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MAHARAM EXTENSION AND STATIONARY STABLE PROCESSES

BY EMMANUEL ROY

Université Paris

We give a second look at stationary stable processes by interpreting the
self-similar property at the level of the Lévy measure as characteristic of a
Maharam system. This allows us to derive structural results and their ergodic
consequences.

1. Introduction. In a fundamental paper [9], Rosiński revealed the hidden
structure of stationary symmetric α-stable (SαS) processes. Namely, he proved
that, following Hardin [5], through what is called a minimal spectral representa-
tion, such a process is driven by a nonsingular dynamical system.

Such a result was proved to classify those processes according to their ergodic
properties such as various kinds of mixing. In [13], we used a different approach as
we considered the whole family of stationary infinitely divisible processes without
Gaussian part (called IDp processes). The key tool there was the Lévy measure
system of the process, which was measure-preserving and not just merely nonsin-
gular. So far, in the stable case, the connection between the Lévy measure and the
nonsingular system was not clear. This is the purpose of this paper, to fill the gap
and go beyond both approaches.

Indeed, we will prove that Lévy measure systems of α-stable processes have the
form of a so-called Maharam system. This observation has some interesting conse-
quences as it allows us to derive very quickly minimal spectral representations in
the SαS case, to reinforce factorization results, and to refine ergodic classification.

Let us explain very loosely the mathematical features of stable distributions we
will be using. Observe that stable distributions are characterized by a self-similar
property which is obvious when observing the corresponding Lévy process:

If Xt is an α-stable Lévy process, then b−1/αXbt has the same distribution.
However, if not obvious or useful, this property is also present for any α-stable

object but takes another form. The common feature is to be found in the Lévy
measure:

Loosely speaking, if {Xt }t∈S is an α-stable process indexed by a set S, then
for any positive number c, the image of the Lévy measure Q by the map Rc :=
{xt }t∈S �→ {cxt }t∈S is c−αQ.

This property of the Lévy measure is characteristic of α-stable processes and
can be translated into an ergodic theoretic statement:
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The measurable nonsingular flow {Rc}c∈R+ is dissipative and the multiplica-
tive coefficient c−α has an outstanding importance in this matter, since it reveals
the structure of a Maharam transformation. The importance is even greater when
there is more invariance involved (stationary α-stable processes, etc. . . .), as in the
present paper.

The paper is organized as follows. In Section 2 we recall what a spectral rep-
resentation is, and in Section 3, we give the necessary background in nonsingular
ergodic theory. Maharam systems are introduced in Section 4, and the link with
Lévy measures of stable processes, together with spectral representations is ex-
posed in Section 5. Section 6 is a refinement of the structure of stable processes.
We deduce from the preceding results some ergodic properties in Section 7.

2. Spectral representation. We warn the reader that we will, most of the
time, omit the implicit “μ-a.e.” or “modulo null sets” throughout the document.

A family of functions {ft }t∈T ⊂ Lα(�, F ,μ) where (�, F ,μ) is a σ -finite
Lebesgue space is said to be a spectral representation of SαS process {Xt }t∈T if

{Xt }t∈T =
{∫

�
ft(ω)M(dω)

}
t∈T

holds in distribution, M being an independently scattered SαS-random measure
on (�, F ) with intensity measure μ.

We will say that a spectral representation is proper if Supp{ft , t ∈ T } = �.
Of course we obtain a proper representation from a general one by removing the
complement of Supp{ft , t ∈ T }.

To express that a representation contains the strict minimum to define the pro-
cess, the notion of minimality has been introduced (Hardin [5]):

A spectral representation is said to be {ft }t∈T ⊂ Lα(�, F ,μ) minimal if it is
proper and σ(

ft

fs
1{fs �=0}, s, t ∈ T ) = F .

Hardin proved in [5] the existence of minimal representations for SαS pro-
cesses.

In the stationary case (T = R or Z), Rosiński has explained the form of the
spectral representation:

THEOREM 1 (Rosiński). Let {ft }t∈T ⊂ Lα(�, F ,μ) be a minimal represen-
tation of a stationary SαS-process; then there exists nonsingular flow {φt }t∈T on
(�, F ,μ) and a cocycle {at }t∈T for this flow with values in {−1,1} (or in |z| = 1
in the complex case) such that, for each t ∈ T ,

ft = at

{
dμ ◦ φt

dμ

}1/α

(f0 ◦ φt).
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3. Some terminology. A quadruplet (�, F ,μ,T ) is called a dynamical sys-
tem or shortly a system if T is a nonsingular automorphism, that is, a bijective bi-
measurable map such that T ∗μ ∼ μ. If T∗(μ) = μ, then (�, F ,μ,T ) is a measure-
preserving (abr. m.p.) dynamical system.

A system (�2, F2,μ2, T2) is said to be a nonsingular (resp. measure preserv-
ing) factor of the system (�1, F1,μ1, T1) if there exists a measurable nonsingular
(resp. measure preserving) homomorphism between them, that is, a measurable
map � from �1 to �2 such that �T1 = T2� and �∗μ1 ∼ μ2 (resp. �∗μ1 = μ2).
If � is invertible and bi-measurable it is called a nonsingular (resp. measure pre-
serving) isomorphism, and the system is said to be nonsingular (resp. measure
preserving) isomorphic.

