
ON THE ARITHMETIC OF KRULL MONOIDS

WITH INFINITE CYCLIC CLASS GROUP

A. GEROLDINGER, D. J. GRYNKIEWICZ, G. J. SCHAEFFER, AND W. A. SCHMID

Abstract. Let H be a Krull monoid with in�nite cyclic class group G and let GP � G denote the set
of classes containing prime divisors. We study under which conditions on GP some of the main �niteness
properties of factorization theory|such as local tameness, the �niteness and rationality of the elasticity, the
structure theorem for sets of lengths, the �niteness of the catenary degree, and the existence of monotone and
of near monotone chains of factorizations|hold in H. In many cases, we derive explicit characterizations.

1. Introduction

By an atomic monoid, we mean a commutative cancellative semigroup with unit element such that every
non-unit has a factorization as a �nite product of atoms (irreducible elements). The multiplicative monoid
consisting of the nonzero elements from a noetherian domain is such a monoid. Let H be an atomic
monoid. Then H is factorial (that is, every non-unit has a unique factorization into atoms) if and only if
H is a Krull monoid with trivial class group. The �rst objective of factorization theory is to describe the
various phenomena related to the non-uniqueness of factorizations. This is done by a variety of arithmetical
invariants such as sets of lengths (including all invariants derived from them, such as the elasticity and the
set of distances) and by the catenary and tame degrees of the monoids. The second main objective is to
then characterize the �niteness (or even to �nd the precise value) of these arithmetical invariants in terms of
classical algebraic invariants of the objects under investigation. To illustrate this, we mention some results
of this type (a few classical ones and some very recent). The following result by Carlitz (achieved in 1960)
is considered as a starting point of factorization theory: the ring of integers oK of an algebraic number �eld
has elasticity �(oK) = 1 if and only if its class group has at most two elements (recall that, by de�nition, H
is half-factorial if and only if its elasticity �(H) = 1). A non-principal order o in an algebraic number �eld
has �nite elasticity if and only if, for every prime ideal p containing the conductor, there is precisely one
prime ideal p in the principal order o such that p\ o = p. This result (achieved by Halter-Koch in 1995) has
far reaching generalizations (achieved by Kainrath) to �nitely generated domains and to various classes of
Mori domains satisfying natural �niteness conditions (for all this, see [3, 35, 39, 38]).

An integral domain is a Krull domain if and only if its multiplicative monoid of nonzero elements is a
Krull monoid, and a noetherian domain is Krull if and only if it is integrally closed. A reduced Krull monoid
is uniquely determined by its class group and by the distribution of prime divisors in the classes (see Lemma
3.3 for a precise statement). Suppose H is a Krull monoid with class group G and let GP � G denote the set
of classes containing prime divisors. Suppose that GP = G. In that case, it is comparatively easy to show
that any of the arithmetical invariants under discussion is �nite if and only if G is �nite (the precise values of
arithmetical invariants|when G is �nite|are studied by methods of Additive and Combinatorial Number
Theory; see [28, Chapter 6] or [25] for a survey on this direction). However, only very little is known so far
on the arithmetic of H when G is in�nite and GP is a proper subset of G.

The present paper provides an in-depth study of the arithmetic of Krull monoids having an in�nite cyclic
class group. This situation was studied �rst by Anderson, Chapman and Smith in 1994 [1], then by Hassler
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[37], and the most recent progress (again due to Chapman et al.) was achieved in [2]. We continue this work.
The arithmetical properties under investigation are discussed in Section 2 and at the beginning of Section 5.
The required material on Krull monoids, together with a list of relevant examples, is summarized in Section
3. Our main results are Theorems 4.2, 5.2, 6.4 and Corollary 7.4. Along the way, we introduce new methods
(see the proofs of Proposition 4.8 and of Theorem 7.3) and solve an old problem proposed in 1994 (see the
equivalence of (a) and (e) in Theorem 4.2). A more detailed discussion of the main results is shifted to the
relevant sections where we have the required terminology at our disposal.

2. Preliminaries

Our notation and terminology are consistent with [28]. We brie
y gather some key notions. We denote
by N the set of positive integers, and we put N0 = N [ f0g. For real numbers a; b 2 R, we set [a; b] = fx 2
Z j a � x � bg. For a subset X of (possibly negative) integers, we use gcdX and lcmX to denote the
greatest common divisor and least common multiple, respectively, and their values are always chosen to be
nonnegative regardless of the sign of the input.

Let L;L0 � Z. We set �L = f�a j a 2 Lg, L+ = L \ N and L� = L \ (�N). We denote by
L+ L0 = fa+ b j a 2 L; b 2 L0g their sumset. If ; 6= L � N, we call

�(L) = sup
nm
n

��� m;n 2 Lo =
supL

minL
2 Q�1 [ f1g

the elasticity of L, and we set �(f0g) = 1. Distinct elements k; l 2 L are called adjacent if L \
[minfk; lg;maxfk; lg] = fk; lg. A positive integer d 2 N is called a distance of L if there exist adja-
cent elements k; l 2 L with d = jk� lj. We denote by �(L) the set of distances of L. Note that �(L) = ; if
and only if jLj � 1, and that L is an arithmetical progression with di�erence d 2 N if and only if �(L) � fdg.
We need the following generalization of an arithmetical progression.

Let d 2 N, M 2 N0 and f0; dg � D � [0; d]. Then L is called an almost arithmetical multiprogression
(AAMP for short) with di�erence d, period D, and bound M , if

L = y + (L0 [ L� [ L00) � y +D + dZ

where

� L� is �nite and nonempty with minL� = 0 and L� = (D + dZ) \ [0;maxL�]
� L0 � [�M;�1] and L00 � maxL� + [1;M ]
� y 2 Z.

Note that an AAMP is �nite and nonempty. An AAMP with period f0; dg is called an almost arithmetical
progression (AAP for short).

By a monoid, we mean a commutative, cancellative semigroup with unit element; we denote the unit
element by 1. Let H be a monoid. We denote by A(H) the set of atoms (irreducible elements) of H, by
H� the group of invertible elements, and by Hred = faH� j a 2 Hg the associated reduced monoid of
H. We call elements a; b 2 H associated (in symbols a ' b) if aH� = bH�. We say that H is reduced
if jH�j = 1. We denote by q(H) a quotient group of H with H � q(H), and for a prime element p 2 H,
let vp : q(H) ! Z be the p-adic valuation. For a subset H0 � H, we denote by [H0] � H the submonoid
generated by H0 and by hH0i � q(H) the subgroup generated by H0. For elements a; b 2 H, we frequently
use, in case a j b, the notation a�1b to denote the element c 2 H with ac = b; yet, we mention explicitly if
we shift our investigations from H to the quotient group of H.

For a set P , we denote by F(P ) the free (abelian) monoid with basis P . Then every a 2 F(P ) has a
unique representation in the form

a =
Y
p2P

pvp(a) with vp(a) 2 N0 and vp(a) = 0 for almost all p 2 P :

We call jaj =
P

p2P vp(a) the length of a.
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The free monoid Z(H) = F
�
A(Hred)

�
is called the factorization monoid of H, and the unique

homomorphism
� : Z(H)! Hred satisfying �(u) = u for each u 2 A(Hred)

is called the factorization homomorphism of H. For a 2 H and k 2 N, the set

ZH(a) = Z(a) = ��1(aH�) � Z(H) is the set of factorizations of a ;

Zk(a) = fz 2 Z(a) j jzj = kg is the set of factorizations of a of length k; and

LH(a) = L(a) =
�
jzj

�� z 2 Z(a)
	
� N0 is the set of lengths of a :

By de�nition, we have Z(a) = f1g and L(a) = f0g for all a 2 H�. The monoid H is called

� atomic if Z(a) 6= ; for all a 2 H.
� a BF-monoid (a bounded factorization monoid) if L(a) is �nite and nonempty for all a 2 H.
� half-factorial if jL(a)j = 1 for all a 2 H.

We repeat the arithmetical concepts which are used throughout the whole paper. Some more speci�c
notions will be recalled at the beginning of Section 5. Let H be atomic and a 2 H. Then �(a) = �

�
L(a)

�
is called the elasticity of a, and the elasticity of H is de�ned as

�(H) = supf�(b) j b 2 Hg 2 R�1 [ f1g :

We say that H has accepted elasticity if there exists some b 2 H with �(b) = �(H).
Let k 2 N. If H 6= H�, then

Vk(H) =
[

k2L(a);a2H

L(a)

is the union of all sets of lengths containing k. When H� = H, we set Vk(H) = fkg. In both cases, we
de�ne �k(H) = supVk(H) and �k(H) = minVk(H). Clearly, we have V1(H) = f1g and k 2 Vk(H). By its
de�nition, H is half-factorial if and only if Vk(H) = fkg for each k 2 N.

We denote by

�(H) =
[
b2H

�
�
L(b)

�
� N

the set of distances of H, and by L(H) = fL(b) j b 2 Hg the system of sets of lengths of H.

Let z; z0 2 Z(H). Then we can write

z = u1 � : : : � ulv1 � : : : � vm and z0 = u1 � : : : � ulw1 � : : : � wn ;

where l; m; n 2 N0 and u1; : : : ; ul; v1; : : : ; vm; w1; : : : ; wn 2 A(Hred) are such that

fv1; : : : ; vmg \ fw1; : : : ; wng = ; :

Then gcd(z; z0) = u1 � : : : � ul, and we call

d(z; z0) = maxfm; ng = maxfjz gcd(z; z0)�1j; jz0 gcd(z; z0)�1jg 2 N0

the distance between z and z0. If �(z) = �(z0) and z 6= z0, then

(2.1) 2 +
��jzj � jz0j

�� � d(z; z0)

by [28, Lemma 1.6.2]. For subsets X;Y � Z(H), we set

d(X;Y ) = minfd(x; y) j x 2 X; y 2 Y g ;

and thus X \ Y 6= ; if and only if d(X;Y ) = 0.

We recall the concepts of the (monotone) catenary and tame degrees (see also the beginning of Section
7). The catenary degree c(a) of the element a is the smallest N 2 N0 [ f1g such that, for any two
factorizations z; z0 of a, there exists a �nite sequence z = z0 ; z1 ; : : : ; zk = z0 of factorizations of a such
that d(zi�1; zi) � N for all i 2 [1; k]. The monotone catenary degree cmon(a) is de�ned in the same way
with the additional restriction that jz0j � : : : � jzkj or jz0j � : : : � jzkj. We say that the two factorizations
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z and z0 can be concatenated by a (monotone) N -chain if a sequence ful�lling the above conditions exists.
Moreover,

c(H) = supfc(b) j b 2 Hg 2 N0 [ f1g and cmon(H) = supfcmon(b) j b 2 Hg 2 N0 [ f1g

denote the catenary degree and the monotone catenary degree of H. Clearly, we have c(a) � cmon(a) for
all a 2 H, as well as c(H) � cmon(H), and (2.1) implies that 2 + sup�(H) � c(H).

For x 2 Z(H), let t(a; x) 2 N0 [ f1g denote the smallest N 2 N0 [ f1g with the following property :

If Z(a) \ xZ(H) 6= ; and z 2 Z(a), then there exists z0 2 Z(a) \ xZ(H) such that d(z; z0) � N .

For subsets H 0 � H and X � Z(H), we de�ne

t(H 0; X) = sup
�
t(b; x)

�� b 2 H 0; x 2 X
	
2 N0 [ f1g :

H is called locally tame if t(H;u) <1 for all u 2 A(Hred) (see the beginning of Section 4 and De�nition
6.1).

3. Krull monoids: Basic Properties and Examples

The theory of Krull monoids is presented in detail in the monographs [36, 33, 28]. Here we �rst gather
the required terminology. After that, we recall some facts concerning transfer homomorphisms, since the
arithmetic of Krull monoids is studied via such homomorphisms. In particular, we deal with block homo-
morphisms (which are transfer homomorphisms) from Krull monoids into the associated block monoids. At
the end of this section, we discuss examples of Krull monoids with in�nite cyclic class group.

Krull monoids. Let H and D be monoids. A monoid homomorphism ' : H ! D is called

� a divisor homomorphism if '(a) j '(b) implies that a j b for all a; b 2 H.

� co�nal if for every a 2 D there exists some u 2 H such that a j'(u).

� a divisor theory (forH) if D = F(P ) for some set P , ' is a divisor homomorphism, and for every p 2 P
(equivalently for every a 2 F(P )), there exists a �nite subset ; 6= X � H satisfying p = gcd

�
'(X)

�
.

