
INVERSE ZERO-SUM PROBLEMS II

WOLFGANG A. SCHMID

Abstract. Let G be an additive finite abelian group. A sequence over
G is called a minimal zero-sum sequence if the sum of its terms is zero
and no proper subsequence has this property. Davenport’s constant of G
is the maximum of the lengths of the minimal zero-sum sequences over
G. Its value is well-known for groups of rank two. We investigate the
structure of minimal zero-sum sequences of maximal length for groups
of rank two. Assuming a well-supported conjecture on this problem for
groups of the form Cm ⊕ Cm, we determine the structure of these se-
quences for groups of rank two. Combining our result and partial results
on this conjecture, yields unconditional results for certain groups of rank
two.

1. Introduction

In the 1960s H. Davenport popularized the following problem, motivated

by an application in algebraic number theory. Let G be an additive finite

abelian group. Determine the smallest integer ` such that each sequence

over G of length at least ` has a non-empty subsequence the sum of whose

terms equals 0 ∈ G. This integer is now called Davenport’s constant of

G, denoted D(G). We refer to the recent survey article [10], the lecture

notes [13], the monographs [14], in particular Chapters 5 to 7, and [20],

in particular Chapter 9, for detailed information on and applications of

Davenport’s constant, e.g., in investigations of the arithmetic of maximal

orders of algebraic number fields.

Parallel to the problem of determining Davenport’s constant, a direct

problem, the associated inverse problem, i.e., the problem of determining

the structure of the longest sequences that do not have a subsequence with

sum zero, was intensely investigated as well. On the one hand, solutions

to the inverse problem are relevant in the above mentioned applications as

well, and on the other hand, inverse results for one type of group can be

applied in investigations of the direct problem for other, more complicated,

types of groups (see, e.g., [1]).

In this paper, we investigate the inverse problem associated to Daven-

port’s constant for general finite abelian groups of rank two, complementing
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the investigations of the first paper in this series [12] that focused on groups

of the form C2
m, i.e., the direct sum of two cyclic groups of order m. To put

this in context, we recall that the value of Davenport’s constant for groups

of rank two is well-known (cf. Theorem 4.1 and the references there); more-

over, for cyclic groups, answers to both the direct and the inverse problem

are well-known (cf. Theorems 4.1 and 4.2 and see, e.g., [18, 22] for refine-

ments), whereas, for groups of rank at least three, both the direct and the

inverse problem is in general wide open (see, e.g., [3, 19] for results in special

cases).

For groups of the form C2
m there is a well-known and well-supported

conjecture regarding the answer to the inverse problem (see Definition 3.1

for details). For groups of the form C2 ⊕ C2n and C3 ⊕ C3n the inverse

problem was solved in [8, Section 3] and [5], respectively, and in [7, Section

8] and [15] partial results in the general case were obtained. Here we solve,

assuming the above mentioned conjecture for groups of the form C2
m is true,

the inverse problem for general groups of rank two (see Theorem 3.2).

In our proof, we use direct and inverse results for cyclic groups and

groups of the form C2
m, which we recall in Subsection 4.1, that we combine

by using the Inductive Method (cf. [14, Section 5.7]).

2. Notation and terminology

We recall some standard notation and terminology (we follow [10] and

[14]).

We denote by Z the set of integers, and by N and N0 the positive and

non-negative integers, respectively. For a, b ∈ Z, we denote by [a, b] = {z ∈
Z : a ≤ z ≤ b}, the interval of integers. For k ∈ Z and m ∈ N, we denote by

[k]m the integer in [0,m− 1] that is congruent to k modulo m.

Let G denote an additively written finite abelian group. (Throughout, we

use additive notation for abelian groups.) For a subset G0 ⊂ G, we denote

by 〈G0〉 the subgroup generated by G0. We call elements e1, . . . , er ∈ G\{0}
independent if

∑r
i=1miei = 0 with mi ∈ Z implies that miei = 0 for each

i ∈ [1, r]. We call a subset of G a basis if it generates G and its elements are

independent. For n ∈ N, we denote by Cn a cyclic group of order n. For each

finite abelian group G, there exist uniquely determined 1 < n1 | · · · | nr such

that G ∼= Cn1 ⊕· · ·⊕Cnr ; we refer to r as the rank of G and to exp(G) = nr

as the exponent of G.
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We denote by F(G) the, multiplicatively written, free abelian monoid

over G, that is, the monoid of all formal commutative products

S =
∏
g∈G

gvg(S)

with vg(S) ∈ N0. We call such an element S a sequence over G. We refer to

vg(S) as the multiplicity of g in S. Moreover, σ(S) =
∑

g∈G vg(S)g ∈ G is

called the sum of S, |S| =
∑

g∈G vg(S) ∈ N0 the length of S, and supp(S) =

{g ∈ G : vg(S) > 0} ⊂ G the support of S.