3.1. Krieger types. Consider a nonsingular dynamical system (�, F ,μ,T ).
A set A ∈ F such that μ(A) > 0 is said to be periodic of period n if T iA, 0 ≤ i ≤
n − 1, are disjoint and T nA = A and wandering if T iA, i ∈ Z are disjoint. A set
is exhaustive if

⋃
k∈Z T kA = �. A system is conservative if there is no wandering

set and dissipative if there is an exhaustive wandering set.
(�, F ,μ,T ) is said to be of Krieger type:

• In if there exists an exhaustive set of period n;
• I∞ if it is dissipative;
• II1 if there is no periodic set and exists an equivalent finite T -invariant measure;
• II∞ if is is conservative with an equivalent infinite T -invariant continuous mea-

sure but no absolutely continuous finite T -invariant measure;
• III if there is no absolutely continuous T -invariant measure.

4. Maharam transformation.

DEFINITION 2. An m.p. dynamical system is said to be Maharam if it is iso-
morphic to (�×R, F ⊗ B,μ⊗ es ds, T̃ ), where T is a nonsingular automorphism
of (�, F ,μ), and T̃ is defined by

T̃ (ω, s) :=
(
T (ω), s − ln

dT −1∗ μ

dμ
(ω)

)
.

Observe that the dissipative flow {τt }t∈R defined by τt := (ω, s) �→ (ω, s − t) com-
mutes with T̃ .

Note that we have chosen the usual additive representation but we could (and
eventually will!) use the following multiplicative representation of a Maharam sys-
tem. Take 0 < α < 2. We can represent (�×R, F ⊗ B,μ⊗es ds, T̃ ) by the system
(� × R∗+, F ⊗ B+,μ ⊗ 1

s1+α ds, T̃α), where T̃α is defined by

T̃α(ω, s) :=
(
T (ω), s

(
dT −1∗ μ

dμ
(ω)

)1/α)
.
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The isomorphism is provided by the map (ω, s) �→ (ω, (2−α)−1/(2−α)e(2−α)s).
Observe that, under this isomorphism, {τt }t∈R is changed into {Set/α }t∈R∗+ ,
where St is the multiplication by t on the second coordinate.

In [2], the authors proved the following characterization, as a straightforward
application of Krengel’s representation of dissipative transformations:

THEOREM 3. A system (X, A, ν, γ ) is Maharam if and only if there exists
a measurable flow {Zt }t∈R commuting with γ such that (Zt )∗ν = et ν. {Zt }t∈R

corresponds to {τt }t∈R under the isomorphism with the Maharam system under
the additive representation.

In the original theorem they assumed ergodicity of γ to prove that the resulting
nonsingular transformation T in the above representation was actually living on a
nonatomic measure space (�, F ,μ). The ergodicity assumption is therefore not
necessary in the way we present this theorem.

We end this section with a very natural lemma which is part of folklore. We
omit the proof.

LEMMA 4. Consider two Maharam systems (�1 ×R∗+, F1 ⊗ B,μ1 ⊗ 1
s1+α ds,

T̃1) and (�2 ×R∗+, F2 ⊗ B,μ2 ⊗ 1
s1+α ds, T̃2), and denote by {St }t∈R∗+ and {Zt }t∈R∗+

their respective multiplicative flows. Assume there exists a (measure-preserving)
factor map (resp. isomorphism) � between the two systems such that, for all t ∈
R∗+, St� = Zt�. Then � induces a nonsingular factor map (resp. isomorphism)
φ between (�1, F1,μ1, T1) and (�2, F2,μ2, T1).

REMARK 5. Observe also that the Maharam systems associated to (�, F ,μ1,

T ) and (�, F ,μ2, T ) where μ1 ∼ μ2 are isomorphic.

4.1. Refinements of type III (see [3]). Since the flow {St }t∈R commutes
with T̃ , it acts nonsingularly on the space (Z, ν) of ergodic components of T̃ and
is called the associated flow of T . This flow is ergodic whenever T is ergodic, and
its form allows us to classify ergodic type III systems:

• T is of type IIIλ, 0 < λ < 1, if the associated flow is the periodic flow x �→
x + t mod(− logλ);

• T is of type III0, if the associated flow is free;
• T is of type III1, if the associated flow is the trivial flow on a singleton.

In particular T̃ is ergodic if and only if T is of type III1.
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5. Lévy measure as Maharam system and spectral representations.

5.1. Lévy measure of α-stable processes. For simplicity we will only consider
discrete time stationary processes.

Let us recall, following [8] (see also [13]), that the Lévy measure of stationary
IDp process X of distribution P is the shift-invariant σ -finite measure on RZ, Q,
such that Q(0RZ) = 0,

∫
RZ(x2

0 ∧ 1)Q(d{xn}n∈Z) < ∞ and

E

[
exp

(
i

n2∑
k=n1

akXk

)]

= exp

[∫
RZ

(
exp

(
i

n2∑
k=n1

akxk

)
− 1 − i

n2∑
k=n1

akc(xk)

)
Q(d{xn}n∈Z)

]

for any choice of −∞ < n1 ≤ n2 < +∞, {ak}n1≤n2 ∈ Rn2−n1 .
c is defined by:

c(x) = −1 if x < −1;
c(x) = x if − 1 ≤ x ≤ 1;
c(x) = 1 if x > 1.

The system (RZ, B⊗Z,Q,S) where S is the shift on RZ is called the Lévy mea-
sure system associated to the process X.

The α-stable stationary processes, 0 < α < 2, are (see Chapter 3 in [17]) com-
pletely characterized as those IDp processes such that their Lévy measure satisfies

(Rt )∗Q = t−αQ(5.1)

for any positive t , Rt being the multiplication by t , that is,

{xn}n∈Z �→ {txn}n∈Z.

We also recall the fundamental result of Maruyama that allows to represent any
IDp process with Lévy measure Q as a stochastic integral with respect to a Poisson
measure with intensity Q.

