tree with recursive lengths.

We run a nearest-neighbour random walk on the tree with transition probabilities
inversely proportional to the lengths of the edges (further neighbours are less likely to
be visited). To make this more precise, the random walk in t∗, associated to this set of
resistances has the following transition probabilities:

Pt(x, y) =



1 if x = ø∗ and y = ø;
γt(xi)/

(
γt(x)− 1 +

∑νt(x)
j=1 γt(xj)

)
if y = xi for some i ≤ νt(x)

(γt(x)− 1) /
(
γt(x)− 1 +

∑νt(x)
j=1 γt(xj)

)
if y = x∗;

0 otherwise.
When we reindex a subtree, we also change the resistances to gain stationarity. For x ∈ t
and y ∈ t[x], we define

rt[x](y) = rt(xy)∏
z≺x (1− γt(z))−1 .
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3.2 Invariant measure and dimension drop for the natural distance

This is consistent with the marks of the reindexed subtree t[x] and does not change
the probability transitions of the random walk inside this subtree. For x in t∗, let Ptx
be a probability measure under which the process (Xn)n≥0 is the random walk on t
starting from x with probability transitions given by Pt. To prove that this walk is
almost surely transient, we use Rayleigh’s principle and compare the resistance of the
whole tree between ø∗ and infinity to the resistance of a single ray ξ of t. If, for n greater
or equal to one, we denote by rn(ξn) the resistance in the ray between ø∗ and the vertex
ξn , we have that

1− rn(ξn) =
(
1− γt(ø)−1

) (
1− γt(ξ1)−1

)
· · ·
(
1− γt(ξn)−1

)
, (3.2)

so the resistance of the whole ray is less or equal to 1. In particular, it is finite and so
is the resistance of the whole tree. We denote by HARMΓ

t the law of the exit ray of this
random walk. For x in t∗, let

τx = inf{k ≥ 0 :Xk = x},

with inf ∅ =∞ and
β(t) = Qtø(τø∗ =∞).

Applying equations (1.7) and (1.12) to this model, we obtain:

HARMΓ
t (i) = γt(i)β(t[i])∑νt(ø)

i=1 γt(j)β(t[j])
, ∀i ≤ νt(ø), (3.3)

γt(ø)β(t) =
γt(ø)

∑νt(ø)
j=1 γt(j)β(t[j])

γt(ø)− 1 +
∑νt(ø)
j=1 γt(j)β(t[j])

. (3.4)

The effective conductance between ø∗ and infinity is

φ(t) = γt(ø)β(t) = γt(ø)Qtø(τø∗ =∞), (3.5)

because the edge between ø∗ and ø now has conductance γt(ø). From the identity (3.2),
the Rayleigh principle and the law of parallel conductances, whenever t has at least two
rays, φ(t) > 1. Thus we can write

φ(t) = h
(
γt(ø),

νt(ø)∑
i=1

φ(t[i])
)
, (3.6)

with h(u, v) = uv/(u+ v − 1) for all u and v in J = (1,∞).

3.2 Invariant measure and dimension drop for the natural
distance

We set for all u > 1,

κ(u) = E
[
h
(
u,

ν̃∑
j=1

φ(T̃ j)
)]

= E

 u
∑ν̃
j=1 φ(T̃ j)

u− 1 +
∑ν̃
j=1 φ(T̃ j)

. (3.7)
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3 Galton-Watson trees with recursive lengths

where (ν̃, T̃ 1, T̃ 2, ...) are independent random variables independent of T , ν̃ being dis-
tributed as p and each T̃ i being distributed as T . We will be able to use Theorem 2.28
if we can prove that κ (φ(T )) is integrable. To this end, one needs some information
about the distribution of Γ and/or about p. The following criterion is certainly not
sharp but it might suffice in some practical cases. For its proof, we rely on ideas from
[10, Proposition 6].

Proposition 3.1. Assume that there exist two positive numbers a and C such that for
all numbers s in (1,∞), P(Γø ≥ s) ≤ Cs−a. Then, E[φ(T )] and E[κ(φ(T ))] are finite
whenever one of the following conditions occurs:
1. a > 1;
2. a = 1 and

∑
k≥1 pkk log k <∞;

3. 0 < a < 1 and
∑
k≥1 pkk

2−a <∞.

Proof. From the fact that for all real numbers u and v greater that 1, h(u, v) < u, we
deduce that E[κ(φ(T ))] is finite as soon as E[φ(T )] is, and we also conclude in the first
case.
Let M be the set of all Borel probability measures on (1,∞]. For any distribution

µ in M, let Ψ(µ) be the distribution of h(Γ,
∑ν
i=1Xi), where ν, Γ and X1, X2, . . . are

independent, each Xi having distribution µ and ν having distribution p. To handle the
case where µ({∞}) > 0, we define by continuity h(u,∞) = u for all u > 1. Consider for
any s ∈ (1,∞), Fµ(s) = µ[s,∞], with Fµ(s) = 1 if s ≤ 1. OnM, the stochastic partial
order � is defined as follows: µ � µ′ if and only if there exists a coupling (X,X ′) in
some probability space, with X distributed as µ, X ′ distributed as µ′ such that X ≤ X ′
almost surely. This is equivalent to Fµ ≤ Fµ′ . From the identity

h(u, v)− h(u, v′) = (v − v′) u(u− 1)
(u+ v − 1)(u+ v′ − 1) , (3.8)

we see that Ψ is increasing with respect to the stochastic partial order.
Let us denote by ϕ the distribution of φ(T ) and by γ the distribution of Γ. Since

Ψ(δ∞) = γ and Ψ(ϕ) = ϕ, we have ϕ � Ψn(γ) for all n ≥ 1. We are done if we can show
that Ψn(γ) has a finite first moment for some n ≥ 1.
For any µ inM and s ∈ (1,∞),

FΨ(µ)(s) = P
(
Γ ≥ s,

ν∑
i=1

Xi ≥ s
Γ− 1
Γ− s

)
≤ P(Γ ≥ s)P

( ν∑
i=1

Xi ≥ s
)
,

by independence of ν and Γ.
Decomposing with respect to the value of ν yields

FΨ(µ)(s) ≤ Fγ(s)
∑
k≥1

pkP
( k∑
i=1

Xi ≥ s
)

≤ Fγ(s)
∑
k≥1

kpkFµ
( s
k

)
. (3.9)
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We may apply it to γ, to get

∫ ∞
1

FΨ(γ)(s) ds ≤
∑
k≥1

kpk

(∫ k

1
Fγ(s) ds+

∫ ∞
k

Fγ(s)Fγ
(
s

k

)
ds
)

=
∑
k≥1

kpk

(∫ k

1
Fγ(s) ds+ k

∫ ∞
1

Fγ(s)Fγ(ks) ds
)
.

In the second case, where Fγ(s) ≤ Cs−1 and
∑
k≥1 pkk log k < ∞, this is enough to

conclude.
In the third case, we need to play this game a little bit longer. Let N ≥ 1 be the

smallest integer such that a (N + 1) > 1. Notice that this implies that aN ≤ 1. Iterating
on the inequality (3.9) and applying it to γ, we get

FΨN (γ)(s)

≤
∑

k1,k2,...,kN≥1
k1k2 · · · kNpk1pk2 · · · pkNFγ

(
s
)
Fγ
( s
k1

)
Fγ
( s

k1k2

)
· · ·Fγ

( s

k1k2 · · · kN

)
.

Hence, we may write an upper bound of
∫∞
1 FΨN (γ)(s) ds as

∑
k1,...,kN≥1

k1 · · · kNpk1 · · · pkN
[
I1(k1) + I2(k1, k2) + · · ·+ IN (k1, . . . , kN )

+ J(k1, . . . , kN )
]
,

where I1, I2, ..., IN and J are defined as follows:

I1(k1) =
∫ k1

1
Fγ(s) ds ≤ C

1− ak
1−a
1 .

For r between 2 and N ,

Ir(k1, . . . , kr) =
∫ k1...kr

k1···kr−1
Fγ(s)Fγ(s/k1) · · ·Fγ

(
s/(k1 · · · kr−1)

)
ds

= k1 · · · kr−1

∫ kr

1
Fγ(s)Fγ(skr−1) · · ·Fγ(skr−1 · · · k1) ds

≤

k1 · · · kr−1C
r log(kr)k−a(r−1)

r−1 · · · k−a1 if r = N and aN = 1;
k1 · · · kr−1

1
1−arC

rk1−ar
r k

−a(r−1)
r−1 · · · k−a1 otherwise;

≤ C̃k1−a
1 . . . k1−a

r ,

where C̃ is the positive constant defined by

C̃ =

max2≤r≤N (Cr/(1− ar)) if aN < 1;
max

(
max2≤r≤N−1 (Cr/(1− ar)) , CN supk≥1

(
ka−1 log(k)

))
if aN = 1.
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3 Galton-Watson trees with recursive lengths

Finally,

J(k1, . . . , kN ) =
∫ ∞
k1···kN

Fγ(s)Fγ (s/k1) · · ·Fγ(s/(k1 · · · kN )) ds

≤ CN+1k1−a
1 · · · k1−a

N

∫ ∞
1

s−a(N+1) ds

= CN+1

a(N + 1)− 1k
1−a
1 · · · k1−a

N , by our assumption that a(N + 1) > 1.

The condition
∑
k≥1 pkk

2−a <∞ ensures that all the above sums are finite.

Example 3.1. If the law of Γ−1 is uniform on (0, 1) (as in [10] and [34]), we have, for
any s in (1,∞), P(Γ ≥ s) = s−1 and the previous proposition shows that E[κ(φ(T ))]
is finite if

∑
k=1 pkk log k < ∞. If the reproduction law is the same as in [34], that is,

is given by (3.1), then by a well-known equivalent on gamma function ratios (see for
instance [31]), we have

pk = α

Γ(2− α)
Γ(k − α)
Γ(k + 1) ∼k→∞

α

Γ(2− α)k
−1−α,

with α in (1, 2). Thus
∑
k≥1 pkk log(k) is finite and so is E[κ(φ(T ))].

With some more knowledge of p and/or the law of Γ, it could be possible to describe
more precisely the law of φ(T ). See for instance [34, Proposition 5] or [10, Proposition 6].
However, in general, it is often very difficult to establish properties (for instance, absolute
continuity) of probability measures defined by distributional recursive equations like
(3.6).
We now apply Theorem 2.28 to our problem and prove that the dimension drop

phenomenon occurs when the metric is the natural distance dU∞ , defined by (1.2).

Theorem 3.2. Let T be a (Γ,p)-Galton-Watson tree. Let φ(T ) and κ be defined respec-
tively by (3.5) and (3.7). Assume that C = E[κ (φ(T ))] is finite. Then, the probability
measure of density C−1κ(φ(T )) with respect to GW is invariant and ergodic with respect
to the flow rule HARMΓ.
The dimension of the measure HARMΓ

T on ∂T with respect to dU∞ equals almost surely

C−1E
[
log
(

1− Γ−1
ø

1− Γ−1
ø φ(T )

)
κ(φ(T ))

]
. (3.10)

It is almost surely strictly less than logm unless both p and the distribution of Γ are
degenerate.

Proof. The first part of the theorem is a direct consequence of Theorem 2.28.
Write µ for the probability measure with density C−1κ(φ(T )) with respect to GW

Pµ for the probability measure with density C−1κ(φ(T )) with respect to P and Eµ for
the associated expectation. Then by Corollary 2.19, invariance of µ and equality (3.3)
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the dimension of HARMΓ
T equals almost surely

dimdU∞ HARMΓ
T = Eµ

[
log 1

HARMΓ
T (Ξ1)

]
= Eµ

[
log

∑νT (ø)
i=1 φ(T [i])
φ(T [Ξ1])

]
.

From formula (3.4), we deduce that

νT (ø)∑
i=1

φ(T [i]) = φ(T )(1− Γ−1
ø )

1− Γ−1
ø φ(T )

,

so that almost surely,

dim HARMΓ
T = Eµ

[
log(1− Γ−1

ø )− log(1− Γ−1
ø φ(T )) + log(φ (T ))− log(φ(T [Ξ1]))

]
.

By Lemma 2.24, it suffices to prove that log(φ(T )) − log(φ(T [Ξ1])) is bounded from
below by an integrable random variable to conclude. Using again formula (3.4) yields

φ(T )
φ(T [Ξ1]) =

1 + φ(T [Ξ1])−1∑νT (ø)
i=1, i 6=Ξ1

φ(T [i])

1− Γ−1
ø + Γ−1

ø φ(T [Ξ1]) + Γ−1
ø
∑νT (ø)
i=1, i 6=Ξ1

φ(T [i])

≥ 1
1− Γ−1

ø + Γ−1
ø φ(T [Ξ1])

.

Hence, since 1− Γ−1
ø ≤ 1 and Γ−1

ø φ(T [Ξ1]) = β(T [Ξ1]) ≤ 1, we have

φ(T )
φ(T [Ξ1]) ≥

1
2 .

To prove the dimension drop, i.e. the fact that almost surely dim HARMΓ < logm, we
do not use the formula (3.10) since we know so little about the distribution of φ(T ). In-
stead, we compare the flow rule HARMΓ to the uniform flow UNIF defined in Section 2.7.
By Proposition 2.27 and Lemma 2.21 we only need to prove that if there exists a

positive real number K such that, for GW-almost every tree t, W (t) = Kφ(t), then
both the reproduction law and the mark law are degenerate.
Under this assumption, by the recursive equation (2.1) satisfied byW , we have almost

surely,

φ (T ) = 1
m

νT (ø)∑
i=1

φ(T [i]).

Plugging this into the recursive equation (3.4), we first obtain that

φ(T ) = mΓøφ(T )
Γø +mφ(T )− 1 ,

so that almost surely
φ(T ) = 1

m
((m− 1)Γø + 1) .

99



3 Galton-Watson trees with recursive lengths

In turn, using again (3.4), this implies that

1
m

[(m− 1) Γø + 1] =
Γø
∑νT (ø)
i=1

1
m [(m− 1)Γi + 1]

Γø − 1 +
∑νT (ø)
i=1

1
m [(m− 1)Γi + 1]

.

Now, if we denote by S the random variable
∑νT (ø)
i=1

1
m [(m− 1)Γi + 1], elementary algebra

leads to the second degree polynomial equation

(m− 1)Γ2
ø + Γø(2−m− S) + S − 1 = 0,

whose discriminant is equal to (S −m)2. Hence, we always have

Γø = m+ S − 2± (S −m)
2(m− 1) .

We must choose the solution Γø = (S−1)/(m−1), because the other solution is 1, which
we forbid. As a consequence,

Γø = 1
m

νT (ø)∑
i=1

Γi + 1
m− 1

(
νT (ø)
m
− 1

)
.

which, by independence of νT (ø), Γø, Γ1, Γ2, . . . , imposes that both p and the law of Γ
are degenerate.

3.3 Dimension and dimension drop for the length metric
Note that in the previous theorem, the dimension is computed with respect to the

natural distance dU∞ . This distance does not take into account the marks (Γx)x∈T , so
we do not compute the same dimension as in [10] and [34], where the distance between
two points in the tree is the sum of all the resistances (or lengths) of the edges between
these two points.
To make this definition more precise, let us introduce, for x ∈ T , the Γ-height of x:

|x|Γ =
∑
y�x

( ∏
z≺y

(
1− Γ−1

z

) )
Γ−1
y .

We then have
1− |x|Γ =

∏
y�x

(
1− Γ−1

y

)
.

For two distinct rays η and ξ, let

dΓ(ξ, η) = 1− |ξ ∧ η|Γ.

Notice that, for any rays ξ and η, and all integer n ≥ 1, we have:

dΓ(ξ, η) ≤ 1− |ξn|Γ ⇐⇒ η ∈ [ξn]T , (3.11)
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3.3 Dimension and dimension drop for the length metric

where we recall that [ξn]t is the set of all rays whose ξn is a prefix.
We will compute the dimension of HARMΓ

T with respect to this distance dΓ and show
that in this case too, we observe a dimension drop phenomenon, but we begin with more
general statements. We want to build a theory similar to the one we have presented in
Chapter 2, in our setting of trees with recursive lengths with the length metric dΓ.
We will need the following elementary lemma.

Lemma 3.3. Let f and g be two positive non-increasing functions defined on (0, 1). Let
(rn) be a decreasing sequence of positive numbers converging to 0. Assume that

f(rn)
g(rn) −−−→n→∞

` ∈ [0,∞) and f(rn+1)
f(rn) −−−→n→∞

1.

Then, we have limr↓0 f(r)/g(r) = `.

Proof. Let ε > 0 and n0 be large enough so that for all n ≥ n0,

f(rn)
g(rn)

f(rn+1)
f(rn) ≤ `+ ε and f(rn+1)

g(rn+1)
f(rn)
f(rn+1) ≥ `− ε.

Then, using the assumption that (rn) is decreasing to 0, for all r ≤ rn0 , there exists
n ≥ n0 such that rn+1 < r ≤ rn and we have

`− ε ≤ f(rn+1)
g(rn+1)

f(rn)
f(rn+1) = f(rn)

g(rn+1) ≤
f(r)
g(r) ≤

f(rn+1)
g(rn) = f(rn)

g(rn)
f(rn+1)
f(rn) ≤ `+ ε.