We denote the unit element of F(G) by 1 and call it the empty sequence.

If T ∈ F(G) and T | S (in F(G)), then we call T a subsequence of S; we

say that it is a proper subsequence if 1 6= T 6= S. Moreover, we denote by

T−1S its co-divisor, i.e., the unique sequence R with RT = S.

If σ(S) = 0, then we call S a zero-sum sequence (zss, for short), and if

σ(T ) 6= 0 for each 1 6= T | S, then we say that S is zero-sum free. We call

a zss a minimal zss (mzss, for short) if it is non-empty and has no proper

subsequence with sum zero.

Using the notation recalled above, the definition of Davenport’s constant

can be given as follows. For a finite abelian group G, let ` ∈ N be minimal

with the property that each S ∈ F(G) with |S| ≥ ` has a subsequence

1 6= T | S such that σ(T ) = 0.

It is a simple and well-known fact that D(G) is the maximal length of a

mzss over G and that each zero-sum free sequence of length D(G)− 1 over

G, i.e., a sequence appearing in the inverse problem associated to D(G), is a

subsequence of a mzss of length D(G). Since it has technical advantages, we

thus in fact investigate the structure of mzss of maximal length (ml-mzss,

for short) instead of zero-sum free sequences of length D(G)− 1.

Each map f : G→ G′ between finite abelian groups extends uniquely to

a monoid homomorphism F(G) → F(G′), which we denote by f as well. If

f is a group homomorphism, then σ(f(S)) = f(σ(S)) for each S ∈ F(G).

3. Formulation of result

In this section we recall the conjecture mentioned in the introduction

and formulate our result.

Definition 3.1. Let m ∈ N. The group C2
m is said to have Property B if

each ml-mzss equals gexp(G)−1T for some g ∈ C2
m and T ∈ F(C2

m).

Property B was introduced by W. Gao and A. Geroldinger [7, 9]. It is

conjectured that for each m ∈ N the group C2
m has Property B (see the just
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mentioned papers and, e.g., [10, Conjecture 4.5]). We recall some result on

this conjecture.

By a very recent result (see [11], and [9] for an earlier partial result) it

is known that to establish Property B for C2
m for each m ∈ N, it suffices to

establish it for C2
p for each prime p. Moreover, Property B is known to hold

for C2
m for m ≤ 28 (see [2] and [9] for m ≤ 7). For further recent results

towards establishing Property B see [16, 12, 2].

As indicated in the introduction, we characterize ml-mzss for finite abelian

groups of rank two, under the assumption that a certain subgroup of the

group has Property B.

Theorem 3.2. Let G be a finite abelian group of rank two, say, G ∼= Cm ⊕
Cmn with m,n ∈ N and m ≥ 2. The following sequences are minimal zero-

sum sequences of maximal length.

(i) S = e
ord ej−1
j

∏ord ek

i=1 (−xiej + ek) where {e1, e2} is a basis of G with

ord e2 = mn, {j, k} = {1, 2}, and xi ∈ N0 with
∑ord ek

i=1 xi ≡ −1

(mod ord ej).

(ii) S = gsm−1
1

∏(n+1−s)m
i=1 (−xig1 + g2) where s ∈ [1, n], {g1, g2} is a gener-

ating set of G with ord g2 = mn and, in case s 6= 1, mg1 = mg2, and

xi ∈ N0 with
∑(n+1−s)m

i=1 xi = m− 1.

If C2
m has Property B, then all minimal zero-sum sequences of maximal

length over G are of this form.

The case G ∼= C2
m, i.e. n = 1, of this result is well-known and included for

completeness only (see, e.g., [14, Theorem 5.8.7]); in particular, note that

(2) is redundant for n = 1.

