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Abstract
We consider the dual of an ideal and the ideal transforms of Nagata and
Kaplansky in the context of monoids. In particular, we consider Priifer monoids
with respect to a finitary ideal system and generalize the known results for Priifer
domains. These generalizations embrace abstract monoids (without an ideal
system), Prifer v-multiplication domains and Priifer *-multiplication domains
for any star-operation of finite type.

1. Introduction

Let D be an integral domain with quotient field K and I a non-zero fractional ideal "
of D. We consider the fractional ideal

I"=(D:I)={ze K|zl c D}
and the overrings
U:D)y={ze K|zl CI}, Np(I)=|J(D:I") and Qp(])= N U D
neN O#aclIneN

Usually 71 is called the dual of I, (I:1)is called the ring of multipliers of I, Np(I)

is called the Nagata transform and Q p(I) is called the Kaplansky transform of D
with I. We obviously have

(I:I) c I"™" ¢ Np(I) c Qp(]).

The questions whether 1= is a ring and whether it coincides with either (I : I) or
Np(I) have received considerable attention in recent years (see [FHPR/, (F}, Chapter
Il in {FHP], or [HKLM] and the literature cited there).

If D is a Priifer domain, then each overring of D has a representation as an
intersection of localizations of D with respect to those prime ideals which survive in



20 Andreas Foroutan, Franz Halter-Koch and Wolfgang Schmid

the overring under consideration. For the overrings (I : I') and Np(I ), the responsible
primes were identified in [FHPR], Theorem 4.7 and in [FHP], Theorems 3.2.5 and
326 I 1isa ring, the same was done in [FHP], Theorem 3.1.2. An analogue to
the latter result in the case of PVMDs (Priifer v-multiplication domains) was given
in [HKLM], Theorem 4.5.

‘The question whether or not I- is a ring is a purely multiplicative one. Indeed,
since I™! is a D-submodule of K, it is a ring if and only if it is multiplicatively
closed. If in addition 2 is not a zero divisor on K/I71, then the simple identity
22y = (x +y)*> — 22 — 42 shows that I-! is ring if and only if it is closed under
squares (that is, z € ! implies 22 € J -1,

In this paper we take the point of view of [HK1] that multiplicative ideal theory
should be derived as far as possible without making reference to the additive struc-
ture. We show that many of the above-mentioned questions and results concerning
(10, 171, Np(I) and Qp(I) can be derived in the context of cancellative
monoids, ‘equipped with suitable ideal systems. When doing this, we shall obtain

E slightly stronger results with even sitpler proofs than in the case of integral domains.
In particular, the results for Priifer domains and PVMDs aye special cases of our the-
oremns con‘ceruing r-Priifer monoids. We do not explicitely state these specializations
which we leave to the reader.

This paper is organized as follows. In section 2, we fix our notations and recall
sone [tmdameutals from the ideal theory of monoids. In section 3 we investigate !
and (I : 1), first without further assumptions on the monoid D, and then under
the additional hypothesis that D is seminormal or (integrally) closed with respect
to an ideal system. In the seminormal case we also investigate the connections with
Np(I). In section 4, we assume that D is an »-Priifer monoid (for some ideal system
T), We present the representation theorems for 7! and (I : I) as intersections of
localizations and some of their consequences. IMinally, in section 9, we investigate
Np(I) and Qp(I) in more detail.

2. Preliminaries on Monoids

Our main reference for monoids and ideal systems is [HK1]. We recall the most
important concepts and fix the notations. We denote by N the set, of positive integers,
and we set Ng = NU{0}. For a set X » we denote by P(X) its power set and by P¢(X)
the set of all finite subsets of X.

By a monoid D we always mean a commutative multiplicative semigroup possess-
ing a unit element 1 € D (such that la = q for all 4 D), a zero element 0 € D
(such that 0a = 0 for all ¢ € D), and satisfying the cancellation law (if a,b,c € D
and ab = ac, then either ¢ = 0 or b — c). We set D* = D \ {0} and denote by D>
the group of invertible elements of D. By a groupoid we mean a monoid D such that
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D* is a group. Every monoid D possesses a quotient groupoid K, that is, a groupoid
K D D such that K = {a7'b | a € D*, b € D}. By an overmonoid of D we always
mnean a monoid between D and K. For X,Y C K and n € N, we set

XY ={aylzeX,yeY}, X"={z; ... zy|a1,...,2, € X}
(note that this differs from the usual definition for ideals in a ring),

(X:V)=(X:Y)k={zeK|z¥YCX}, X '=(D:X) and X, =(X"")".

Recall that a finitary ideal system » on D is a map ‘P(D) — P(D), X ~ X, such
that the following conditions are fulfilled for all subsets X,Y of D and all ¢ € D:

1) X u {0} c X,;

2) X C Y, implies X, C ¥},

3) (X)), = cX;;

4) X, = UEE]P’f(X) L,.

For a finitary ideal system r on D, we denote by Z,(D) = {J € D | J, = J} the
semigroup of all r-ideals, equipped with the r-multiplication defined by I, .J = D).
For any subset X C K, we define

X= | B 5 (1)

(note that, for every finite subset I C K, there exists some ¢ € D* such that ck C D,
and then I5, = ¢c~!(cE),). Then r is a module system on K in the sense of [HK?2).
An overmonoid 7" D D is called an r-monoid if T, = T'. For valuation monoids, this
notion coincides with that of [HK1], Definition 18.4 (see Lemma 2.3 below). If 7' > D
is an r-monoid, then the extension »[T'] of r to T is defined by |

Xor = (TX), forall XCK.