THEOREM 6 (Maruyama representation [8]). Let P be the distribution of
a stationary IDp process with Lévy measure Q and ((RZ)∗, (B⊗Z)∗,Q∗, S∗)
the Poisson measure over the Lévy measure system (RZ, B⊗Z,Q,S). Set X0 as
{xn}n∈Z �→ x0 and define, on (RZ)∗, the stochastic integral I (X0) as the limit in
probability, as n tends to infinity, of the random variables

ν �→
∫
|X0|>1/n

X0 dν −
∫
|X0|>1/n

c(X0)dQ.

Then the process {I (X0) ◦ Sn∗ }n∈Z has distribution P.



1362 E. ROY

5.2. Lévy measure as Maharam system.

THEOREM 7. Let (RZ, B⊗Z,Q,S) be the Lévy measure system of an α-stable
stationary process. Then there exists a probability space (�, F ,μ), a nonsingular
transformation T , a function f ∈ Lα(μ) such that, if M denotes the map (ω, t) �→
tf (ω), then the map � := (ω, t) �→ {M ◦ T̃ n

α (ω, t)}n∈Z yields an isomorphism of
the Maharam system (� × R+, F ⊗ B+,μ ⊗ 1

s1+α ds, T̃α) with (RZ, B⊗Z,Q,S).

PROOF. First observe that Theorem 3 can be applied to (RZ, B⊗Z,Q,S) since
the measurable and (obviously) dissipative flow {Ret/α }t∈R satisfies the hypothesis,
thanks to equation (5.1). Therefore, there exists an isomorphism 
 between the
Maharam system (� × R+, F ⊗ B+,μ ⊗ 1

s1+α ds, T̃α) and (RZ, B⊗Z,Q,S) for an
appropriate nonsingular system (�, F ,μ,T ). Set f := 
(ω,1)0 [i.e., 
(ω,1)0
is the 0th coordinate of the sequence 
(ω,1)], and let us check that f ∈ Lα(μ).
Indeed, as Q is a Lévy measure, we have∫

RZ

x2
0 ∧ 1Q(d{xn}n∈Z) < ∞,

but since 
 is an isomorphism and 
(ω, t) = 
 ◦ St (ω,1) = Rt ◦ 
(ω,1) =
t
(ω,1), we have∫

RZ

x2
0 ∧ 1Q(d{xn}n∈Z)

=
∫
�

∫
R+


(ω, t)2
0 ∧ 1

1

tα+1 dtμ(dω),

∫
�

∫
R+

(t2
(ω,1)2
0) ∧ 1

1

tα+1 dtμ(dω)

=
(∫

R+
z2 ∧ 1

1

zα+1 dz

)∫
�

|
(ω,1)0|αμ(dω)

after the change of variable z := t |
(ω,1)0|. Therefore
∫
� |
(ω,1)0|αμ(dω) <

∞. �

In the symmetric case we can make the theorem more precise:

THEOREM 8. Let (RZ, B⊗Z,Q,S) be the Lévy measure system of a symmet-
ric α-stable stationary process. Then there exists a probability space (X, A, ν),
a nonsingular transformation R, a function f ∈ Lα(ν) and a measurable
map ξ :X → {−1,1} such that, if M denotes the map (x, t) �→ tf (x), then
the map (x, t) �→ {M ◦ Rα

n
(x, t)}n∈Z yields an isomorphism between (X ×

R∗, A ⊗ B, ν ⊗ 1
|s|1+α ds, Tα) with (RZ, B⊗Z,Q,S), Rα being defined by (x, t) �→

(Rx, ξ(x)t (
dR−1∗ μ

dμ
(x))1/α).
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PROOF. Start by applying Theorem 7 to the Lévy measure.
Observe that the symmetry involves the presence of a measure preserving in-

volution I , namely I {xn}n∈Z = {−xn}n∈Z. I also preserves the Lévy measure of
the process. Observe also that I commutes with the shift and with the flow Rt .
Therefore Ĩ := �−1I� is a measure preserving automorphism of (� × R∗+, F ⊗
B,μ ⊗ 1

s1+α ds, T̃ ), and we can apply Lemma 4 to deduce that Ĩ induces a nonsin-
gular involution φ on (�, F ,μ,T ). It is standard that such transformation admits
an equivalent finite invariant measure, so, up to another measure preserving iso-
morphism, we can assume that φ preserves the probability measure μ.

Using Rohklin’s structure theorem, the compact factor associated to the compact
group {Id, φ} tells us that we can represent (�, F ,μ,T ) as (X × {−1,1}, A ⊗
P{−1,1}, ν ⊗ m,Rξ ), where R is a nonsingular automorphism of (X, A, ν), m is
the uniform measure on ({−1,1}, P{−1,1}), ξ a cocycle from X to {−1,1} and
Rξ := (x, ε) �→ (Rx, ξ(x)ε).

It is now clear that (X×{−1,1}×R∗+, (A ⊗ P{−1,1})⊗ B, ν⊗m⊗ 1
s1+α ds, S̃ξ )

is isomorphic to (X × R∗, A ⊗ B, ν ⊗ 1
|s|1+α ds,Rα) thanks to the mapping

(x, ε, t) �→ (x,21/αεt) and Rα := (x, t) �→ (Rx, ξ(x)(
dR−1∗ μ

dμ
(x))1/αt). �

5.3. Spectral representation. It is now very easy to derive spectral representa-
tions from the above results. In particular, if (RZ, B⊗Z,Q,S) is the Lévy measure
system of an SαS stationary process, under the notation of Theorem 8, (X, A, ν)

together with the function f ∈ Lα(ν), the cocycle φ and the nonsingular automor-
phism T yields a spectral representation of the process. Indeed, by building the
Poisson measure over (X × R∗, A ⊗ B, ν ⊗ 1

|s|1+α ds,Rα) and by applying to it, f

and ξ (Theorem 3.12.2, page 156 in [16]), we recover the SαS process with Lévy
measure Q, which proves the validity of the spectral representation. The minimal-
ity can be obtained without difficulty thanks to Proposition 2.2 in [10].