This result can be combined with the above mentioned results on Prop-

erty B to yield unconditional results for special types of groups. We do not

formulate these explicitly and only point out that, since C2
2 and C2

3 have

Property B (cf. above), the results on C2 ⊕C2n and C3 ⊕C3n mentioned in

the introduction can be obtained in this way.

4. Proof of the result

In this section we give the proof of Theorem 3.2. First, we recall some

results that we use in the proof. Then, we give the actual argument.

4.1. Known results. The value of D(G) for G a group of rank two, i.e.,

the answer to the direct problem, is well-known (see [17, 21]).

Theorem 4.1. Let m,n ∈ N. Then D(Cm ⊕ Cmn) = m+mn− 1.
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Next, we recall some results on sequences over cyclic groups. Namely, the

solution to the inverse problem associated to Davenport’s constant for cyclic

groups, a simple special case of [4], and the Theorem of Erdős–Ginzburg–

Ziv [6]

Theorem 4.2. Let n ∈ N and S ∈ F(Cn).

(i) S is a ml-mzss if and only if S = en for some e ∈ Cn with 〈e〉 = Cn.

(ii) If |S| ≥ 2n−1, then there exists some T | S with |T | = n and σ(T ) = 0.

The following result is a main tool in the proof of Theorem 3.2. It was

obtained in [9, Proposition 4.1, Theorem 7.1]; note that, now the additional

assumption in the original version (regarding the existence of zss of length

m and 2m) can be dropped, since by [10, Theorem 6.5] it is known to be

fulfilled for each m ∈ N, also note that the second type of sequence requires

t ≥ 3).

Theorem 4.3. Let m, t ∈ N with m ≥ 2 and t ≥ 2. Suppose that C2
m has

Property B. Let S ∈ F(C2
m) be a zss of length tm−1 that cannot be written

as the product of t non-empty zss. Then for some basis {f1, f2} of C2
m,

S = f sm−1
1

(t−s)m∏
i=1

(aif1 + f2)

with s ∈ [1, t− 1] and ai ∈ [0,m− 1] where
∑(t−s)m

i=1 ai ≡ 1 (mod m), or

S = f s1m
1 f s2m−1

2 (bf1 + f2)
s3m−1(bf1 + 2f2)

with si ∈ N such that s1+s2+s3 = t and b ∈ [1,m−1] such that gcd{b,m} =

1.

4.2. Proof of Theorem 3.2. We start by establishing that all the se-

quences are indeed ml-mzss.

Since the length of each sequence is mn+ n− 1, and by Theorem 4.1, it

suffices to show that they are mzss. It is readily seen that σ(S) = 0, thus it

remains to show minimality. Let 1 6= T | S be a zss. We assert that T = S. If

S is as given in (1), then it suffices to note that e
ord ej−1
j is zero-sum free, thus

(−xiej +ek) | T for some i ∈ [1, ord ek] and this implies
∏ord ek

i=1 (−xiej +ek) |
T , which implies S = T . Suppose S is as given in (2). We first note that

ag1 ∈ 〈g2〉 if and only if m | a. Let v ∈ N0 and I ⊂ [1, (n+1−s)m] such that

T = gv
1

∏
i∈I(−xig1 + g2). Since σ(T ) = 0 and by the above observation, it

follows that m | (v −
∑

i∈I xi), say mb = v −
∑

i∈I xi, where b ∈ [0, s − 1].

Furthermore, we get mbg1 + |I|g2 = 0. If s = 1, then b = 0, implying that

|I| = mn and v = m − 1, that is S = T . If s > 1, we have mg1 = mg2,
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thus mn | |I|+mb and indeed mn = |I|+mb. Yet, mn = |I|+mb implies

|I| = [1, (n + 1 − s)m] and b = s − 1, that is S = T . Thus, the sequences

are mzss.

Now, we show that if C2
m has Property B, then each ml-mzss is of this

form.

As already mentioned, the case n = 1 is well-known (cf. Theorem 4.3).

We thus assume n ≥ 2, that is G ∼= Cm ⊕ Cmn with m ≥ 2 and n ≥ 2.

Furthermore, let H = {mg : g ∈ G} ∼= Cn and let ϕ : G → G/H be the

canonical map; we have G/H ∼= C2
m. We apply the Inductive Method, as in

[7, Section 8], with the exact sequence

0 → H ↪→ G
ϕ→ G/H → 0.