Note that, by de�nition, every divisor theory is co�nal. We call C(') = q(D)=q('(H)) the class group
of ' and use additive notation for this group. For a 2 q(D), we denote by [a] = [a]' = a q('(H)) 2
q(D)=q('(H)) the class containing a. We recall that ' is co�nal if and only if C(') = f[a] j a 2 Dg, and
if ' is a divisor homomorphism, then '(H) = fa 2 D j [a] = [1]g. If ' : H ! F(P ) is a co�nal divisor
homomorphism, then

GP = f[p] = pq('(H)) j p 2 Pg � C(')

is called the set of classes containing prime divisors, and we have [GP ] = C(') (for a converse, see Lemma
3.4). If H � D is a submonoid, then H is called co�nal (saturated, resp.) in D if the imbedding H ,! D is
co�nal (a divisor homomorphism, resp.).

The monoid H is called a Krull monoid if it satis�es one of the following equivalent conditions ([28,
Theorem 2.4.8]; see [41] for recent progress) :

� H is v-noetherian and completely integrally closed.

� H has a divisor theory.

� Hred is a saturated submonoid of a free monoid.

In particular, H is a Krull monoid if and only if Hred is a Krull monoid. Let H be a Krull monoid. Then
a divisor theory ' : H ! F(P ) is unique up to unique isomorphism. In particular, the class group C(')
de�ned via a divisor theory of H and the subset of classes containing prime divisors depend only on H. Thus
it is called the class group of H and is denoted by C(H). In fact, for every Krull monoid the map, de�ned
via assigning to each a 2 H the principal ideal it generates, from H to I�v (H)|the monoid of v-invertible
v-ideals of H, which is a free monoid with basis X(H)|is a divisor theory, and thus C(H) is the v-class
group of H (up to isomorphism).
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Transfer homomorphisms. We recall some of the main properties which are needed in the sequel (details
can be found in [28, Section 3.2]).

De�nition 3.1. A monoid homomorphism � : H ! B is called a transfer homomorphism if it has the
following properties:

(T 1) B = �(H)B� and ��1(B�) = H�.

(T 2) If u 2 H, b; c 2 B and �(u) = bc, then there exist v; w 2 H such that u = vw, �(v) ' b
and �(w) ' c.

Every transfer homomorphism � gives rise to a unique extension � : Z(H)! Z(B) satisfying

�(uH�) = �(u)B� for each u 2 A(H) :

For a 2 H, we denote by c(a; �) the smallest N 2 N0 [ f1g with the following property:

If z; z0 2 ZH(a) and �(z) = �(z0), then there exist some k 2 N0 and factorizations z = z0; : : : ; zk =
z0 2 ZH(a) such that �(zi) = �(z) and d(zi�1; zi) � N for all i 2 [1; k] (that is, z and z0 can be

concatenated by an N -chain in the �ber ZH(a) \ �
�1
(�(z)) ).

Then

c(H; �) = supfc(a; �) j a 2 Hg 2 N0 [ f1g

denotes the catenary degree in the �bres.

Lemma 3.2. Let � : H ! B and �0 : B ! B0 be transfer homomorphisms of atomic monoids.

1. For every a 2 H, we have �(ZH(a)) = ZB(�(a)) and LH(a) = LB(�(a)).

2. c(B) � c(H) � maxfc(B); c(H; �)g, cmon(B) � cmon(H) � maxfcmon(B); c(H; �)g and �(B) = �(H).

3. For every a 2 H and all k; l 2 L(a), we have d
�
Zk(a);Zl(a)

�
= d

�
Zk
�
�(a)

�
;Zl

�
�(a)

��
.

4. For every a 2 H, we have c(a; �0 � �) � maxfc(a; �); c(�(a); �0)g.
In particular, c(H; �0 � �) � maxfc(H; �); c(B; �0)g.

Proof. 1. This follows from [28, Proposition 3.2.3].

2. The �rst statement follows from Theorem 3.2.5.4, the second from Lemma 3.2.6 in [28], and the third
from [26, Theorem 3.14].

3. Let a 2 H and k; l 2 L(a). If z; z0 2 Z(a) with jzj = k and jz0j = l, then j�(z)j = k, j�(z0)j = l and
d
�
�(z); �(z0)

�
� d(z; z0), which implies that d

�
Zk
�
�(a)

�
;Zl

�
�(a)

��
� d

�
Zk(a);Zl(a)

�
. To verify the reverse

inequality, let z1; z2 2 Z(�(a)) be given. We pick any z1 2 Z(a) with �(z1) = z1. By [28, Proposition
3.2.3.3.(c)], there exists a factorization z2 2 Z(a) such that �(z2) = z2 and d(z1; z2) = d(z1; z2). Since
jzij = jzij for i 2 f1; 2g, it follows that d

�
Zk(a);Zl(a)

�
� d

�
Zk
�
�(a)

�
;Zl

�
�(a)

��
.

4. We recall that �0 � � is a transfer homomorphism (see the paragraph after [28, De�nition 3.2.1]). Let
a 2 H. Let z; z0 2 ZH(a) with �0 � �(z) = �0 � �(z0). Let z = �(z) and z0 = �(z0). We have z; z0 2 ZB(�(a))
and �0(z) = �0(z0). Thus, by the de�nition of c(�(a); �0), there exist some k 2 N0 and z = z0; : : : ; zk = z0 2
ZB(�(a)) such that �0(zi) = �0(z) and d(zi�1; zi) � c(�(a); �0) for each i 2 [1; k]. Let z0 = z. Again, by [28,
Proposition 3.2.3.3.(c)], for each i < k, there exists some factorization zi+1 2 ZH(a) such that �(zi+1) = zi+1
and d(zi; zi+1) = d(zi; zi+1).

Now, we have �(zk) = z0 = �(z0). Thus, by the de�nition of c(a; �), there exist some l 2 N0 and
zk = y0; : : : ; yl = z0 2 ZH(a) such that �(yi) = �(z0) and d(yi�1; yi) � c(a; �) for each i 2 [1; l]. Since �(yi) =
�(z0) clearly implies �0 � �(yi) = �0 � �(z0), we get that the maxfc(�(a); �0); c(a; �)g-chain z = z0; : : : ; zk =
y0; : : : ; yl = z0 has the required properties. �
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Monoids of zero-sum sequences. Let G be an additive abelian group, G0 � G a subset and F(G0)
the free monoid with basis G0. According to the tradition of combinatorial number theory, the elements of
F(G0) are called sequences over G0. Thus a sequence S 2 F(G0) will be written in the form

S = g1 � : : : � gl =
Y
g2G0

gvg(S) ;

and we use all the notions (such as the length) as in general free monoids. Again using traditional language,
we refer to vg(S) as the multiplicity of g in S and refer to a divisor of S as a subsequence. If T jS, then
T�1S denotes the subsequence of S obtained by removing the terms of T . We call the set supp(S) =
fg1; : : : ; glg � G0 the support of S, �(S) = g1 + : : :+ gl 2 G the sum of S, and de�ne

�(S) =
nX
i2I

gi j ; 6= I � [1; l]
o
� G and, for k 2 N ;

�k(S) =
nX
i2I

gi j I � [1; l]; jIj = k
o
� G:

We set �S = (�g1) � : : : � (�gl). If G = Z, then we de�ne

S+ =
Y
g2G+

0

gvg(S) and S� =
Y
g2G�

0

gvg(S) ;

and thus we have S = S+S�0v0(S). The monoid

B(G0) = fS 2 F(G0) j �(S) = 0g

is called the monoid of zero-sum sequences over G0, and its elements are called zero-sum sequences over
G0. A sequence S 2 F(G0) is zero-sum free if it has no proper, nontrivial zero-sum subsequence (note the
trivial/empty sequence is de�ned to have sum zero). For every arithmetical invariant �(H) de�ned for a
monoid H, we write �(G0) instead of �(B(G0)). In particular, we set A(G0) = A(B(G0)). We de�ne the
Davenport constant of G0 by

D(G0) = sup
�
jU j

�� U 2 A(G0)
	
2 N0 [ f1g ;

which is a central invariant in zero-sum theory (see [20], and also [25] for its relevance in factorization theory).
Clearly, B(G0) � F(G0) is saturated, and hence B(G0) is a Krull monoid. We note that B(G0) � F(G0) is

co�nal if and only if for each g 2 G0 there is a B 2 B(G0) with vg(B) > 0 (see [28, Proposition 2.5.6]); if this
is the case, then the set G0 is called condensed. For a condensed set G0, the class group of B(G0) ,! F(G0)
is hG0i, and the subset of classes containing prime divisors is G0.

For G0 � Z, we have that G0 is condensed if and only if either G+
0 6= ; and G�0 6= ; or G0 � f0g. The

latter case, which in our context can be disregarded (see Lemma 3.3), is frequently automatically excluded
by some of the conditions we impose in our results; if not, we impose the extra condition jG0j � 2 to this
end.

Block monoids associated to Krull monoids. We will make substantial use of the following result ([28,
Section 3.4]).

Lemma 3.3. Let H be a Krull monoid, ' : H ! F = F(P ) a co�nal divisor homomorphism, G = C(')

its class group, and GP � G the set of classes containing prime divisors. Let e� : F ! F(GP ) denoted the

unique homomorphism de�ned by e�(p) = [p] for all p 2 P .

1. The homomorphism � = e� � ' : H ! B(GP ) is a transfer homomorphism with c(H;�) � 2. In
particular, it has all the properties mentioned in Lemma 3.2.

2. B(GP ) � F(GP ) is saturated and co�nal. If G is in�nite cyclic, then GP � G is a condensed set and
jGP j � 2.
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The homomorphism � is called the block homomorphism, and B(GP ) is called the block monoid associated
to '. If ' is a divisor theory, then B(GP ) is called the block monoid associated to H.

One more theorem and examples. The following lemma highlights the strong connection between the
algebraic structure of a Krull monoid and its class group and provides a realization result (see [28, Theorem
2.5.4]). Let G be an abelian group and (mg)g2G a family of cardinal numbers. We say H has characteristic
(G; (mg)g2G) if there is a group isomorphism �: G ~!C(H) such that card(P \�(g)) = mg for every g 2 G.

Lemma 3.4. Let G be an abelian group, (mg)g2G a family of cardinal numbers and G0 = fg 2 G j mg 6= 0g.

1. The following statements are equivalent :
(a) There exists a Krull monoid H and a group isomorphism �: G! C(H) such that

card(P \ �(g)) = mg for every g 2 G.
(b) G = [G0], and G = [G0 n fgg] for every g 2 G0 with mg = 1.

2. Two Krull monoids H and H 0 have the same characteristic if and only if Hred
�= H 0

red.

Examples 3.5.

1. Domains. A domain R is a Krull domain if and only if its multiplicative monoid of nonzero elements
is a Krull monoid. As a special case of Claborn's Realization Theorem, there is the following result: For
every subset G0 � Z with [G0] = Z, there is a Dedekind domain R and an isomorphism �: G! C(R) such
that �(G0) = fg 2 C(R) j g \ X(R) 6= ;g ([28, Theorem 3.7.8]. More results of this 
avor are discussed in
[28, Section 3.7] and [27, Section 5].

Let R be a domain and H a monoid such that R[H] is a Krull domain. There are a variety of results on
the class group of R[H], which provide many explicit monoid domains having in�nite cyclic class group ([32,
x16], see also [40]). Generalized power series domains that are Krull are studied in [42].

2. Zero-sum sequences. Let G0 � Z be a subset such that [G0 n fgg] = Z for all g 2 G0. Then the
monoid of zero-sum sequences B(G0) is a Krull monoid with class group isomorphic to Z, and G0 corresponds
to the set of classes containing prime divisors ([28, Proposition 2.5.6]).

3. Module theory. Let R be a (not necessarily commutative) ring and C a class of (right) R-modules|
closed under �nite direct sums, direct summands and isomorphisms|such that C has a set V (C) of repre-
sentatives (that is, every module M 2 C is isomorphic to a unique [M ] 2 V (C)). Then V (C) becomes a
commutative semigroup under the operation [M ]+ [N ] = [M �N ], which carries detailed information about
the direct-sum behavior of modules in C, e.g., whether or not the Krull{Remak{Azumaya{Schmidt Theorem
holds, and, when it does not, how badly it fails. If every module M 2 C has a semilocal endomorphism
ring, then V(C) is a Krull monoid ([10]). For situations where this condition is satis�ed and when the class
group of V(C) is cyclic, we refer to recent work of Facchini, Hassler, Wiegand et al. (see, for example,
[46, 12, 11, 13]).