Then »[T'] is a finitary ideal system on T, and LTy ={J CcT| J = J and
TJ = J} (see [NK2], Section 2).
We denote by r-spec(D) the set of all prime r-ideals and by r-max (D) the set of
all r-maximal r-ideals of D. For P € s-spec(D) and X C I, we denote by
Xp={s"lz|zeX, se D\P}CK
the localization of X with respect to . If r is a finitary ideal system on D, then Dp
is an 7-monoid, and we denote by rp = r[Dp] the localization of r with respect to P.
The most important finitary ideal systems we are concerned with are the s-system

of ordinary semigroup ideals and the ¢-system, defined by

B,=ED and E,=(D:(D:E)) forall EeP(K),
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and then extended by (1) to arbitrary subsets X C K (for details see [HK1]). Every
overmonoid T' D D is an s-overmonoid, and s[T'} is just the s-system on T

If D is an integral domain with quotient field K, then (disregarding the additive
structure) D is a monoid with quotient groupoid K. For a subset X C D, let X4 be
the D-ideal generated by X. Then d is a finitary ideal system on D, called the ideal
system of ordinary ring ideals. An overmonoid 7" D D is a d-monoid if and only if it
is an overring, and in this case d[I'] is just the ordinary d-system on T'.

Let D be a monoid and I C D an s-ideal. We denote by P(I) the set of all prime

divisors of I (that is, the minimal prime s-ideals containing I), by
Zp(I)={aeD|azel forsome ze D\ I}
the prime s-ideal of all zero divisors on I and by
VI={zeD|z" el for somen e N} = ﬂ P
: PeP(I)

the radical of I (see [HK1], 6.7).

For a finitary ideal system r on D, we denote by V,.(D) the set of all r-valuation
overmonoids of DD, we set

Ve(l) ={V € Ve(D) | VA\V* =VIV} and W,(I)={V e V(D) |1V =V}.

We denote by Z.(I) the set of all maximal elements (with respect to inclusion) in the
set '

{P € r-spec(D) | P C Zp(I)}.

We say that I has no embedded r-primes, if {P € r-spec(D) | I C P C Zp(I)} C
P(I). Note that I € Z,,(D) implies P(I) C r-spec(D) (see [HK1], Proposition 6.6).
For sake of completeness we recall the definition of the Nagata transform and the

Kaplansky transform in a purely multiplicative context.

Definition 2.1 Let D be a monoid and I C D an s-ideal. Then we set,
Npy = |J am™  and  Qpl) = () | «™D.
neN 0#a€l nEN .
We call Np(I) the Nagata transform and Qp(I) the Kaplansky transform of D

with respect to I.

We start by collecting some elementary properties of (I:1), I™', Np(I) and
Qp(I).

Proposition 2.2 Let D be a monoid, I C D an s-ideal and v a finitary ideal system.
on D.
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L (I:1) ¢ I"'=(I"Y), c No(I) ¢ Qp(D),

2. (I:1), Np(I) and Qp(I) are overmonoids of D, Np(I) and Qp(I) are
r-monoids, and if I is an r-ideal, then (I : I) is also an r-monoid.

Proof. 1t follows immediately from the definitions that (I : I) ¢ I-! ¢ A/, o) C
$0p(I), and that (I : I), Np(I) and Qp(I) are overmonoids of . The remaining
assertions concerning I~ and (I : I) follow by [HK1], Proposition 11.7. Mp(I) and
Qp(I) are r-monoids by [HK2], Propositions 1.2 and 2.3. (|

We close this introductory section with four simple lemmas concerning valuation
monoids and localizations, for which we give proofs because of a lack of a suitable

reference. Recall that a monoid V is a valuation monoid if the set of s-ideals of V is
a chain. :

Lemma 2.3 Ifr is a finitary ideal system on a monoid D and V O D is a valuation
overmonotd, then V is an r-monoid if and only if E, C EV Jor oll E € P¢(D).

Proof. IfV, =V and E € Pe(D), then EV = aV for some « € E and therefore
I, C(EV), = (aV), = aV, = aV = EV.

Suppose now that E, ¢ EV for all E € P¢(D). By definition, it suffices to prove that
F.cViforall Fe Py(V). If F e P¢(V), let ¢ € D* be such that ¢ ¢ D. Then we
obtain F. = ¢ !(cF), C ¢ (cFV)=FV C V. : O

Lemma 2.4 IfV is be a valuation monoid and Q € s-spec(D); then QVo=Qo=0Q.

Proof. By definition, QVg = Qg D Q. Thus, uppose that z € Qq, say z = a™ 1),
where b € Q and a € V\Q. By [HK1], Theorem 16.2, we obtain Q = a(Q and therefore
r=a'bea"taQ = Q. ™

Lemma 2.5 If D is a monoid, I € T,(D), P e s-spec{D) and I ¢ P, then I7! C
Dp.

Proof. Ifa€ I"" and z € I'\ P, then az € D and therefore a = z~1ag e Dp. O

Lemma 2.6 If r is a finitary ideal system on a monoid D, I € I.(D), P €
s-spec(D), and if Q denotes the set of all mazimal elements (with respect to inclusion,)
in the set {Q € r-spec(D) | Q C P}, then

Dp: m DQ and (IPZIP): ﬂ(IQIQ)
QeN QeN

23
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Proof. By [HK1], Theorem 11.3, Theorem 7.2 and Ex. 4.6, we have

Ip = N (Ip)m s

Merp-max(Dp)

rp-max(Dp) = {Qp | Q € Q} and (Ip)g, = I for all Q € Q. With [ = D, the first
assertion follows. For the second one, we calculate

(Ip:Ip)= ( () p)as IP) = () (Up)gr : Ip)).