Let S ∈ F(G) be a ml-mzss. First, we assert that ϕ(S) cannot be written

as the product of n + 1 non-empty zss, in order to apply Theorem 4.3.

Suppose this is possible, say ϕ(S) =
∏n+1

i=1 ϕ(Si) with non-empty zss ϕ(Si).

Then
∏n+1

i=1 σ(Si) ∈ F(H) has a proper subsequence that is a zss, yielding

a proper subsequence of S that is a zss.

Thus, by Theorem 4.3 there exists a basis {f1, f2} of C2
m such that

(4.1) ϕ(S) = f sm−1
1

(n+1−s)m∏
i=1

(aif1 + f2)

with s ∈ [1, n], ai ∈ [0,m− 1], and
∑(n+1−s)m

i=1 ai ≡ 1 (mod m) or

(4.2) ϕ(S) = f s1m
1 f s2m−1

2 (bf1 + f2)
s3m−1(bf1 + 2f2)

with si ∈ N such that s1 + s2 + s3 = n + 1 and b ∈ [1,m − 1] such that

gcd(b,m) = 1. We distinguish two cases, depending on which of the two

structures ϕ(S) has.

Case 1: ϕ(S) is of the form given in (4.1). Moreover, we assume the

basis {f1, f2} is chosen in such a way that s is maximal. Furthermore, let

ψ : G/H → 〈f1〉 denote the projection with respect to G/H = 〈f1〉 ⊕ 〈f2〉.
Let S = FT such that ϕ(F ) = f sm−1

1 and T =
∏(n+1−s)m

i=1 hi such that

ϕ(hi) = aif1 + f2.

We call a factorization T = S0S1 . . . Sn−s admissible if σ(ϕ(Si)) = 0 and

|Si| = m for i ∈ [1, n − s] (then σ(ϕ(S0)) = f1 and |S0| = m). Since for a

sequence T ′ | T of length m the conditions σ(ϕ(T ′)) = 0 and σ(ψ(ϕ(T ′))) =

0 are equivalent, the existence of admissible factorizations follows using

Theorem 4.2.

Let T = S0S1 . . . Sn−s be an admissible factorization such that | supp(S0)|
is maximal (among all admissible factorizations of T ). Moreover, let F =
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F0F1 . . . Fs−1 with |F0| = m − 1 and |Fi| = m for i ∈ [1, s − 1]. Then

σ(ϕ(Fi)) = 0 for i ∈ [1, s − 1], σ(ϕ(Si)) = 0 for i ∈ [1, n − s], and

σ(ϕ(S0F0)) = 0. Thus, σ(S0F0)
∏s−1

i=1 σ(Fi)
∏n−s

i=1 σ(Si) is a sequence over

H, and it is a mzss. Since its length is n, it follows by Theorem 4.2 that

there exists some generating element e ∈ H such that this sequence is equal

to en.

We show that | supp(F )| = 1. We assume to the contrary that there exist

distinct g, g′ ∈ supp(F ).

First, suppose s ≥ 2. We may assume g | Fi and g′ | Fj for distinct

i, j ∈ [0, s−1]. Now we consider F ′
i = g−1g′Fi and F ′

j = g′−1gFj and F ′
k = Fk

for k /∈ {i, j}. As above, we get that σ(S0F
′
0)

∏s−1
i=1 σ(F ′

i )
∏n−s

i=1 σ(Si) is a ml-

mzss over H and thus equal to ēn for some generating element ē ∈ H and

indeed, since at most two elements in the sequence are changed and for

n = 2 there is only one generating element of H, we have e = ē. Thus,

σ(Fi) = σ(F ′
i ) = σ(Fi) + g′ − g, a contradiction.

Second, suppose s = 1. It follows that m ≥ 3, since for m = 2 we have

|F | = 1. We consider S0Sj for some j ∈ [1, n − 1]. Let S0Sj = T ′T ′′ with

|T ′| = |T ′′| = m. Since σ(ϕ(T ′)) + σ(ϕ(T ′′)) = f1 and σ(ϕ(T ′)), σ(ϕ(T ′′)) ∈
〈f1〉 it follows that there exists some a ∈ [0,m − 1] such that σ(ϕ(T ′)) =