5.4. Maharam systems as Lévy measure. We can ask if whether a Maharam
system (� × R+, F ⊗ B+,μ ⊗ 1

s1+α ds, T̃α) can be coded into a Lévy measure
system of a stable process. We can answer this question affirmatively in the only
interesting case, that is, when the Maharam system has no finite absolutely contin-
uous T̃α-invariant measure, that is, when the resulting Lévy measure system leads
to an ergodic stable process.

Recall that a Maharam system (�×R+, F ⊗ B+,μ⊗ 1
s1+α ds, T̃α) has no finite

absolutely continuous T̃α-invariant measure if and only if the nonsingular system
(�, F ,μ,T ) has the same property. But then a famous theorem of Krengel [7]
shows that such a system possesses a 2-generator, that is, there exists a measurable
function f :� → {0,1}, μ{f = 1} < ∞, such that σ {f ◦ T n,n ∈ Z} = F .

To be more precise, this means that, up to isomorphism, (�, F ,μ,T ) can
be represented as ({0,1}Z, B({0,1}Z), ν, S) for an appropriate measure ν, where
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S is the shift transformation. Then the Maharam system can be represented as
({0,1}Z ×R∗+, B({0,1}Z)⊗ B, ν ⊗ 1

s1+α ds, S̃α). But if ϕ is the map ({xn}n∈Z, t) �→
{txn}n∈Z and Q = ϕ∗(ν ⊗ 1

s1+α ds), we obtain a Lévy measure system (RZ, B⊗Z,

Q,S) of an α-stable system, as {xn}n∈Z �→ {x0} is in Lα(μ) (see the proof of The-
orem 7). Moreover, the sequence {yn}n∈Z takes only two values, 0 or sup{yn}n∈Z

Q-almost everywhere ({yn}n∈Z can not be identically zero with positive measure
as such a constant sequence forms a shift-invariant set of finite measure); therefore,
ϕ−1 exists and is defined by {yn}n∈Z �→ (sup{yn}n∈Z, { yn

sup{yn}n∈Z
}n∈Z).

({0,1}Z × R∗+, B({0,1}Z) ⊗ B, ν ⊗ 1
s1+α ds, S̃α) is isomorphic to (RZ, B⊗Z,

Q,S).

6. Refinements of the representation. Ergodic stationary processes are
building blocks of stationary processes; prime numbers are the building blocks
of integers; factors are building blocks of Von Neumann algebras etc. What are the
building blocks of stationary infinitely divisible processes? Let us get more precise.

Given a stationary ID process X, what are the solutions to the equation (in
distribution)

X = X1 + X2,

where X1 and X2 are independent stationary ID processes. Of course, if Q is the
Lévy measure of X, then taking X1 with Lévy measure c1Q and X2 with Lévy
measure c2Q with c1 + c2 = 1 gives a solution. If these are the only solutions, we
said in [12] that X is pure, meaning that is impossible to reduce X to “simpler”
pieces. It was then very easy to show that X is pure if and only if its Lévy measure
is ergodic.

PROPOSITION 9. A stationary IDp process X is pure if and only if its Lévy
measure Q is ergodic.

PROOF. Assume Q is not ergodic. There exists a partition of RZ into two shift
invariant sets A and B both of positive measure. Therefore, Q|A and Q|B can be
taken as Lévy measures of two stationary IDp processes XA and XB and taking
them independently leads to

X = XA + XB

in distribution, as Q = Q|A + Q|B .
In the converse, assume Q is ergodic, and suppose there exist independent sta-

tionary IDp processes X1 and X2 with Lévy measure Q1 and Q2 such that

X = X1 + X2

holds in distribution. As Q = Q1 + Q2 we get Q1 � Q. But as Q is ergodic, this
in turns implies that there exists c > 0 such that Q1 = cQ and thus Q2 = (1−c)Q.

�
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In this section, we will try to comment the above equation according to the
Krieger type of the associated nonsingular transformation. A description of the
interesting class of those stable processes driven by nonsingular transformations
of type III0 is unknown.

6.1. The type III1 case, pure stable processes. It was an open question whether
there exist pure stable processes. It can now be solved thanks to the Maharam struc-
ture of the Lévy measure: an α-stable process is pure if and only if the underlying
nonsingular system is of type III1.

The existence of pure stable processes (guaranteed by the comments made in
Section 5.4) is reassuring as it validates the specific study of stable processes.

6.2. The type IIIλ case, 0 < λ < 1. In this section we derive the form of
those α-stable processes associated with an ergodic, type IIIλ nonsingular auto-
morphism, 0 < λ < 1.

6.2.1. Semi-stable stationary processes. An infinitely divisible probability
measure μ on Rd is called α-semi-stable with span b if its Fourier transform sat-
isfies

μ̂(z)b
α = μ̂(bz)ei〈c,z〉

for some c ∈ Rd .
By extension, an α-semi-stable process process is a process whose finite-

dimensional distributions are α-semi-stable. Using once again results of Chapter 3
in [17], one gets the following characterization of α-semi-stable stationary pro-
cesses:

A shift-invariant Lévy measure Q on (RZ, B⊗Z) is the Lévy measure of an α-
semi-stable stationary process of span b > 0 if and only if it satisfies

(Rb)∗Q = b−αQ,

where Rb is the multiplication by b

{xn}∈Z �→ {bxn}∈Z.

Of course by iterating Rb, we easily observe that (Rbn)∗Q = b−nαQ for all n ∈ Z.