Qen QEN

For @ € Q, we have ((Ip)q, : Ip) = ((Ip)gp : (IP)gp) = (I : Ig), which completes
the proof. O

3. The Dual ‘of an Ideal

Throughout this section, let D be a monoid and K a quotient groupoid of D.

Definition 3.1 A subset X C K is called power-closed, if x € X implies 2™ € X for
all n e N.

Proposition 3.2 Let I C D be an s-ideal such that I™! is power-closed.

LI = (VI:I), and if I # {0}, then =} C D (the complete integral closure of
D). :

2. For all P € s-spec(D), I C P implies 7! = (P :I).
3. IfVeV,(I), then I"1 C V.
Proof. L It s obviously sufficient to prove that I—! C (\/—f :I). If z € I™Y, then
z? € I"!, and (zI)? = (z2I)I C I implies I C vI. Whence z € (vT : I).
Ifze ! and 0% c€ I, then ca™ € D for all n € N and therefore z € D.
2. By 1., we obtain I~ C (v/T: I) C (P : I). The other inclusion is obvious.

3. Assume to the contrary that there exsists some V € V,(I) such that I=1 ¢ V. If
zeI"'\V, then 27! € V\ V* = VIV, and therefore (z=1)" € IV for some n € N.

Since ™ € I~ we obtain, using 1., that 1 = z*(z~1)* € I-1IV c VIV c VIV, a
contradiction. [l

Proposition 3.3 Let I C D be an s-ideal such that I~ is power-closed.

1. Let J C D be an s-ideal and S C D* a multiplicatively closed subset such that
I'cJc VS and vS“lJﬂp =J. Then J™1 = (J : J)
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2. VIt = (VI V).
3. If P € P(I), then P~1 = (P : P).

Proof. 1. It suffices to prove that J=! ¢ (J : J). If x € J7! and a € J, then
J C V8= implies sa™ € I for some s € S and n<e N. Since J=! ¢ I-! and

17! is power-closed, we obtain 22" € I-! and s(az)?* = a™(sa™z?") € J. Whence
az € VS—1JnD=J.

2. By 1. with J = /T and § = {1}.
3. By 1. with J =P and S= D\ P (observe that v/Tp = Pp D P). |

Corollary 3.4 IfI is an s-ideal of D satisfying /I = I, then the following statements
are equivalent: ,

(@) I7'=(I:1).

(b) I=Y > D is an overmonoid of D.

(¢) I is power-closed. .

(d) Ifz eI thena? e L.
Proof. Obviously, (a) = (b) = () = (d). ,‘
(d) = (a). It suffices to prove that 1! C (I : I). If z € I1, then (z)? = (z*DIcI
implies #I C v/I = I and therefore z € (I : I). U
Proposition 3.5 If r is a finitary ideal system on D, | € I:(D) and I # D, then
the following assertions are equivalent:

(a) = is an overmonoid of D.

(b) I is not r-invertible, and (P : I) is an overmonoid of D for each P & |

r-max(D) such that I C P.
(c) I7' =(VI: 1), and (P : I) is an overmonoid of D for each P € P(I).
(d) I"' = (I, : I)).
(e) It =Tt 1I7Y).

The assertions (a), (b) and (c) remain equivalent if we replace “overmonoid” by
“power-closed”.

Proof. (a) « (d). By [HK1], Proposition 13.6, observing that I=* = I."1,
(a) & (e). By [HK1], Ex. 13.2.

(a) = (b), (c). By Proposition 3.2.1, we have I~} = (VT : I), and consequently
I I = (II7Y), ¢ (VI), = VI € D. Whence I is not r-indvertible. If P e
r-spec(D) and P D I, then (P : I) = I~! by Proposition 3.2.2.

25
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(b) = (a). Since I is not r-invertible, there exists some P € r-max(D) such that
II"YcI..I"' c P. Whence I"t C (P:I)C I™!. Therefore I=! = (P : I) is an
overmonoid.

(c) = (a). If P e P(I),then VT C P, and therefore ™' = (VI :I)=(P:I)c I
Whence 171 = (P : I) is an overmonoid of D. O

Next we investigate the dual of an ideal under the additional assumption that D is
seminormal. Recall that D is called seminormal if the following condition is satisfied:
If z€ K and 2™ € D for all sufficiently large n € N, then z € D.

Proposition 3.6 Let D be seminormal and I C D an s-ideal of D.

1. We have

(VI:VI)={z €K |z" € I! forall neN}
={z e K |a" €I} for all sufficiently large n € N}.

2. IT1 is power-closed if and only if I™1 = (/T : VT).
3. IfIL s power-closed, then It = (\/—) L

Proof. 1. We must prove: 1)Ifz e (vI:v1), thena™ € I™! foralln e N. 2) If
z € K and z" € I7! for all sufficiently large n € N, then z € (VI : VT ).

1) If z € (vVI:v/T) and n € N, then z™ e(\/_ VvI) and therefore a*] C 2"V e
VvIcD. Whence z € 171,

2) Suppose that z € K, z™ € I7! for all sufficiently large n € Nand a € V1.
Then we have o™ € I and hence (az)™ € D for all sufficiently large n € N. Since
D is seminormal, it follows that az € D. For sufficiently large n € N, we obtain
(az)"! = (a”z"*t')a € aD C VT and therefore az € V1.

2. Obvious by 1. |

3. Suppose that I~! is power-closed. 1t is sufficient to prove that I=! C (v/I)~!. If
z € I7! and a € VI, then 2™ € I™!, o™ € I and hence (az)" € D for all sufficiently
large n € N. Since D is semmormal we infer axz € D, and therefore z € (vI)~!. [

With the aid of Proposition 3.6 we are able to investigate the connection between
I7! and Np(I) in the seminormal case.