Proposition 3.4 (dimension of a flow rule). Let Θ be a GW-flow rule such that there
exists a Θ-invariant probability measure µ � GW. Then, almost surely, the probabil-
ity measure ΘT is exact-dimensional on the metric space (∂T,dΓ), with deterministic
dimension

dimdΓ ΘT = dimdU∞ ΘT

Eµ[− log(1− Γ−1
ø )]

. (3.12)

Proof. We first prove that, for GW-almost every tree t, for Θt-almost every ray ξ,

lim
n→∞

− log Θt(ξn)
− log(1− |ξn|Γ)

= dimdU∞ ΘT

Eµ[− log(1− Γ−1
ø )]

. (3.13)

The numerator equals
n−1∑
k=0
− log Θt (ξk+1)

Θt (ξk)
,

so, by the ergodic theorem (for non-negative functions), recalling that µnΘ is ergodic
and µ is equivalent to GW, for GW-almost every t and Θt-almost every ξ,

1
n

n−1∑
k=0
− log Θt (ξk+1)

Θt (ξk)
−−−→
n→∞

Eµ[− log ΘT (Ξ1)] = dimdU∞ ΘT ∈ (0, logm]. (3.14)
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3 Galton-Watson trees with recursive lengths

For the denominator, we have, for any ξ in ∂t and any n ≥ 1,

1
n+ 1(− log)(1− |ξn|Γ) = 1

n+ 1

n∑
i=0
− log(1− γt(ξi)−1).

Again by the pointwise ergodic theorem, we have, for GW-almost every t and Θt-almost
every ξ,

1
n+ 1(− log)

(
1− |ξn|Γ

)
−−−→
n→∞

Eµ[− log(1− Γ−1
ø )] ∈ (0,∞]. (3.15)

Thus, the convergence (3.13) is proved.
Now we will show the following (a priori stronger) statement: for GW-almost every

t and Θt-almost every ξ,

lim
r↓0

− log Θt B (ξ, r)
− log r = dimdU∞ ΘT

Eµ[− log(1− Γ−1
ø )]

, (3.16)

where B (ξ, r) is the closed ball of center ξ and radius r in the metric space (∂t,dΓ), so
that almost surely, ΘT is exact-dimensional in the strong sense of remark 1.3.
Now let t be a marked tree and ξ be a ray in t such that (3.14) and (3.15) hold. Denote,

for n ≥ 0, rn = 1 − |ξn|Γ. The sequence (rn) is positive, decreasing, and converges to
0 by (3.15). For r in (0, 1), define f(r) = − log Θt B(ξ, r) and g(r) = − log(r). The
functions f and g are positive and non-increasing. Furthermore,

f(rn+1)
f(rn) = − log Θt(ξn+1)

− log Θt(ξn) = 1 +
− log Θt(ξn+1)

Θt(ξn)
− log Θt(ξn) = 1 +

− 1
n log Θt(ξn+1)

Θt(ξn)

− 1
n log Θt(ξn)

.

Using (3.14), we obtain limn→∞ f(rn+1)/f(rn) = 1, and conclude by the preceding
lemma.

We now associate to the random marked tree T an age-dependent process (in the
definition of [7, chapter 4]). For any x ∈ T , let Λx = − log

(
1− Γ−1

x

)
be the lifetime of

particle x. Informally, the root lives for time Λø, then simultaneously dies and gives birth
to νT (ø) children who all have i.i.d. lifetimes Λ1, Λ2, . . . , ΛνT (ø), and then independently
live and produce their own offspring and die, and so on. We are interested in the number
Zu(T ) of living individuals at time u > 0, that is

Zu(T ) = #
{
x ∈ T :

∑
y�x∗

Λy < u ≤
∑
y�x

Λy
}
.

The Malthusian parameter of this process is the unique real number α > 0 such that

E
[
e−αΛø

]
= 1
m
. (3.17)

We now assume that
∑∞
k=1 pkk log k is finite. Under this assumption, we know from

[30, Theorem 5.3] 2 that there exists a positive random variable WΓ(T ) of expectation

2. See also Section 3.4 of the preliminary Saint-Flour 2017 lecture notes by Remco Van Der Hoffstad.
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1, such that, almost surely,

lim
u→∞

e−uαZu(T ) = WΓ(T ). (3.18)

By definition, we obtain the recursive equation

WΓ(T ) = e−αΛø
νT (ø)∑
j=1

WΓ(T [i]). (3.19)

We now go back to our original tree with recursive lengths. Equations (3.17), (3.18)
and (3.19) become

E[(1− Γ−1
ø )α] = 1/m; (3.20)

lim
ε→0

εαZ− log(ε)(T ) = WΓ(T ); (3.21)

WΓ(T ) = (1− Γ−1
ø )α

νT (ø)∑
j=1

WΓ(T [i]). (3.22)

We define the GW-flow rule UNIFΓ by

UNIFΓ
T (i) = WΓ(T [i])∑νT (ø)

j=1 WΓ(T [j])
, ∀ 1 ≤ i ≤ νT (ø).

Proposition 3.5 (dimension of the limit uniform measure). Assume that
∑
k≥1 pkk log k

is finite. Then, both the dimension of UNIFΓ
T and the Hausdorff dimension of the bound-

ary ∂T , with respect to the metric dΓ, are almost surely equal to the Malthusian parameter
α.

Proof. We can use Theorem 2.28, with h(u, v) = uv and the marks equal to ((1 −
Γ−1
x )α)x∈T (or a direct computation) to show that the probability measure with density
WΓ with respect to GW is UNIFΓ-invariant. So we may apply Proposition 3.4 to obtain
that the dimension of UNIFΓ with respect to the metric dΓ equals

dimdΓ UNIFΓ
T = dimdU∞ UNIFΓ

T

E[− log(1− Γ−1
ø )WΓ(T )]

.

The numerator equals, by Corollary 2.19 and the recursive equation (3.22),

dimdU∞ UNIFΓ = E
[(
− logWΓ(T [Ξ1]) + log

νT (ø)∑
j=1

WΓ (T [j])
)
WΓ(T )

]
= E

[(
log((1− Γ−1

ø )−α) + logWΓ(T )− logWΓ(T [Ξ1])
)
WΓ(T )

]
= αE

[
− log(1− Γ−1

ø )WΓ(T )
]
,

103



3 Galton-Watson trees with recursive lengths

provided we can show that the term (logWΓ(T ) − logWΓ(T [Ξ1]))WΓ(T ) is bounded
from below by an integrable random variable.
To prove this, we first use the recursive equation (3.22), to obtain

logWΓ(T )− logWΓ(T [Ξ1]) = α log(1− Γ−1
ø ) + log

(∑νtø
i=1W

Γ(T [i])
WΓ(T [Ξ1])

)
.

Since Ξ1 is one of the children of the root, we have

log
(∑νtø

i=1W
Γ(T [i])

WΓ(T [Ξ1])

)
≥ 0.

Using again (3.22), we obtain(
logWΓ(T )− logWΓ(T [Ξ1])

)
WΓ(T )

≥ α log(1− Γ−1
ø )(1− Γ−1

ø )α
νT (ø)∑
i=1

WΓ(T [i]) ≥ −1
e

νT (ø)∑
i=1

WΓ(T [i]),

where, for the last inequality, we have used the fact that the minimum of the function
x 7→ xα log(x) on the interval (0, 1) is −1/(αe). Since E[

∑νT (ø)
i=1 WΓ(T [i])] = m < ∞,

this concludes the proof that dimdU∞ UNIFΓ = αE[− log(1− Γ−1
ø )WΓ(T )].

We remark that E[log(1−Γ−1
ø )WΓ(T )] is finite, because dimdU∞ UNIFΓ ≤ logm. Thus

we have

dimdΓ UNIFΓ
T = dimdU∞ UNIFΓ

T

E[− log(1− Γ−1
ø )WΓ(T )]

= αE[− log(1− Γ−1
ø )WΓ(T )]

E[− log(1− Γ−1
ø )WΓ(T )]

= α.

We now know that the Hausdorff dimension of the boundary ∂T (with respect to dΓ)
is almost surely greater or equal to α, so we just need the upper bound. Recall the
definition of the Hausdorff measures in metric spaces in Section 1.10. We let

Aε = {x ∈ T : 1− |x|Γ ≤ ε < 1− |x∗|Γ},

whose number of elements is Z− log(ε)(T ). By the limit (3.21), we have

Hα
ε (∂T ) ≤

∑
x∈Aε

(diamΓ[x]T )α ≤ εαZ− log(ε)(T ) a.s.−−−→
ε→0

WΓ(T ),

so Hα(∂T ) ≤WΓ(T ) <∞, which concludes the proof.

Proposition 3.6 (dimension drop for other flow rules). Assume that
∑
k≥1 pkk log k is

finite. Let T be a (Γ,p)-Galton-Watson tree and Θ be a GW-flow rule such that ΘT

and UNIFΓ
T are not almost surely equal and there exists a Θ-invariant probability measure

µ � GW. Then the dimension of Θ with respect to the distance dΓ is almost surely
strictly less than the Malthusian parameter α.
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3.3 Dimension and dimension drop for the length metric

Proof. First, we remark that if Eµ[− log(1−Γ−1
ø )] is infinite, then the Hausdorff dimen-

sion of ΘT with respect to the distance dΓ is almost surely equal to 0, so there is nothing
to prove.
So we assume that Eµ[− log(1 − Γ−1

ø )] is finite. Let Ξ be a random ray in ∂T with
distribution ΘT . Using Corollary 2.19 and conditioning on the value of Ξ1 gives

dimdU∞ (ΘT ) = Eµ

[νT (ø)∑
i=1
−ΘT (i) log(ΘT (i))

]
< Eµ

[νT (ø)∑
i=1
−ΘT (i) log UNIFΓ

T (i)
]
,

where, for the strict inequality we have used Gibb’s inequality. This upper bound is
equal to

Eµ

[
α(− log(1− Γ−1

ø )) + logWΓ(T )− logWΓ(T [Ξ1])
]
.

Once again, all that is left to prove is that the last two terms are bounded from below
by an integrable random variable, and this is the case, because

log WΓ(T )
WΓ(T [Ξ1]) ≥ α log(1− Γ−1

ø ),

and by our assumption that Eµ[log(1 − Γ−1
ø )] is finite. Cancelling out this term in

equation (3.12), we finally obtain dimdΓ ΘT < α.

Before we state and prove the main theorem of this subsection, we want to know when
the dimension (with respect to dΓ) of the harmonic measure equals 0.

Lemma 3.7. Let T be a (Γ,p)-Galton-Watson marked tree. Assume that E[κ(φ(T ))]
and

∑
k≥1 pkk are finite. Then, we have

E[log(1− Γ−1
ø )κ(φ(T ))] <∞ ⇐⇒ E[log(1− Γ−1

ø )] <∞.

Proof. By Tonelli’s theorem, the definition of κ, and the associativity property of the
function h, we have

E[log(1− Γ−1
ø )κ(φ(T ))] = E

[
log(1− Γ−1

ø )h
(
Γø, h

(νT (ø)∑
i=1

φ(T [i]),
ν̃∑
j=1

φ(T̃ i)
))]

,

where ν̃, T̃ 1, T̃ 2, . . . , are as in the beginning of Section 3.2. Since for any u and v greater
than 1, h(u, v) > 1, the direct implication is proved. For the reciprocal implication, recall
that for u and v in (1,∞), h(u, v) < v, hence

h
(
Γø, h

(νT (ø)∑
i=1

φ(T [i]),
ν̃∑
j=1

φ(T̃ j)
))
< h

(νT (ø)∑
i=1

φ(T [i]),
ν̃∑
j=1

φ(T̃ j)
)
.
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The right-hand side of the previous inequality is integrable. Indeed,

h
(νT (ø)∑
i=1

φ(T [i]),
ν̃∑
j=1

φ(T̃ j)
)

=
(∑νT (ø)

i=1 φ(T [i])
)(∑ν̃

j=1 φ(T̃ j)
)

∑νT (ø)
i=1 φ(T [i]) +

∑ν̃
j=1 φ(T̃ j)− 1

≤
νT (ø)∑
i=1

φ(T [i])
(∑ν̃

j=1 φ(T̃ j)
)

φ(T [i]) +
∑ν̃
j=1 φ(T̃ j)− 1

and the expectation of this upper bound equals, by independence,

E[νT (ø)]E[κ(φ(T ))],

which is finite by assumption. Thus, using the fact that

Γø and h
(νT (ø)∑
i=1

φ(T [i]),
ν̃∑
j=1

φ(T̃ j)
)
are independent,

we have
E[log(1− Γ−1

ø )κ(φ(T ))] ≤ E[log(1− Γ−1
ø )]E[νT (ø)]E[κ(φ(T ))],

which proves the reciprocal implication of the lemma.

Putting everything together, we finally obtain the dimension drop for the flow rule
HARMΓ, with respect to the distance dΓ.

Theorem 3.8. Let T be a (Γ,p)-Galton-Watson marked tree, with metric dΓ on its
boundary. Assume that both E[κ(φ(T ))] and

∑
k≥1 pkk log k are finite. Then, almost

surely, the flow HARMΓ
T is exact-dimensional, of deterministic dimension

dimdΓ HARMΓ(T ) = E[log(1− Γ−1
ø φ(T ))κ(φ(T ))]

E[log(1− Γ−1
ø )κ(φ(T ))]

− 1, (3.23)

except in the case E[− log(1 − Γ−1
ø )] = ∞, where it is 0. This deterministic dimension

is strictly less than the Malthusian parameter α (which is almost surely the Hausdorff
dimension of the boundary ∂T with respect to the distance dΓ) as soon as the mark law
and the reproduction law are not both degenerate.

Proof. The formula for the Hausdorff dimension is just a rewriting using equations (3.12)
and (3.10). All that is left to prove is that if there exists a positive real number K, such
that, for GW-almost every tree t, WΓ(t) = K × φ(t), then both the mark law and the
reproduction law are degenerate.
We assume that the latter assertion holds, and we proceed similarly as in the proof of

Theorem 3.2. From the recursive equation (3.22) for WΓ, we deduce that almost surely

νT (ø)∑
i=1

φ(T [i]) = (1− Γ−1
ø )−αφ(T ), (3.24)
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and plugging it into the recursive equation (3.4) for φ, we obtain that, almost surely,

φ(T ) = Γø(1− (1− Γ−1
ø )α+1).

This implies that each φ(T [i]) depends only on Γi and

νT (ø)∑
i=1

φ(T [i]) = Γø(1− Γ−1
ø )−α + 1− Γø,

so, by independence,
∑νT (ø)
i=1 φ(T [i]) must be constant, which imposes that νT (ø) must

be constant (equal to m) and that the law of φ(T ) is degenerate. From (3.24), we now
see that this implies that (1− Γ−1

ø )α = 1/m and the law of Γø is degenerate.

To conclude this work, we want to check that our formula (3.23) is consistent with
the formula obtained in [10]. From now on, we work under the following hypotheses:

1. the reproduction law is given by p2 = 1;
2. the common law of the marks is the law of U−1, where the law of U is uniform on
(0, 1).

Remark 3.1. The function denoted by t 7→ κ(φ(t)), in [10, Proposition 25] is slightly
different (it differs by a factor 1/2) from our function also denoted by κ(φ(t)).

Under these hypotheses, Curien and Le Gall proved that the dimension (with respect to
the metric dΓ) of the harmonic measure is almost surely (see [10, Proposition 4]):

dimdΓ HARMΓ(T ) = 2E
[
log
(
φ1 + φ2
φ1

)
φ1φ̃

φ̃+ φ1 + φ2 − 1

]/
E
[

φ1φ2
φ1 + φ2 − 1

]
, (3.25)

where φ1, φ2 and φ̃ are independent copies of φ(T ). For short, we write U = Γ−1
ø ,

φ = φ(T ), φ1 = φ(T [1]) and φ2 = φ(T [2]).
We first show that

E
[
− log

(1− Uφ
1− U

)
κ(φ)

]
= 2E

[
log
(
φ1 + φ2
φ1

)
φ1φ̃

φ̃+ φ1 + φ2 − 1

]
. (3.26)

Recall from the proof of Theorem 3.2 that, by stationarity,

E[log(φ)κ(φ)] = E[log(φ(T [Ξ1]))κ(φ)].