4. Diophantine monoids. A Diophantine monoid is a monoid which consists of the set of solutions in
nonnegative integers to a system of linear Diophantine equations. In more technical terms, if m;n 2 N and
A 2Mm;n(Z), then H = fx 2 Nn0 j Ax = 0g is a Diophantine monoid. Moreover, H is a Krull monoid, and
if m = 1, then its class group is cyclic and there is a characterization of when it is in�nite ([7, Theorem 1.3],
[8, Proposition 4.3]; see also [28, Theorem 2.7.14] and [33, Chapter II.8]).

4. Arithmetical Properties Equivalent to the Finiteness of G+
P or G�P

Before we formulate our main characterization result, Theorem 4.2, we recall a recent characterization of
tameness, which is in contrast with our present results. Let H be an atomic monoid. For an element b 2 H,
let !(H; b) denote the smallest N 2 N0 [ f1g with the following property :
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For all n 2 N and a1; : : : ; an 2 H, if b j a1 � : : : � an, then there exists a subset 
 � [1; n] such that
j
j � N and

b
��� Y
�2


a� :

Clearly, b 2 H is a prime if and only if !(H; b) = 1, and so the !(H; �) values measure how far away atoms are
from primes. They are closely related to the local tame degrees t(H; �). A detailed study of their relationship
can be found in [30, Section 3], but here we mention only two simple facts (to simplify the formulation, we
suppose that H is reduced):

� !(H;u) � t(H;u) for all 1 6= u 2 H which are not prime (this follows from the de�nition).
� supft(H;u) j u 2 A(H)g <1 if and only if supf!(H;u) j u 2 A(H)g <1 ([31, Proposition 3.5]).

The monoid H is said to be tame if the above suprema are �nite. Note that the �niteness in Proposition
4.1.1 holds without any assumption on GP (indeed, it holds for all v-noetherian monoids [30, Theorem 4.2]).
In particular, one should compare Propositions 4.1.1 and 4.1.2.(c) and Theorem 4.2.(b).

Proposition 4.1. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors.

1. !(H;u) <1 for all u 2 A(H).

2. If ' is a divisor theory, then the following statements are equivalent :
(a) GP is �nite.
(b) D(GP ) <1.
(c) H is tame.

The equivalence of the three properties is a special case of [31, Theorem 4.2]. It is essential that the
imbedding is a divisor theory and not only a co�nal divisor homomorphism. Indeed, if G0 = f�1g[N, then
B(G0) ,! F(G0) is a co�nal divisor homomorphism, D(G0) =1, but B(G0) is factorial and hence tame (see
also Lemmas 3.4 and 5.3).

Theorem 4.2. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors. The following statements are equivalent :

(a) G+
P or G�P is �nite.

(b) H is locally tame, i.e., t(H;u) <1 for all u 2 A(Hred).

(c) The catenary degree c(H) is �nite.

(d) The set of distances �(H) is �nite.

(e) The elasticity �(H) is a rational number.

(f) �2(H) is �nite.

(g) There exists some M 2 N such that, for each k 2 N, we have �k+1(H)� �k(H) �M .

(h) There exists some M 2 N such that, for each k 2 N, the set Vk(H) is an AAP with di�erence
min�(H) and bound M .

We point out the crucial implications in the above result. Suppose that (a) holds. Then (b), (c), (e), (g)
and (h) are strong statements on the arithmetic of H. The conditions (d) and (f) are very weak arithmetical
statements (indeed, the implications (e) ) (f), (g) ) (f) and (h) ) (f) hold trivially in any atomic
monoid). The crucial point is that (d) and (f) both imply (a). In [1], it was �rst proved that (in the setting
of Krull domains) (a) is equivalent to the �niteness of the elasticity �(H), and the problem was put forward
whether or not �(H) would always be rational; part (e) shows that this is indeed so. In [2], it was recently
shown that (a) is equivalent to (c) as well as to (d) (also in the setting of Krull monoids). We will give a
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complete proof of all implications, not only because our setting is slightly more general|being valid for any
divisor homomorphism rather than divisor theory (recall, as noted earlier, that Proposition 4.1.2 does not
hold in this slightly more general setting, and so there is indeed sometimes a di�erence between a divisor
theory and homomorphism)|but also because we need all the required tools regardless (in particular, for
the monotone catenary degree in Section 5), and thus little could be saved by not doing so.

Note, if the equivalent conditions of Theorem 4.2 hold, then [21, Theorem 4.2] implies that

lim
k!1

jVk(H)j

k
=

1

min�(H)

�
�(H)�

1

�(H)

�
:

Under a certain additional assumption, the sets Vk(H) are even arithmetical progressions and not only AAPs
([18, Theorem 3.1]; for more on the sets Vk(H), see ([25, Theorem 3.1.3]).

As mentioned in the introduction, there are characterizations of arithmetical properties in various algebraic
settings. In most of them, the �niteness of the elasticity is equivalent to the �niteness of all �k(H) (though
this does not hold in all atomic monoids). But in none of these settings is the �niteness of the elasticity
equivalent to the �niteness of the catenary degree. The reader may want to compare Proposition 4.1 and
Theorem 4.2 with [28, Corollary 3.7.2], [38, Theorem 4.5] or [30, Theorem 4.4].

The remainder of this section is devoted to the proof of Theorem 4.2. We start with the necessary
preparations.

Lemma 4.3. Let G0 � Z be a condensed subset. Then

jU+j � j inf G0j for each atom U 2 A(G0) :

If in particular G0 is �nite, then D(G0) � maxG0 + jminG0j.

Proof. This is due to Lambert ([43]); for a proof in the present terminology, see [2, Theorem 3.2]. �

Lemma 4.4. Let G0 � Z be a condensed subset such that G+
0 is in�nite. For each S 2 F(G�0 ), there exists

some U 2 A(G0) with S j U .

Proof. Let d = gcd(G�0 ). Then [G�0 ] � �dN and there exists some g 2 N such that �gd� dN � [G�0 ]. Since
G+
0 is in�nite, let b 2 G+

0 with b > j�(S)j + gd, and let � 2 [1; d] be minimal such that �b 2 dN. By the
de�nition of g, there exists some S0 2 F(G�0 ) such that �(S0) = �(�b � j�(S)j) = �(�b + �(S)). Thus,
�(b�SS0) = 0 and, by the minimality of �, it follows that b�SS0 is an atom. �

The next lemma uses ideas from the proof of Theorem 3.1 in [2]. It will be used for the investigation of
the catenary degree as well as for the monotone catenary degree (Proposition 5.8).

Lemma 4.5. Let G0 � Z be a condensed subset such that G�0 is �nite and nonempty. Let A 2 B(G0) ne
nontrivial and z; z 2 Z(A) with jzj � jzj. Then there exists a U 2 A(G0) with U j z and a factorizationbz 2 Z(A) \ UZ(G0) such that d(z; bz) � �

jminG0j+ jG�0 j
2
�
jminG0j.

Proof. Let z = U1 � : : : � Um and z = V1 � : : : � Vl where l;m 2 N and U1; : : : ; Um; V1; : : : ; Vl 2 A(G0). We
proceed in two steps. Note we may assume 0 - A, else the lemma is trivial taking U = 0 and ẑ = z.

1. We assert that there is an i 2 [1;m] and a set I � [1; l] such that

jIj � jminG0j+ jG�0 j
2 and Ui

��� Y
�2I

V� :

We assume l > jG�0 j, since otherwise the claim is obvious. Since

mX
i=1

max
nvg(Ui)
vg(A)

j g 2 G�0

o
�

mX
i=1

X
g2G�

0

vg(Ui)

vg(A)
=

X
g2G�

0

� 1

vg(A)

mX
i=1

vg(Ui)
�
= jG�0 j ;
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there exists an i 2 [1;m] such that

(4.1)
vg(Ui)

vg(A)
�
jG�0 j

m
:

For each g 2 G�0 , there is an Ig � [1; l] with jIgj = jG�0 j such that

vg

�Y
�2Ig

V�

�
�
jG�0 jvg(A)

l
:

Hence, since l � m, it follows by (4.1) that

vg

�Y
�2Ig

V�

�
�
jG�0 jvg(A)

l
�
mvg(Ui)

vg(A)

vg(A)

l
= vg(Ui) :

Since by Lemma 4.3 we have jU+
i j � jminG0j, there is an I0 � [1; l] with jI0j � jminG0j such that

vg(Ui) � vg

� Y
�2I0

V�

�
for all g 2 G+

0 :

Then, for I = I0 [
S
g2G�

0

Ig, we get vg(Ui) � vg

�Q
�2I V�

�
for each g 2 G0, i.e., Ui j

Q
�2I V� . Noting that

jIj � jminG0j+ jG�0 j
2, the argument is complete.

2. By part 1, we may suppose without restriction that U1 j
Qk

�=1 V� with k �
�
jminG0j + jG�0 j

2
�
. We

consider a factorization V1 � : : : �Vk =W1W2 � : : : �Wn, where U1 =W1;W2; : : : ;Wn 2 A(G0), and by Lemma
4.3,

n � j(W1 � : : : �Wn)
+j = j(V1 � : : : � Vk)

+j

� k jminG0j �
�
jminG0j+ jG�0 j

2
�
jminG0j :

Now we set bz =W1 � : : : �WnVk+1 � : : : � Vl and get

d(z; bz) � maxfk; ng �
�
jminG0j+ jG�0 j

2
�
jminG0j : �

Lemma 4.6. Let G0 � Z be a condensed set such that G�0 is �nite and nonempty.

1. There exists some M 2 N such that �k+1(G) � 1 + kM for each k 2 N0. More precisely,
(a) if G0 is in�nite, then for each k 2 N,

1 � �k+1(G0)� �k(G0) � 2 jminG0j:

(b) if G0 is �nite, then for each k 2 N,

1 � �k+1(G0)� �k(G0) � D(G0)� 1 :

2. For each k 2 N,

�1 � �k(G0)� �k+1(G0) <
�
jminG0j+ jG�0 j

2
�
jminG0j :

Proof. 1. We recall that �1(G0) = 1. It thus su�ces to establish the bounds on �k+1(G0) � �k(G0). By
Lemma 4.3, we know �k(G0) � k � jminG�0 j <1.
1.(a) The left inequality is trivial and it remains to verify the right inequality. Let m = jminG0j. Let l 2 N,
and let A1; : : : ; Ak+1; U1; : : : ; Ul 2 A(G0) be such that

A1 � : : : �Ak+1 = U1 � : : : � Ul :

We have to show that l � �k(G0)+ 2m. By Lemma 4.3, we know that jA+j � m for each A 2 A(G0). Thus,

we may assume that (AkAk+1)
+ j U1 � : : : � U2m. Then (

Ql
j=2m+1 Uj)

+ j
Qk�1

i=1 Ai. Let S = (
Ql

j=2m+1 Uj)
�.

By Lemma 4.4, there exists some A0k 2 A(GP ) with S j A0k. We consider B = (
Qk�1

i=1 Ai)A
0
k, which is a

product of k atoms. We observe that
Ql

j=2m+1 Uj j B. Thus, max L(B) � l � 2m, establishing the claim.

1.(b) This follows from [31, Proposition 3.6] (see also Lemma 4.3 in that paper and note that D(G0) � 2).
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2. The left inequality is trivial and it remains to verify the right inequality. Let s = �k+1(G0) and let
U1; : : : ; Us; A1; : : : ; Ak+1 2 A(G0) be such that

U1 � : : : � Us = A1 � : : : �Ak+1 :

After renumbering if necessary, Lemma 4.5 implies that A1 jU1 � : : : � Uj and U1 � : : : � Uj = A1W2 � : : : �Wi

with W1; : : : ;Wi 2 A(G0) and i �
�
jminG0j + jG�0 j

2
�
jminG0j = M2 (note that, in order to apply Lemma

4.5, we used that s � k + 1). Then

W2 � : : : �WiUj+1 � : : : � Us = A2 � : : : �Ak+1;

and hence
�k(G0) � min L(A2 � : : : �Ak+1) � min L(Uj+1 � : : : � Us) + min L(W2 � : : : �Wi)

� s� j + i� 1 � �k+1(G0) + (M2 � 1) : �

We continue with a lemma that is used when investigating the sets of distances and local tameness. To
simplify the formulation, we introduce the following notation. For a 2 �N and b 2 N, let Va;b denote the
unique atom with support fa; bg, that is Va;b = a�b� with � = lcm(a; b)=jaj and � = lcm(a; b)=b.