Proposition 3.7 If D is seminormal and I is an s-ideal of D, then the following
assertions are equivalent:

(a) I~ = Np(I).
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(b) ’(I”“)_1 is an overmonoid of D for alln € N.

(c) (I™)~! is an overmonoid of D for some n > 2.

" In (b) and (c) the phrase "is an overmonoid of D” can be replaced by "is
power-closed”.

Proof.  (a) = (b). For n € N, we have Np(I) = I~ ¢ (I")~! ¢ Np(I). Hence
(I™)~! = Np(I) is an overmonoid of D.

(b) = (c). Obvious. (
- (¢) = (a). Since I C I? ¢ I C VT, Proposition 3.6.2 implies
(") = (VI V) = (VT € (V)™ € 7' € (1) ¢ (1),

and therefore (I2)~! = I=!, Now we obtain (I™)~! = [~! by induction on m. indeed,
ifm>2and (I™)~! = (I™1)~!, then

(Im+1)—l — ((Im)—l :' I) _ ((Im_l)—l :I) — (Im)—-l )

By Proposition 3.6.2, (I™)~! is an overmonoid if and only if it is power-dlosed. O

We close this section with an investigation of (1 : I') and I~! under the additional
assumption that D is r-closed with respect to a finitary ideal system r-on D. We
recall the basic facts on generalized integral closures (see [HK1], Ch. 14).

Let 7 be a finitary ideal system on D. We say that D is r-closed if (J : J )=D
for all r-finitely generated r-ideals of D. Note that D is s-closed if and only if it is
root-closed, and if D is an integral domain, then it is d-closed if and only if it is
integrally closed. If D is r-closed, then D is root-closed and hence seminormal.

- Suppose that D is r:closed. Then the finitary ideal system r, (called the comple-
tion of 7} is defined by

X,.="|J ((XB).:B) forallsubsets X CD.

BePg(D)
BND*#p

By [HK1], Theorem 21.7, we have
X, = ﬂ XV for all D-fractional subsets X C K,
VeV.(D) ’

and in particular

D='ﬂ V.

VeVv.(D)

If X C D and V € V,(D), then X, V = XV (see [HK1}, Theorem 21.3).
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Lemma 3.8 Let r be a finitary ideal system on D such that D is r-closed, and let
I C D be an s-ideal. :

1. We have
(I, : I.,)= [] V:IV).
VeVn(D)
2. If V C V(D) is any subset, then
D= (\V  implies v ( wcritc () Ww.
vey VeV (I) Wew,(I)nv WeW,.(INnV

Proof. 1. Observe that

(I,A:I,,)z( N v:L)= () uv:L).
vev.(D) VeVn(D)

For each V € V,.(D), we have (IV : I,)) = (IV : I,,V) = (IV : IV). Thus the

assertion follows.

2. Assume that D is the intersection of the valuation monoids V' € V, and let first 2 be
an element of the intersection on the left hand side. It is sufficient to prove that a € I
implies az € U for all U € V. Thus suppose that a € I and U € V. If U € W,(I),
then = € U implies ax € U. If U € V(D) \ W,(I), then Q@ = VIU € s-spec(U),
and since \/IUqg = Qg = Ug \ Ué, we obtain, using Lemma 2.4, Ug € V,(I) and
az € IUg CQg=Q CU.

Ifzel-!and WeW,(I)NV, then z € 2W = zIW C W. | O
The following Theorem 3.9 generalizes [HKLM], Theorem 4.4.

Theorem 3.9 Let r be a finitary ideal system on D such that D is r-closed, and let
V C V(D) be a subset such that

D=[V.
Vey
If I is an s-ideal of D, then the following (;sse'rtions are equivalent:
(a) I7! is an overmonoid of D.
(b) I is power-closed.
(c) I C (II7W II7YV) for each V € V(D).
(d) I"* c (I,V: LV) for eachV € V,(D).

(e) There exists some J € T, (D) such that J D I and I"* ¢ (JV : JV) for
each V € V(D). ‘
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(f) I71 C V for each V € V.(I).
(g) We have the representation

I'= (v [ Ww.

Vev.(I)  Wew.(DnV
Proof. (a) = (c), (d). By Proposition 3.5 we obtain I~! = (IT~} : JI-1) C
(I II-'Wyand I = (I, : L) C (I,V : L,V) forall V € V(D).
(c), (d) = (e). Obvious.
(e) = (a). By Lemma 3.8, we obtain

I"c () GViIV)=( ) cdltcatcr?, ,
VeV.(D) . ‘

and therefore I~! = (J,_ : J,.) is an overmonoid of D.

(a) = (b) is obvious, (b) = (f) follows by Proposition 3.2.3, (f) =" (g) follows
. by Lemma 3.8 (2), and (g) = (a) is again obvious. O

4. The Dual of an Ideal in r-Priifer monoids

Throughout this section, let D be a monoid and r a finitary ideal system on D.

Recall that D is called an r-Priifer monoid if Dp is a valuation monoid for each
P € r-spec(D). For several other characterizations see [HK1], Ch. 17. If D is an
r-Priifer monoid, then every overmonoid of D is an intersection of localizations of D
(see [HK1}, Theorem 27.2). We want to specify the responsible prime ideals in the
representation of (I : I) and of I~! (provided that it is an overmonoid). We start
with a technical lemma concerning the local behavior of Zp(I).

Lemma 4.1 Suppose that I € T,(D), P € s-spec(D) and I C P. Then we have
ZD(IPOD):ZDP(IP)QD and ZDP(IP):ZD(IPHD)ID.