By the recursive formula (3.6),

1− Uφ
1− U = U−1

φ1 + φ2 + U−1 − 1 = φ

φ1 + φ2
,
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thus we obtain

E
[
log
(1− Uφ

1− U

)
κ(φ)

]
= E

[
log
(

φ

φ1 + φ2

)
κ(φ)

]
= E

[
log
(
φ(T [Ξ1])
φ1 + φ2

)
κ(φ)

]
= E

[
φ1

φ1 + φ2
log
(

φ1
φ1 + φ2

)
κ(φ) + φ2

φ1 + φ2
log
(

φ2
φ1 + φ2

)
κ(φ)

]
= 2E

[
φ1

φ1 + φ2
log
(

φ1
φ1 + φ2

)
κ(φ)

]
,

by symmetry. Let T̃ be a (Γ,p)-Galton-Watson tree such that the mark of the root is
U−1, and T̃ [1] and T̃ [2] are independent of T [1] and T [2]. Write φ̃ for the conductance
of T̃ and φ̃i = φ(T̃ [i]) for i = 1, 2. By Tonelli’s theorem and the definition of κ, we have

E
[
log
(1− Uφ

1− U

)
κ(φ)

]
= 2E

[
φ1

φ1 + φ2
log
(

φ1
φ1 + φ2

)
h
(
h
(
U−1, φ1 + φ2

)
, φ̃1 + φ̃2

)]
= 2E

[
φ1

φ1 + φ2
log
(

φ1
φ1 + φ2

)
h
(
h
(
U−1, φ̃1 + φ̃2

)
, φ1 + φ2

)]
= 2E

[
φ1

φ1 + φ2
log
(

φ1
φ1 + φ2

)
h
(
φ̃, φ1 + φ2

)]
= 2E

[
φ1

φ1 + φ2
log
(

φ1
φ1 + φ2

)
φ̃(φ1 + φ2)

φ̃+ φ1 + φ2 − 1

]
,

where, between the first and the second line, we have used the associativity and the
symmetry of the function h. The proof of (3.26) is complete.
Now, we want to show that

E[− log(1− U)κ(φ)] = E
[

φ1φ2
φ1 + φ2 − 1

]
. (3.27)

Here, we rely heavily on the fact that U is uniform on (0, 1). From [10, equation (13)],
we know that, for any function g : [1,∞)→ R+ such that g(x) and g′(x) are both o(xa)
for some a in (0,∞), we have

E[g(φ1 + φ2)] = E[φ1(φ1 − 1)g′(φ1)] + E[g(φ1)]. (3.28)

As before, let φ1, φ2, φ̃1 and φ̃2 be independent copies of φ(T ), independent of U . Let
ψ1 : (1,∞)3 → (1,∞) be defined by

ψ1(x, y, z) = h(x, h(y, z)) = xyz

xy + yz + xz − x− y − z + 1 .

By definition of κ, we have

E[− log(1− U)κ(φ)] = E
[
− log(1− U)ψ1

(
U−1, φ1 + φ2, φ̃1 + φ̃2

)]
.
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3.3 Dimension and dimension drop for the length metric

For x, y, z in (1,∞), let

ψ2(x, y, z) = ψ1(x, y, z) + y(y − 1)∂yψ1(x, y, z) = x2y2z2

(xy + xz + yz − x− y − z + 1)2 .

Reason conditionally on U , φ̃1 and φ̃2 and apply the identity (3.28) to the function
y 7→ ψ1(x, y, z), to obtain

E[− log(1− U)κ(φ)] = E
[
− log(1− U)ψ2

(
U−1, φ1, φ̃1 + φ̃2

)]
.

Playing the same game again, we obtain

E[− log(1− U)κ(φ)] = E
[
− log(1− U)ψ3

(
U−1, φ1, φ̃1

)]
,

with the function ψ3 defined by

ψ3(x, y, z) = ψ2(x, y, z) + z(z − 1)∂zψ2(x, y, z)

= (xyz)2
[

2xyz
(xy + xz + yz − x− y − z + 1)3 −

1
(xy + xz + yz − x− y − z + 1)2

]
.

Fix y and z in (1,∞) and let, for u in (0, 1),

ψ4(u) = ψ3(u−1, y, z)

= y2z2
[

2yz
[(yz + 1− y − z)u+ (y + z − 1)]3

− 1
[(yz + 1− y − z)u+ (y + z − 1)]2

]

= (a+ b)2
[ 2(a+ b)

(au+ b)3 −
1

(au+ b)2

]
,

with a = (yz + 1− y − z) and b = (y + z − 1). Finally, integrating by parts gives∫ 1

0
− log(1− u)ψ4(u) du = a+ b

b
= yz

y + z − 1 ,

so that, by independence of U , φ1 and φ̃1,

E
[
− log(1− U)ψ3

(
U−1, φ1, φ̃1

)∣∣∣φ1, φ̃1
]

= φ1φ̃1

φ1 + φ̃1 − 1
,

which completes the proof of (3.27), and the verification of the consistency of formula
(3.25) with (3.23).
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4 Transient λ-biased random walk on a
Galton-Watson tree

4.1 The dimension of the harmonic measure

Let t ∈ T ∗, the set of all infinite trees, and fix λ > 0. In this chapter, we always
see trees as marked trees with all marks equal to 1 and endow their boundaries with
the metric dU∞ . Recall that the λ-biased random walk on t∗ is the Markov chain whose
transition probabilities are the following :

Pt(x, y) =



1 if x = ø∗ and y = ø;
λ

λ+ νt(x) if y = x∗;

1
λ+ νt(x) if y is a child of x;

0 otherwise.

For x in t, we write Ptx for a probability measure under which the process (Xn)n≥0 is
the Markov chain on t, starting from x, with transition kernel Pt. Recall the definition
of the conductance β(t) from Section 1.7:

β(t) = Ptø(τø∗ =∞)

and the fact that β(t) > 0 if and only if the random walk (Xn)n≥1 is transient on t. We
have also established in Section 1.7 the recursive equation

β(t) =
∑νt(ø)
i=1 β(t[i])

λ+
∑νt(ø)
i=1 β(t[i])

. (4.1)

Consider the Borel set
A = {t ∈ T ∗ :β(t) > 0},

and the set Ao of everywhere transient trees (for the λ-biased random walk). For t ∈ Ao,
denote by HARMt the harmonic measure on ∂t associated to the λ-biased random walk
and recall that HARM is a flow rule on Ao. Equation (1.12) now becomes

∀1 ≤ i ≤ νt(ø), HARMt(i) = β(t[i])∑νt(ø)
j=1 β(t[j])

. (4.2)
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4 Transient λ-biased random walk on a Galton-Watson tree

Under a probability measure P, let T be a Galton-Watson tree, of supercritical repro-
duction law p, whose finite mean is m > λ. We use the notations P∗, GW∗, . . . , from
Chapter 2. Since m > λ, we know from [39], that P∗-almost surely, the λ-biased random
walk on T is transient, so that GW∗(A) = GW∗(Ao) = 1. We are now ready to use the
machinery described in Section 2.9. Set J = (0,∞) if λ ≥ 1 and J = (1−λ,∞) if λ < 1.
In the latter case, the fact that P∗-almost surely β(T ) > 1− λ comes from the Rayleigh
principle and the fact that p1 < 1, comparing the conductance of the whole tree to the
one of a tree with a unique ray. Set, for u and v in J ,

h(u, v) = uv

u+ v + λ− 1 ,

with, the extension that h(u, v) = 0 whenever at least one of its argument is null. Notice
that we are in the setting of the second example of Section 2.9 if λ < 1 and of the third
if λ ≥ 1, so that h fulfills the algebraic assumptions stated in Section 2.9. Moreover,
since for u ∈ J , u+ λ− 1 ≥ 0, we have for all u, v ∈ J ,

h(u, v) ≤ uv

v
≤ u. (4.3)

By equation (4.1), for all t ∈ Ao,

β(t) = h
(
1,
∑νt(ø)

i=1
β(t[i])

)
= h

(
mkt(ø),

∑νt(ø)
i=1

β(t[i])
)
.

For u ∈ J , let

κ(u) = E
[
h

(
u,
∑ν̃

i=1
β(T̃ i)

)]
= E

 u
∑ν̃
i=1 β(T̃ i)

λ− 1 + u+
∑ν

T̃
(ø)

i=1 β(T̃ i)

, (4.4)

where ν̃, T̃ 1, T̃ 2, . . . , are independent and independent of T , with ν distributed as νT (ø)
and T̃ 1, T̃ 2, . . . , distributed as T .
To use Theorem 2.28, we remark that, by (4.3)

κ(β(T )) ≤ β(T ) ≤ 1, (4.5)

and therefore is integrable. The following theorem was independently discovered by Lin
in [35].

Theorem 4.1. The probability measure µHARM of density C−1κ(β(T )), with respect to
GW∗, where κ is defined by (4.4) and C = E∗[κ(β(T ))] is HARM-invariant. The di-
mension of HARMT equals P∗-almost surely

dλ = log(λ)− C−1E∗
[
log(1− β(T )) β(T )

∑ν̃
i=1 β(T̃ i)

λ− 1 + β(T ) +
∑ν̃
i=1 β(T̃ i)

]
. (4.6)
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4.2 Comparison of flow rules on a Galton-Watson tree

Proof. The only statement we still need to prove is the formula for the dimension.
We let µ = µHARM for short and E∗µ[ · ] := E∗[ ·C−1κ(β(T ))]. By Corollary 2.19 and
equation (4.2),

dλ = E∗µ
[
log 1

HARMT (Ξ1)

]
= E∗µ

[
log

∑νT (ø)
i=1 β(T [i])
β(T [Ξ1])

]
.

Using equation (4.1), we see that

∑νT (ø)
i=1

β(T [i]) = λβ(T )
1− β(T ) .

Therefore,

dλ = log λ+ E∗µ[− log(1− β(T )) + log(β(T ))− log(β(T [Ξ1]))].

We are done if we can prove that log(β(T )) − log(β(T [Ξ1])) is integrable with integral
0 with respect to E∗µ. By invariance and Lemma 2.24, it is enough to show that it is
bounded from below by an integrable function. We compute, using again formula (1.7):

β(T )
β(T [Ξ1]) =

1 + β(T [Ξ1])−1∑νT (ø)
i=1, i 6=Ξ1

β(T [i])

λ+ β(T [Ξ1]) +
∑νT (ø)
i=1, i 6=Ξ1

β(T [i])
≥ 1
λ+ β(T [Ξ1]) ≥

1
λ+ 1 , (4.7)

where, for the first inequality, we used the fact that the function

x 7−→ β(T [Ξ1])−1x+ 1
x+ λ+ β(T [Ξ1])

is increasing on [0,∞).

4.2 Comparison of flow rules on a Galton-Watson tree
Since we want to compare the harmonic measures for different values of λ, we now

denote by HARMλ the harmonic measure with respect to the λ-biased random walk, for
0 < λ < m and by βλ(T ) for the associated conductance. The density of the HARMλ-
invariant measure in Theorem 4.1 with respect to GW∗ is denoted here by fλ.
Together with VIS and UNIF, the harmonic measures form a class of flow rules for which

we know explicit invariant probability measures absolutely continuous with respect to
GW∗.

Proposition 4.2. Unless the reproduction law is degenerated, for any Θ 6= Θ′ in the
class of flow rules

{VIS, UNIF} ∪ {HARMλ :λ ∈ (0,m)},

we have P∗(ΘT = Θ′T ) = 0 and additionally P∗(ΘT ⊥ Θ′T ) = 1 whenever Θ and Θ′ are
not UNIF or

∑
k≥1 pkk log k <∞.
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4 Transient λ-biased random walk on a Galton-Watson tree

Proof. We first show that for 0 < λ 6= λ′ < m, P∗(HARMλ
T = HARMλ′

T ) < 1. This
will be enough to conclude by Proposition 2.20 and the previous theorem. So assume
that P∗(HARMλ

T = HARMλ′
T ) = 1. By Lemma 2.21, there exists C ∈ (0,∞) such that

P∗-almost surely, βλ(T ) = Cβλ
′(T ). The recursive equation (4.1) gives that, P∗-almost

surely,
λ∑

i∈T ∗1
βλ′(T [i]) + C = λ′∑

i∈T ∗1
βλ′(T [i]) + 1,

thus C 6= 1. This implies that, P∗-almost surely,

∑
i∈T ∗1

βλ
′(T [i]) = λ− λ′

1− C .

Taking the conditional expectation with respect to ν∗T (ø), we obtain

ν∗T (ø)E∗[β(T )] = λ− λ′

1− C ,

hence the distribution of ν∗T (ø) under P∗ is degenerated and, since m > 1, this may only
happen when the reproduction law is itself degenerated.
Now we turn to VIS and HARMλ and assume that P∗(VIST = HARMλ

T ) = 1. Again by
Lemma 2.21, we may assume that there exists C ∈ (0,∞) such that P∗-almost surely,
βλ(T ) = C1{T∈T ∗} = C. Equation (4.1) now yields

1
C

= λ

Cν∗T (ø) + 1,

which again implies that the reproduction law is degenerated.
Finally, if

∑
k≥1 pkk log k <∞ and there exists C ∈ (0,∞) such that βλ(T ) = CW (T ),

then we find that, by eq. (2.1),

βλ(T ) = CW (T ) = C

m

∑
i∈T ∗1

Cβλ(T [i]),

hence, by eq. (4.1),
1

λ+
∑
i∈T ∗1

βλ(T [i]) = C2

m
,

and we may conclude by similar arguments.
The comparison of UNIF and VIS is not necessary since we already know that they

have distinct dimensions.

Next, given two flow rules Θ and Θ′ in this class, we compute the local dimension
of ΘT for Θ′T -almost every ray. Some of the assertions in the following proposition are
minor improvements of [38, Theorem 3].

Proposition 4.3. Assume that the reproduction law is not degenerated. Let λ and λ′ be
distinct elements of (0,m). For GW∗-almost every t:
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4.2 Comparison of flow rules on a Galton-Watson tree

1. If
∑
k≥1 pkk log k <∞, then for UNIFt-almost every ξ in ∂t,

lim
n→∞

−1
n

log VISt(ξn) = 1
m

E∗[ν∗T (ø) log ν∗T (ø)] ∈
(
logm,∞

)
and

lim
n→∞

−1
n

log HARMλ
t (ξn) = log λ−E[log(1− βλ(T ))W (T )] ∈ (logm,∞).

2. With the only assumption that 1 < m <∞, for VISt-almost every ξ in ∂t,

lim
n→∞

−1
n

log UNIFt(ξn) = logm and

lim
n→∞

−1
n

log HARMλ
t (ξn) = log λ−E∗[log(1− βλ(T ))] ∈ (E∗[log(ν∗T (ø))],∞).

3. With the only assumption that 1 < m <∞, for HARMλ
t -almost every ξ in ∂t,

lim
n→∞

−1
n

log UNIFt(ξn) = logm;

lim
n→∞

−1
n

log HARMλ′
t (ξn) = log λ′ −E∗[log(1− βλ′(T ))fλ(T )] ∈ (dλ,∞) and

lim
n→∞

−1
n

log VISt(ξn) = E∗[log(ν∗T (ø))fλ(T )] ∈ (dλ,∞).

Proof. For the first point, recall that the flow rule VIS is associated to the function
φ : t 7→ 1{t∈T ∗}, so we have, by Proposition 2.22, for GW∗-almost every t, for UNIFt-
almost every ξ,

lim
n→∞

−1
n

log VISt(ξn) −−−→
n→∞

E[W (T ) log ν∗T (ø)].

Decomposing with respect to the value of νT (ø) and using the recursive equation for W
yield

E[W (T ) log ν∗T (ø)] =
∑
k≥1

1
m

k∑
i=1

E[1{νT (ø)=k}W (T [i]) log ν∗T (ø)]

=
∑
k≥1

1
m
kE[1{νT (ø)=k}W (T [1]) log ν∗T (ø)], (4.8)

by symmetry. Now, for k1 ≤ k2 and l integers, consider the event

Ak1,k2,l =
{
#{k1 ≤ i ≤ k2 :T i ∈ T ∗} = l

}
.

We have, for k ≥ 1 and l ≥ 1,{
νT (ø) = k, ν∗T (ø) = l, T 1 ∈ T ∗

}
=
{
νT (ø) = k, T 1 ∈ T ∗, A2,k,l−1

}
,

so we can use the branching property in the last expectation:

E[1{νT (ø)=k}W (T [1]) log ν∗T (ø)] = pk

k∑
l=1

log(l)E[1{T 1∈T ∗}W (T 1)1A2,k,l−1 ]

= pk

k∑
l=1

log(l)E[1{T 1∈T ∗}W (T 1)]P(A2,k,l−1)
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4 Transient λ-biased random walk on a Galton-Watson tree

Again by the branching property,

P(A2,k,l−1) =
(
k − 1
l − 1

)
qk−l(1− q)l−1 = l

k(1− q)

(
k

l

)
qk−l(1− q)l−1

= l

k(1− q)P(ν∗T (ø) = l | νT (ø) = k).

This implies that

E[1{νT (ø)=k}W (T [1]) log ν∗T (ø)] = pk
(1− q)k

k∑
l=1

l log l
(
k

l

)
qk−l(1− q)l

= pk
(1− q)kE[ν∗T (ø) log ν∗T (ø) | νT (ø) = k],

with the usual convention 0 log 0 = 0. Getting back to (4.8), we obtain

E[W (T ) log ν∗T (ø)] = 1
m(1− q)E[ν∗T (ø) log ν∗T (ø)] = 1

m
E∗[ν∗T (ø) log ν∗T (ø)].

This number is strictly greater than logm by Proposition 2.22 (or more directly by
Jensen’s inequality) and is finite because under P, ν∗T (ø) ≤ νT (ø) and we made the
assumption that

∑
k≥1 pkk log k <∞.

The limit in the second assertion of the first point is an immediate consequence of the
inequality (4.7) and Proposition 2.22. To see that it is finite, it suffices to remark that

log λ− log(1− β(T )) = log(λ+
νT (ø)∑
i=1

β(T [i])) ≤ log(λ+ νT (ø)),

and using the fact that W (T ) is the limit of the regular martingale (Zn(T )/mn),

E[log(λ+ νT (ø))W (T )] = E[log(λ+ νT (ø))νT (ø)
m

] <∞,

by assumption.
The second point is a direct consequence of inequalities (2.11) and (4.7) together with

Proposition 2.22.
So is the last point (use inequality (4.5) to prove the last two integrabilities).