6.2.2. Discrete Maharam extension. Assume (�, F ,μ,T ) is a nonsingular

system such that there exists λ > 0 so that dT −1∗ μ

dμ
∈ {λn,n ∈ Z} μ-almost ev-

erywhere. We can form its discrete Maharam extension, that is, the m.p. system
(� × Z, F ⊗ B,μ ⊗ λn dn, T̃ ) where λn dn stands for the measure

∑
n∈Zλnδn on

(Z, B) and T̃ is defined by

T̃ (ω,n) =
(
T ω,n − logλ

dT −1∗ μ

dμ
(ω)

)
.
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6.2.3. Ergodic decomposition of Maharam extension of type IIIλ transforma-
tions. Let (�, F ,μ,T ) be an ergodic type IIIλ system. Up to a change of mea-
sure we can assume that the Radon–Nykodim derivative take its values in the
group {λn,n ∈ Z} where r(T ) = {0, λn, n ∈ Z,+∞} is the ratio set of T (see [6]).
Therefore, the discrete Maharam extension (�×Z, F ⊗ B, βμ⊗λn dn, T̃ ), where
β := ∫ − lnλ

0 e−s ds, exists. Now form the product system(
� × Z × [0,− lnλ[, F ⊗ B ⊗ B([0,− lnλ[), βμ ⊗ λn dn ⊗ e−s

β
ds, T̃ × Id

)
.

The dissipative nonsingular flow St : (ω,n, s) �→ (ω,n + � s−t
− lnλ

�, s − t +
lnλ� s−t

− lnλ
�) satisfies St ◦ T̃ × Id = T̃ × Id◦St and (St )∗μ ⊗ λn dn ⊗ e−s ds =

e−tμ ⊗ λn dn ⊗ e−sds, and it is very easy to see that (Z × [0,− lnλ[, B ⊗
B([0,− lnλ[), λn dn ⊗ e−s ds) is just a reparametrization of (R, B, es ds), thanks
to the mapping (n, s) �→ −n lnλ − s.

Therefore (�×Z×[0,− lnλ[, F ⊗ B ⊗ B([0,− lnλ[),μ⊗λn dn⊗e−s ds, T̃ ×
Id) can be seen as the Maharam extension of (�, F ,μ,T ).

It remains to prove the ergodicity of (� × Z, F ⊗ B, βμ ⊗ λn dn, T̃ ). This fol-
lows, for example, from Corollary 5.4 in [18], as the ratio set is precisely the set of
essential values of the Radon–Nykodim cocycle.

We then obtain the ergodic decomposition of the Maharam extension: it is the
discrete Maharam extension (� × Z, F ⊗ B, βμ ⊗ λn dn, T̃ ) randomized by the
measure e−s

β
ds on [0,− lnλ[.

6.2.4. Application to stable processes. Let (RZ, B⊗Z,Q,S) be the Lévy
measure system of an α-stable process driven by an ergodic type IIIλ system
(�, F ,μ,T ), and let f ∈ Lα(μ) be given as in Theorem 7. Let b > 1 so
that b−α = λ, we need to obtain a multiplicative version of the above struc-
ture adapted to our parameters. Up to a change of measure we can assume

that (
dT −1∗ μ

dμ
)1/α ∈ {bn,n ∈ Z} μ-almost everywhere. Consider the discrete Ma-

haram extension (� × Gb, F ⊗ B, βμ ⊗ mb, T̃ ) (in a multiplicative representa-
tion) where β = ∫ b

1
1

s1+α ds, mb is the measure
∑

g∈Gb
g−αδg on Gb := {bn,n ∈ Z}

and T̃ := (ω,g) �→ (T ω,g(
dT −1∗ μ

dμ
(ω))1/α). Form the system (RZ, B⊗Z,Qr, S) as

a factor of (� × Gb, F ⊗ B, βμ ⊗ mb, T̃ ) given by the mapping ϕ := (ω,g) �→
{M ◦ T̃ n(ω, g)}n∈Z where M(ω,g) = gf (ω) and Qr = ϕ∗(βμ ⊗ mb).

Now, as above, we recover the Maharam extension of (�, F ,μ,T ) by con-
sidering (� × Gb × [1, b[, F ⊗ B ⊗ B([1, b[), βμ ⊗ mb ⊗ 1

βs1+α ds, T̃ × Id).

As the system (Gb × [1, b[, B ⊗ B([1, b[),mb ⊗ 1
s1+α ds) is isomorphic to

(R∗+, B, 1
s1+α ds) thanks to (g, t) �→ gt , we obtain (RZ, B⊗Z,Q,S) by applying the

map ({xn}n∈Z, t) �→ {txn}n∈Z to (RZ ×[1, b[, B⊗Z ⊗ B([1, b[),Qr ⊗ 1
βs1+α ds, S ×
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Id). At last, we can check that Qr is a Lévy measure, and indeed we know that∫
RZ

(x2
0 ∧ 1)Q(d{xn}n∈Z) < +∞,

but∫
RZ

(x2
0 ∧ 1)Q(d{xn}n∈Z) =

∫ b

1

(∫
RZ

(
(sx0)

2 ∧ 1
)
Qr(d{xn}n∈Z)

)
1

βs1+α
ds;

therefore, for some 1 ≤ s < b,
∫
RZ((sx0)

2 ∧ 1)Qr(d{xn}n∈Z) < +∞, and this is
enough to prove that Qr is a Lévy measure.