(a+1)f1 and σ(ϕ(T ′′)) = −af1. Let F0 = F ′F ′′ with |F ′| = m− (a+1) and

|F ′′| = a. We note that σ(T ′F ′)σ(T ′′F ′′)
∏n−1

i=1,i6=j σ(Si), is a ml-mzss over

H and again it follows that it is equal to en (with the same element e as

above). If both F ′ and F ′′ are non-empty, we may assume g | F ′ and g′ | F ′′,

to obtain a contradiction as above. Thus, it remains to investigate whether

there exists a factorization S0Sj = T ′T ′′ with |T ′| = |T ′′| = m such that

{σ(ϕ(T ′)), σ(ϕ(T ′′))} 6= {0, f1}. We observe that such a factorization exists

except if ϕ(S0Sj) = (bf1+f2)
2m−1(cf1+f2) (note that ϕ(S0Sj) = (bf1+f2)

2m

is impossible, since σ(ϕ(S0Sj)) 6= 0).

Thus, if such a factorization does not exist, for each j ∈ [1, n− 1], then

ϕ(T ) = (bf1 +f2)
mn−1(cf1 +f2). Since σ(ϕ(T )) = f1, we get cf1 = (b+1)f1.

Thus, with respect to the basis consisting of f̄1 = bf1 + f2 and f̄2 = f1,

we have ϕ(S) = f̄mn−1
1 f̄m−1

2 (f̄1 + f̄2), contradicting the assumption that the

basis {f1, f2} maximizes s.

Therefore, we have | supp(F )| = 1 and thus

S = gsm−1
1 T

for some g1 ∈ G.

First, we consider the case s = n. We have ord g1 = mn and thus G =

〈g1〉 ⊕ H2 where H2 ⊂ G is a cyclic group of order m. Let π : G → H2
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denote the projection with respect to G = 〈g1〉 ⊕ H2. We observe that

π(
∏m

i=1 hi) ∈ F(H2) is a mzss and consequently it is equal to gm
2 for some

generating element g2 of H2. We note that {g1, g2} is a basis of G. Thus, S

is of the form given in (1).

Thus, we may assume s < n. Next, we show that if ϕ(hj) = ϕ(hk) for

j, k ∈ [1, (n−s+1)m], then hj = hk. Since |h−1
j T | = (n−s+1−2)m+2m−1

and using again the projection ψ introduced above and Theorem 4.1, it

follows that there exists an admissible factorization T = S ′0S
′
1 . . . S

′
n−s with

hj | S ′0. Let ` ∈ [1, n− s] such that hjhk | S ′0S ′`. Let S ′0S
′
` = T ′

jT
′
k such that

hj | T ′
j , hk | T ′

k and |T ′
j| = |T ′

k| = m. Similarly as above, it follows that

σ(ϕ(T ′
j)) = (a′ + 1)f1 and σ(ϕ(T ′

k)) = −a′f1 for some a′ ∈ [0,m − 1]. We

note that σ(T ′
jg

m−a′−1
1 )σ(T ′

kg
a′
1 )σ(gm

1 )s−1
∏n−s

i=1,i6=` σ(S ′i), is a ml-mzss over

H and thus equal to e′n for a generating element e′ ∈ H. Similarly as above,

it follows that σ(h−1
j hkT

′
jg

m−a′−1
1 ) = e′. Thus, hj = hk.

Consequently, we have

S = gsm−1
1

∏
x∈[0,m−1]

kvx
x

with ϕ(kx) = xf1 + f2 for x ∈ [0,m− 1] and suitable vx ∈ N0.

In the following we show that S is of the form given in (2) or ord g1 = m.

At the end we show that if ord g1 = m, then S is of the form given in (1).

We start with the following assertion.

Assertion: Let T = S̄0S̄1 . . . S̄n−s be an admissible factorization. Let kx | S̄0

and let ky | S̄i for some i ∈ [1, n− s]. If x < y, then ky − kx = (y− x)g1 and

if x > y, then ky − kx = (y − x)g1 +mg1.

Proof of Assertion: We note that σ(ϕ(S̄0k
−1
x ky)) = (−x + y + 1)f1 and

σ(ϕ(S̄ik
−1
y kx)) = (−y + x)f1. Thus, we have σ(ϕ(S̄0k

−1
x kyg

[x−y−1]m
1 )) = 0 =

σ(ϕ(S̄ik
−1
y kxg

[y−x]m
1 )). We observe that [x−y−1]m+[y−x]m = m−1. Thus,

similarly as above, σ(S̄i) = σ(S̄ik
−1
y kxg

[y−x]m
1 ). Thus, ky = kx + [y − x]mg1.