Lemma 4.7. Let G0 � Z and let v 2 N. Suppose there exist distinct a; a2 2 G
�
0 and b; b1 2 G

+
0 that satisfy

b1 � bjaj and ja2j � (vb1 + b)jaj. For a given z 2 Z((Va;b1Va2;b)
v), let z0 be the (unique) minimal divisor of

z such that va2(�(z
�1
0 z)) = 0, and let t(z) = vb1(�(z0)). Then,

jzj 2

�
b1

lcm(a; b)
t(z)�D;

b1
lcm(a; b)

t(z) +D

�
where D = v(b+ jaj) gcd(a; b) :

Moreover, if t(z) = 0, then z = V v
a;b1

� V v
a2;b

.

Since it is relevant in applications of this lemma, we point out that D depends neither on a2 nor on b1.

Proof. To simplify notation without suppressing the information on the origin of certain quantities, we set
� = va(Va;b), �1 = va(Va;b1), and �2 = va2(Va2;b). Likewise, we set � = vb(Va;b), �1 = vb1(Va;b1), and
�2 = vb(Va2;b).

From the explicit description or applying Lemma 4.3, we get �; �1 2 [1; jaj] and �; �2 2 [1; b].
Let z = U1 � : : : � Um, where U1; : : : ; Um 2 A(G0), and k; l 2 [1;m] with k � l be such that

� a2 jU� for each � 2 [1; k],
� a2 - U� and b1 jU� for each � 2 [k + 1; l], and
� a2 - U� and b1 - U� for each � 2 [l + 1;m];

in particular, z0 = U1 � : : : � Uk 2 Z(G0). Also note that U� = Va;b for each � 2 [l + 1;m].
For � 2 [1; k], we have

U� = a
��;2
2 a��;1b

��;1
1 b��;2 ;

where ��;2 2 N and ��;1; ��;1; ��;2 2 N0. By the assumption on ja2j and since �; �1 2 [1; jaj], we have
ja2j � v�1b1 + �b. Thus, in view of vb1(�(z)) = �1v, it follows that ��;2 � �. Hence ��;1 � � � 1, since
otherwise Va;b j U� , which is impossible (as a2jU�).

Let �02 = va(�(z0)) and �02 = vb(�(z0)). In view of ��;1 � � � 1, k � v�2 and �; �2 2 [1; b], we have
0 � �02 � vb2.

We note that �(�(z0)
�) = v�2a2 + �02a, and thus

t(z)b1 + �02b = v�2ja2j+ �02jaj;

i.e., �02 = b�1(v�2ja2j+ �02jaj � t(z)b1). In particular, note that if t(z) = 0, then, since

�(bvb(�(z))) = v � �(bvb(Va2;b)) = �v � �(a
va2

(Va2;b)
2 )

implies vb((Va;b1Va2;b)
v) = b�1(v�2ja2j), it follows that �02 = 0 and z0 = V v

a2;b
; this establishes the

\moreover"-statement.
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Consequently,

(4.2) b�1(v�2ja2j � t(z)b1) � �02 � b�1(v�2ja2j+ vb2jaj � t(z)b1):

For � 2 [k + 1; l], we have

U� = b
�00�;1
1 b�

00

�;2a�
00

�;1 ;

with �00�;1 2 N and �00�;1; �
00
�;2 2 N0. We have �00�;1jaj � b1. Thus, by the assumption on b1 and since � 2 [1; b],

we get �00�;1 � �, and hence �00�;2 � � � 1 (as otherwise U� = Va;b with b1jU� but b1 - Va;b, a contradiction).

Let �002 = vb(
Ql

�=k+1 U�). We note that l� k � vb1((Va;b1Va2;b)
v)� t(z) = v�1 � t(z) � vjaj � t(z) � vjaj.

Thus, we obtain that

(4.3) 0 � �002 � (l � k)(� � 1) � vjaj(� � 1) � vjaj2 :

Let �0002 = vb(
Qm

�=l+1 U�). We have

�0002 = vb((Va;b1Va2;b)
v)� �02 � �002 = v�2 � �02 � �002 :

In combination with (4.2) and (4.3), we get that

v�2 � b�1
�
v�2ja2j+ vb2jaj � t(z)b1

�
� vjaj2 � �0002 � v�2 � b�1

�
v�2ja2j � t(z)b1

�
:

Thus, since �2 = b�1�2ja2j (in view of Va2;b = a�22 b�2), it follows that

(4.4) �0002 2
b1
b
t(z) + [�vbjaj � vjaj2; 0]:

Since U� = Va;b for each � 2 [l+1;m], it follows that �0002 = (m� l)�. Since k 2 [0; vb] and l�k 2 [0; vjaj],
we get that m 2 (m� l) + [0; v(b+ jaj)]. Combining with �0002 = (m� l)� and (4.4) then yields

m 2

�
b1
b�
t(z)�

vbjaj+ vjaj2

�
;
b1
b�
t(z) + v(b+ jaj)

�
;

and, since � � jaj, we have v(b + jaj) � v(b + jaj)jaj=�. Substituting the explicit value of �, the claim
follows. �

The following proposition is a major portion of Theorem 4.2.

Proposition 4.8. Let G0 � Z be a condensed set such that G�0 is �nite and nonempty. Then �(G0) is a
rational number.

To prove this result, we need the concept of factorizations with respect to a (not necessarily minimal)
generating set. This idea is also used in the recent paper [6], where a generalized set of distances is studied
for numerical monoids.

Let H be a monoid and S � Hred n f1g a subset. We call ZS(H) = F(S) the factorization monoid of H
with respect to S. The homomorphism �SH = �S : ZS(H) ! Hred de�ned by �S(z) =

Q
u2S u

vu(z) is called

the factorization homomorphism of H with respect to S. For a 2 H, we set ZSH(a) = ZS(a) = (�S)�1(aH�);
we call this the set of factorizations in S of a. The set LS(a) = fjzj j z 2 ZS(a)g is called the set of lengths
of a with respect to S.

We note that ZS(a) 6= ; for each a 2 H if and only if S generates Hred (as a monoid). If S generates
Hred, then A(Hred) � S by [28, Proposition 1.1.7]. If S = A(Hred), then ZS(a) = Z(a), and all other notions
coincide with the usual ones. Suppose that S � Hred is a generating set. For a 2 H, let �S(a) = �(LS(a))
denote the elasticity of a with respect to S, and �S(H) = supf�S(a) j a 2 Hg the elasticity of H with respect
to S; note that 0 2 LS(a) if and only if LS(a) = f0g, i.e., a 2 H�. We say that the elasticity of H with
respect to S is accepted if there exists some a 2 H with �S(a) = �S(H).

The proof of the following result is a direct modi�cation of the one for the (usual) elasticity of �nitely
generated monoids ([28, Theorem 3.1.4]) and contains it as the special case S = A(Hred).

Lemma 4.9. Let H be a monoid and S � Hred n f1g a �nite generating set of Hred. Then �S(H) is �nite
and accepted, in particular, rational.
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Proof. By construction, ZS(H)�ZS(H) is a �nitely generated free monoid. Obviously, Z = f(x; y) 2 ZS(H)�
ZS(H) j �S(x) = �S(y)g is a saturated submonoid, thus �nitely generated by [28, Proposition 2.7.5]. Let
Z� = Z nZ�; clearly jZ�j = 1 and, for each (x; y) 2 Z�, we have that both jxj 6= 0 and jyj 6= 0. We note that
�S(H) = supfjxj=jyj j (x; y) 2 Z�g. We assert that supfjxj=jyj j (x; y) 2 Z�g = supfjxj=jyj j (x; y) 2 A(Z)g.
Since A(Z) is �nite, this implies the result.

Let s = (xs; ys) 2 Z
� and let s = t1 � : : : � tl with ti = (xi; yi) 2 A(Z) be a factorization of s in the monoid

Z. We have, using the standard inequality for the mediant,

jxsj

jysj
=

Pl
i=1 jxijPl
i=1 jyij

� max

�
jxij

jyij
j i 2 [1; l]

�
;

showing that supfjxj=jyj j (x; y) 2 Z�g � supfjxj=jyj j (x; y) 2 A(Z)g. The other inequality being trivial,
the claim follows. �

For a condensed set G0 � Z with jG0j � 2, we de�ne

B(G0)
+ = fB+ j B 2 B(G0)g and A(G0)

+ = fA+ j A 2 A(G0)g :

Lemma 4.10. Let G0 � Z be a condensed set with jG0j � 2.

1. B(G0)
+ � F(G+

0 ) is a submonoid.

2. A(G0)
+ is a generating set of B(G0)

+.

3. jF j � j inf G�0 j for each F 2 A(G0)
+.

Proof. The �rst two claims are immediate, and the last one is a direct consequence of Lemma 4.3. �

Clearly, A(G0)
+ contains A(B(G0)

+), the set of atoms of B(G0)
+, yet it is in general not equal to this set;

by de�nition, we have that F 2 A(G0)
+ if and only if there exists some A 2 A(G0) such that F = A+, yet

F 2 A(B(G0)
+) if and only if, for each B 2 B(G0) with F = B+, we have B 2 A(G0). Moreover, B(G0)

+

is in general not a saturated submonoid of F(G+
0 ).

The following technical result is used to partition A(G0) into �nitely many classes (cf. below).

Lemma 4.11. Let G0 � Z be a condensed set such that G�0 is �nite and nonempty. Let F 2 F(G+
0 ),

g 2 supp(F ) with g � jG�0 j jminG
�
0 j lcm(G

�
0 ), and k 2 N with g0 = g+k lcm(G�0 ) 2 G

+
0 . Then F 2 A(G0)

+

if and only if g0g�1F 2 A(G0)
+.

Proof. We set T = g0g�1F 2 F(G+
0 ). Suppose F 2 A(G0)

+. Let R 2 F(G�0 ) such that FR 2 A(G0).
Since �(F ) � g � jG�0 j jminG

�
0 j lcm(G

�
0 ), there exists some a 2 G�0 such that va(R) � lcm(G�0 ). Let

R1 = Rak lcm(G
�

0
)=jaj. Then TR1 2 B(G0). Assume to the contrary that TR1 is not an atom, say TR1 =

(T 0R01)(T
00R001 ), where g

0 j T 0, T = T 0T 00 and R1 = R01R
00
1 . Let l

0 2 N0 be maximal such that al
0 lcm(G�

0
)=jaj j R01

and let l = minfl0; kg. We note that a�l lcm(G
�

0
)=jajR01 j R. Moreover, since

j�(a�l lcm(G
�

0
)=jajR01)j � g0 � l lcm(G�0 ) � (k � l) lcm(G�0 ) + jG�0 j jminG

�
0 j lcm(G

�
0 )

� (k � l) � lcm(G�0 ) +
X
x2G�

0

jxj

�
lcm(G�0 )

jxj
� 1

�
;

there exists a subsequence R02 j a�l lcm(G
�

0
)=jajR01 such that �(R02) = �(k � l) lcm(G�0 ). We set R0 =

R0�12 a�l lcm(G
�

0
)=jajR01. Then �(R0) = �(R01) + k lcm(G�0 ). Thus �(gg0�1T 0R0) = 0, yet gg0�1T 0R0 j FR,

contradicting that TR1 is not an atom.
Suppose T 2 A(G0)

+. Let R0 2 F(G�0 ) be such that TR0 2 A(G0). Since

��(R1) = �(T ) � g0 � k � lcm(G�0 ) + jG�0 j jminG
�
0 j lcm(G

�
0 ) � k � lcm(G�0 ) +

X
x2G�

0

jxj

�
lcm(G�0 )

jxj
� 1

�
;
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there exists a subsequence R01 j R
0 with �(R01) = �k � lcm(G�0 ). Let R = R0�11 R0. Then FR is a zero-sum

sequence. Assume FR is not an atom, say FR = (F 0R02)(F
00R002 ), where g j F

0, F = F 0F 00 and R = R02R
00
2 .

Then g0g�1F 0R02R
0
1 j TR

0 and it is a zero-sum sequence, contradicting that FR is not an atom. �

Let G0 � Z n f0g be a condensed set such that G�0 is �nite and nonempty. In view of Lemma 4.11,
we introduce the following relation on G+

0 . For g; h 2 G+
0 , we say that g is equivalent to h if g = h or if

g; h � jG�0 j jminG
�
0 j lcm(G

�
0 ) and g � h mod lcm(G�0 ). This relation is an equivalence relation and it

partitions G+
0 into �nitely many|namely, less than jG�0 j jminG

�
0 j lcm(G

�
0 )+lcm(G�0 )|equivalence classes;

we denote the equivalence class of g by �(g) and also use � to denote the extension of this map to F(G+
0 ).