(RZ, B⊗Z,Qr, S) is the Lévy measure system of an α-semi-stable stationary
process with span b. Heuristically, if X has Lévy measure Q, X can be thought
of as the continuous sum of independent processes Y t , 1 ≤ t < b weighted by the
probability measure 1

βs1+α ds where 1
t
Y t has Lévy measure Qr . More formally, if

((�×Gb ×[1, b[)∗, (F ⊗ B ⊗ B([1, b[))∗, (βμ⊗mb ⊗ 1
βs1+α ds)∗, (T̃ × Id)∗) de-

notes the Poisson suspension over (�×Gb ×[1, b[, F ⊗ B ⊗ B([1, b[), βμ⊗mb ⊗
1

βs1+α ds, T̃ × Id), then, if I denotes the stochastic integral as in Theorem 6, X :=
{I {M1} ◦ (T̃ × Id)n∗}n∈Z has Lévy measure Q and Y := {I {M2} ◦ (T̃ × Id)n∗}n∈Z

where M1(ω,g, s) = sgf (ω) and M2(ω,g, s) = gf (ω).
We therefore observe that X is entirely determined by a pure α-semi-stable

stationary process with span b, Y . It is very easy to see that X and Y share the
same type of mixing.

6.2.5. Examples. It is not difficult to exhibit examples of stable processes of
the kind described above, as the structure detailed allows us to build such pro-
cesses. We can, for example, consider the systems Tp , 1

2 < p < 1 introduced in [4].
We will follow the presentation given in ([1], page 104).

Let � be the group of dyadic integers, let τ acts by translation by 1 on � and
for 1

2 < p < 1, let μp be a probability measure on � defined on cylinders by

μp([ε1, . . . , εn]) =
n∏

k=1

p(εk),

where p(0) = 1 − p and p(1) = p.
If we set 1−p

p
= λ, we get

dτ−1∗ μp

dμp

= λφ,

where φ(x) = min{n ∈ N, xn = 0}−2. It is proved in [4] that the discrete Maharam
extension (� ⊗ Z, F ⊗ B,μ ⊗ λn dn, τ̃ ) is ergodic.
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We can form a new system, which will be the Lévy measure system of a sta-
tionary semi-stable process with span λα , thanks to the following map:

f : (ω,n) �→ λαn
∑
i≥1

ωi2
−i .

The Lévy measure Qr is the image of μ ⊗ λn dn by the map (ω,n) �→ {f ◦
τ̃ k(ω,n)}k∈Z.

By randomizing this Lévy measure as explained above, we obtain the Lévy
measure Q of a stationary α-stable process; that is, Q is the image measure of
Qr ⊗ 1

βs1+α ds by the map

({xn}n∈Z, t) �→ {txn}n∈Z.

To obtain a realization of these two processes as stochastic integrals over Pois-
son suspensions, we can proceed as explained at the end of the preceding section.

Anticipating the next sections, we derive the ergodic properties of these pro-
cesses:

τ being of type IIIλ, the Maharam extension is of type II∞ which means that
the Lévy measure system of the corresponding stationary α-stable process (with
Lévy measure Q) is of type II∞. Therefore the associated Poisson suspension is
weakly mixing. As stochastic integrals with respect to this Poisson suspension,
both processes (with Lévy measures Q and Qr ) are weakly mixing.

Thanks to (Lemma 1.2.10, page 30 in [1]), τ is rigid for the sequence {2n}n∈N.
Therefore, by Theorem 18 (or with a slight adaptation for the semi-stable case),
both processes are also rigid for the same sequence.

6.3. The type I and II cases. This case is easy to deal with as we can assume
the associated ergodic nonsingular system is actually measure preserving, that is,
the Lévy measure system (RZ, B⊗Z,Q,S) is isomorphic to (�×R∗+, F ⊗ B,μ⊗

1
s1+α ds, T̃ ) where T preserves μ and T̃ acts as T × Id, that is, T̃ (ω, t) = (T ω, t).

Considering f ∈ Lα(μ) furnished by Theorem 7, (�×R∗+, F ⊗ B,μ⊗ 1
s1+α ds, T̃ )

is isomorphic to (RZ × R∗+, B⊗Z ⊗ B,Qs ⊗ 1
s1+α ds, S × Id) through the map

(ω, t) �→ ({f ◦ T n(ω)}n∈Z, t) and∫
RZ

(x2
0 ∧ 1)Q(d{xn}n∈Z) =

∫
�

∫
R+

(
(tf (ω))2 ∧ 1

) 1

tα+1 dtμ(dω)

=
∫

R+

(∫
RZ

(
(tx0)

2 ∧ 1
)
Qs(d{xn}n∈Z)

)
1

tα+1 dt < +∞.

For the same reason as above, Qs is a Lévy measure. We draw the same con-
clusions as in the preceding section, taking into account that the weight is now the
infinite measure 1

tα+1 dt on R∗+, and Qs can be any Lévy measure (of a stationary
IDp process).
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7. Ergodic properties. Some ergodic properties of general IDp stationary
processes have been given in terms of ergodic properties of the Lévy measure sys-
tem in [13]. For an α-stable stationary processes, it is more interesting to give them
in terms of the associated nonsingular system (�, F ,μ,T ). This work has been
undertaken in the symmetric (SαS) case in a series of papers (see, in particular,
[11] and [15]).

We have a new tool to deal with this problem:
As the Lévy measure of an α-stable stationary processes can now be seen as the

Maharam extension (�×R∗+, F ⊗ B,μ⊗ 1
s1+α ds, T̃ ) of the system (�, F ,μ,T ),

it suffices to connect ergodic properties of T and T̃ , and then apply the general
results relating ergodic properties of a stationary IDp process with respect to those
of its Lévy measure system.

Observe that linking ergodic properties of T and T̃ is a general problem in
nonsingular ergodic theory which is of great interest.