Consequently, if x < y, then ky − kx = (y − x)g1 and if x > y, then

ky − kx = (y − x)g1 +mg1, proving the assertion.

First, we show that supp(S−1
0 T ) ⊂ supp(S0) or ord g1 = m. We assume

that there exists some i ∈ [1, n − s] and some kt | Si such that kt - S0 and

show that this implies ord g1 = m.

The sequence k−1
t SiS0 has length 2m − 1. Thus, as above, there exists

a subsequence S ′′i | k−1
t SiS0 such that σ(ϕ(S ′′i )) = 0 and |S ′′i | = m. Let

S ′′0 = S ′′−1
i SiS0 and S ′′j = Sj for j /∈ {0, i}. We get that S ′′0S

′′
1 . . . S

′′
n−s is an

admissible factorization of T . Since kt | S ′′0 and kt - S0 and | supp(S0)| is



INVERSE ZERO-SUM PROBLEMS II 9

maximal (by assumption), there exists some ku | S0 such that ku - S ′′0 and

thus ku | S ′′i . Clearly ku 6= kt and thus t 6= u.

We apply the Assertion twice. First, to ku | S0 and kt | Si. If u < t, then

kt − ku = (t − u)g1 and if u > t, then kt − ku = (t − u)g1 + mg1. Second,

to kt | S ′′0 and ku | S ′′i . If t < u, then ku − kt = (u− t)g1 and if t > u, then

ku − kt = (u− t)g1 +mg1.

Thus, if u < t, then kt − ku = (t − u)g1 and ku − kt = (u − t)g1 +mg1.

Adding these two equations, we get mg1 = 0 and ord g1 = m. And, if u > t,

then kt − ku = (t − u)g1 + mg1 and ku − kt = (u − t)g1, again yielding

ord g1 = m.

Second, we show that | supp(S−1
0 T )| = 1 or ord g1 = m. We assume

that | supp(S−1
0 T )| ≥ 2, say it contains elements ku, kt with t > u. Let

i, j ∈ [1, n− s], not necessarily distinct, such that ku | Si and kt | Sj. By the

above argument we may assume that supp(S−1
0 T ) ⊂ supp(S0). We apply the

Assertion with kt | S0 and ku | Si, to obtain ku− kt = (u− t)g1 +mg1. And,

we apply the Assertion with ku | S0 and kt | Sj to obtain kt−ku = (t−u)g1.

Thus, we obtain mg1 = 0.

Consequently, we have T = k
(n−s)m
u S0 and ku | S0 for some u ∈ [0,m−1]

or ord g1 = m.

We assume that T = k
(n−s)m
u S0 and ku | S0 for some u ∈ [0,m−1]. Since

n − s ≥ 1 and σ(km
u ) = e, it follows that ord ku = mn. Let f ′2 = ϕ(ku) =

uf1 + f2. It follows that {f1, f
′
2} is a basis of G/H.

If, for x ∈ [0,m − 1], an element h ∈ supp(T ) = supp(S0) exists with

ϕ(h) = −xf1 + f ′2 (as shown above there is at most one such element), then

we denote it by k′−x. In particular, ku = k′0.

For each k′−x ∈ supp(S0), similarly as above, σ(k′m0 ) = σ(k′m−1
0 k′−xg

x
1 ).

Thus, we have k′0 = k′−x +xg1. Let xi ∈ [0,m− 1] such that S0 =
∏m

i=1 k
′
−xi

.

We know that
∑m

i=1(−xif1) = f1, i.e.,
∑m

i=1 xi ≡ m− 1 (mod m).

We show that
∑m

i=1 xi = m − 1 or ord g1 = m. Assume the former

does not hold, and let ` be maximal such that
∑`

i=1 xi = c < m. We

observe that σ(k′m−`
0 (

∏`
i=1 f

′
−xi

)gc
1) = σ(k′m−`−1

0 (
∏`+1

i=1 f
′
−xi

)g
[c+x`+1]m
1 ). By

the choice of ` it follows that [c+ x`+1]m = c+ x`+1 −m. Thus, k′0 + cg1 =

k−x`+1
+ (c + x`+1 − m)g1 and k′0 = k−x`+1

+ (x`+1 − m)g1, which implies

mg1 = 0.