Proof. 1t is sufficient to prove the first équality (see [HK1], Theorem 4.4). If a €

Zp(IpN D), then there exists some z € D\ Ip C Dp\Ip such that az € Ip. Whence
a e ZDP(IP) NnD.

Suppose now that a € Zp,(Ip) N D. Then there exists some z € Dp \ Ip such that

az € Ip. If s € D\ P is such that sz € D, then sz ¢ Ip, and asz € Ip N D implies
(I,EZD(IPOD). ]

The following Theorem 4.2 generalizes [FHPR], Theorems 4.7 and 4.11, and
[HKLM], Theorem 4.7.

29
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Theorem 4.2 Let D be r-Priifer.

1. If I is an s-ideal of D, P € r-spec(D) and I C P, then Zp(Ip N D) €
r-spec(D), and ‘

(Ip: Ip) = Dzy(rpnp) -

2. For each s-ideal I C D, we have the representation

I:D) = (Izpmy:lzpw) N0 ﬂ D -
’ Mer-max(D)
. IgM

3. For each r-ideal I € T,.(D), we have the representations

(IZD([) :IZD(I)) = ﬂ (Ip:1Ip)

PEZ. (1)
and
(I:1) = N Uu:im) 0 () D
Mer-max(D) M €r-max(D)
t IcM IgM

4. For each s-ideal I C D without embedded r-primes, we have the representation

(I:1) _ WI:VI)=Dzynn (] Du.

MéEr-max(D)
IgM

Proof. 1. Since Zp,(Ip) € s-spec(Dp) = rp-spec(Dp), we infer (using Lemma 4.1)
that Zp(Ip N D) = Zp,(Ip) N D € r-spec(D). By [HK1], Ex. 15.8 and Ex. 4.6, we
obtain

(Ip:Ip)= (Dp) 2o () = DEop(le)nD = Dzp(rpnp) -

2. Tor each P €. s-spec(D) we have (I : I) C (Ip : Ip), and if I ¢ P, then
(Ip:Ip)=(Dp:Dp)= Dp. Hence it remains to prove that

Uzpny : Izpmy) D ﬂ Dy c (I:1).
Meéer-max(D)
IgM

Let z be an element of the intersection on the left hand side, and a € I. We must
prove that za € I. Since za € Iz, (), there exists some t € D\ Zp(I) such that

tza € I. We prove first that za € D, and for that, it is sufficient to prove that
za € Dy for all M € r-max(D).

If M € r-max(D) and I ¢ M, then z € Dy, implies az € Dps. Thus suppose
that M € r-max(D), I C M and za ¢ Djp;. Then we have (za)™! € Djp and
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t = tza(za)~! € Ip. Therefore there exists some u € D \ M such that tu € I, and
t ¢ Zp(I) implies w € I C M, a contradiction.

Now tza€ I, za€ D and t € D\ Zp(I) implies za € I, as asserted.

3. We apply Lemma 2.6. To obtain the first representation, we set P = Zp(I). To
obtain the second one, we set P = D\ D* and observe that (In : Ing) = (D

M
Dar) = D for all M € r-max(D) such that T ZM.

4. By Lemma 2.6, we have

ﬂ Dp = Dzyay € (Izp Hapmn)-
PeZ.(I)

Hence it suffices by 2. to prove that (I: 1) C (VI:VI)C Dpforal Pe Z.(I).
Ifze(I:1),thena™ e (I:1)C Ifl for all n € N, and Proposition 3.6.1 implies

z e (VI:VI).

If PeZ.(I)and I ¢ P, then VI ¢ P, and therefore (VT :VI)cC (\/_fp VIp) =
(Dp : Dp) = Dp. 1f P € Z,(I) and I C P, then P € P(I) by assumption and
"therefore Pp = /ITp = +/Ip, which implies (v/T : VIYc WIp: VIp) = (Pp: Pp)=
Dp by [HK1], Ex. 15.8. d

Corollary 4.3 If D is r-Prifer, I € T,(D) and n € N, then (D=1,

Proof. 1t is easily seen that (I : I) c (I™ : I™). To prove the reverse inclusion,
assutne first that D is a valuation monoid. If u € (I" : I"), then w™ € (I™ : [ ™) for all
m € N, and in particular ()™ C I". If a € I, then (ua)™ € I C D implies ua € D,
and therefore ua € I by [HK1], Ex. 15.6. Hence u € (I : I) follows.

For the general case, we apply Theorem 4.2.3 and observe that ((I ’1)T)M =7 e for
all M € r-max(D). Thus we obtain

remyc (™, Um) = (1 U:hpn () Du
MeEr-max(D) M é€r-max(D)
IgM IgM
= (] Uu:Im)n (1 Dm=(:1),
Méer-max(D) Mé&r-max(D)
¢M IgM

|

For sake of completeness, we recall the (well known) criterion for I=! to be an
overmonoid in the case of valuation monoids.

Proposition 4.4 If D is a valuation monoid and I G D a (proper) s-ideal of D,
then I is an overmonoid of D if and only if I is a non-principal prime s-ideal. In
this case, we have I=! = (I : I) = Dy.
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Proof. [HK1], Ex. 16.8. O

Lemma 4.5 Let D be r-Priifer and I C D an s-ideal.
1. P(I.) c P(I).