4.3 Numerical results
We will now use our formula to conduct numerical experiments about the dimension

dλ as a function of λ.
It was asked in [45] whether dλ is a monotonic function of λ, for λ in (0,m). To the

best of our knowledge, this question is still open. We were not able to find a theoretical
answer. However, using formula (4.6) together with the recursive equation (1.7), we
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4.3 Numerical results

are able to draw a credible enough graph of dλ versus λ, for a given (computationally
reasonable) reproduction law.
The idea is the following. Fix a reproduction law p of finite mean m > 1 and a

bias λ in (0,m). For any non-negative integer n, and a Galton-Watson tree T , let
βn(T ) = PTø

(
τ (n) < τø∗

)
, where τ (n) is the first hitting time of level n by the λ-biased

random walk (Xn)n≥0. Since the family of events {τ (n) < τø∗} is decreasing, we have

β(T ) = PTø
(⋂
n≥1

{
τ (n) < τø∗

})
= lim

n→∞
βn(T ).

Using the Markov property as in (1.7) yields the recursive equation

βn+1(T ) =
∑νT (ø)
i=1 βn(T [i])

λ+
∑νT (ø)
i=1 βn(T [i])

.

By definition, β0(T ) is equal to one. Hence, we may use the following algorithm to
compute the law of βn := βn(T ):

— the law of β0 is the Dirac measure δ1;

— for any n ≥ 0, assuming we know the law of βn, the law of βn+1 is the law of the
random variable ∑ν

i=1 β
(i)
n

λ+
∑ν
i=1 β

(i)
n

,

where ν, β(1)
n , β(2)

n , ... are independent, ν has the law p and each β(i)
n has the law βn.

Using the preceding algorithm, after n iteration, we obtain the law of βn(T ). Since
βn(T )→ β(T ), almost surely, we also have convergence in law.

Remark 4.1. The preceding discussion shows that the law of β is the greatest (for the
stochastic partial order) solution of the recursive equation (1.7). In [45, Theorem 4.1],
for λ = 1, the authors show that the only solutions to this recursive equation are the
Dirac measure δ0 and the law of β. However, their proof cannot be adapted to the more
general case λ ∈ (0,m). That is why, here, we had to choose for our initial measure, the
Dirac measure δ1.

For the numerical computations, we discretize the interval [0, 1] and apply the preced-
ing algorithm with some fixed final value of n. See Figure 3.1 for an example of what
one can obtain with 100 iterations and a discretization step equal to 1/20000.
Before we compute the dimension, we simplify a little bit the formula (4.6). First,

notice that we may write
ν∑
j=1

β(T̃ j) = λβ̃

1− β̃
, (4.9)
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Figure 3.1 – The apparent density of the conductance β, for p1 = p2 = p3 = 1
3 and λ in

{0.7, 1, 1.2}.

where β̃ is an independent copy of β = β(T ). Recalling that the constant C in (4.6) is
the expectation of κ(β), we obtain

dλ = log(λ)− E∗
[

log(1− β)ββ̃
λ− 1 + β + β̃ − ββ̃

]/
E∗
[

ββ̃

λ− 1 + β + β̃ − ββ̃

]
. (4.10)

From there, computing dλ from a dicretized approximation of the law of β is straight-
forward.
From [35], we know that dλ goes to E∗ [log(ν∗T (ø))] (the almost sure dimension of the

visibility measure, see [43, Section 4]) as λ goes to 0, and to logm as λ goes to m.
We also compute numerically the speed. Recall from [3], that the speed of the λ-biased

transient random walk for λ ∈ (g′(q),m) is given by

`λ = E∗
[

(ν − λ)β0
λ− 1 + β0 +

∑ν
j=1 βj

]/
E∗
[

(ν + λ)β0
λ− 1 + β0 +

∑ν
j=1 βj

]
,

where ν, β0, β1, . . . are independent and ν has law p, while for each i, βi has law β(T ).
Using first symmetry and then (4.9), one obtains

E∗
[

(ν ± λ)β0
λ− 1 + β0 +

∑ν
j=1 βi

]
= E∗


(∑ν

j=1 βj
)
± λβ0

λ− 1 + β0 +
∑ν
j=1 βj

 = E∗
 λ

(
β̃ ± β ∓ ββ̃

)
λ− 1 + β + β̃ − β̃β

,
where we have denoted β = β0 and

∑ν
j=1 βi = λβ̃/(1− β̃). Finally, we may express the

speed as

`λ = E∗
[

ββ̃

λ− 1 + β + β̃ − ββ̃

]/
E∗
[

β + β̃ − ββ̃
λ− 1 + β + β̃ − ββ̃

]
. (4.11)

We also recall that, in the case λ = 1, it was shown in [43] that the speed of the random
walk equals

`1 = E∗
[
ν − 1
ν + 1

]
.
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Figure 3.2 – The dimension and the speed of the λ-biased random walk on a Galton-

Watson tree as functions of λ, for p1 = p2 = 1/2.

We have made the numerical computations in two cases, the first one is when the
reproduction law is given by p1 = p2 = 1/2, see Figure 3.2 and the second one is for p
given by p1 = p2 = p3 = 1/3, see Figure 3.3.
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Figure 3.3 – The dimension and the speed of the λ-biased random walk on a Galton-
Watson tree as functions of λ, for p1 = p2 = p3 = 1/3.

These figures suggest that the speed and the dimension are indeed monotonic with
respect to λ. Furthermore, the speed looks convex, while the dimension seems to be
neither convex nor concave (there might be an inflection point at 1 but it is perhaps too
bold a conjecture to make at this point).
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5 Transient random walk on a weighted
Galton-Watson tree

5.1 Presentation of the model
A weighted tree is a tree t together with a weight function At : t \ {ø} → (0,∞) and

that we associate to it a probability kernel Pt on t∗ = t ∪ {ø∗} defined by

Pt(x, y) =


At(xi)

1 +
∑νt(ø)
j=1 At(xj)

if y = xi, for 1 ≤ i ≤ νt(x);

1
1 +

∑νt(ø)
j=1 At(xj)

if y = x∗.

In this chapter, we will only work with weighted trees, so to lighten notations, we will
write t when we should write (t,At). We still, however, write x ∈ t when we mean that
a word x is a vertex of the weighted tree t.
We define the (local) distance between two weighted trees t and t′ by

dw(t, t′) =
∑
r≥0

2−r−1δ(r)
m (t, t′),

where δ(r)
w is defined by

δ(r)
w

(
t, t′
)

=
{

1 if t and t′ (without their weights) do not agree up to height r;
min(1, sup{|At(x)− At′(x)| :x ∈ t, 1 ≤ |x| ≤ r}) otherwise.

We denote by Tw the metric space of all infinite weighted trees. It is a Polish space.
For a weighted tree t and a vertex x ∈ t, we denote by

t[x] = {u ∈ U∗ :xu ∈ t},

the reindexed subtree starting from x with weights

At[x](y) = At(xy), ∀y ∈ t[x] \ {ø, ø∗}.

For a weighted tree t and a vertex x in t, define t≤x as the weighted tree

t≤x = {y ∈ t :x ⊀ y}.

together with the restriction of At to t≤x \ {ø}. Notice that x is in t≤x.
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5 Transient random walk on a weighted Galton-Watson tree

For two weighted trees t and t′, and x 6= ø∗ in t, we define the glued weighted tree
t≤x / t′ as the tree

t≤x / t′ = t≤x ∪ {xy : y ∈ t′ \ {ø∗, ø}}

together with the weights :

At≤x/t′(z) =
{

At(z) if x ⊀ z;
At′(x−1z) otherwise.

Notice that in particular the weight of x in t≤x / t′ is still At(x).
Next we introduce Galton-Watson weighted trees. This model has been introduced

in [41] and has been extensively studied (see for instance [2, 28, 5, 4]). We will use the
definition from [21], which is a generalization and can be described as follows. Under a
probability P, let A and (Ax)x∈U be i.i.d. random elements of the set

Tuples =
⋃
k≥1

(0,∞)k

of all finite sequences of positive real numbers, with the convention that (0,∞) contains
only the empty sequence (). Define the length of a sequence in the obvious way. Define
the random Galton-Watson weighted tree T by
1. ø ∈ T0;
2. for i ≥ 0 and j ∈ N∗, xj ∈ U is in Ti+1 if and only if x is in Ti and j is not greater
that the length of Ax, in which case, we let AT (xj) = Ax(j), the j-th component of the
sequence Ax.
3. T =

⋃
k≥1 Ti.

For x ∈ U , define T x as the tree associated to the sequences (Axy)y∈U and remark that
1. On the event that x ∈ T , T [x] = T x.
2. If Q is a subset of U made of pairwise incomparable elements, then the weighted trees
(T x)x∈Q are i.i.d. and independent of the random sequences {Ay : y 6� x}.
The previous property will be referred to as the branching property.
Weighted Galton-Watson trees can easily be represented as marked Galton-Watson

trees as they are defined in Section 2.6, so that all the results of chapter 2 are available
to us in this context of weighted Galton-Watson trees. We again denote by p = (pk)k≥0
the reproduction law of T . We assume for simplicity that p0 = 0. We also assume that
p1 < 1 and that the mean m of p is finite. As before we denote by GW the distribution
of T .
In [41, Theorem 3], we may find a transience criterion for the random walk X on T

with transition matrix PT , when the weights are i.i.d. It is generalized for our setting
in [21, Theorem 1.1] (the integrability assumptions are not needed for the proof of the
transient case).

Fact 5.1. If mins∈[0,1] E
[∑νT (ø)

i=1 AT (i)s
]
> 1, then for GW-almost every weighted tree

t, the random walk defined by Pt is transient.
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5.1 Presentation of the model

We will assume throughout this work that we are in this regime.
An infinite path in U∗ is a sequence x = (x0, x1, . . . ) such that for any k ≥ 0, xk+1

is either a child of xk or its parent. A transient path is an infinite path x such that
limk→∞|xk| =∞.
For such a path x, we define:

— the set of fresh times:

ft(x) = {s ≥ 0 :∀k < s, xk 6= xs} = {ft0(x), ft1(x), . . . },

where ft0(x) < ft1(x) < · · · ;
— the set of exit times:

et(x) = {s ≥ 0 :∀k > s, xk 6= (xs)∗} = {et0(x), et1(x), . . . },

where et0(x) < et1(x) < · · · ;
— the exit points, epk(x) := xetk(x), for k = 0, 1, . . . ;
— the set of regeneration times:

rt(x) = ft(x) ∩ et(x).

Likewise, the regeneration times (if there are any) are ordered rt0(x) < rt1(x) < · · · ,
and if there are at least k regeneration times, rpk(x) = xrtk(x) is the k-th regeneration
point and rhk(x) = |rpk(x)| is the k-th regeneration height.
— For u ∈ U∗, the first hitting time and the first return time of the path x to u are
respectively

τu(x) = inf{s ≥ 0 :xs = u}, τ+
u (x) = inf{s ≥ 1 :xs = u},

with the convention inf ∅ = +∞.
Any transient path x starting from x0 = ø defines a ray

ray(x) = (ep0(x), ep1(x), . . . ) ∈ U∞.

In this chapter, we always endow U∞ and its subsets with the natural distance dU∞ .
As before, we denote by (Xk)k≥0 a random walk on T∗ = T ∪ {ø∗} with transition

kernel PT , and by Ξ the ray associated to it and by HARMT the distribution of Ξ. Recall
that HARM is a flow rule.
Let Tw,p be the space of all infinite trees t in Tw with a distinguished transient path

x starting from the root. On Tw,p, we define the distance dw,p by

dw,p((t,x), (t′,x′)) =
∑
r≥0

2−r−1δ(r)
w,p((t,x), (t′,x′)),

where δ(r)
w,p((t,x), (t′,x′)) = 1 if the vertices of t and of t′ do not agree up to height r

or if the paths x and x′ do not coincide before the first time they reach height r + 1.
Otherwise, δ(r)

w,p((t,x), (t′,x′)) = δ
(r)
w (t, t′). The metric space Tw,p is again Polish.
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5 Transient random walk on a weighted Galton-Watson tree

We denote by P the “annealed” probability, that is, the probability associated to the
expectation E defined by

E[f(T,X)] = E[ETø [f(T,X)]],

for all suitable measurable functions f on Tw,p.
The main result of this chapter is the following theorem:

Theorem 5.2 (Dimension drop for HARM). Let T be a random weighted Galton-Watson
tree. The harmonic measure HARMT is almost surely exact-dimensional and its Haus-
dorff dimension is almost surely a constant that equals

dimH HARMT = E[− log(HARMT (Ξ1))κ(T )],

with κ defined on the space Tw by

κ(t) = E
[∑
y∈T

PT≤y/tø (rp1 � y, τø∗ =∞) .
]

(5.1)

It is almost surely strictly less than the Hausdorff dimension of the whole boundary ∂T
(which is almost surely logm), unless the model reduces to a transient λ-biased random
walk (with a deterministic and constant λ < m) on an m-regular tree.

Our results are inspired by the work of Lyons, Peres and Pemantle on transient λ-
biased random walks on Galton-Watson trees ([44]). We use in the same way the notions
of exit times and regeneration times to build an invariant measure for the forward en-
vironment seen by the particle at exit times. The construction of this measure, via a
Rokhlin tower, was already suggested in [44].
The chapter is organized as follows. In Section 5.2, we recall some basic results from

ergodic theory. In Section 5.3, we show that there are almost surely infinitely many
regeneration times and find an invariant measure for the forward environment seen by
the particle at such times. Again, this follows the ideas of [44], but we give detailed
proofs in our setting of weighted trees for completeness. The heart of this work is
Section 5.4, where we give a detailed “tower construction” over the preceding dynamical
system to build an invariant measure for the forward environment seen by the particle
at exit times. We then show that this measure has a density with respect to the joint
law of the tree and the random path on it and give an expression of this density. To
conclude in Section 5.5, we project this measure on the space of trees with a random ray
on it and we use the general theory of flow rules on Galton-Watson trees developed in
[43].

5.2 Basic facts of ergodic theory

We recall here some definitions and basic properties which are used in this paper. The
notations of this section are local to this section.
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5.2 Basic facts of ergodic theory

Definition 5.1. Let (X,FX) and (Y,FY ) be two measurable spaces and let SX : X →
X, SY : Y → Y be two measurable transformations. A semi-conjugacy between
(X,FX , SX) and (Y,FY , SY ) is a surjective measurable mapping h : X � Y such that
h ◦ SX = SY ◦ h.
One says that h is a conjugacy between (X,FX , SX) and (Y,FY , SY ) if, in addition,

the semi-conjugacy h is also injective.

The following well-known fact can be checked very directly, so we omit the proof.

Fact 5.3. Let (X,FX , SX) and (Y,FY , SY ) be two measurable spaces endowed with a
measurable transformation. Let h : X � Y be a semi-conjugacy and µX be a probabil-
ity measure on FX . Then, if the system (X,FX , SX , µX) is measure-preserving (resp.
ergodic, mixing), so is (Y,FY , SY , µX ◦ h−1).

Definition 5.2. Let (X,F , S, µ) be a measure-preserving system (with µ(X) = 1) and
A be in F such that µ(A) > 0. For x in X, let

nA(x) = inf{k ≥ 1 :Sk(x) ∈ A},

with the convention inf ∅ := +∞. For B in F , let µA(B) = µ(A ∩ B)/µ(A) and for x
in X, let SA(x) = SnA(x)(x) if nA(x) is finite and (say) SA(x) = x if nA(x) = ∞. The
induced system on A is defined as (A,F ∩A,SA, µA).

Lemma 5.4. With the notations and assumptions of the previous definition, the system
(A,F ∩A,SA, µA) is measure-preserving. Moreover, the whole system (X,F , S, µ) is
ergodic if and only if µ(

⋃
k≥1 S

−k(A)) = 1 and (A,F ∩A,SA, µA) is ergodic.

We provide a short proof of the “if” part, since we did not find it in the litterature
(although it is well-known). For the other assertions, see for instance [15, Lemma 2.43].

Proof. For k in N∗ ∪ {∞}, let Ak = {x ∈ A :nA(x) = k}. Notice that

A = A∞ t
⊔
k≥1

Ak.

Let B be in F such that S−1(B) = B. We prove that A ∩B is SA-invariant. Indeed,

S−1
A = (A∞ ∩B ∩A) t

⊔
k≥1

Ak ∩ S−k(B ∩A).

For k ≥ 1, using the fact that Ak ⊂ S−k(A),

Ak ∩ S−k(B ∩A) = Ak ∩ S−k(B) ∩ S−k(A) = Ak ∩B,

thus we have
S−1
A (B ∩A) = (A∞ ∩B) t

⊔
k≥1

(Ak ∩B) = B ∩A.
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5 Transient random walk on a weighted Galton-Watson tree

Now, assume that µ(
⋃
k≥1 S

−k(A)) = 1 and (A,F ∩A,SA, µA) is ergodic. By ergodicity
and SA-invariance, µ (B ∩A) equals 0 or µ(A). If it is 0, then

µ(B) = µ
(
B ∩

⋃
k≥1

S−k(A)
)
≤
∑
k≥1

µ
(
B ∩ S−k(A)

)
= 0,

since, for any k ≥ 1,

µ(B ∩ S−k(A)) = µ(S−k(B) ∩ S−k(A)) = µ(B ∩A).