We will illustrate this in the following sections dealing with mixing, K-property
and rigidity, the last two having been neglected in the α-stable literature.

7.1. Mixing. First recall that if S is a nonsingular transformation of a measure
space (X, A,m), it induces a unitary operator US on L2(m) by

USf (x) =
√√√√dS−1∗ μ

dμ
(x)f ◦ S(x).

We first give a general result:

PROPOSITION 10. The Maharam system (� × R∗+, F ⊗ B+,μ ⊗ 1
s1+α ds, T̃α)

is of zero type if and only if for all f ∈ L2(μ), 〈Un
T f,f 〉L2(μ) → 0 as n tends to

infinity.

The proof can be extracted from [11] but follows also from the observation that
the conditions below are equivalent (we assume that μ is a probability):

(1) for all f ∈ L2(μ), 〈Un
T f,f 〉L2(μ) → 0 as n tends to infinity;

(2) | log dT −n∗ μ

dμ
| → ∞ in probability;

(3) m(Aε ∩ T̃ n
α Aε) → 0 for all 0 < ε < 1 where m = μ ⊗ 1

s1+α ds and Aε :=
� × [ε, 1

ε
];

(4) T̃α is of zero type.

Combining this result with the characterization of the Lévy measure system as a
Maharam system and the mixing criteria found in [13], we obtain the following
theorem, already known in the SαS-case (see [11]):
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THEOREM 11. A stationary stable process (RZ, B⊗Z,P, S) with associated
system (�, F ,μ,T ) is mixing if and only if for all f ∈ L2(μ), 〈Un

T f,f 〉L2(μ) → 0
as n tends to infinity.

In the forthcoming sections, we are interested in less-known ergodic properties
(K property and rigidity) that have been neglected in the α-stable literature.

7.2. K property.

DEFINITION 12 (see [19]). A conservative nonsingular system (�, F ,μ,T )

is a K-system if there exists a sub-σ -algebra G ⊂ F such that T −1G ⊂ G , T −nG ↓
{�,∅}, T nG ↑ F and dμ

dT∗μ is G -measurable.

A K-system is always ergodic (see [19]) .

DEFINITION 13. A measure-preserving system (X, A,m,S) is remotely in-
finite if there exists a sub-σ -algebra C ⊂ A such that T −1C ⊂ C , SnC ↑ A and⋂

n≥1 S−nC contains zero or infinite measure sets only.

PROPOSITION 14. If (�, F ,μ,T ) is a K-system which is not of type II1, then
its Maharam extension (� × R∗+, F ⊗ B+,μ ⊗ 1

s1+α ds, T̃α) is remotely infinite.

PROOF. Let G be as in Definition 12. Observe that, as dμ
dT∗μ is G -measurable,

G ⊗ B+ is T̃α-invariant, that is, T̃ −1
α G ⊗ B+ ⊂ G ⊗ B+. Indeed, take g G -

measurable and f B+-measurable, and we get

g ⊗ f (T̃α(ω, s)) =
(
g(T ω), s

(
dT −1∗ μ

dμ
(ω)

)1/α)

=
(
g(T ω), s

(
dμ

dT∗μ
(T ω)

)1/α)
.

We are going to show that P := ⋂
n∈NT̃ −n

α G ⊗ B+ only contains sets of zero
or infinite measure. Observe that, as St commutes with T̃α and preserves G ⊗ B+
for all t > 0, then S−1

t (T̃ −n
α G ⊗ B+) ⊂ T̃ −n

α G ⊗ B+ and therefore S−1
t P ⊂ P for

all t > 0. Now consider the measurable union, say K , of P -measurable sets of
finite and positive measure. It is a T̃α-invariant set and a St -invariant set as well.
Recall that the nonsingular action of the flow St on the ergodic components of
(� × R∗+, F ⊗ B+,μ ⊗ 1

s1+α ds, T̃α) is ergodic; therefore, if K �= ∅, then K =
� × R∗+ mod. ν ⊗ 1

s1+α ds.

Assume K = � × R∗+. This implies that the measure μ ⊗ 1
s1+α ds is σ -finite

on P , and therefore P is a factor of (� × R∗+, F ⊗ B+,μ ⊗ 1
s1+α ds, T̃α). Now
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consider the quotient space (�×R∗+)�P that we can endow, with a slight abuse of
notation with the σ -algebra P . Let ρ be the image measure of μ ⊗ 1

s1+α ds by the
projection map π . On ((� × R∗+)�P , P, ρ) T̃α and the dissipative flow St induce
a transformation U and a dissipative flow Zt that satisfy

π ◦ T̃α = U ◦ π,π ◦ St = U ◦ π and U ◦ Zt = Zt ◦ U.

Of course, thanks to Theorem 3, ((�×R∗+)�P , P, ρ,U) is a Maharam system;
therefore, we can represent it as (Y × R∗+, K ⊗ B+, σ ⊗ 1

s1+α ds, L̃α) for a non-
singular system (Y, K, σ,L). Applying Lemma 4, π induces a nonsingular factor
map � from (�, G,μ,T ) to (Y, K, σ,L), which means that there exists an R-
invariant σ -algebra Z ⊂ G such that �−1K = Z . But we can observe, that for all
n > 0, the factor T̃ −n

α G ⊗ B+ corresponds to a Maharam system that corresponds
to the factor T −nG of (�, G,μ,T ). Therefore, for all n > 0, Z ⊂ T −nG , that is,
Z ⊂ ⋂

n∈NT −nG = {�,∅}. This means that K = {Y,∅}, or, in other words, that
(Y, K, σ,L) is the trivial (one-point) system. (Y × R∗+, K ⊗ B+, σ ⊗ 1

s1+α ds, L̃α)

then possesses lots of invariant sets of positive finite measure, for example A :=
Y × [1,2]. But π−1(A) is in turn a positive and finite measure invariant set for
the system (� × R∗+, F ⊗ B+,μ ⊗ 1

s1+α ds, T̃α), and the existence of such set is
impossible in a Maharam extension of an ergodic system which does not posses a
finite T -invariant probability measure ν � μ. We can conclude that K = ∅.