So, ord g1 = m, or S is of the form, where k′0 = g2,

S = gsm−1
1 g

(n−s)m
2

m∏
i=1

(−xig1 + g2)
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with xi ∈ [0,m − 1] and
∑m

i=1 xi = m − 1. Clearly, {g1, g2} is a generating

set of G. Moreover, we know that if s ≥ 2, then σ(gm
1 ) = e = σ(gm

2 ). Thus,

S is of the form given in (2).

Finally, suppose ord g1 = m. We have s = 1. Let ω : G→ G/〈g1〉 denote

the canonical map. The sequence ω(
∏mn

i=1 hi) is a mzss. Thus, by Theorems

4.1 and 4.2, G/〈g1〉 is a cyclic group of order mn and ω(
∏mn

i=1 hi) = ω(g2)
mn

for some g2 ∈ G, and ord g2 = mn. Thus, {g1, g2} is a basis of G and S has

the form given in (1).

Case 2: ϕ(S) is of the form given in (4.2). If m = 2, then bf1 + 2f2 = f1

and the sequence ϕ(S) is also of the form given in (4.1). Thus, we as-

sume m ≥ 3. Moreover, we note that with respect to the basis f ′1 =

f1 and f ′2 = bf1 + f2, we have f2 = (m − b)f ′1 + e′2 and bf1 + 2f2 =

(m − b)f ′1 + 2f ′2. Thus, we may assume that b < m/2. Let S = FT with

ϕ(T ) = fm
1 (bf1 + f2)

m−1fm−1
2 (bf1 + 2f2). We note that F =

∏n−2
i=1 Fi with

ϕ(Fi) ∈ {fm
1 , f

m
2 , (bf1 +f2)

m} for each i ∈ [1, n−2]. Suppose T = T1T2 such

that σ(ϕ(Ti)) = 0 and Ti 6= 1 for i ∈ [1, 2]. Then σ(T1)σ(T2)
∏n−2

i=1 σ(Fi) is

a ml-mzss over H and thus equal to en for some generating element e of

H. It follows that for each factorization T = T1T2 with σ(ϕ(Ti)) = 0 and

Ti 6= 1 for i ∈ [1, 2], we have σ(T1) = σ(T2) = e.

Let T ′
1 | T such that ϕ(T ′

1) = f b
1(bf1 + f2)

m−1f2 and let T ′
2 = T ′−1

1 T .

Suppose that, for some i ∈ [1, 2], there exists distinct elements gi, g
′
i ∈

supp(S) such that ϕ(gi) = ϕ(g′i) = fi. We may assume that gi | T ′
1 and

g′i | T ′
2. It follows that σ(g−1

i g′iT
′
1) = e = σ(T ′

1), a contradiction. Thus,

ϕ−1(fi) ∩ supp(S) = {gi} for i ∈ [1, 2].

Now, let T ′′
1 | T such that ϕ(T ′′

1 ) = f 2b
1 (bf1 + f2)

m−2f 2
2 and T ′′

2 = T ′′−1
1 T .

We can argue in the same way that ϕ−1(bf1 +f2)∩ supp(S) = {kb}. Finally,

let k | S such that ϕ(k) = bf1 + 2f2. It follows that

S = gs1m
1 gs2m−1

2 ks3m−1
b k.

We note that ord g1 = mn and that {g1, g2} is a generating set of G.

Since, as above, σ(km−2
b kgb

1) = e = σ(km−1
b kgm−1

2 ), it follows that bg1 =

kb + (m − 1)g2. Moreover, σ(g2b
1 k

m−2
b g2

2) = e = σ(gb
1k

m−1
b g2) implies that

bg1 + g2 = kb. Thus, mg2 = 0 and and {g2, g1} is a basis of G. Moreover, we

have s2 = 1. Additionally, we get k+(m−1)g2 = bg1+g2, i.e., k = bg1+2g2.

We observe that the projection to 〈g1〉 (with respect to G = 〈g1〉 ⊕ 〈g2〉)
of the sequence g

−(m−1)
2 S , i.e., the sequence gs1m

1 (bg1)
s3m, is a mzss. Since

s1 + s3 = n, this implies b = 1. Thus, S is of the form given in (1).
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