We note that �(A(G0)
+) is a �nite set, since it consists of sequences over the �nite set �(G+

0 ) and the
length of each sequence is at most jminG�0 j by Lemma 4.10. Moreover, it is a generating set of the monoid
�(B(G0)

+).
In order to study factorizations, we extend � to Z(G0) via

�(A1 � : : : �Al) = �(A+1 ) � : : : � �(A
+
l ):

This is an element of F(�(A(G0)
+)), i.e., Z�(A(G0)

+)(�(B(G0)
+)); for brevity, we denote this factorization

monoid by Z�. Likewise, for F 2 �(B(G0)
+), we denote Z�(A(G0)

+)(F ) by Z�(F ); ��(A(G0)
+) by ��; and

��(A(G0)
+) by ��. The homomorphism � : Z(G0)! Z� is epimorphic.

We note that, for B 2 B(G0), we have that �(Z(B)) � (��)�1(�(B+)), and in general, this is a proper
inclusion. However, we have, for each F 2 B(G0)

+, by Lemma 4.11,

(4.5) (��)�1(�(F )) =
[

B2B(G0); B+=F

�(Z(B));

whenever G0 � Z n f0g is condensed with G�0 �nite and nonempty.

Lemma 4.12. Let G0 � Z n f0g be a condensed set such that G�0 is �nite and nonempty.

1. For each B 2 B(G0), we have �(B) � ��(�(B+)). In particular, �(G0) � ��(�(B(G0)
+)).

2. If G0 is in�nite, then �(G0) = ��(�(B(G0)
+)).

Proof. 1. Let B 2 B(G0) n f1g, x; y 2 Z(B) with jxj = max L(B) and jyj = min L(B). Since �(x); �(y) 2
Z�(�(B+)), we have that �(B) = jxj=jyj = j�(x)j=j�(y)j � ��(�(B+)). The additional claim is clear.

2. By part 1, it remains to show that �(G0) � ��(�(B(G0)
+)).

By Proposition 4.9 and since �(A(G0)
+) is �nite, we know that ��(�(B(G0)

+)) is accepted. Let B� 2
�(B(G0)

+) be such that ��(B�) = ��(�(B(G0)
+)), and let x�; y� 2 Z�(B�) be such that jx�j=jy�j = ��(B�).

By (4.5), we know that there exist Bx; By 2 B(G0) with B+
x = B+

y , x 2 Z(Bx) with �(x) = x�, and

y 2 Z(By) with �(y) = y�; in particular, we have �(B+
x ) = �(B+

y ) = B�.

Let n 2 N. Since G+
0 is in�nite, Lemma 4.4 yields some Un 2 A(G0) with (Bn

x )
� j Un and U�n = (Bn

x )
�.

We set Dn = Bn
yUn and note that, since (Bn

x )
+ = (Bn

y )
+ and (Bn

x )
�jU�n , the sequence Bn

x is a proper
subsequence of Dn. Thus,

min L(Dn) � jynj+ 1 = njy�j+ 1 and max L(Dn) � jxnj+ 1 = njx�j+ 1:

So we get

�(Dn) �
njx�j+ 1

njy�j+ 1
:

Thus, for each n 2 N,

�(G0) �
njx�j+ 1

njy�j+ 1
;

and letting n!1, we have

�(G0) �
jx�j

jy�j
= ��(�(B(G0)

+)) : �
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Proof of Proposition 4.8. Since �(G0) = �(G0 n f0g), we may assume that 0 =2 G0.
If G0 is �nite, then B(G0) is �nitely generated [28, Theorem 3.4.2.1], and thus the elasticity is rational

by Lemma 4.9 (applied with S = A(Hred)). Suppose G0 is in�nite. By Lemma 4.12, we have that �(G0) =
��(�(B(G0)

+)), and by Lemma 4.9, we know that ��(�(B(G0)
+)) is rational. �

Proof of Theorem 4.2.

(a) ) (b) Without restriction, we may suppose that G�P is �nite. Let u 2 A(Hred). We have to show
that t(H;u) < 1. If u is prime, then t(H;u) = 0. Suppose that u is not prime. Let a 2 H and a0 = aH�

be such that u j a0. Let z = v1 � : : : � vn 2 Z(a). There is a minimal subset 
 � [1; n], say 
 = [1; k],
such that u j v1 � : : : � vk and k � j'red(u)j. We consider any factorization of v1 � : : : � vk containing u, say
v1 � : : : � vk = u1 � : : : � ul, where u = u1; : : : ; ul 2 A(Hred).

For i 2 [1; k] and j 2 [1; l], we set Vi = �(vi) and Uj = �(uj). Then U1; : : : ; Ul; V1; : : : ; Vk 2 A(GP ).
Since u is not a prime and 
 is minimal, it follows that 0 - V1 � : : : �Vk. Hence, for every j 2 [1; l], Uj contains
an element from G+

P , and Lemma 4.3 implies that

l � j(U1 � : : : � Ul)
+j = j(V1 � : : : � Vk)

+j � k jminG�P j � j'red(u)j jminG
�
P j :

Setting z0 = u1 � : : : � ulvk+1 � : : : � vn, we infer that d(z; z0) � maxfk; lg � j'red(u)j jminG
�
P j, and hence

t(H;u) � j'red(u)j jminG
�
P j.

(a) ) (c) Without restriction, we may suppose that G�P is �nite. By Lemma 3.3, it su�ces to show that

c(GP ) <1. We setM =
�
jminGP j+ jG

�
P j

2
�
jminGP j, and assert that c(A) �M for all A 2 B(GP ). To do

so, we proceed by induction on max L(A). If A 2 B(GP ) with max L(A) � M , then c(A) � max L(A) � M .
Let A 2 B(GP ), let z; z 2 Z(A) with jzj � jzj, and suppose that c(B) � M for all B 2 B(GP ) with
max L(B) < max L(A). By Lemma 4.5, there is a U 2 A(GP ) and a factorization bz 2 Z(A)\UZ(GP ) such that
U j z and d(z; bz) �M , say bz = Uby and z = Uy with by; y 2 Z(B) and B = U�1A. Since max L(B) < max L(A),
there is an M -chain by = y0; : : : ; yk = y of factorizations of B, and hence z; bz = Uy0; Uy1; : : : ; Uyk = Uy = z
is an M -chain of factorizations concatenating z and z.

(a) ) (e) Without restriction, we may suppose that G�P is �nite. The claim follows by Proposition 4.8
and Lemma 3.3.

(c) ) (d) and (e) ) (f) hold for all atomic monoids ([28, Proposition 1.4.2 and Theorem 1.6.3]).

(b) ) (a), (d) ) (a), and (f) ) (a) Assume to the contrary that G+
P and G�P are both in�nite. We

show that B(GP ) is not locally tame, which implies that H is not locally tame ([28, Theorem 3.4.10.6]).
Along the way, we show that �2(GP ) = 1 and that �(GP ) is in�nite, which by Lemma 3.3 implies the
according statements for H.

We set a = maxG�P and b = minG+
P . Using the notation of Lemma 4.7, let U = Va;b = a�b� 2 A(GP ).

We pick an arbitrary N 2 N�2 and show that t(GP ; U) � N , which implies the assertion.
We intend to apply Lemma 4.7 with v = 1. Thus, let D = jaj(b+ jaj) gcd(a; b), let b1 2 G

+
P be such that

b1
lcm(a; b)

� N +D;

and let a2 2 G�P be such that ja2j � (b1 + b)jaj. Let �1; �2; �1; �2 2 N be such that Va;b1 = a�1b�11 and
Va2;b = a�22 b�2 are elements of A(GP ).

We note that all conditions of Lemma 4.7 with v = 1 are ful�lled. Since � � b � �1 and � � jaj � �2, we
have U jVa;b1Va2;b, and therefore Z(Va;b1Va2;b) \ UZ(GP ) 6= ;. Let z 2 Z(Va;b1Va2;b) n fVa;b1 � Va2;b1g, which
exists in view of U jVa;b1Va2;b. By Lemma 4.7, we get that t(z) 6= 0, and thus that

jzj �
b1

lcm(a; b)
�D � N:
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This shows that max�
�
L(Va;b1Va2;b)

�
� N � 2, t(Gp; U) � N and

�2(GP ) � max L(Va;b1Va2;b) � N :

(a) ) (g) This follows from Lemma 4.6.

(g) ) (f) We have �2(H) �M + �1(H) =M + 1, where M is as given by (g).

(a) ) (h) If (a) holds, then (d) and (g) hold. Thus all assumptions of [21, Theorem 4.2] are ful�lled,
and (h) follows.

(h) ) (f) We have �2(H) = supV2(H) <1. �

5. Arithmetical Properties stronger than the Finiteness of G+
P or G�P

Let H be a Krull monoid and GP � G as always (see Theorem 5.2 below). In this section, we discuss
arithmetical properties which are �nite if GP is �nite or minfjG+

P j; jG
�
P jg = 1, and whose �niteness implies

that G+
P or G�P is �nite. However, it will turn out that none of the implications can be reversed (with one

possible exception for (c)) (b4), which remains open), and that the �niteness of these properties cannot be
characterized by the size of G+

P and G�P but also depends on the structure of these sets. We start with some
de�nitions and then formulate the main result.

De�nition 5.1. Let H be an atomic monoid and � : Z(H)! Hred the factorization homomorphism.

1. For z 2 Z(H), we denote by �(z) the smallest N 2 N0 with the following property: if k 2 N is such
that k and jzj are adjacent lengths of L

�
�(z)

�
, then

d(z;Zk(a)) � N :

Globally, we de�ne

�(H) = supf �(z) j z 2 Z(H)g 2 N0 [ f1g ;

and we call �(H) the successive distance of H.

2. We say that the Structure Theorem for Sets of Lengths holds (for the monoid H) if H is atomic
and there exist some M 2 N0 and a �nite, nonempty set �� � N such that, for every a 2 H, the set
of lengths L(a) is an AAMP with some di�erence d 2 �� and bound M . In that case, we say more
precisely that the Structure Theorem for Sets of Lengths holds with set �� and bound M .

Theorem 5.2. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. We denote by
GP � G the set of classes containing prime divisors and consider the following conditions :

(a) GP is �nite or minfjG+
P j; jG

�
P jg = 1.

(b1) The Structure Theorem for Sets of Lengths holds for H with set �(GP ).
(b2) The successive distance �(H) is �nite.
(b3) The monotone catenary degree cmon(H) is �nite.
(b4) There is an M 2 N such that, for all a 2 H and for each two adjacent lengths k; l 2 L(a)\ [min L(a)+

M; max L(a)�M ], we have d
�
Zk(a);Zl(a)

�
�M .

(c) G+
P or G�P is �nite.

Then we have

1. Condition (a) implies each of the conditions (b1) to (b4).
2. Each of the conditions (b1) to (b4) implies (c).
3. (b2)) (b3)) (b4).
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We brie
y discuss the newly introduced arithmetical properties and point out the trivial implications
in the above result. The successive distance of H was introduced by Foroutan in [14] in order to study
the monotone catenary degree. For Krull monoids with �nite class group, an explicit upper bound for the
successive distance was recently given in [19, Theorem 6.5]. Note that, by de�nition, �(H) < 1 implies
that �(H) is �nite. The signi�cance of the Structure Theorem for Sets of Lengths will be discussed at the
beginning of Section 6. Note that, if it holds for a monoid H, then H is a BF-monoid with �nite set of
distances �(H). Moreover, if GP = Z, then the Structure Theorem badly fails: indeed, then every �nite
subset L � N�2 occurs as a set of lengths by Kainrath's Theorem [28, Theorem 7.4.1]; for recent progress in
this direction see [9]. The implications (b2)) (b4) and (b3)) (b4) follow from the de�nitions. A condition
implying (b1) as well as (b4) is given in Proposition 6.2. The bound M in (b4) re
ects the fact that, in
many settings, factorizations z of an element a 2 H show more unusual phenomena if their length jzj is close
either to max L(a) or to min L(a) (the reader may want to consult [28, Theorem 4.9.2], [16, Theorem 3.1],
[17, Theorem 3.1] and the associated examples showing the relevance of the bound M).

In Sections 6 and 7, we obtain results showing that, even under the more restrictive assumption that
' is a divisor theory, the Conditions (b1) to (b4) do not imply (a) (Proposition 6.9), and (c) does not
imply (b1) to (b3) (Theorem 6.4, Proposition 6.9, Proposition 6.10 and Proposition 7.1). Proposition 6.10
shows that (b3) does not imply (b2). Moreover, (b1), (b2) and (b3) may hold as well as may fail even if
minfjG+

P j; jG
�
P jg = 2. Most of the observed phenomena (around the non-reversibility of implications) have

not been pointed out before in any v-noetherian monoid, and in particular not in a Krull monoid. Finally,
by Theorem 5.2, a Krull monoid H satis�es strong arithmetical properties both when GP is �nite as well as
when minfjG+

P j; jG
�
P jg = 1. Note that an arithmetical di�erence between these two cases was pointed out in

Proposition 4.1.
The remainder of this section is devoted to the proof of Theorem 5.2, which heavily uses Theorem 4.2.