If µ(B ∩A) = µ(A), we reason on the complement Bc of B, which is still invariant by S
and satisfies µ(Bc ∩A) = 0.

5.3 Regeneration Times
Let (t,x) be in Tw,p. Following [44, proof of Proposition 3.4], for any s in ft (x), we

consider the tree and the path before time s:

Φs(t,x) = (t≤xs , (xi)0≤i≤s).

Likewise if s is in et (x), the reindexed tree and path after time s is

Ψs(t,x) = (t[xs],x[s]),

where
x[s] = (x−1

s xs+k)k≥0.

By definition of fresh times and exit times, each path belongs to the corresponding tree.
For short, we write ft for ft(X), fp for fp(X), etc, and Ψs, Φs for Ψs(T,X) and

Φs(T,X). The following key lemma states that, at regeneration times, the branching
property implies independence between the past (trajectory and environment) and the
future.

Lemma 5.5 (Branching property at regeneration times). For s in N∗, f and g measur-
able and non-negative functions,

E[1{s∈rt}f (Φs) g (Ψs)] = E[1{s∈ft}f(Φs)]E[g(T,X)1{τø∗=∞}].

Proof. First notice that

{s ∈ rt} = {s ∈ ft} ∩ {∀k > s, Xk 6= (Xs)∗}.

We decompose the expectation according to the value of Xs.

E[1{s∈rt}f(Φs)g(Ψs)]

=
∑
x∈U

E
[
1{x∈T}ETø

[
1{Xs=x, s∈ft}f(T≤x, (Xi)0≤i≤s)1{s∈et}g

(
T [x], (x−1Xs+k)k≥0

)]]
.
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5.3 Regeneration Times

By the Markov property at time s, for any fixed x in T , the quenched expectation can
be rewritten as

ETø
[
1{Xs=x, s∈ft}f(T≤x, (Xi)0≤i≤s)1{s∈et}g

(
T [x], (x−1Xs+k)k≥0

)]
= ETø

[
1{Xs=x, s∈ft}f(T≤x, (Xi)0≤i≤s)

]
ETx
[
1{τx∗=∞}g

(
T [x], (x−1Xk)k≥0

)]
.

Now, the first quenched expectation is only a function of the weighted tree T≤x while
the second is only a function of T [x]. So we can use the branching property and sum
over x in U to get the result.

Lemma 5.6. For GW-almost every weighted tree t, for Ptø-almost every path x, the set
rt (x) is infinite.

Proof. This proof is very similar to [44, Lemma 3.3]. For k ≥ 1, let Fk be the σ-algebra
on Tw,p generated by X0, X1, . . . , Xk and F∞ the σ-algebra generated by the whole path
X. For N in N, let ft(N) be the first fresh time after (or at) time N . Then,

P[
⋃
s≥N
{s ∈ rt} |FN ] ≥ P[ft(N) ∈ rt | FN ] =

∑
s≥N

E[1{ft(N)=s}1{s∈rt} | FN ].

Thus we can use Lemma 5.5 to obtain

P[
⋃
s≥N
{s ∈ rt} |FN ] ≥

∑
s≥N

E[1{ft(N)=s} | FN ]E[1{τø∗=∞}] = E[β (T )] > 0,

By regular martingale convergence theorem and the fact that for any N in N, the event⋃
s≥N{s ∈ rt} is in F∞, we have almost surely,

1⋃
s≥N{s∈rt} = lim

k→∞
P[
⋃
s≥N
{s ∈ rt} | FN+k]

≥ P[
⋃

s≥N+k
{s ∈ rt} | FN+k] ≥ E[β(T )] > 0.

Hence, 1⋃
s≥N{s∈rt} = 1, almost surely.

We will now work on the space of weighted trees with transient paths that have
infinitely many regeneration times. We still denote it Tw,p in order not to add another
notation.

Proposition 5.7. Let f and g be measurable non-negative functions. For any n ≥ 1,

E[f(Φrtn)g(Ψrtn)] = E[f(Φrtn)]E[g(T,X) | τø∗ =∞]
= E[f (Φrtn)]E[g (Ψrtn)].

(5.2)

127



5 Transient random walk on a weighted Galton-Watson tree

Proof. Again, this proof is similar to [44, p. 255]. For 1 ≤ n ≤ s, let Csn be the event
that exactly n edges have been crossed exactly one time before time s, so that

{rtn = s} = Cs−1
n−1 ∩ {s ∈ rt}.

Reasoning on the value of the n-th regeneration time, we first obtain

E[f(Φrtn)g(Ψrtn)] =
∑
s≥n

E[1{rtn=s}f (Φs) g (Ψs)] =
∑
s≥n

E[1{s∈rt}1Cs−1
n−1

f(Φs)g(Ψs)].

On the event {s ∈ rt}, the indicator 1Cs−1
n−1

is a function of the past Φs, thus, using
Lemma 5.5, we obtain

E[f(Φrtn)g(Ψrtn)] = E[1{τø∗=∞}g (T,X)]
∑
s≥n

E[1{s∈ft}1Cs−1
n−1

f(Φs)]

= E[g(T,X) | τø∗ =∞]
∑
s≥n

P[τø∗ =∞]E[1{s∈ft}1Cs−1
n−1

f(Φs)].

Using Lemma 5.5 the other way around,

E[f(Φrtn)g(Ψrtn)] = E[g(T,X) | τø∗ =∞]
∑
s≥n

E[1{s∈et}1{s∈ft}1Cs−1
n−1

f(Φs)]

= E[g(T,X) | τø∗ =∞]E[f(Φrtn)].

Finally, taking f constant equal to one yields the last equality.

We define on Tw,p the shift at exit times

Se : (t,x) 7→ Ψet1(x)(t,x) = (t[ep1],x[et1]),

and the shift at regeneration times

Sr : (t,x) 7→ Ψrt1(x)(t,x) = (t[rp1],x[rt1]).

For k ≥ 1, let
Ske = Se ◦ · · · ◦ Se︸ ︷︷ ︸

k times

.

The exit time number rh1 is the first regeneration time, thus the shifts Se and Sr are
related by

Sr(t,x) = Srh1(x)
e (t,x), ∀(t,x) ∈ Tw,p.

As a corollary to the previous proposition, we obtain our first measure-preserving system.

Corollary 5.8. The law µr of (T,X) on Tw,p, under the probability measure

P∗ = P[· | τø∗ =∞]

is invariant and mixing with respect to the shift Sr.
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5.4 Tower construction of an invariant measure for the shift at exit times

Proof. For the invariance, take f constant equal to one in (5.2).
Now let f and g be non-negative measurable functions on Tw,p. By a monotone class

argument, we may assume that g only depends on the N first generations of the weighted
tree and on the path until it escapes these generations for the first time.
Since the N -th regeneration point is at least of height N , we get, using (5.2), for all

k ≥ N ,

E∗[f ◦ Skr (T,X)g(T,X)] = E∗[f(T [rpk],X[rtk])g(T,X)]
= E∗[f(T,X)]E∗[g(T,X)],

thus the system is mixing.

5.4 Tower construction of an invariant measure for the shift at
exit times

We now build a Rokhlin tower over the system (Tw,p,Sr, µr) in order to obtain a
probability measure that is invariant with respect to the shift Se. This is a classical
and general construction but we provide details in our specific case for the reader’s
convenience.
For any i ≥ 1, let

Ei = {(t,x) ∈ Tw,p : rh1(x) ≥ i}.

We then have
Tw,p = E1 ⊃ E2 ⊃ · · · .

For i ≥ 1, let Ẽi = Ei×{i} and Ẽ =
⊔
i≥1 Ẽi. Let φi : Ei → Ẽi be the natural bijection.

We define the measure µ̃r
0 by : for any measurable Ã in Ẽ,

µ̃r
0(Ã) :=

∑
i≥1

µr(φ−1
i (Ã ∩ Ẽi)).

The total mass of µ̃r
0 is

µ̃r
0(Ẽ) =

∑
i≥1
P∗(rh1 ≥ i) = E∗[rh1].

Lemma 5.9. The expectation E∗[rh1] is finite and equals E[β(T )]−1.

We will prove this lemma later. We now write µ̃r := µ̃r
0/µ̃r

0(Ẽ). We define the shift
S̃ on Ẽ by :

S̃(t,x, i) :=
{

(t,x, i+ 1) if rh1(x) ≥ i+ 1;
(Sr(t,x), 1) if rh1(x) = i.

(5.3)

Lemma 5.10. The measure µ̃r is invariant and ergodic with respect to the shift S̃.
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5 Transient random walk on a weighted Galton-Watson tree

Proof. Let f : Ẽ → R+ be a measurable function.∫
f ◦ S̃(t,x, i) dµ̃r(t,x, i) =

∑
j≥1

∫
Ẽj

f ◦ S̃(t,x, i) dµ̃r(t,x, i)

= E∗[rh1]−1∑
j≥1

∫
Ej

f ◦ S̃(t,x, j) dµr(t,x)

= E∗[rh1]−1
(∑
j≥1

∫
Ej\Ej+1

f (Sr(t,x), 1) dµr (t,x) +
∫
Ej+1

f(t,x, j + 1) dµr(t,x)
)

= E∗[rh1]−1
(∫

E1
f(Sr(t,x), 1) dµr(t,x) +

∫
Ẽ\Ẽ1

f(t,x, i) dµ̃r(t,x, i)
)
.

The fact that Sr is invariant with respect to µr concludes the proof of the invariance.
For the ergodicity, we remark that, by construction,

∞⋃
k=1

S̃−k(Ẽ1) = Ẽ.

and the induction of the system on Ẽ1 is canonically conjugated to (Tw,p,Sr, µr), thus is
ergodic and (see Section 5.2) so is the whole system.

Proof of Lemma 5.9. This proof can be found in [2, Subsection 3.1]. We reproduce it
with our notations for the reader’s convenience. From Proposition 5.7, we know that
under P∗, we have rh0 = 0 and the increments rh1, rh2− rh1, . . . , rhk+1− rhk, . . . are i.i.d.
For n ≥ 1,

P∗(n ∈ rh) = E∗[#rh ∩ {0, 1, . . . , n}]− E∗[#rh ∩ {0, 1, . . . , n− 1}].

So, by the renewal theorem ([22, p 360]),

P∗(n ∈ rh) −−−→
n→∞

1/E∗[rh1].

On the other hand, for n ≥ 1, let

τ (n) = inf{k ≥ 0 : |Xk| = n}.

By transience, for GW-almost every t, the stopping time τ (n) is Ptø-almost surely finite.
Notice that n is a regeneration height if and only if τ (n) is also an exit time. In particular,
if n is a regeneration height, then, exactly one vertex at height n is hit by the random
walk. Hence we have the following decomposition :

{n ∈ rh, τø∗ =∞} =
⊔
|x|=n
{Xτ (n) = x, τø∗ > τ (n), ∀k ≥ τ (n), Xk 6= x∗}.

By the Markov property at time τ (n),

PTø (Xτ (n) = x, τø∗ > τ (n), ∀k ≥ τ (n), Xk 6= x∗)
= PTø (Xτ (n) = x, τø∗ > τ (n))PTx (∀k ≥ 0, Xk 6= x∗)
= PTø (Xτ (n) = x, τø∗ > τ (n))β(T [x]).
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Therefore, we may write P∗(n ∈ rh) as

P∗(n ∈ rh) = E[β (T )]−1 ∑
|x|=n

E
[
1{x∈T}PTø (Xτ (n) = x, τø∗ > τ (n), ∀k ≥ τ (n), Xk 6= x∗)

]
= E[β (T )]−1 ∑

|x|=n
E
[
1{x∈T}PTø (Xτ (n) = x, τø∗ > τ (n))β(T [x])

]
.

Now notice that the random variable

1{x∈T}PTø (Xτ (n) = x, τø∗ > τ (n))

is a function of T≤x, so by the branching property,

P∗(n ∈ rh) = E[β (T )]−1 ∑
|x|=n

E
[
1{x∈T}PTø (Xτ (n) = x, τø∗ > τ (n))

]
E[β(T x)]

=
∑
|x|=n

E
[
1{x∈T}PTø (Xτ (n) = x, τø∗ > τ (n))

]
= P(τø∗ > τ (n)).

By dominated convergence,

P[τø∗ > τ (n)] −−−→
n→∞

P[τø∗ =∞] = E[β(T )].

In order to construct an Se-invariant measure on Tw,p, all we need now is the right
semi-conjugacy. Let he : Ẽ → Tw,p be defined by

he (t,x, i) :=
(
t
[
epi−1

]
,x [eti−1]

)
.

By construction,
he ◦ S̃ = Se ◦ he,

that is he is a semi-conjugacy on its image, so we get the desired ergodic system.

Corollary 5.11. The probability measure µe := µ̃r◦h−1
e on Tw,p is invariant and ergodic

with respect to the shift Se.

We now investigate further the law µe. Let f : Tw,p → R+ be a measurable function.
By definition,∫

f(t,x) dµe(t,x) =
∫
f(t[epi−1],x[eti−1]) dµ̃r(t,x, i)

= E[β(T )]
∑
i≥1

∫
1{rh1≥i}f(t[epi−1],x[eti−1]) dµr(t,x)

=
∑
j≥1

j−1∑
i=0
E[1{rh1=j, τø∗=∞}f(T [epi],X[eti])].
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5 Transient random walk on a weighted Galton-Watson tree

Reasoning on the value of rp1 and its strict ancestors, we get for all j ≥ 1,
j−1∑
i=0
E
[
1{rh1=j, τø∗=∞}f(T [epi],X[eti])

]
=
∑
|x|=j

∑
ø�y≺x

∑
s≥1
E
[
1{x∈T, rp1=x, τø∗=∞, ep|y|=y, et|y|=s}f(T [y],X[s])

]
.

Summing over j, we obtain

∑
j≥1

j−1∑
i=0
E
[
1{rh1=j, τø∗=∞}f(T [epi],X[eti])

]
=
∑
y∈U

∑
s≥1
E
[
1{y∈T, τø∗=∞, ep|y|=y, et|y|=s}f(T [y],X[s])

∑
x�y

1{x∈T, rp1=x}
]

=
∑
y∈U

∑
s≥1
E
[
1{y∈T, τø∗=∞, et|y|=s}f(T [y],X[s])1{rp1�y}

]
.

We want to use the Markov property at time s. For s ≥ 1, and y in U , let Ds(y) be the
event that:
— the walk has not hit ø∗ before time s ;
— the walk hits y at time s and y∗ at time s− 1 ;
— for all ø ≺ z � y, there exist 1 ≤ i < j ≤ s such that Xi = z and Xj = z∗.
Notice that

Ds(y) ∩ {Xk 6= y∗, ∀k > s} = {et|y| = s, τø∗ =∞, rp1 � y}.

For fixed y ∈ U and s ≥ 1, on the event {y ∈ T}, we denote by X′ a random walk in
T starting from y independent of X0, X1, . . . , Xs and let y−1X′ =

(
y−1X ′0, y

−1X ′1, . . .
)
.

By the Markov property at time s,

1{y∈T}ETø
[
f(T [y],X[s])1{∀k≥s,Xk 6=y∗}1Ds(y)

]
= 1{y∈T}ETy

[
f(T [y], y−1X′)1{∀k≥0, X′

k
6=y∗}

]
PTø [Ds(y)].

We remark that the law of y−1X′ on the event {∀k ≥ 0, X ′k 6= y∗} is the same as
the law of a random walk Y in the weighted tree T [y], starting from ø, on the event
{∀k ≥ 0, Yk 6= ø∗}, thus

1{y∈T}ETy
[
f(T [y], y−1X′)1{∀k≥0, X′

k
6=y∗}

]
PTø [Ds(y)]

= 1{y∈T}E
T [y]
ø

[
f(T [y],Y)1{∀k≥0, Yk 6=y∗}

]
PTø [Ds(y)]

= 1{y∈T}E
T [y]
ø

[
f(T [y],Y)

∣∣∣ τø∗(Y) =∞
]
PTø [Ds(y),∀k ≥ s,Xk 6= y∗]

= 1{y∈T}E
T [y]
ø

[
f(T [y],Y)

∣∣∣ τø∗(Y) =∞
]
PTø [rp1 � y, et|y| = s, τø∗ =∞].
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5.5 Invariant Measure for the Harmonic Flow Rule

Summing over s, we obtain∫
f(t,x) dµe(t,x)

=
∑
y∈U

E
[
1{y∈T}E

T [y]
ø

[
f(T [y],Y)

∣∣ τø∗(Y) =∞
]
PTø
[
rp1 � y, τø∗ =∞

]]
.

We may write

PTø
[
rp1 � y, τø∗ =∞

]
= PT

≤y/T [y]
ø [rp1 � y, τø∗ =∞] =: h(T≤y, T [y]).