2. We have
ﬂ Dp N ﬂ Dy C ﬂ Dp N ﬂ Dy c 171,
PeP(I) Meéer-max(D) PeP(I,) M €Er-max(D)
I¢M IgM

Proof. 1. Suppose that P € P(I,). Then P ¢ r-spec(D), and there exists some
- Q € P(I) such that Q C P (see [HK1), Proposition 6.6). Dp is a valuation monoid,
and Qp is a prime s-ideal of Dp. Since Dp possesses only one finitary ideal system,

Q@p is an rp-ideal. Whence Q =Qpn D ¢ r-spec(D) (see [HK1), Theorems 15.3, 4.4
and 7.2). Thus we obtain I, C Q C P, and consequently Q = P € P(I,)

2. We apply 1. and Lemma 3.8 with V = r-max(D) (see [HK1], Theorem 11.3). Since

Vr(Ir) = {DP ] Pe P(Ir)}

and

Well)NY = {Dys | M € r-max(D), I ¢ M} = {Dy | M € r-max(D), I, ¢ M)},
we obtain
() Dr n (1 Dumc (1 Dr n (1 Dm ci™t.

PeP(I) M €r-max(D) PeP(1,) Mer-max(D)
. IgM IgM

a

The following Théorem 4.6 is a common generalization of [FHP], Theorem 3.1.2
and [HKLM], Theorem 4.5.

N

Theorem 4.6 If D is r-Priifer and-I C D is an s-ideal, then the following assertions
are equivalent:

(a) 171 4s an overmonoid of D.

(b) 171 4s power-closed.

¢) I71 C Dp for all P € P(I).

(d) We have the representation

= N Dp 0 () Du.

PeP(1,) Merl—én]z;c(D)
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(e) We have the representation

I"= () bp n 'ﬂ Dy .

PeP(I) Megr-max(D)
IgM

Proof. Obviously, (a) = (b), (d) = (a) and (e) = (a).
(b) = (c). Let I be power-closed and P € P(I).

CASE1: P, #D. IfQ € P(P,), then Q € r-spec(D) and therefore Dg is a valuation
monoid. Now P C Q implies Dy C Dp, hence Dp is a valuation monoid (see

[HK1], Corollary 15.1), and Dp \ D} = Pp = \/Tp = +/TDp. Therefore we obtain
Dp € V,s(I), and I=! C Dp by Proposition 3.2

CASE 2: P, = D. Since r is finitary, there exists a finite subset 2 C P such that

E, = D. Since E C Pp = +/Ip C Dp, there exists some n € N and s € D \‘P such

that sz™ € I for all z € E. Suppose now that « € I™!, and set B = {z" | z € E}.

Then we have usE™ C D and therefore us € usD = us(ElM), c. D (seé [HK1], Ex.
«12.3). Hence u € Dp.

() = (d), (e). By Lemma 4.5.2 and Lemma 2.5. Il

‘We close this section with two special criteria for I~ to be an overmonoid of D.
Proposition 4.8.1 is a partial generalization of [FHP], Theorem 3.1.7, ahd Proposi-
tion 4.8.2 generalizes [FHP], Corollary 3.1.8. This latter mentioned assertion will be
strengthened in Theorem 5.7. Proposition 4.9 is a common generalization of [FHPR],
Theorem 4.11, and [HKLM]}, Theorem 4.7 and Corollary 4.8. First we need an ele-
mentary lemma concerning r-invertible ideals in r-Priifer monoids.

Lemma 4.7 If D is 7-Prifer and P € r-spec(D) \ r-tnax(D), then P is not r-
inwertible.

Proof. Assume to the contrary that there exists an r-invertible P r-spec(D) and
some M € r-max(D) such that P C M. Then P = E, for some finite subset £l C P.
If 2 € M\ P, then P ¢ (EU{z}),, and since D is r-Priifer, (EU {2}), is r-invertible.
But this contradicts [HK1], Theorem 13.2. U

)

Proposition 4.8 Let D be r-Priifer.

1. Suppose that I € I,(D), vI=1 and P(I) Nr-max(D) = 0. Then I"! is an

overmonoid of D.

2. If P € r-spec(D) is not r-invertible, then P~ = (P : P), and if P € r-max(D),
then P~1 = D.

33
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Proof. 1. By Theorem 4.6, it is sufficient to prove that I=! C Dp for all P € P(I).
Thus let P € P(I) and M € r-max(D) be such that P ¢ M. Then Pyy G My C Dy,
and Py = /Ipy = (VI)p = In. By Lemma 4.7, Py is not r-invertible, and by
Proposition 4.4 we obtain

I~tc (D I]\[) =(Dp: Py) = (DM)PM =Dp.
2. Let P € r-spec(P) be not r-invertible.
If P ¢ r-max(D), then P! is an overmonoid of D by 1., Theorem 4.6 implies
(
P'=Dpn- (] Du,
Meéer-max(D)
PgM

and by Theorem 4.2.2 we get P~ = (P : P).

If P € r-max(D), then P C (PP~1), ¢ D implies P = (PP~!), D PP~ hence
P=1 C (P : P), and therefore P~ = (P : P) is an overmonoid of D. Now Theorem
4.6 implies '

‘ pl= Dp N ﬂ Dy =D.

Mer-max(D)
M#P

[
Proposition 4.9 Let D be r-Prifer.

1. IfI is an s-ideal of D without embedded r-primes such that I~ is an overmonoid
of D and

Zp(hy= |J P,
PeP(I)
then I™t = (I : 1).

2. If q is a finitary ideal system on D such that I.(D) C Ty (D), and if M €
g-max(D) is not q-invertible, then M~! = D.

Proof. 1. By Theorem 4.6 we have

I'=(} ppn () Du,

PeP(I) Mer-—m!ax(D)
IgM

and Lemma 2.6 implies
() Dr = Dz
PeP(I)
Now the assertion follows by Theorem 4.2.4.