We start with the necessary preparations. To show that (a) implies each of the Conditions (b1) to (b4), we
will construct transfer homomorphisms to �nitely generated monoids.

Lemma 5.3. Let G0 � Z be a condensed set with minfjG+
0 j; jG

�
0 jg = 1, say G�0 = f�ng. The map

' :

(
B(G0) ! F(G0 n f�ng)

B 7! (�n)�v�n(B)B

is a co�nal divisor homomorphism. Its class group C(') is isomorphic to a subgroup of Z=nZ, and the set
of classes containing prime divisors corresponds to fb+ nZ j b 2 G0 n f�ngg. In particular, the class group
of the Krull monoid B(G0) is a �nite cyclic group.

Proof. Clearly, ' is a co�nal monoid homomorphism. In order to show that ' is a divisor homomorphism,
let A;B 2 B(G0) be such that '(A) j '(B). We have to verify that A j B, and for that it su�ces to check
that v�n(A) � v�n(B). For each C 2 B(G0), we have v�n(C) = �(C+)=n and �(C+) = �('(C)). Since
'(A) j '(B), we have �('(A)) � �('(B)), and thus v�n(A) � v�n(B) follows.

Now, we show that, for F1; F2 2 F(G0 n f�ng), we have F1 2 F2q('(B(G0))) if and only if �(F1) � �(F2)
mod n. This establishes the results regarding C(') and the set of classes containing prime divisors.

First, suppose that �(F1) � �(F2) mod n. We note that FiF
n�1
j (�n)(�(Fi)+(n�1)�(Fj))=n 2 B(G0), for

i; j 2 f1; 2g. Thus, Fn
j and FiF

n�1
j are elements of '(B(G0)) for i; j 2 f1; 2g. Since F1 = F2(F1F

n�1
2 )(F�n2 ),

the claim follows. Since �('(C)) � 0 mod n for each C 2 B(G0), the converse claim follows.
By [28, Theorem 2.4.7], the class group of B(G0) is an epimorphic image of a subgroup of C('), and thus

it is a �nite cyclic group. �

The following example shows that C(') can be a proper subgroup of Z=nZ and that C(') can be distinct
from the class group of B(G0). However, if [G0] = Z, then C(') = Z=nZ; and, applying [44, Theorem 3.1],
there is a simple and explicit method to determine the class group of B(G0) from C(') as well as the subset
of classes containing prime divisors (note that C(') is a torsion group).
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Example 5.4. Let d1; d2 2 N�2, n = d1d2 and G0 = f�n; d1g. Then G0 ful�ls all assumptions of Lemma
5.3, and with ' as in Lemma 5.3, we get that C(') = hd1 + nZi ( Z=nZ. However, B(G0) is factorial, and
thus its class group is trivial.

Proposition 5.5. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors. Suppose that GP is �nite or that minfjG+

P j; jG
�
P jg = 1.

Then there exists a transfer homomorphism � : H ! H0 into a �nitely generated monoid H0 such that
c(H; �) � 2. Moreover, the following statements hold.

1. L(H) = L(H0), in particular, the Structure Theorem for Sets of Lengths holds for H with �(H) =
�(H0) and some bound M , and �(H) = �(H0) is �nite and accepted.

2. �(H) = �(H0) <1.
3. cmon(H) � maxfcmon(H0); 2g <1.

Proof. First we show the existence of the required transfer homomorphism. For this, we recall that a monoid
of zero-sum sequences over a �nite set is �nitely generated ([28, Theorem 3.4.2]). If GP is �nite, then � : H !
B(GP ) has the desired properties by Lemma 3.3. Now suppose that minfjG+

P j; jG
�
P jg = 1, say G�P = f�ng,

and set G0 = fb + nZ j b 2 G+
P g � Z=nZ. Using Lemmas 3.3 and 5.3, we have block homomorphisms

� : H ! B(GP ) and �
0 : B(GP )! B(G0). By Lemma 3.2, the composition � = �0 � � : H ! B(G0) still has

the required properties.
Again, by Lemmas 3.2 and 3.3, it su�ces to verify the additional statements for �nitely generated monoids:

we refer to [28, Theorem 4.4.11] for the Structure Theorem, to [28, Theorem 3.1.4] for the elasticity and the
successive distance, and to [14, Theorem 5.1] for the monotone catenary degree. �

Lemma 5.6. Let H be an atomic monoid, a 2 H and z; z0 2 Z(a) and l =
��jzj � jz0j

��. Then there exists
some z00 2 Z(a) such that jz00j = jz0j and d(z; z00) � l�(H).

Proof. See [28, Lemma 3.1.3]. �

Lemma 5.7. Let H be an atomic monoid with �(H) <1. LetM 2 N, a 2 H, u 2 A(Hred) and z; bz; z 2 Z(a)
be such that

jzj � jzj; u j z; u j bz and d(z; bz) �M :

Then there is a z0 2 Z(a) \ uZ(H) such that jzj � jz0j � jzj and d(z; z0) �M +
�
M +max�(H)

�
�(H).

Proof. Let v 2 H be such that vH� = u. We set b = v�1a, z = uy and bz = uby, where y; by 2 Z(b). If
jzj � jbzj � jzj, then z0 = bz ful�lls the requirements. If not, then either jbzj < jzj or jzj < jbzj, and we decide
these two cases separately.

Case 1: jbzj < jzj.
Since jbyj = jbzj � 1 2 L(b) and jyj = jzj � 1 2 L(b), there is a

k 2 L(b) \ [jzj � 1; jzj � 1] with k � jzj � 1 + max�(H) :

Let y00 2 Z(b) with jy00j = k. Then

jy00j � jbyj = k � jbzj+ 1 � jzj � 1 + max�(H)� jbzj+ 1

� d(z; bz) + max�(H) �M +max�(H) :

Thus, by Lemma 5.6, there is a y0 2 Z(b) with jy0j = jy00j and d(by; y0) � �
M + max�(H)

�
�(H). Then

z0 = uy0 2 Z(a) \ uZ(H) with jz0j = 1 + k 2 [jzj; jzj] and

d(z; z0) � d(z; bz) + d(uby; uy0) �M +
�
M +max�(H)

�
�(H) :

Case 2: jzj < jbzj.
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By Lemma 5.6, there is a y0 2 Z(b) with jy0j = jyj and

d(by; y0) � �
jbyj � jyj

�
�(H) =

�
jbzj � jzj

�
�(H)

�
�
jbzj � jzj

�
�(H) � d(bz; z)�(H) �M�(H) :

Then z0 = uy0 2 Z(a) \ uZ(H) with jz0j = jzj and

d(z; z0) � d(z; bz) + d(uby; uy0) �M +M�(H) : �

Proposition 5.8. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid with in�nite cyclic class group C('). If the successive distance �(H) is �nite, then the monotone
catenary degree cmon(H) is �nite.

Proof. We set G = C('), identify G with Z and denote by GP � G the set of classes containing prime
divisors. Suppose that �(H) < 1. Lemma 3.3 shows �(H) = �(GP ) and that it su�ces to verify that
cmon(GP ) < 1. Note that �(GP ) is �nite (since �(GP ) < 1), and thus by Theorem 4.2 we get that (say)
G�P is �nite.

We set M =
�
jminGP j+ jG�P j

2
�
jminGP j and assert that

cmon(GP ) �M +
�
M +max�(H)

�
�(H) =M� :

For this, we have to show that cmon(A) �M� for all A 2 B(GP ), and we proceed by induction on max L(A).
If A 2 B(GP ) with max L(A) = 1, then A 2 A(GP ) and cmon(A) = 0. Now let A 2 B(GP ) with

max L(A) > 1 and suppose that cmon(B) �M� for all B 2 B(GP ) with max L(B) < max L(A).

We pick z; z 2 Z(A) with jzj � jzj and must �nd a monotone M�-chain of factorizations from z to z.
By Lemma 4.5 there is a U j z with U 2 A(GP ) and a bz 2 Z(A) \ UZ(GP ) such that d(z; bz) � M . By

Lemma 5.7, there is a z0 2 Z(A) \ UZ(GP ) such that jzj � jz0j � jzj and d(z; z0) �M�. Now we set

B = U�1A; z = Uy and z0 = Uy0;

where y; y0 2 Z(B). Since max L(B) < max L(A), the induction hypothesis gives a monotone M�-chain
y0 = y1; : : : ; yk = y of factorizations of B from y0 to y. Therefore

z; z0 = Uy0 = Uy1; Uy2; : : : ; Uyk = Uy = z

is a monotone M�-chain of factorizations of A from z to z. �

Proof of Theorem 5.2. 3. The implication (b3) ) (b4) follows since, for a 2 H and each two adjacent
lengths k; l 2 L(a), we have, by de�nition, d

�
Zk(a);Zl(a)

�
� cmon(H). The implication (b2) ) (b3) is

Proposition 5.8.

1. By Proposition 5.5, we know that (a) implies (b1), (b2), and (b3); and, by part 3, we know that (b3)
implies (b4).

2. By de�nition, each of (b1), (b2) and (b3) implies the �niteness of �(H). Thus, Theorem 4.2 implies
the assertion. It remains to show that (b4) implies (c).

Suppose that (b4) holds with some M 2 N and assume to the contrary that (c) does not hold, i.e., G+
P

and G�P are both in�nite. We proceed similarly to the proof of Theorem 4.2, part (b)) (a).

We set a = maxG�P and b = minG+
P and let � 2 [1; b] and � 2 [1; jaj] be such that Va;b = a�b� 2 A(GP ).

We intend to apply Lemma 4.7 with v = 3. Thus, let D = 3jaj(b+ jaj) gcd(a; b), let b1 2 G
+
P with

b1
lcm(a; b)

� 2D +M;

and let a2 2 G
�
P with ja2j � (3b1+b)jaj. Let �1; �2; �2; �2 2 N be such that Va;b1 = a�1b�11 and Va2;b = a�22 b�2

are elements of A(GP ).
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First, we assert that there exist z0; z1; z2; z3 2 Z((Va;b1Va2;b)
3) with, where t(�) is de�ned as in Lemma

4.7,
t(z0) < t(z1) < t(z2) < t(z3):

We note that Va;b jVa;b1Va2;b (by the same reasoning used in the proof of Theorem 4.2), and thus there
exists some y 2 Z(Va;b1Va2;b) with t(y) 6= 0. For i 2 [0; 3], we set zi = yi(Va;b1 � Va2;b)

3�i. Then we have
t(zi) = it(y), establishing the claim.

Let z00; z
0
1; z

0
2; z

0
3 2 Z((Va;b1Va2;b)

3) be such that t(z00) < t(z01) < t(z02) < t(z03) and such that there exists
no z 2 Z((Va;b1Va2;b)

3) with t(z01) < t(z) < t(z02).
By Lemma 4.7, we get, for i 2 [0; 2], that

jz0i+1j � jz0ij �
b1

lcm(a; b)

�
t(z0i+1)� t(z0i)

�
� 2D �M:

Since min L((Va;b1Va2;b)
3) � jz00j < jz01j < jz02j < jz03j � max L((Va;b1Va2;b)

3), we get that

jz01j; jz
0
2j 2

�
min L

�
(Va;b1Va2;b)

3
�
+M;max L

�
(Va;b1Va2;b)

3
�
�M

�
:

Let

k = max

�
L
�
(Va;b1Va2;b)

3
�
\

�
b1

lcm(a; b)
t(z01)�D;

b1
lcm(a; b)

t(z01) +D

��
and

l = min

�
L
�
(Va;b1Va2;b)

3
�
\

�
b1

lcm(a; b)
t(z02)�D;

b1
lcm(a; b)

t(z02) +D

��
;

note that, by Lemma 4.7, jz01j and jz
0
2j are elements of the former and the latter set, respectively, and also

note that the two intervals are disjoint. In particular, we have jz01j � k < l � jz02j. Since there exists no
z 2 Z((Va;b1Va2;b)

3) with t(z01) < t(z) < t(z02), it follows by Lemma 4.7 that k and l are adjacent lengths.