By the branching property, for any y in U ,

E
[
1{y∈T}E

T [y]
ø [f(T [y],Y) | τø∗(Y) =∞]PTø [rp1 � y, τø∗ =∞]

]
= E[1{y∈T}ET̃ø [f(T̃ ,Y) | τø∗(Y) =∞]h(T≤y, T̃ )],

where T̃ is a weighted tree whose law is GW, independant of T≤y and 1{y∈T}. As a
consequence, the conditional expectation of 1{y∈T}h(T≤y, T̃ ) given T̃ = t equals

E[1{y∈T}h
(
T≤y, t

)
].

Summing over y ∈ U , we finally obtain the following theorem which summarizes the
results of this section.

Theorem 5.12. The system (Tw,p, Se, µe) is measure-preserving and ergodic. The proba-
bility measure µe has the following expression : for all non-negative measurable functions
f , ∫

f(t,x) dµe(t,x) = E[f (T,X)κ(T )β(T )−11{τø∗=∞}, ]

where, for all weighted trees t,

κ(t) = E
[∑
y∈T

PT≤y/tø (rp1 � y, τø∗ =∞)
]

and β(t) = Ptø(τø∗ =∞). (5.4)

5.5 Invariant Measure for the Harmonic Flow Rule
We now slightly change our point of view. We will forget everything about the random

path X, except the ray it defines. Let µHARM be the projection on Tw of the probability
measure µe, that is, the probability defined by:∫

f(t) dµHARM(t) = E[f(T )κ(T )], (5.5)

for all non-negative measurable functions f on Tw. We denote by Tw,r the space of all
weighted trees with a distinguished ray, that is :

Tw,r := {(t, ξ) : t ∈ Tw, ξ ∈ ∂t}.
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5 Transient random walk on a weighted Galton-Watson tree

We view it as a metric subspace of Tw,p.
We build a Borel probability measure µHARM n HARM on Tw,r by :∫

Tw,r
f(t, ξ) d(µHARM n HARM)(t, ξ) =

∫
Tw

(
∫
∂t
f(t, ξ) dHARMt(ξ)) dµHARM(t),

for all positive measurable functions f : Tw,r → R+. The shift S on Tw,r is

S(t, ξ) = (t[ξ1], ξ−1
1 ξ).

To check that this new system is (canonically) semi-conjugated to the one of Theo-
rem 5.12 we need the following lemma.

Lemma 5.13. Let t be in Tw. Under the probability Etø, ray(X) is independent of the
event {τø∗ =∞}.

Proof. Let x be in t. By the Markov property, first at time τø∗ and then at time 1, we
have

Ptø(x ∈ ray (X) , τø∗ <∞) = Ptø(x ∈ ray (X))Ptø(τø∗ <∞).

Since the cylinders {ξ ∈ ∂t :x ≺ ξ}, for x in t, generate the Borel σ-algebra of ∂t, we
conclude by a monotone class argument.

Proposition 5.14. The system (Tw,r,S, µHARM n HARM) is measure-preserving and
ergodic. Furthermore, the probability measures µHARM and GW are mutually absolutely
continuous.

Proof. Let hp�r : Tw,p → Tw,r be defined by hp�r(t,x) = (t, ray(x)). The mapping hp�r
is surjective and satisfies hp�r ◦ Se = S ◦ hp�r,so is a semi-conjugacy. By the previous
lemma, the probability measure µHARM n HARM equals µe ◦ h−1

p�r.
We already know that µHARM is absolutely continuous with respect to GW. We only

need to show that, for GW-almost every tree t, the density κ(t) is positive. This is the
case, because

κ(t) = E
[∑
y∈T

PT≤y/tø (rp1 � y, τø∗ =∞)
]

≥ E
[
PT≤ø/t
ø (rp1 � ø, τø∗ =∞)

]
= Ptø(τø∗ =∞) = β(t),

and GW-almost every tree t is transient, thus is such that β(t) > 0.

We could also have used [43, Proposition 5.2] to prove the ergodicity and the absolute
continuity of GW with respect to µHARM since our measure µHARM was already known
to be absolutely continuous with respect to GW. To conclude that there indeed is a
dimension drop phenomenon, we proceed as in [43, Theorem 7.1] and compare our flow
rule HARM to UNIF.

Lemma 5.15. For GW-almost any weighted tree t, HARMt 6= UNIFt, unless pm = 1
for some integer m ≥ 2 and the weights are all deterministic and equal.
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5.5 Invariant Measure for the Harmonic Flow Rule

Proof. We prove it by contradiction. By [43, proposition 5.1], we may assume that
almost surely, HARMT = UNIFT . Let k ≥ 2 and i and j be distinct integers in [1, k].
We consider the event {νT (ø) = k}, assuming it has positive probability (we recall that,
by assumption, P(νT (ø) = 1) < 1). Since HARMT (i) = UNIFT (i) and HARMT (j) =
UNIFT (j), we have

AT (i)β(T [i])
W (T [i]) =

∑k
`=1 AT (`)β(T [`])∑k
`=1W (T [`])

= AT (j)β(T [j])
W (T [j]) .

In particular,
AT (i)β(T [i])W (T [j]) = AT (j)β(T [j])W (T [i]). (5.6)

We first take the conditional expectation with respect to the σ-algebra generated by
AT (i), AT (j) and the tree T [i] to get that E[W (T )] <∞, so it is 1. Then, conditioning
only with respect to AT (i) and AT (j), we get AT (i) = AT (j). Let us denote by Ak
the common value of AT (1), . . . , AT (k). Simplifying in (5.6) and taking the conditional
expectation with respect to the subtree T [i] gives β(T [i]) = αW (T [i]), for α = E [β(T )] ∈
(0, 1). Since the law of T [i] is itself GW, we have, for GW-amost every tree t,

β(t) = αW (t).

We reason again on the event {νT (ø) = k}. Using the recursive equations (1.7) and (2.1),
we have

αW (T ) = β(T ) =
Akα

∑k
j=1W (T [j])

1 +Akα
∑k
j=1W (T [j])

= AkαmW (T )
1 +AkαmW (T ) .

This implies
mAk(αW (T )− 1) = 1,

which, by independence, can only happen if W and Ak are almost surely constant.
This is possible only if the law p is degenerated and k = m. In this case, we have
Ak = 1

k(α−1) >
1
k , that is, our random walk model reduces to transient λ-biased random

walk on a regular tree, with deterministic λ < m.

We now have all the ingredients to prove Theorem 5.2.

Proof of Theorem 5.2. Since the flow rule HARM admits an invariant measure µHARM
which is absolutely continuous with respect to GW, we may use Corollary 2.19 to obtain
the formula for the (exact) dimension of HARMT . Furthermore, since almost surely,
HARMT 6= UNIFT by the previous lemma, Proposition 2.27 implies that this dimension
is almost surely strictly less that logm, the dimension of ∂T .
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6 Subdiffusive random walk on a weighted
Galton-Watson tree

6.1 Introduction
In this chapter, we again work in the setting of weighted Galton-Watson trees as

described in the previous chapter. However, we study here a recurrent regime. Define
the cumulant generating function associated to the intensity measure of the point process∑N
i=1 δlog A(i) by

ψ(s) = log E
N∑
i=1

A(i)s, ∀s ∈ R.

We assume throughout this chapter that we are in the normalized case

ψ(1) = log E
N∑
i=1

A(i) = 0. (Hnorm)

We will need Biggins’ theorem, thus we also assume

ψ′(1) := E

νT (ø)∑
i=1

AT (i) log AT (i)

 ∈ [−∞, 0). (Hderivative)

Define
κ = inf{s > 1 :ψ(s) = 0} ∈ (1,∞],

and assume that

E
[(νT (ø)∑

i=1
AT (i)

)κ]
+ E

[νT (ø)∑
i=1

AT (i)κ log+ AT (i)
]
<∞, if 1 < κ ≤ 2,

E
[(νT (ø)∑

i=1
AT (i)

)2]
<∞, if κ ∈ (2,∞].

(Hκ)

These assumptions are summed up in Figure 1.1. The additive martingale (Mn(T ))n≥0
is defined by

Mn(T ) =
∑
|x|=n

∏
ø≺y�x

AT (y).

By Biggins’ theorem (see also [32]) it converges almost surely and in L1 to a random
variable M∞(T ) which is positive on the event of non-extinction. Define by Cn(T ) the
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0 s

ψ(s)

1 κ

1 < κ ≤ 2

0 s

ψ(s)

1 2

κ ∈ (2,∞]

Figure 1.1 – Schematic behavior of ψ under our hypotheses

conductance between the root of T and its vertices at height n. The fact that the random
walk is recurrent implies that Cn(T ) converges to 0 and we want to study its speed of
convergence. The main result of this chapter is the following:

Theorem 6.1. Under the hypotheses (Hnorm), (Hderivative) and (Hκ),

0 < lim inf
n→∞

n1/(κ−1)E[Cn(T )] ≤ lim sup
n→∞

n1/(κ−1)E[Cn(T )] <∞ if 1 < κ < 2 ;

0 < lim inf
n→∞

n lognE[Cn(T )] ≤ lim sup
n→∞

n lognE[Cn(T )] <∞ if κ = 2 and

lim
n→∞

nE[Cn(T )] = ‖M∞(T )‖2 if κ > 2.

And in any case, almost surely,

lim
n→∞

Cn(T )/E[Cn(T )] = M∞(T ).

Moreover, the above convergence also holds in Lp for p ∈ [1, κ) if 1 < κ ≤ 2 and in L2

if κ > 2.

6.2 Subdiffusive weighted Galton-Watson trees

6.2.1 Weighted trees and effective conductance

We work on the space Tw of trees t equipped with a weight function At from the
set t \ {ø, ø∗} to (0,∞). For a weighted tree t, and a vertex x in t \ {ø, ø∗}, define the
conductance of the (undirected) edge {x∗, x}, by

ct(x) =
∏

ø≺y�x
At(y).

The edge {ø∗, ø} has conductance ct(ø) = 1. We define a nearest-neighbor random walk
on t in the usual way: for any vertex x distinct from ø∗ in t, and any 1 ≤ i ≤ νt(x),

P t(x, xi) = c(xi)/πt(x) and P t(x, x∗) = ct(x)/πt(x),
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6.2 Subdiffusive weighted Galton-Watson trees

where πt is the usual reversible measure

πt(x) = ct(x) +
νt(x)∑
i=1

ct(xi).

In terms of weights,

P t(x, xi) = At(xi)
1 +

∑νt(x)
j=1 At(xj)

and P t(x, x∗) = 1
1 +

∑νt(x)
j=1 At(xj)

.

For a vertex x of t, define the first hitting time and the first return time of x by

τx = inf{n ≥ 0 :Xn = x} and τ+
x = inf{n ≥ 1 :Xn = x},

with the convention that inf ∅ =∞. For n ≥ 0, the first hitting time of the n-th level is

τ (n) = inf{n ≥ 0 : |Xn| = n}.

The effective conductance βn of the weighted tree t between ø∗ and the n-th level of the
tree satisfies

βn(t) = P tø(τ (n) < τø∗),
while the effective conductance Cn(t) of t between ø and the n-th level of the tree has
the following probabilistic interpretation

Cn(t) =
P tø(τ (n) < τ+

ø )
P t(ø, ø∗)

.

Using either the Markov property or the laws of series and parallel circuits leads to the
following relations: for n ≥ 1,

Cn(t) = βn(t)
1− βn(t) , (6.1)

Cn(t) =
νt(ø)∑
i=1

At(i)βn−1(t[i]). (6.2)

Thus, for n ≥ 2,

Cn(t) =
νt(ø)∑
i=1

At(i)
Cn−1(t[i])

1 + Cn−1(t[i]) =
νt(ø)∑
i=1

At(i)
(

Cn−1(t[i])− Cn−1(t[i])2

1 + Cn−1(t[i])

)
.

Finally we define the family of functions (Mn)n≥0 by

Mn(t) =
∑
|x|=n

ct(x) =
∑
|x|=n

∏
ø≺y�x

At(y). (6.3)

By definition, for all n ≥ 1, one has

Mn(t) =
νt(ø)∑
i=1

At(i)Mn−1(t[i]). (6.4)
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6 Subdiffusive random walk on a weighted Galton-Watson tree

6.2.2 The additive martingale on a weighted Galton-Watson tree

For convenience, let A = (A(1), . . . ,A(N)) be a random tuple distributed as Aø. For
n ≥ 0, let Fn be the σ-algebra generated by the random variables Ax, for |x| ≤ n − 1
(with F0 defined as the trivial σ-algebra). Under the previous assumption, the process
(Mn(T )) is a martingale with respect to the filtration (Fn), and thus converges as n goes
to infinity to a non-negative random variable denoted by M∞(T ).
Consider the following assumption:

E
[(

N∑
i=1

A(i)
)

log+
(

N∑
i=1

A(i)
)]

<∞, (HX logX)

with log+(x) = max(0, log(x)), for all x ≥ 0. Under this assumption together with
(Hnorm) and (Hderivative) , Biggins’ theorem (apply [40] to α = −1 and Xi = log A(i))
implies that M∞(T ) is not degenerated.

Fact 6.2. Under the hypotheses (Hnorm), (Hderivative) and (HX logX), the random vari-
able M∞(T ) has expectation 1 and is positive on the event of non-extinction, which has
positive probability.

Now notice that in each case, the hypothesis (Hκ) supersedes the hypothesis (HX logX).
The tail behavior of M∞ plays a crucial role in this work.
We owe to [37, Theorem 2.1, Theorem 2.2] the following fact.

Fact 6.3. Under the hypotheses (Hnorm), (Hderivative) and (Hκ), the random variable
M∞ has finite moments of order p for all p in [1, κ) if κ ≤ 2 and for all p in [1, 2] if
κ > 2.
If κ ≤ 2, the asymptotic tail probability of M∞ satisfies

P(M∞ > s) �s→∞ s−κ. (6.5)

Now, we introduce for p ≥ 1, the function ϕp defined on (0,∞) by

ϕp(a) = E
[(

M2
∞

a+M∞

)p]
. (6.6)

Its behavior at infinity will play a very important role.

Lemma 6.4. With the previous notations and hypotheses, assume that κ is in (1, 2] and
that p is a real number in [κ/2, κ).
— If 1 < κ ≤ 2 and κ/2 < p < κ, then ϕp(a) �a→∞ ap−κ;
— if 1 < κ ≤ 2 and p = κ/2, then ϕp(a) �a→∞ ap−κ log(a);
— if κ > 2 and 1 < p < 2, then we may find C > 0 such that, for all large enough a,
ϕp(a) ≤ Cap−2;
— if κ > 2, then ϕ1(a) ∼a→∞ E[M2

∞]a−1.
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6.2 Subdiffusive weighted Galton-Watson trees

Proof. Write PM∞ for the distribution of M∞ . Differentiating the function x 7→ x2

a+x2 ,
we obtain

ϕp(a) =
∫ ∞

0

∫ s

0
p
x2 + 2ax
(a+ x)2

(
x2

a+ x

)p−1

dx

PM∞(ds).

Using Tonelli’s theorem together with the change of variable y = x/a yields

ϕp(a) = pap−κ
∫ ∞

0

(
y2

1 + y

)p−1

y−κ
(

1− 1
(1 + y)2

)
[(ay)κP(M∞ > ay)] dy. (6.7)

Let f(y) be the integrand in the last equation.
Now assume that 1 < κ ≤ 2 and write ` (respectively `) for the inferior (respectively

superior) limit of sκP(M∞ > s), as s goes to infinity Consider ε > 0 so small that
`− ε > 0. Let N > 0 be large enough that

∀s ≥ N, sκP(M∞ > s) ∈ (`− ε, `+ ε).

Assume that a > N . On the interval (0, N/a), dominating P(M∞ > ay) by 1 yields

f(y) ≤ aκy2p−1 max
0≤y≤1

2 + y

(1 + y)p+1 ,

so that in any case,

pap−κ
∫ N/a

0
f(y) dy ≤

[
pN2p max

0≤y≤1

2 + y

(1 + y)p+1

]
a−p,

which will be negligible. On the other hand, if y is in the interval [N/a,∞), then

f(y) ≤ (`+ ε)
(

1− 1
(1 + y)2

)(
y2

1 + y

)p−1

y−κ, (6.8)

and

f(y) ≥ (`− ε)
(

1− 1
(1 + y)2

)(
y2

1 + y

)p−1

y−κ. (6.9)

Those bounds are integrable on (0,∞) if p > κ/2 and in this case, we may conclude by
applying the monotone convergence theorem.
Now assume that p = κ/2. The bounds above are still integrable at the neighborhood

of ∞, but not at the neighborhood of 0. As a consequence, the main contribution in the
integral comes from the term∫ 1

N/a
f(y) dy ≤ (`+ ε)

∫ 1

N/a
y−1 2 + y

(1 + y)p+1 dy �a→∞ log(a),

and similarly for the lower bound.
Finally, assume that κ > 2 and recall that in this case, by our hypotheses, E[M2

∞]
is finite, thus by Markov’s inequality, for all r > 0, P(M∞ > r) ≤ E[M2

∞]/r2. Now, if
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1 < p < 2, the rest of the computations is exactly the same as in the first point, whereas
if p = 1, by dominated convergence,

aϕ1(a) = E
[

M2
∞

1 +M∞/a

]
−−−→
a→∞

E
[
M2
∞

]
.