2. Since M C (MM~")q G D, we obtain M = (MM~1), > MM~! and therefore
M~ c (M : M). Hence M~ = (M : M) is an overmonoid. If M is an r-ideal, then
M is not r-invertible, and the assertion follows by Proposition 4.8. If M is not an
r-ideal, then M, = D and M~' = M = D. O
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5. The Nagata and the Kaplansky Transform

Throughout this section, let D be a monoid and r a finitary ideal system on D.

The results of this section are well known for Priiffer domains (see [FHP], Chapter
IIT). We start with a representation of the Kaplansky transform as an intersectin of
localizations, which is valid in every monoid.

Proposition 5.1 Let I C D be an r-ideal.
1. If I is r-finitely generated, then Np(I) = Qp(I).
2. We have the representation

Qp)= () Dep.

Per-spec(D)
I1g P

Proof. 1. Suppose that I = E, for some finite subset £ C I. We must prove that
Qp(I) C Np(I). If z € Qp(I), then there exists some n € N such that "2z € D for
all a € E. If EM = {a™ | a € E}, then El"z c D, and

1'En g < (EF™), z < (EMD),z ¢ D.
Hence z € I71FI" ¢ Np(I).
2. Suppose that z € Qp(I) and P € r-spec(D) such that I ¢ P. If a € T\ P, then
there exists some n € N such that a”z € D, and we obtain z € a™ "D C Dp.

Let now z # 0 be an element of the intersection on the right hand side, and J =
z7'DND. Then J € Z,(D), and for all P € r-spec(D), I ¢ P implies J ¢ P.
Therefore we obtain :

vi= () P> ()} PoI
Per-spec(D) Per-spec(D)
PDOJ PDI

If a € I, then there exists some n € N such that o™ € J and therefore o™z € D.
Hence we obtain = € Qp(I). ' ]
Proposition 5.2 Let T be an r-monoid satisfying D CT C Qp(I).

1. The map

. AP erspec(D) [T ¢ P} — {Qer[Tlspec(T) | I ¢ Q}
. P > Pp nT

is bijective. If Q € r[T)-spec(T) and I ¢ Q, then ¥~1(Q) = QN D and
To'= Dgnp. If P € r-spec(D) and I ¢ P, then Dp = Tp,rp.
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2. If (TI), =T, then T = Qp(I).

Proof. 1. If P € r-spec(D) and I ¢ P, then $2p(I) C Dp by Proposition 5.1.2, and
therefore PpNT is a prime s-ideal of T'. We clearly have (PpNT)YND = P and hence
I'¢ PpNT. Since (Pp), = Pp and T, = T, it follows that PpNT € 7[T)-spec(T)
Thus we have proved that ¥ is a map as indicated, and that it is injective.

To finish the proof, suppose that Q € r[T}-spec(T’) and I ¢ Q. We shall prove that
QN D erspec(D), I ¢ QND, Dgnp = Tg and @ =(QN D)gnpNT.

If Q € r[T)-spec(T) and I ¢ Q, then clearly P = QND e s-spec(D), |.& P,
and @, = Q implies P, = P. Consequently, P € r-spec(D). Since D C T and
D\ P CT\Q, we obtain Dp C Tq. To prove the reverse inclusion, suppose that
ze€Tg,say =512 where s T \QandzeT. Letac I'\ P be arbitrary. Since
s,z € Qp(I), there exists some n € N such that sa® ,2a" € D, and s ¢ Q implies
sa™ ¢ P. Therefore we get = = (sa™)~!(za") € Dp. Now we set Q' =PpnT. As
we have Just proved, @’ € r[T'}-spec(T), I ¢ Q' and Q' N D = P. Hence, we obtain
T =Dp =T, Qo = Qq, and consequently Q' = QoNT=QqoNT =Q.
2. It (TD)r = T, then {Q € r[T})-spec(T) | I ¢ Q} = 7[T]-spec(T), and 1. implies
r[T]—specl(T) ={PpNT | P € r-spec(D), I ¢ P}. Therefore we obtain, using [HK1],
Theorem 11.3 and Proposition 5.1.2, that

T= () Tear= () Dr=0p0).
Per-spec(D) Per-spec(D)
IgP Igp

]
Before we study the behavior of the Nagata and Kaplansky transform in valuation
and Prifer. monoids, we collocate their properties under localizations.

Lemma 5.3 Let I C D be an r-ideal of D and P € s-spec(D).
1. We have Np(I)p C Np,(Ip), with equality holding if I zs r-finitely generated.
2. If I ¢ P, then Np(I) C Dp, and if I is 7-finitely generated, then Np(I)p = Dp.
3. Qp(I) C Qp,(Ip).

Proof. 1. By [HK1], Proposition 11.7, we have

No(I)p = |J (D:1™p ¢ U (Dp:132) =Np,(Ip),

nEN neN

with equality if I is r-finitely generated.

2. If I ¢ P, then Np,(Ip) = Npp(Dp) = Dp, and the assertion follows by 1.
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3. Suppose that z € Qp(J) and ¢ = s~ 'a € Ip, where c € T and s € D\ P. Then
there exists some n € N such that a™z € D, and consequently ¢z = s™™a"z € Dp.

O

Theorem 5.4 Let D be a valuation monoid, I C D a (proper) s-ideal of D and

Q="

neN
1. Q is a prime s-ideal, and Np(I) = Dg.

2. We have Np(I) = Qp(I) if and only if either I # I?, or I is the union of all
prime s-ideals properly contained in I.

Proof. By [HK1], Proposition 16.1, we obtain @ € s-spec(D), and every prime s-ideal
properly contained in I is contained in Q.