Since k � l � b1
lcm(a;b) � 2D � M and by (2.1), we have d

�
Zk(a);Zl(a)

�
� M + 2, a contradiction to the

assumption that (b4) holds with M . �

6. The Structure Theorem for Sets of Lengths

The Structure Theorem for Sets of Lengths is a central �niteness result in factorization theory. Apart
from Krull monoids|which will be discussed below|the Structure Theorem holds, among others, for weakly

Krull domains with �nite v-class group and for Mori domains A with complete integral closure bA = R for
which the conductor f = (A :R) 6= f0g and C(R) and R=f are both �nite (see [28, Section 4.7] for an overview,
and [26, 31] for recent progress). Moreover, it was recently shown that the Structure Theorem is sharp for
Krull monoids with �nite class group [45].

Let H be a Krull monoid and GP � G as always. By Theorem 5.2, it su�ces to consider the situation
when G+

P is �nite and 2 � jG�P j <1. Essentially, all results so far which establish the Structure Theorem for
some class of monoids use the machinery of pattern ideals and tame generating sets (presented in detail in
[28, Section 4.3]). First, we repeat these concepts and outline their signi�cance for the Structure Theorem.
However, Proposition 6.3 shows that in our situation this approach is not applicable in general. The main
result of this section, Theorem 6.4, provides a full characterization of when the Structure Theorem holds.
Although the setting is special, it shows that, in Theorem 5.2, condition (b1) does not imply condition
(a), and it provides|together with Proposition 6.3|the �rst example of any Krull monoid for which the
Structure Theorem holds without tame generation of pattern ideals. Furthermore, note by Lemma 3.4 that,
for the sets GP considered in Theorem 5.2, there actually exists a Krull monoid such that GP is the set of
classes containing prime divisors with respect to a divisor theory of H.

Likewise, all previous examples of monoids H with �nite monotone catenary degree cmon(H) have been
achieved by using that �(H) is �nite. However, in Proposition 6.10, we give the �rst example of a monoid
H with cmon(H) <1 but �(H) =1.

De�nition 6.1. Let H be an atomic monoid, let a � H and let A � Z be a �nite nonempty subset.
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1. We say that a subset L � Z contains the pattern A if there exists some y 2 Z such that y+A � L.
We denote by �(A) = �H(A) the set of all a 2 H for which L(a) contains the pattern A.

2. Now a is called a pattern ideal if a = �(B) for some �nite nonempty subset B � Z.

3. A subset E � H is called a tame generating set of a if E � a and there exists some N 2 N with the
following property: for every a 2 a, there exists some e 2 E such that

e j a ; sup L(e) � N and t(a;Z(e)) � N :

In this case, we call E a tame generating set with bound N , and we say that a is tamely generated.

The signi�cance of tamely generated pattern ideals stems from the following result.

Proposition 6.2. Let H be a BF-monoid with �nite nonempty set of distances �(H) and suppose that
all pattern ideals of H are tamely generated. Then there exists a constant M 2 N0 such that the following
properties are satis�ed :

(a) The Structure Theorem for Sets of Lengths holds with �(H) and bound M .

(b) For all a 2 H and for each two adjacent lengths k; l 2 L(a) \ [min L(a) +M; max L(a) �M ], we
have d

�
Zk(a);Zl(a)

�
�M .

Proof. The �rst statement follows from [28, Theorem 4.3.11] and the second from [31, Proposition 5.4]. �

Proposition 6.3. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors. Suppose that

� G+
P is in�nite and

� there are a1; a2 2 G
�
P and b 2 G+

P such that

a1
gcd(a2; b)

gcd(a1; a2; b)
� a2

gcd(a1; b)

gcd(a1; a2; b)
mod b but a1

gcd(a2; b)

gcd(a1; a2; b)
6= a2

gcd(a1; b)

gcd(a1; a2; b)
:

Then both H and B(GP ) have a pattern ideal which is not tamely generated.

Proof. By [26, Proposition 3.14], it su�ces to show that B(GP ) has a pattern ideal which is not tamely
generated.

First we show that B(fa1; a2; bg) is half-factorial. By Lemma 5.3, it su�ces to show that B(fa1+ bZ; a2+
bZg) is half-factorial. By [22, Proposition 5], this follows by (indeed, it is equivalent to) the congruence that
a1, a2, and b ful�l by assumption.

We set �1 = b= gcd(a1; b), �1 = ja1j= gcd(a1; b), �2 = b= gcd(a2; b), �2 = ja2j= gcd(a2; b) and observe that,

by rearranging our assumption a1
gcd(a2;b)

gcd(a1;a2;b)
6= a2

gcd(a1;b)
gcd(a1;a2;b)

, we have d = a1�1 � a2�2 6= 0, say d > 0.

Noting that �1a1 = lcm(a; b) and �2a2 = lcm(a2; b), we can consider the two atoms

U1 = a�11 b�1 and U2 = a2
�2b�2 2 A(GP ) :

Since G+
P is in�nite, it contains arbitrarily large elements. Let N 2 G+

P n fbg. We de�ne


 = minfvN (U) j U 2 A(fa1; a2; b;Ng) with N jUg :

Since N ja1jaN1 2 B(GP ), it follows that 
 2 [1; ja1j]. Now we pick an atom UN 2 A(fa1; a2; b;Ng) with

 = vN (UN ) for which vb(UN ) is minimal, say

UN = N
b�aM1

1 a2
M2 2 A(GP ); where �; 
;M1;M2 2 N0 depend on N :
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If M2 � ja1j, then U
0
N = UNa

ja2j
1 a2

a1 has sum zero, and by the minimality of vN (UN ) and vb(UN ), it is an
atom (as each atom must have at least one positive element). Thus, we may additionally choose UN such
that M2 < ja1j, which implies (recall a2 < 0)

(6.1) M1 =
1

ja1j

�

N + �b+ a2M2

�
�

1

ja1j

�

N + a2ja1j

�
�

N

ja1j
+ a2 :

In view of this inequality, we may suppose that N is su�ciently large to guarantee that M1 � ja2j�1�2.
Note that, since UN is an atom and M1 � ja2j�1�2 � �1, we have � < �1. We consider the element

AN = UNU2
M1 2 B(GP ) :

Let k 2
h
0;
�

M1

ja2j�1�2

�i
. Then we have

UN;k = N
b�a
M1+(a2�1�2)k
1 a2

M2+(ja1j�1�2)k 2 B(GP ) ;

and by the minimality of 
 and �, it follows that UN;k 2 A(GP ). Clearly, we get

zN;k = UN;kU
�a2�2k
1 U2

M1+a1�1k 2 Z(AN ) :

This shows that

(6.2) L(AN ) �

�
M1 + 1 + dk

��� k 2 �0;� M1

ja2j�1�2

���
:

Thus, we have AN 2 �(f0; dg) for each su�ciently large N 2 G+
P .

Let EN 2 �(f0; dg) with EN jAN . Since fa1; a2; bg, is half-factorial, it follows that N jEN . By the
de�nition of 
, there is a U 0N 2 A(GP ) with N
 jU 0N jEN . Note that [28, Lemma 1.6.5.6] shows that
t(AN ; U

0
N ) � t(AN ;Z(EN )).

Let AN = U 0NWN with WN 2 B(GP ). Then supp(WN ) = fa1; a2; bg and hence jL(WN )j = 1. Thus
all factorizations in Z(AN ) \ U

0
NZ(GP ) have the same length. We pick some factorization zN 2 Z(AN ) \

U 0NZ(GP ). Clearly, there is a factorization z
�
N 2 Z(AN ) such that (in view of (6.2))��jzN j � jz�N j

�� � max L(AN )�min L(AN )

2
�
d

2

�
M1

ja2j�1�2

�
:

This implies that

t(AN ;Z(EN )) � t(AN ; U
0
N ) � minfd(z�N ; yN ) j yN 2 Z(AN ) \ U

0
NZ(GP )g

� minf
��jz�N j � jyN j

�� j yN 2 Z(AN ) \ U
0
NZ(GP )g

�
��jzN j � jz�N j

�� � d

2

�
M1

ja2j�1�2

�
:

Since N can be arbitrarily large and by (6.1), we get that �(f0; dg) is not tamely generated. �

We will frequently make use of the following simple observation. Let G be an abelian group and G1 �
G0 � G subsets. Then B(G1) � B(G0) is a divisor-closed submonoid, and hence L(G1) � L(G0). Therefore,
if the Structure Theorem holds for B(G0), then it holds for B(G1). In particular, if condition (b) holds, then
the Structure Theorem holds for all B(G0) with G0 � GP , and if (b) fails, then the Structure Theorem fails
for all B(G0) with GP � G0|where GP is as below.

Theorem 6.4. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors. Suppose that 1 2 G+

P and G�P = f�d;�1g for some
d 2 N. Then the following statements are equivalent :

(a) The Structure Theorem for Sets of Lengths holds for H.

(b) G+
P n dZ is �nite or a subset of 1 + dZ.
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The remainder of this section is devoted to the proof of Theorem 6.4.

Lemma 6.5. Let H be an atomic monoid. Suppose that there exists some e 2 N such that, for each N 2 N,
there exists some a 2 H such that L(a)\ [min L(a);min L(a)+N ] � min L(a)+ eZ, yet L(a) 6� min L(a)+ eZ.
Then the Structure Theorem does not hold for H.

Proof. We assume to the contrary that there exists some �nite nonempty set �� � N and some M 2 N such
that, for each b 2 H, the set L(b) is an AAMP with di�erence d 2 �� and bound M .

Let D = 2 lcm(��). Let N � 2M + D and let a 2 H with the properties from the statement of the
lemma. Let l1 = min L(a) and l2 = max L(a). Note that l2 � l1 + N (by the property assumed for a). By
assumption, we get that L(a) is an AAMP, i.e.,

L(a) = y + (L0 [ L� [ L00) � y +D + dZ

where d 2 ��, f0; dg � D � [0; d], L� is �nite nonempty with minL� = 0 and L� = (D + dZ) \ [0;maxL�],
L0 � [�M;�1] and L00 � maxL� + [1;M ], and y 2 N.

Since

l2 � l1 +N � l1 + 2M +D � l1 �minL0 +M +D;

it follows that [l1 �minL0; l1 �minL0 +D � 1] \ L(a) � L�, and thus

[l1 �minL0; l1 �minL0 +D � 1] \ L(a) = [l1 �minL0; l1 �minL0 +D � 1] \ (y +D + dZ):

On the other hand, by the property assume for a, and since N � 2M +D � �minL0 +D, we have

[l1 �minL0; l1 �minL0 +D � 1] \ L(a) � l1 + eZ:

Thus

A = [�minL0;�minL0 +D � 1] \ (y � l1 +D + dZ) � eZ:

Since D � 2d, it follows that for each d0 2 D there exists some k 2 Z and � 2 f�1; 1g such that y� l1+ d0+
kd; y� l1+d

0+(k+ �)d 2 A. Thus e j d and, furthermore, e j y� l1+d
0. Consequently, y+D+dZ � l1+eZ.

This yields a contradiction, since L(a) � y +D + dZ, yet L(a) 6� l1 + eZ by hypothesis. �

Lemma 6.6. Let d 2 N, e 2 [2; d�1] with gcd(e; d) > 1 and G0 � Z. If f�d;�1; 1g � G0 and G
+
0 \ (e+dZ)

is in�nite, then the Structure Theorem does not hold for B(G0).

Proof. We may assume d � 4, since otherwise there exists no e 2 [2; d � 1] with gcd(e; d) > 1. Let k 2 N
such that e + dk 2 G0; by assumption, we know that arbitrarily large k with this property exist, and we
thus may impose that k � 10. Let f 2 N be minimal such that ef 2 dN, say ef = du. Since gcd(e; d) > 1,
we see that f 2 [2; d=2] and u � e=2 � d=2. We consider the sequence

B = (e+ dk)f (�d)u+fk(�1)d(u+fk)1d(u+fk):

Since ef = du, we have B 2 B(G0). First, we consider two speci�c factorizations of B. Then, we investigate
the length of all factorizations of B of small length. Let

z1 = ((e+ dk)f (�d)u+fk) � ((�1)1)d(u+fk)

and

z2 = ((e+ dk)(�1)e+dk)f � ((�d)1d)u+fk:

We note that z1; z2 2 Z(B) and that jz1j = 1 + d(u + fk) and jz2j = f + (u + fk). Since f � 1 =2 (d � 1)Z
(as f 2 [2; d=2]), we have jz1j � jz2j =2 (d� 1)Z.