6.2.3 Subdiffusive random walk on a weighted Galton-Watson tree
Using Section 6.2.1, we may define, on the weighted Galton-Watson tree T , a proba-

bility kernel P T and an irreducible, nearest-neighbor random walk associated to it. A
recurrence-transience criterion is given in [41], in the case of i.i.d. weights and in [21],
in our setting.

Fact 6.5 (Null recurrence). Assume that (Hnorm), (Hderivative) and (HX logX) hold.
Then, for GW-almost every infinite tree t, the random walk on t of probability ker-
nel P t is null recurrent.

We give a short proof if this fact, for the reader’s convenience. It is slightly different
than the original proof in [21].

Proof. For a weighted tree t, let β(t) = P tø(τø∗ =∞) and C (t) = Pø(τ+
ø =∞)/P tø(ø, ø∗).

These are the conductances between, respectively, ø∗ and infinity, and ø and infinity. It
is well-known that β(t) > 0 if and only if the random walk on the weighted tree t is
transient. Moreover, by the Markov property (or electrical network considerations)

β(t) = C (t)
1 + C (t) and C (t) =

νt(ø)∑
i=1

At(i)β(t[i]).

Now if T is a weighted Galton-Watson tree and E[
∑νT (ø)
i=1 AT (i)] = 1, taking the expec-

tation in the previous identities leads to

E[C (T )] = E[β(T )] = E
[

C (T )
1 + C (T )

]
,

which implies that, almost surely, C (T ) = 0, and the recurrence is proved.
To prove that it is null-recurrent, consider, for any recurrent weighted tree t, α(t) =

Etø[τø∗ ]. We want to show that, almost surely on the event of non-extinction, α(T ) =∞.
The function α satisfies, by the Markov property,

α(t) = P tø(ø, ø∗) +
νt(ø)∑
i=1

P tø(ø, i)(1 + α(t[i]) + α(t)).

Thus we see that, if α(t) is finite, so are α(t[x]) for x in t. In this case, one has

α(t) = 1 +
νt(ø)∑
i=1

At(i) +
νt(ø)∑
i=1

At(i)α(t[i]),
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and iterating the previous identity, for all n ≥ 1,

α(t) = 1 + 2
n∑
k=1

Mk(t) +
∑
|x|=n

ct(x)α(t[x]) ≥
n∑
k=1

Mk(t).

This show that

P(α(T ) <∞) ≤ P(
∞∑
k=1

Mk(T ) <∞),

but our assumptions and Biggins’ theorem imply that, almost surely on the event of
non-extinction, Mn(T ) → M∞(T ) > 0, thus P(α(T ) < ∞) is the probability that T is
finite.

6.3 Useful inequalities

6.3.1 Elementary analysis lemmas

Lemma 6.6. Let (un)n≥0 be a non-increasing positive sequence converging to 0, α > 1
and C > 0.
1. If for n large enough, un − un+1 ≤ Cuαn, then

lim inf
n→∞

n1/(α−1)un ≥ [C(α− 1)]−1/(α−1).

2. If for n large enough, un − un+1 ≥ Cuαn, then

lim sup
n→∞

n1/(α−1)un ≤ [C(α− 1)]−1/(α−1).

Proof. Let n be a positive integer. By the mean value theorem, there exists a number
ξn in the interval (1/un, 1/un+1) such that

1
uα−1
n+1
− 1
uα−1
n

= un − un+1
unun+1

(α− 1)ξα−2
n .

Now, if we assume that, eventually, un−un+1 ≤ Cuαn, then we have that un ∼ un+1 and
ξn ∼ u2−α

n . Let ε > 0. Eventually,

1
uα−1
n+1
− 1
uα−1
n
≤ C(1 + ε)(α− 1) un

un+1
≤ C(1 + ε)2(α− 1).

Summing this inequality and letting ε go to 0 yields

lim sup
n→∞

1
nuα−1

n
≤ C(α− 1),

which proves the first point.
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Now assume that, eventually, un − un+1 ≥ Cuαn. In this case,

1
uα−1
n+1
− 1
uα−1
n
≥ C(α− 1)u

α−1
n

un+1
ξ2−α
n

≥ C(α− 1)


un
un+1

if α ≥ 2,

uα−1
n

uα−1
n+1,

if 1 < α < 2.

≥ C(1− α),

by the assumption that the sequence (un) is non-increasing. Summing this inequality
yields

lim inf
n→∞

1
nuα−1

n
≥ C(1− α),

which proves the second point.

Lemma 6.7. Let (un)n≥0 be a non-increasing positive sequence converging to 0 and
C > 0.
1. If for n large enough, un − un+1 ≤ Cu2

n log(1/un), then lim inf unn logn ≥ C−1.
2. If for n large enough, un − un+1 ≥ Cu2

n log(1/un), then lim supunn logn ≤ C−1.

Proof. Consider, for x > e, f(x) = x/ log(x). Then, f ′(x) = 1
log(x)

(
1− 1

log(x)

)
. For any

large enough n, by the mean value theorem, there exists ξn in (1/un, 1/un+1) such that

f

( 1
un+1

)
− f

( 1
un

)
=
( 1
un+1

− 1
un

)
f ′(ξn) = un − un+1

unun+1
f ′(ξn).

The function f ′ is decreasing on [e2,∞), so for any large enough integer n,

f ′
( 1
un+1

)
< f ′(ξn) < f ′

( 1
un

)
.

Now the first assumption implies

0 ≤ 1− un+1
un
≤ Cun log(1/un)→ 0,

therefore, for any ε > 0, eventually,

f

( 1
un+1

)
− f

( 1
un

)
≤ C un

un+1

(
1 + 1

log(un)

)
≤ C(1 + ε).

Summing this inequality and letting ε go to 0 implies

lim sup 1
nun log(1/un) ≤ C. (6.10)
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Applying the log function, we see that

log(1/un) ≤ logn+ o (log(1/un)) ,

thus, for n large enough,
log(1/un) ≥ (1− ε) logn.

Plugging this in (6.10) and letting ε go to 0 yields the first point.
Now, the assumption of the second point implies that, eventually,

f

( 1
un+1

)
− f

( 1
un

)
≥ C un log(1/un)

un+1 log(1/un+1)

(
1 + 1

log(un+1)

)
≥ C(1− ε),

because the function x 7→ x log(1/x) is increasing on [0, e−1]. We conclude in the same
way as in the first case.

6.3.2 Moments of a sum of independent random variables
For later use, we collect here two inequalities regarding moments of a finite sum of

independent random variables. The first point is taken from [51] while the second may
be found in [54, p. 82].

Fact 6.8. Let p be a real number in [1, 2] and assume that ξ1, . . . , ξk are independent
real-valued random variables such that for all 1 ≤ i ≤ k, E[|ξi|p] <∞.
1. If ξ1, . . . , ξk are non-negative, then

E[(ξ1 + · · ·+ ξk)p] ≤
k∑
i=1
E[ξpi ] +

( k∑
i=1
Eξi
)p
. (6.11)

2. If ξ1, . . . , ξk are centered, then

E[|ξ1 + · · ·+ ξk|p] ≤ 2
k∑
i=1
E[|ξi|p]. (6.12)

6.3.3 Renormalized positive random variables
For any non-negative random variable ξ such that Eξ ∈ (0,∞), write

〈ξ〉 = ξ

E[ξ] . (6.13)

The following FKG-type inequality is taken from [27, Formula 3.3].

Lemma 6.9. Let φ : R+ → R be a convex differentiable function and ξ be a random
variable with values in a Borel subset J of R. Let x0 be a non-negative real number and
I be an open sub-interval of R+ containing x0. Assume that h : I × J → (0,∞) is a
Borel function such that ∂h/∂x exists on I × J . Assume that

E[h(x0, ξ)] <∞, E|φ〈h(x0, ξ)〉| <∞ and E
[
sup
x∈I

∣∣∣∣∂h∂x(x, ξ)
∣∣∣∣
]
<∞.
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For x in I, write

ψ(x, ξ) = 1
(Eh(x, ξ))2

(
∂h

∂x
(x, ξ)E[h(x, ξ)]− h(x, ξ)E

[
∂h

∂x
(x, ξ)

])
,

and further assume that

E[sup
x∈I

∣∣φ′〈h(x, ξ)〉ψ(x, ξ)
∣∣] <∞.

Then, the function
f : x 7→ E[φ〈h(x, ξ)〉] (6.14)

is well-defined and differentiable on I. Finally, if we assume that the functions

y 7→ h(x0, y) and y 7→ ∂

∂x
log(x0, y) are monotonic on J ,

then, if they have the same monotonicity, f ′(x0) ≥ 0 and f ′(x0) ≤ 0 otherwise.

As a particular case, the following inequality will play a key role. It is already stated
in [26, proof of lemma 3.1]. Nevertheless, we give a detailed proof for the reader’s
convenience.

Lemma 6.10. Let ξ be a non-negative random variable such that E[ξ] is in (0,∞).
Let φ : R+ → R+ be a continuously differentiable, regularly varying at infinity, convex
function. Then,

E
[
φ

〈
ξ

1 + ξ

〉]
≤ E[φ〈ξ〉]. (6.15)

Proof. For x in [0, 1] and y in [0,∞), let h(x, y) = y/(1 + xy). Notice that

y

1 + y
≤ h(x, y) ≤ y.

Together with the assumption that ξ ≥ 0 and E[ξ] ∈ (0,∞), this implies that

0 < E
[

ξ

1 + ξ

]
≤ sup

x∈[0,1]
E[h(x, ξ)] ≤ E[ξ] <∞. (6.16)

On the other hand, for x in (0, 1] and y ≥ 0, one has

∂h

∂x
= − y2

(1 + xy) = −h(x, y)2, (6.17)

thus |(∂h/∂x)(x, y)| ≤ x−2. Now, by continuity of φ and φ′, the preceding inequalities
show that the first conditions of the previous lemma are satisfied whenever I is a compact
sub-interval of (0, 1) and thus that the function

f : x 7−→ E
[
φ

〈
ξ

1 + xξ

〉]
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is well-defined and differentiable on (0, 1). It is non-increasing on (0, 1) because, for any
x in (0, 1), the function y 7→ h(x, y) is increasing on R+, and by (6.17), for all y ≥ 0,

∂

∂x
log(x, y) = −h(x, y).

We now want to study the limits of f(x) as x goes to 0 and as x goes to 1. For x in
[1/2, 1], we have

ξ
1+ξ

E
[

ξ
1+ξ/2

] ≤ 〈 ξ

1 + xξ

〉
≤

ξ
1+ξ/2

E
[

ξ
1+ξ

] , (6.18)

so by convexity,

φ

(〈
ξ

1 + xξ

〉)
≤ φ

(
E
[

ξ

1 + ξ/2

]−1)
+ φ

(
2E
[

ξ

1 + ξ

]−1)
, (6.19)

and by the dominated convergence theorem, f is continuous at 1.
For the limit at 0, first remark that we may assume that E[φ〈ξ〉] is finite, otherwise

the inequality (6.15) is trivially true. The continuity of φ on R+ together with the
assumption that φ is regularly varying at infinity imply that in fact, for any a > 0,
E[φ(aξ)] <∞. Since, for any x in [0, 1],〈

ξ

1 + xξ

〉
≤ ξ

E
[

ξ
1+ξ

] ,
we may once again apply the dominated convergence theorem, and we have f(0+) =
f(0) = E[φ〈ξ〉] and the proof is complete.

We extend the previous lemma to random sums.

Lemma 6.11. Let A = (A1, A2, ..., AN ) and X = (X1, X2, . . . , XN ) be random non-
negative tuples with the same (possibly random) number of elements and let B be a
non-negative random variable. Assume that, given N , A and X are independent, B is
independent of X and X1, . . . , XN are independent. Assume also that the components of
X have a finite, non-null expectation. Let φ : R+ → R+ be a continuously differentiable,
regularly varying at infinity, convex function. Then,

E
[
φ

(
N∑
i=1

Ai

〈
Xi

1 +Xi

〉
+B

)]
≤ E

[
φ

(
N∑
i=1

Ai〈Xi〉+B

)]
. (6.20)

Proof. We first deal with the case where N is deterministic equal to k ≥ 0. If k = 0, the
result is trivial. If k = 1, write

E
[
φ

(
A1

〈
X1

1 +X1

〉
+B

)]
= EE

[
φ

(
A1

〈
X1

1 +X1

〉
+B

) ∣∣∣∣A1, B

]
.
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Notice that, for any a, b ≥ 0, the function x 7→ φ(ax+ b) still satisfies the hypotheses of
the previous lemma, therefore,

E
[
φ

(
A1

〈
X1

1 +X1

〉
+B

) ∣∣∣∣A1, B

]
≤ E[φ(A1〈X1〉+B) |A1, B]. (6.21)

Now, for k ≥ 2,

E
[
φ

(
k∑
i=1

Ai

〈
Xi

1 +Xi

〉
+B

)]
= E

[
φ

(
A1

〈
X1

1 +X1

〉
+

k∑
i=2

Ai

〈
Xi

1 +Xi

〉
+B

)]

= E
[
φ

(
A1

〈
X1

1 +X1

〉
+ B̃

)]
,

with B̃ =
∑k
i=2Ai

〈
Xi

1+Xi

〉
+B. Applying (6.21) allows us to conclude by induction. The

case where N is random derives from the deterministic case by conditionning.

6.4 Lower bound
From now on, we work under the hypotheses (Hnorm), (Hderivative) and (Hκ). Let, for

n ≥ 1,
un = E[Cn(T )] and an = 1

un
. (6.22)

We start with an easy a priori upper bound.

Lemma 6.12. In any case, one has

lim sup
n→∞

nun ≤ 1. (6.23)

Proof. Let n ≥ 2. Recall that, by (6.2),

Cn(T ) =
νT (ø)∑
i=1

AT (i) Cn−1(T [i])
1 + Cn−1(T [i]) .

Conditionally on νT (ø), the random variables Cn−1(T [1]), . . . ,Cn−1(T [νT (ø)]) are i.i.d.
and are independent of AT (1), . . . ,AT (ν(ø)). By the hypothesis (Hnorm),

E[Cn(T )] = E
[

Cn−1(T )
1 + Cn−1(T )

]
. (6.24)

We may also write (6.24) as

ECn = ECn−1 −E
[

C 2
n−1

1 + Cn−1

]
. (6.25)

Now notice that

E
[

C 2
n−1

1 + Cn−1

]
≥ E

[
C 2
n−1

(1 + Cn−1)2

]
≥
(

E
[

Cn−1
1 + Cn−1

])2
= E[Cn]2.
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6.4 Lower bound

Hence, we have
un−1 − un ≥ u2

n,

which implies that
u−1
n (1 + un)−1 ≥ u−1

n−1.

Now, let ε > 0. Since, as n goes to infinity, un goes to 0, we have, when n is large
enough,

(1− un)−1 ≥ 1− un − εun,

thus
u−1
n − u−1

n−1 ≥ 1− ε.

Summing this inequality yields

lim inf
n→∞

u−1
n

n
≥ 1− ε.

Now we go back to the relation (6.2). Together with (6.24), this implies that

〈Cn(T )〉 =
νT (ø)∑
i=1

AT (i)
〈

Cn−1(T )
1 + Cn−1(T )

〉
, (6.26)

so we may apply Lemma 6.13 to obtain the following inequality.

Lemma 6.13. Let φ be a non-negative convex, continuously differentiable function, reg-
ularly varying at infinity. For any integer n ≥ 1,

E[φ(〈Cn(T )〉)] ≤ E[φ(Mn(T ))] ≤ E[φ(M∞(T ))]. (6.27)

Proof. Recall that, by definition, C1(T ) =
∑νT (ø)
i=1 AT (i) and iterate the recursive equa-

tion (6.26) together with Lemma 6.11. The last inequality comes from the fact that, by
Jensen’s inequality, φ(Mn(T )) is a sub-martingale.

The order of magnitude in Lemma 6.12 is only sharp in the case κ > 2. To obtain
more refined bounds, let, for a > 0,

φa(x) = x2

a+ x
. (6.28)

The function φa is convex. By (6.25), we have

E[Cn] = E[Cn−1]−E[Cn−1]E
[

〈Cn−1〉2
1

ECn−1
+ 〈Cn−1〉

]
. (6.29)

= E[Cn−1]−E[Cn−1]E
[
φ1/ECn−1(〈Cn−1〉)

]
(6.30)

≥ E[Cn−1]
(
1−E[φan−1(M∞)]

)
, (6.31)

where, for the last inequality, we have used Lemma 6.13. We are now ready to give a
lower estimate of E[Cn], as n goes to infinity.
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Proposition 6.14. Under the hypotheses (Hnorm), (Hderivative) and (Hκ),
1. lim infn→∞ n1/(κ−1)E[Cn(T )] > 0, if 1 < κ < 2;
2. lim infn→∞ n lognE[Cn(T )] > 0, if κ = 2 and
3. lim infn→∞ nE[Cn(T )] ≥ E[M2

∞], if κ > 2.

Proof. Recall the notation

ϕp(a) = E
[(

M2
∞

a+M∞

)p]
.

By (6.29), we have
un ≥ un−1(1− ϕ1(an−1)). (6.32)

Now assume that 1 < κ < 2. By Lemma 6.4, there exists C > 0 such that, for n large
enough,

ϕ1(an−1) ≤ Ca1−κ
n−1.