1. If I =1I% then I = I = Q for all n € N. Hence Q=! = Np(I) is an overmonoid
of D, and the assertion follows by Proposition 4.4. ’

16T # I?, then I ¢ Q, and Lemma 5.3.2 implies Np(I) C Dg. For the reverse
inclusion, it is sufficient to prove that s™' € Np(I) forall s € D\ Q. If s€ D\ Q,
then s ¢ I" for some n € N, hence I"™ C sD and s7! € (I*)~! ¢ Np(I). .

2. f I # I?, then {P € r-spec(D) | I ¢ P} = {P € r-spec(D) | P C Q}, and
therefore Proposition 5.1.2 implies Qp(I) = Dg = Np(I).

Suppose next that I is the union of all prime s-ideals properly contained in I. Then
we have Q = I, and we must prove that Qp(I) C Dg. If u € Qp(I), then uw € Dp
for all P € s-spec(D) properly contained in I by Propositon 5.1.2. If u € D, we
are donie. If w ¢ D, then ! € D, hence u=! ¢ D% and therefore u=! ¢ P for all
P € s-spec(D) properly contained in I. Thus we obtain u~! ¢ I = Q and therefore
u=(uv"!)"l e Dg.

It remains to consider the case where I = I? and Np(I) = Qp(I). Let P* be the

union of all prime s-ideals properly contained in I. Then we have Np(I) = D by 1.

and Qp(I) = Dp+ by Proposition 5.1.2. Thus P* = I follows. |
N

Theorem 5.5 Let D be r-Prifer, I ¢ D an r-ideal, P € P(I) and

I(Py=(I3nD.
neN

1. We have I(P) € r-spec(D), Dypy=Np,(Ip), and
ND(I) C ﬂ DI(P) n ﬂ Dy

PeP(I) Mér-spec(D)
IgM
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2. If the set P(I) is finite, then

Np(I) = ﬂ D[(p) N ﬂ Dy = m D;(p) n ﬂ Dy

PeP(I) ME}-;[;\(}C(D) PeP(I) MGTI—én]CIx(D)

Proof. 1. If P € P(I), then Theorem 5.4.1 implies

I'(P)= (I} € s-spec(Dp) = rp-spec(Dp) and NDP(IP? = (Dp)+(p)-
neN

Hence we conclude I(P) € r-spec(D), and I(P) = I*(P)N D implies I*(P) = I(P)p.
Thus we obtain Np,(Ip) = Dy(py, and Lemma 5.3.1 implies Np(I) C Np,(Ip) =
Drpy. U M € r-max(D) and I ¢ M, then Lemma 5.3.2 implies Np(I) C Dyy.

2. Let P(I) be finite. We must prove that
ﬂ D](p) N ﬂ Dy C ND(I)‘
PepP(r) Mer-max(D)

gM

Let « be an element of the given intersection. For each P € P(I), there exists an
element sp € D\I(P) such that spu € D. Since sp ¢ I(P), there exists some np € N
such that sp ¢ I'”. Now we set n = max{np | P € ‘P(I)}, and we obtain sp ¢ Iy -
and therefore It C spDp for all P € P(I). This implies ul} CuspDp C Dp for all
P € P(I), and consequently

ul™ C m Dpn ) ﬂ Dy
PeP(I) Mer-max(D)
IgM

By Lemma 4.5.2, the intersection on the right hand side is contained in ™!, Hence
we obtain'u € (I"*1)~1 ¢ Np(I). a

Corollary 5.6 Let D be r-Priifer, P € r-spec(D) and

Po=()PEND.
neN
L. We have Py € r-spec(D) and, for every Q € r-spec(D), Q G P implies Q C Py.
2. Np(P)="Dp, 0 Qp(P).
Proof. 1. By [HK1], Proposition 16.1, we have

P = ﬂ Pp € s-spec(Dp) = rp-spec(Dp),
neN
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and P* is the greatest s-ideal of Dp properly contained in Pp. Thus we obtain
Py = P*n D € r-spec(D). If Q € r-spec(D) and Q G P, then Qp & Pp, hence
Qp C P* and therefore Q =QpND CP*ND =P

2. By Theorem 5.5.2 (observe that P(P) = Py), and Proposition 5.1.2. tl

Theorem 5.7 Let D be r-Priifer and P € r-spec(D) not r-invertible.

1. P~Y = (P : P), and there are no r-monoids properly lying between P! and

Qp(P).
9. If P = P?, then P~! = Np(P)

3. If P is the union of all prime r-ideals of D properly contained in P, then Pl =
Np(P) = Qp(P). .

4. If P # P2, then Np(P) = Qp(P).

Proof. 1. By Proposition 4.8.2, we have P~1 = (P : P).

"Let T be an r-monoid satisfying P~ C T'C Qp(P). If (PT), = T, then Proposition
5.2.2 implies T = Qp(P). Thus suppose that P = (PT), # T. By [HK1], Theorem
27.2, T is r|T}-Priifer, and T C Dp. By Proposition 5.1.2 and Theorem 4.6, we obtain

T cDpn () Du=P",
Megr-spec(D)

IgM i
and therefore T' = P!,
2. Obvious by the definition.
3. and 4. We set
Py=()PpnD
n€eN

and apply Corollary 5.6.

Suppose first that P is the unjon,of all prime r-ideals of D) properly contained in P.
Then Py = P, and Pp is the union of all prime s-ideals of Dp properly contained
in Pp. Hence there is no greatest prime s-ideal of Dp properly contained in Pp,
and by [HK1], Proposition 16.1, we obtain Pp = P2 and therefore P = P2?. Hence
P~ = Np(P) follows by definition. By Lemma 5.3.3 and Theorem 5.4, we obtain

QD(P) - QDP(PP):(DP)PP =Dp.

If P # P2, then Pp # P2 and therefore Py ¢ P, and Propositon 5.1.2 implies
Qp(P) C Dp,. 0
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