To prove that (�×R∗+, F ⊗ B+,μ⊗ 1
s1+α ds, T̃α) is remotely infinite, it remains

to show that
∨

n∈Z T̃ −n
α G ⊗ B+ = F ⊗ B+. We only sketch the proof which consists

of verifying that the operation of taking natural extension and Maharam extension
commute.

Of course, we have
∨

n∈Z T̃ −n
α G ⊗ B+ ⊂ F ⊗ B+. It is not difficult to check

that
∨

n∈Z T̃ −n
α G ⊗ B+ corresponds to a Maharam system that comes from a σ -

algebra H ⊂ F . But we also have G ⊂ H and as T −1H = H, we get
∨

n∈Z T −nG ⊂
H. By assumption,

∨
n∈Z T −nG = F , and we deduce H = F which implies∨

n∈Z T̃ −n
α G ⊗ B+ = F ⊗ B+. �

As before we deduce the following result for α-stable stationary processes:

THEOREM 15. Let (RZ, B⊗Z,P, S) be a stationary stable process with as-
sociated system (�, F ,μ,T ). If (�, F ,μ,T ) is K and not of type II1, then
(RZ, B⊗Z,P, S) is K .

PROOF. From Proposition 14, we know that the Lévy measure system of the
stable process is remotely infinite. The corresponding Poisson suspension is K by
a result from [14]. By applying Maruyama’s representation Theorem (Theorem 6),
we recover the stable process as a factor of the suspension, which therefore inherits
the K property. �
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Recall that in the probability preserving context, K is strictly stronger than mix-
ing. In [11], to produce examples of mixing α-stable stationary processes that were
not based on dissipative nonsingular systems, the authors considered indeed null
recurrent Markov chains as base systems. These systems are well-known examples
of K-systems; therefore Theorem 15 shows that the associated α-stable stationary
processes are not just merely mixing but are indeed K .

7.3. Rigidity. We recall that a system (�, F ,μ,T ) is rigid if there exists an
increasing sequence nk such that T nk → Id in the group of nonsingular automor-
phism on (�, F ,μ) [the convergence being equivalent to the weak convergence in

L2(μ) of the associated unitary operators UT nk :f �→
√

dT
−nk∗ μ
dμ

f ◦T nk to the iden-

tity]. Observe that in the finite measure case, rigidity does not imply ergodicity but
prevents mixing.

PROPOSITION 16. The Maharam system (� × R∗+, F ⊗ B+,μ ⊗ 1
s1+α ds, T̃α)

is rigid for the sequence nk if and only (�, F ,μ,T ) is rigid for the sequence nk .

PROOF. First observe that the map T �→ T̃α is a continuous group homomor-
phism from the group of nonsingular automorphism of (�, F ,μ) to the group
of measure preserving automorphism of (� × R∗+, F ⊗ B+,μ ⊗ 1

s1+α ds). As
T nk → Id, then T̃ nk

α → Id; therefore T̃ nk
α is rigid for the sequence nk .

Conversely, if T̃α is rigid for the same sequence, then, as

〈Unk

T̃α
f ⊗ g,f ⊗ g〉L2(μ⊗1/(s1+α)ds) ≤ ‖g‖2

2〈Unk

T f,f 〉L2(μ) ≤ ‖g‖2
2‖f ‖2

2

and 〈Unk

T̃α
f ⊗ g,f ⊗ g〉L2(μ⊗1/(s1+α)ds) → ‖g‖2

2‖f ‖2
2, we get 〈Unk

T f,f 〉L2(μ) →
‖f ‖2

2; thus T is rigid. �

We need the following general result:

PROPOSITION 17. A stationary IDp stationary process (RZ, B⊗Z,P, S) is
rigid for the sequence nk if and only if its Lévy measure system (RZ, B⊗Z,Q,S)

is rigid for the sequence nk .

PROOF. Consider X := {Xn}n∈Z where Xn := {xk}k∈Z �→ xn on RZ and
let 〈a,X〉 be a finite linear combination of the coordinates. exp i〈a,X〉 −
E[exp i〈a,X〉] is a centered square integrable vector under P whose spectral mea-
sure (under P) is λa := |E[exp i〈a,X〉]|2∑∞

k=1
1
k!σ

∗k
a where σa is the spectral mea-

sure of exp i〈a,X〉 − 1 under Q (see [13]). Therefore σ̂a(nk) → σ̂a(0) if and
only if λ̂a(nk) → λ̂a(0). This implies that exp i〈a,X〉 − E[exp i〈a,X〉] is a rigid
vector for nk under P if and only if exp i〈a,X〉 − 1 is a rigid vector for nk un-
der Q. Observe now that the smallest σ -algebra generated by vectors of the kind
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exp i〈a,X〉 − E[exp i〈a,X〉] under P is B⊗Z, and the same is true with vectors of
the kind exp i〈a,X〉 − 1 under Q. As in any dynamical system if there exists a
rigid vector for the sequence nk , there exists a nontrivial factor which is rigid for
the sequence nk , we get the announced result. �

THEOREM 18. A stationary stable process (RZ, B⊗Z,P, S) with associated
system (�, F ,μ,T ) is rigid for the sequence nk if and only (�, F ,μ,T ) is rigid
for the sequence nk .

PROOF. This is the combination of the last two results. �
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