Hence, for n large enough,
un−1 − un ≤ Cuκn−1,

so we may conclude by Lemma 6.6.
If we assume that κ = 2, by Lemma 6.4 there exists C > 0 such that, for n large

enough,
ϕ1(an−1) ≤ Ca−1

n−1 log(an−1).

Applying this time Lemma 6.7, yields the result.
Finally, if κ > 2, then by our hypotheses, E[M2

∞] is finite and by dominated conver-
gence,

ϕ1(an−1) ∼n→∞ E[M2
∞]a−1

n−1.

Using again Lemma 6.6 concludes the proof.

Remark 6.1. If we assume that we are in the “non-lattice case” (see [37]) we may also
give explicit lower bounds (depending on the law of M∞) in the cases 1 < κ < 2 and
κ = 2. However, since our method does not provide explicit upper bounds, we chose not
to make this additional assumption.

6.5 Upper bound and almost-sure convergence

Iterating (6.2), we obtain, for all 1 ≤ k ≤ n,

〈Cn(T )〉 = E[Cn−k(T )]
E[Cn(T )]

∑
|x|=k

cT (x)〈Cn−k(T [x])〉 − 1
E[Cn(T )]

∑
|x|≤k

cT (x)φ1
(
Cn−|x|(T [x])

)
,

(6.33)
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where φ1 : x 7→ x2/(1 + x).

〈Cn(T )〉 = an
an−k

M∞(T ) + an
an−k

Xk,n(T )−
k∑
j=1

an
an−j

Yj,n(T ), (6.34)

where
Xk,n(T ) =

∑
|x|=k

cT (x) (Cn−k(T [x])−M∞(T [x])) , (6.35)

and
Yj,n(T ) =

∑
|x|=j

cT (x)φan−j 〈Cn−j〉(T [x]). (6.36)

For later use, we also introduce

ξk,n(T ) =
k∑
j=1

Yj,n(T ). (6.37)

We want to let k = kn in the previous decomposition, but first we need to know when
the sequence (an−kn) is equivalent to (an), which is the purpose of the two following
lemmas.

Lemma 6.15. In any case, we may find C > 0 such that, for n large enough,

ϕ1(an) ≤ C

n
.

Proof. By the lower bounds (Proposition 6.14), we may find C1 > 0 such that for large
enough n,

an ≤ C1 ×


n1/(κ−1) if 1 < κ < 2;
n logn if κ = 2 and
n if κ > 2.

Combine this with the fact that (by Lemma 6.4 and the end of the proof of Proposi-
tion 6.14) there exists C2 > 0 such that, for a large enough,

ϕ1(a) ≤ C2 ×


a1−κ if 1 < κ < 2;
a−1 log(a) if κ = 2 and
a−1 if κ > 2.

Lemma 6.16. Let (kn)n≥1 be a sequence of non-negative integers. If kn = o(n), then
an−kn ∼ an.

Proof. Iterating the inequality (6.32), recalling that the function ϕ1 is non-increasing,
we obtain that, for any large enough integer n,

1 ≥ un
un−kn

≥
kn∏
i=1

(1− ϕ1(an−i)) ≥ (1− ϕ1(an−kn))kn .
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By the previous lemma, we may find C > 0 such that, eventually,

(1− ϕ1(an−kn))kn ≥
(

1− C

n− kn

)kn
−−−→
n→∞

1.

We are now ready to prove the convergence of 〈Cn〉 towardsM∞ in Lp, for p ∈ (1, κ∧2).

Lemma 6.17. Let p be a real number in (1, κ ∧ 2). Let 1 ≤ k ≤ n, then we have the
following inequalities, in any case,

‖Xk,n‖p ≤ 21+1/p‖M∞‖pe
kψ(p)/p; (6.38)

‖Yk,n‖p ≤ e
jψ(p)/pϕ1/p

p (an−j) + ‖M∞‖pϕ1(an−j). (6.39)

As a consequence, the sequence 〈Cn〉 converges, in Lp, towardsM∞, for any p ∈ (1, κ∧2).

Proof. For Xk,n, notice that the random variables

(〈Cn−k〉(T [x])−M∞(T [x])) , for |x| = n

are i.i.d., centered, and independent of Fk. Thus we may apply, conditionally on Fk, the
inequality (6.12), to obtain

E[|Xk,n|p | Fk] ≤ 2
∑
|x|=k

cT (x)pE[|〈Cn−k〉 −M∞|p].

Taking the expecation on both sides, we obtain

E[|Xk,n|p] ≤ 2ekψ(p)E[|〈Cn−k〉 −M∞|p]

Now recall that, by convexity, E[〈Cn〉p] ≤ E[Mp
∞], therefore,

‖Xk,n‖p ≤ 21/p‖Cn−k −M∞‖pe
kψ(p)/p ≤ 21+1/p‖M∞‖pe

kψ(p)/p.

For Yj,n, conditionally on Fj , we may use the inequality (6.11):

E[Yj,np] ≤ E
[∑
|x|=j

cT (x)p
]
E
[
φpan−j (〈Cn−j〉)

]
+ E

[
φan−j (Cn−j)

]p
E
[(∑
|x|=j

cT (x)
)p]

≤ ejψ(p)ϕp(an−j) + E(Mp
∞)ϕ(an−j)p.

Now, let (kn)n≥1 be any sequence of non-negative integers that go to infinity as n goes
to infinity and such that kn = o(n) (e.g. kn = blog(n)c). By Minkowski’s inequality,

‖〈Cn〉 −M∞‖p ≤
(

an
an−kn

− 1
)
‖M∞‖p + an

an−kn
‖Xkn,n‖p + an

∥∥∥ kn∑
j=1

1
an−j

Yj,n
∥∥∥
p
.

By Lemma 6.16, the sequence (an−kn) is equivalent to (an). By the inequality (6.38)
and the fact that, by hypothesis, ψ(p) < 0, the term ‖Xn,kn‖p goes to 0 as n goes to
infinity.
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Since (an) is increasing, by Minkowski’s inequality,

∥∥∥ kn∑
i=1

an
an−j

Yj,n
∥∥∥
p
≤ an
an−kn

kn∑
j=1
‖Yj,n‖p

≤ an
an−kn

(
eψ(p)/p

1− eψ(p)/pϕ
1/p
p (an−kn) + ‖M∞‖pknϕ1(an−kn)

)
.

By Lemma 6.4, the first term in the above sum goes to 0 as n goes to infinity, and by
Lemma 6.15 and our choice of kn, so does the second term knϕ1(an−kn) and we have
proved the convergence in Lp.

The almost-sure convergence will be obtained by Borel-Cantelli’s lemma together with
a monotony argument. To this end, however, we need to know the order of magnitude
of E[Cn].

Lemma 6.18. Assume that 1 < p < κ ∧ 2. Let, for n ≥ 1,

kn =
⌊ −2
ψ(p) log(an)

⌋
.

Then, there exists C <∞ such that, in any case, for all n ≥ 1,

E
[
ξpkn,n + |Xkn,n|

p
]
≤ Cap−κ∧2

n . (6.40)

Proof. Our choice of (kn) is such that an−kn ∼n→∞ an. Moreover, by (6.38),

E|Xkn,n|
p ≤ 2p+1E[Mp

∞]eknψ(p) ≤ C1a
−2
n ,

for some finite constant C1. By (6.39), there exists C2 <∞ such that

E[ξpkn,n] ≤ C2 (ϕp(an−kn) + kpnϕ
p
1(an−kn)) .

Now Lemma 6.4 shows that there exist finite constants C3 and C4 such that

ϕp(an−kn) ≤ C3a
p−κ
n and

kpnϕ
p
1(an−kn) ≤ C4 log(an)p


a(1−κ)p
n if 1 < κ < 2,
a−pn (log(an))p if κ = 2,
a−pn if κ > 2.

Since p > 1, we have p− κ ∧ 2 > (1− κ ∧ 2)p, so that, in any case,

lim sup
n→∞

aκ∧2−p
n E

[
ξpkn,n + |Xkn,n|

p
]
≤ C2C3 <∞.

Lemma 6.19. If κ ∈ (1, 2], we may find δ0 > 0, c0 > 0 and n0 ≥ 1 such that

P(〈Cn〉 > r) ≥ c0r
−κ, ∀r ∈ [1, δ0an], ∀n ≥ n0.
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Proof. Let δ > 0 and r ∈ [1, δan]. Let (kn) be defined as in the previous lemma. By the
union bound,

P(〈Cn〉 > r) ≥ P
(

an
an−kn

M∞ > 3r
)
−P

(
an

an−kn
|Xkn,n| > r

)
−P

(
an

an−kn
ξkn,n > r

)
.

Assume that n is so large that
1 ≤ an

an−kn
≤ 2.

Then,
P(〈Cn〉 > r) ≥ P(M∞ > 3r)−P

(
|Xkn,n| >

r

2

)
−P

(
ξkn,n >

r

2

)
.

By Markov’s inequality,

rκ
(

P
(
|Xkn,n| >

r

2

)
+ P(ξkn,n > r)

)
≤ rκ−p2pE

[
|Xkn,n|

p + ξpkn,n

]
≤ C1a

p−κ
n δκ−paκ−pn = C1δ

κ−p,

for some finite constant C1, where, for the last inequality we have used the previous
lemma, together with the assumption that r ∈ [1, δan].
On the other hand, by Fact 6.3,

inf
r≥1

rκP(M∞ > 3r) =: C2 > 0.

This implies that, for all r in [1, δan],

rκP(〈Cn〉 > r) ≥ C2 − δκ−pC1,

which is positive as soon as δ is small enough.

Proposition 6.20. Under the hypotheses (Hnorm), (Hderivative) and (Hκ),
1. lim supn→∞ n1/(κ−1)E[Cn(T )] <∞, if 1 < κ < 2;
2. lim supn→∞ n lognE[Cn(T )] <∞, if κ = 2 and
3. lim supn→∞ nE[Cn(T )] <∞, if κ > 2.

Proof. The last point was already stated as the a priori bound (6.23).
Assume that 1 < κ < 2. Let n ≥ n0, δ0 > 0 and c0 > 0 be such that the conclusion of

the previous lemma holds. By Markov’s inequality,

E
[
〈Cn−1〉2

an + 〈Cn−1〉

]
≥ P(〈Cn−1 > δ0an〉)

δ2
0a

2
n

an + δ0an
≥ c0

δ2
0

1 + δ0
a1−κ
n ,

where, for the last inequality, we have used the previous lemma. Therefore, by (6.25),
with un := E[Cn],

un−1 − un = un−1E
[
〈Cn−1〉2

an + 〈Cn−1〉

]
≥ Cuκn,
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6.5 Upper bound and almost-sure convergence

for some finite constant C. By Lemma 6.6, this implies that

lim sup
n→∞

n1/(κ−1)un ≤ C <∞.

Now assume that κ = 2. As before, let n0, δ0 and c0 be chosen as in the previous
lemma. Let n be greater than n0 and write P〈Cn〉 for the distribution of 〈Cn〉. By
Tonelli’s theorem,

E
[
〈Cn−1〉2

an + 〈Cn−1〉

]
=
∫ ∞

0

x2

an + x
P〈Cn〉(dx)

=
∫ ∞

0

x2 + 2anx
(an + x)2 P(〈Cn〉 > x) dx

≥
∫ δ0an

1

x2 + 2anx
(an + x)2 c0x

−2 dx,

by the previous lemma. The change of variable y = x/an leads to

E
[
〈Cn−1〉2

an + 〈Cn−1〉

]
≥ c0a

−1
n

∫ δ0

1/an

1 + 2/y
(1 + y)2 dy ≥ Ca−1

n log(an),

for some constant C > 0. Together with (6.25), this implies that, for all large enough n,

un − un−1 ≥ Cu2
n log(1/un),

and we may conclude by Lemma 6.7.

Proposition 6.21. In any case, the sequence 〈Cn〉 converges to M∞, almost surely.

Proof. Fix p in (1, κ ∧ 2). Let (kn) be as in Lemma 6.18. Write, for n ≥ 1,

ηn = an−kn
an
〈Cn〉 = M∞ +Xkn,n − an−kn

kn∑
j=1

1
an−j

Yj,n.

Then, using first Lemma 6.18 and then Proposition 6.20,

E[|ηn −M∞|p] ≤ C1a
p−κ∧2
n ≤ C2


n
− κ−p
p(κ−1) if 1 < κ < 2

(n log(n))−(2/p−1) if κ = 2
n−(2/p−1) if κ > 2.

In any case, we may find an integer α ≥ 2 such that∑
n≥1

E[|ηnα −M∞|p] <∞.

By Markov’s inequality and Borel-Cantelli’s lemma, this implies that the sequence (ηnα)
converges almost surely to M∞ and so does (〈Cnα〉).
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6 Subdiffusive random walk on a weighted Galton-Watson tree

Now, let, for n ≥ 1, rn = dn1/αe. Then, for all n ≥ 1,

(rn − 1)α ≤ n ≤ rαn ,

and by the fact that the sequence (Cn) is decreasing,

Crαn ≤ Cn ≤ C(rn−1)α .

This implies that
urαn

u(rn−1)α
〈Crαn 〉 ≤ 〈Cn〉 ≤

u(rn−1)α

urαn
〈C(rn−1)α〉.

Now, write (rn − 1)α = rαn − sn. Since sn = o(rαn), we may use Lemma 6.16 to see that

urαn
u(rn−1)α

−−−→
n→∞

1,

which concludes the proof.

Proposition 6.22. If κ > 2, the convergence of 〈Cn〉 towards M∞ also holds in L2.
Moreover, the expectation of Cn satisfies

nE[Cn] −−−→
n→∞

‖M∞‖2.

Proof. We already know that, for all n ≥ 1, E[〈Cn〉2] ≤ E[M2
∞]. Now, by the almost-sure

convergence of 〈Cn〉 to M∞ and Fatou’s lemma, E[M2
∞] ≤ lim inf[C 2

n ], thus E[〈Cn〉2]→
E[M2

∞].
Finally, by dominated convergence,

E
[
〈C 2

n−1〉
1 + Cn−1

]
−−−→
n→∞

E
[
M2
∞

]
,

so
E
[
〈C 2

n−1〉
an + 〈Cn−1〉

]
∼ unE

[
M2
∞

]
,

and by the identity (6.25) and Lemma 6.6, un ∼ EM2
∞

n .
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Résumé
Cette thèse a pour objet d’étude divers modèles de marches aléatoires sur les arbres aléa-

toires. Nous nous sommes consacrés principalement aux aspects qui relevaient à la fois de la
théorie des probabilités et de la théorie ergodique.

Notre premier modèle est celui des marches aléatoires sur les arbres à longueurs récursives
(qui généralise un modèle apparaissant dans un travail récent de Curien et Le Gall). Nous
montrons pour ce modèle sous des conditions très générales qu’un phénomène appelé « chute
de dimension » se produit pour la mesure harmonique et donnons une formule assez explicite
permettant de calculer cette dimension.

En utilisant les outils développés pour ce dernier modèle, nous nous intéressons à la marche
aléatoire lambda-biaisée sur un arbre de Galton-Watson infini, pour lequel de nombreuses
conjectures sont toujours ouvertes. Notre approche nous permet de calculer la dimension de la
mesure harmonique en fonction de la loi de la conductance de l’arbre. C’est un résultat nouveau
qui nous permet de vérifier numériquement certaines de ces conjectures ouvertes.

Le reste de la thèse porte sur un modèle très riche appelé marche aléatoire sur un arbre
pondéré aléatoire. D’abord dans le cas transient, où nous montrons par une approche différente
de celle des parties précédentes que le phénomène de chute de dimension se produit. Puis sur
un cas récurrent appelé sous-diffusif, où nous nous intéressons à la vitesse de convergence vers
0 de la conductance entre la racine et le niveau n de l’arbre lorsque n tend vers l’infini. Nous
montrons que la loi limite de cette conductance renormalisée par son espérance est la limite de
la martingale de Mandelbrot.

Mots-clés : probabilités ; théorie ergodique ; arbres aléatoires ; marches aléatoires.

Abstract
The subject of this thesis is the study of various models of random walks on random trees,

with an emphasis on the aspects that fall at the intersection of probability theory and ergodic
theory.

We called our first model “random walks on Galton-Watson trees with recursive lengths”.
It generalizes a model appearing in a recent work by Curien and Le Gall. We show that under
fairly general assumptions, a phenomenon called “dimension drop” holds for this model and we
give a formula for this dimension.

Using the tools developed for the study of the previous model, we turn to the case of
transient lambda-biased random walks on infinite Galton-Watson trees, for which many famous
problems are still open. Our approach allows us to compute the dimension of the harmonic
measure as a function of the law of the conductance of the tree. With this new result, we check
numerically the validity of some twenty-year-old conjectures.

The remainder of this thesis is about a very rich model called random walk on a random
weighted Galton-Watson tree. First, we study the transient case, where we show with a different
method than in the previous parts, that the dimension drop phenomenon occurs. Then we turn
to a recurrent case called subdiffusive and we investigate the rate of decay of the conductance
between the root and the n-th level of the tree, as n goes to infinity. We prove that this
conductance, suitably renormalized converges to the limit of the Mandelbrot martingale.

Keywords : probability theory; ergodic theory; random trees; random walks.