We claim that there exists an absolute positive constant c such that, for each z 2 Z(B) with

jzj � jz2j+ c(d� 1)k;

we have

jzj � jz2j 2 (d� 1)N0:
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By Lemma 6.5 and since k can be arbitrarily large, this implies that the Structure Theorem does not hold.
Thus, it su�ces to establish this claim. For de�niteness, we set c = 1=6 (it is apparent from the subsequent
argument that it only has to be less than 1=2). Let

z = A1 � : : : �AsU1 � : : : � Ut 2 Z(B)

with Ai; Uj 2 A(G0), and (e+ dk) j Ai and (e+ dk) - Uj for all i; j. We proceed to show that ve+dk(Ai) = 1
for each i, i.e., s = f . Clearly, v(�1)1(z) � jzj, and thus we have

v�1(�(A1 � : : : �As)) � d(u+ fk)� jzj

� d(u+ fk)� (f + u+ fk + c(d� 1)k)

= (f � 2)(e+ dk) + 2(e+ dk)� (f + u+ fk + c(d� 1)k)

� (f � 2)(e+ dk) + dk � (d=2 + d+ dk=2 + cdk)

> (f � 2)(e+ dk) + d(k � 3=2� k=2� ck):

Since c = 1=6 and k � 10, we have k(1=2� c)� 3=2 � 1. So we have

(6.3) v�1(�(A1 � : : : �As)) � (f � 2)(e+ dk) + d:

If s � f � 1, then, since v�1(Ai) � e + dk for each i, we conclude from (6.3) that v�1(Ai) � d for each i,
implying (since supp(A�i ) � f�1;�dg) that ve+dk(Ai) = 1 for each i, contradicting s � f � 1. Thus s = f .
We have Uj 2 f(�1)1; ((�d)1

d)g for each j. Thus

z = A1 � : : : �Af ((�1)1)
a((�d)1d)b

where a = d(u+ fk)� v�1(�(A1 � : : : �Af )) and b = u+ fk � v�d(�(A1 � : : : �Af )). We have

jzj = f + (u+ fk)(d+ 1)� (v�1(�(A1 � : : : �Af )) + v�d(�(A1 � : : : �Af )))

and, since

d � v�d(�(A1 � : : : �Af )) + v�1(�(A1 � : : : �Af )) = (u+ fk)d;

this implies

jzj = f + u+ fk + (d� 1)v�d(�(A1 � : : : �Af ));

establishing jzj � jz2j 2 (d� 1)N0. �

Lemma 6.7. Let d 2 N, e 2 [1; d� 1] with gcd(e; d) = 1 and G0 � Z. If f�d;�1; 1g � G0, G
+
0 \ (e+ dZ)

is in�nite and G+
0 n ((e+ dZ) [ dZ) is nonempty, then the Structure Theorem does not hold for B(G0).

Proof. We may assume d � 3, as the hypotheses are null otherwise. Since G+
0 n ((e+ dZ)[ dZ) is nonempty,

let f 2 [1; d�1]nfeg and ` 2 N0 be such that f +d` 2 G+
0 . Since f�d;�1; 1g � G0, G

+
0 \ (e+dZ) is in�nite,

let k 2 N be such that e+ dk 2 G+
0 and e+ dk � f + d`. Since gcd(e; d) = 1, let x 2 [1; d� 1] be the integer

such that f + xe 2 dZ, say f + xe = ud. Since f 2 [1; d� 1] n feg, we have x 6= d� 1 and u � d� 1.
We proceed similarly to Lemma 6.7. We consider the following element of B(G0):

B = (f + d`)(e+ dk)x(�d)u+xk+`(�1)d(u+xk+`)1d(u+xk+`):

Again, we �rst consider two speci�c factorizations of B, namely

z1 = ((f + d`)(e+ dk)x(�d)u+xk+`) � ((�1)1)d(u+xk+`)

and

z2 = ((f + d`)(�1)f+d`) � ((e+ dk)(�1)e+dk)x � ((�d)1d)u+xk+`:

The respective lengths of these factorizations are 1 + d(u + xk + `) and 1 + x + (u + xk + `). Thus,
jz1j � jz2j =2 (d� 1)Z.

As in Lemma 6.6, we show that there exists a positive c, now depending on d (but not on k), such that,
for each z 2 Z(B) with

jzj � jz2j+ c(d� 1)k;
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we have

jzj � jz2j 2 (d� 1)N0;

which again completes the proof by Lemma 6.5. We set c = 1=(d� 1) (this choice is not optimal). Let

z = A1 � : : : �As((�1)1)
a((�d)1d)b

where Ai =2 f(�1)1; (�d)1dg. We proceed to show that jA+i j = 1 for each i. From the de�nition of B, we
have s � x+ 1. Again, v(�1)1(z) � jzj, and thus

v�1(�(A1 � : : : �As)) � d(u+ xk + `)� jzj

� d(u+ xk + `)� (1 + x+ (u+ xk + `) + c(d� 1)k)

= (x� 1)(e+ dk) + (f + d`) + (e+ dk)� (1 + x+ (u+ xk + `) + c(d� 1)k)

� (x� 1)(e+ dk) + (f + d`) + (e+ dk)� (d� 1 + (d� 1 + (d� 2)k + `) + c(d� 1)k)

� (x� 1)(e+ dk) + d+ 2k � 3d� c(d� 1)k:

Since c = 1=(d� 1), we have, for k � 3d,

v�1(�(A1 � : : : �As)) � (x� 1)(e+ dk) + d:

If s = x + 1, the claim is obvious. Thus, assume s � x. Since v�1(Ai) � e + dk for each i (recall that
e+ dk � f + d`), we get that v�1(Ai) � d for each i, establishing the claim (since supp(A�i ) � f�1;�dg).

Thus

z = A1 � : : : �As((�1)1)
a((�d)1d)b;

where a = d(u+ xk + `)� v�1(�(A1 � : : : �As)) and b = (u+ xk + `)� v�d(�(A1 � : : : �As)). We have

jzj = s+ (d+ 1)(u+ xk + `)� (v�1(�(A1 � : : : �As)) + v�d(�(A1 � : : : �As))):

We note that if f + `d 6= 1, then s = 1 + x, and if f + `d = 1, then s = x. Moreover, if the former holds
true, then

d � v�d(�(A1 � : : : �Af )) + v�1(�(A1 � : : : �Af )) = d(u+ xk + `);

whereas if the latter holds true, then

d � v�d(�(A1 � : : : �Af )) + v�1(�(A1 � : : : �Af )) = d(u+ xk + `)� 1:

In both cases, this implies

jzj = 1 + x+ (u+ xk + `) + (d� 1)v�d(�(A1 � : : : �As)):

establishing jzj � jz2j 2 (d� 1)N0, as claimed. �

Proposition 6.8. Let f�1; 1g � G0 � Z with G�0 �nite such that the Structure Theorem holds for B(G0).
For each �d 2 G�0 , at least one of the following statements holds :

(a) jG+
0 n dZj <1.

(b) G+
0 n dZ � 1 + dZ.

Proof. The claim is trivial for d � 2. Suppose d � 3. Let E � [0; d� 1] be such that G+
0 \ (e+dZ) is in�nite

for each e 2 E. If there exists some e 2 E n f0g with gcd(e; d) > 1, Lemma 6.6 yields a contradiction. Thus,
gcd(e; d) = 1 for each e 2 E nf0g. By Lemma 6.7 we get that if gcd(e; d) = 1, then e = 1 (note that 1 2 G+

0 ),
and moreover, in this case we have G+

0 � ((1 + dZ) [ dZ). �

Now, we show that the Structure Theorem indeed holds for monoids of zero-sum sequences over sets of
the form considered in Theorem 6.4 not covered by the above results. Moreover, we investigate the �niteness
of the successive distance for these sets. Again, note that the set F0 [ dN in the result below does not
ful�l condition (a) of Theorem 5.2, yet by Lemma 3.4 it can occur as the subset of classes containing prime
divisors of a Krull monoid, even with respect to a divisor theory, showing that the conditions (b1), (b2), and
(b3) do not imply (a), not even combined.
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Proposition 6.9. Let d 2 N�2 and F0 � Z with F�0 = f�d;�1g.

1. The Structure Theorem holds for B(F0 [ dN) if and only if it holds for B(F0 [ fdg). More precisely,
for each L 2 L(F0 [ dN), there exists some y 2 N0 such that �y + L 2 L(F0 [ fdg).

2. �(F0 [ dN) = �(F0 [ fdg)
3. There is a map  : B(F0[dN)! B(F0[fdg) such that, for each B 2 B(F0[dN) and adjacent lengths
k and l of L(B), we have d(Zk(B);Zl(B)) � d(Zk( (B));Zl( (B))) with k and l adjacent lengths of
L( (B)).

In particular, if F0 is �nite, then the Structure Theorem holds for B(F0[dN), and �(F0[dN) and cmon(F0[
dN) are �nite.

Proof. Let G0 = F0 [ dN and G1 = F0 [ fdg.

1. Since G1 � G0, one implication is clear and it remains to show that if the Structure Theorem holds
for B(G1), then it holds for B(G0). Indeed, the more precise assertion we establish shows that the Structure
Theorem holds with the same bound and the same set of di�erences.

Let  : F(G0)! F(G1) denote the monoid homomorphism de�ned via  (g) = g for g =2 dN and  (kd) =
dk for kd 2 dN. We note that �(S) = �( (S)) for each S 2 F(G0); thus  yields a homomorphism, and
indeed an epimorphism, from B(G0) to B(G1).

Moreover, we observe that if A 2 A(G0) with kd j A, for some k 2 N, then A+ = kd. This implies that,
for such an atom,  (A) = dk(�1)d`(�d)k�` and (d(�1)d)` � (d(�d))k�` 2 Z( (A)) is the unique factorization
of  (A). We denote this factorization by  (A) and we note that j (A)j = �(A+)=d. Setting  (A) = A for
each atom not of this form, i.e., A 2 A(G0) with supp(A) \ dN = ;, and extending this map to Z(G0), we
get a homomorphism, indeed an epimorphism,  : Z(G0)! Z(G1).

Since �( (z)) =  (�(z)), we see that  (Z(B)) � Z( (B)) for each B 2 B(G0). Moreover, for B 2 B(G0)
and z 2 Z(B), we have, denoting F =

Q
g2dN g

vg(B), that j (z)j = jzj + (�(F )=d � jF j). In particular, the

value of j (z)j � jzj is the same for each z 2 Z(B).
Thus, to establish our claim on sets of lengths, it su�ces to show that  (Z(B)) = Z( (B)) for each

B 2 B(G0). Let B 2 B(G0) and again let F =
Q

g2dN g
vg(B) =

QjF j
i=1(kid), where ki 2 N. Let z

0 2 Z( (B)).

There exists a unique decomposition z0 = z01z
0
2 such that z01 is minimal with d�(F )=d j �(z01) (note that

vd( (B)) = �(F )=d). We have jz01j = �(F )=d. Write z01 =
QjF j

i=1 y
0
i such that each factor y0i 2 Z( (B))

contains exactly jy0ij = ki atoms. Then letting Ai = (kid)d
�ki�(y0i), we have Ai 2 A(G0), and so z =

A1 � : : : � AjF jz
0
2 is a factorization of B with  (z) =  (A1) � : : : �  (AjF j)z

0
2 = y01 � : : : � y

0
sz
0
2 = z0, establishing

our claim.

2. Since �(G1) � �(G0) is obvious, we only have to show that �(G0) � �(G1). We show the following
slightly stronger result. Let B 2 B(G0) and z 2 Z(B). Then �(z) � �( (z)).

Let F and z = z1z2 be de�ned as above, and let z1 =
QjF j

i=1Ai and let A+i = kid, where ki 2 N. Moreover,

let z0 =  (z) and let z0 = z01z
0
2 with z

0
1 =  (z1) and z

0
2 =  (z2) = z2. Additionally, let y

0
i =  (Ai) for each i.

Let j 2 Z be such that jzj and jzj+ j are adjacent lengths of L(B). By the already established result for sets
of lengths, it follows that j (z)j and j (z)j + j are adjacent lengths of L( (B)). Thus, by de�nition, there
exists some factorization x0 2 Z( (B)) with jx0j = j (z)j+ j and d(x0;  (z)) � �( (z)). Let x0 = x01x

0
2 with

x01 minimal such that d�(F )=d j �(x01). We note that

(6.4) d(z0; x0) = d(z01; x
0
1) + d(z02; x

0
2):

Thus, by re-indexing appropriately, we �nd a

(6.5) t � d(z01; x
0
1)

such that
QjF j

i=t+1 y
0
i j x

0
1.

Let x001 = x01

�QjF j
i=t+1 y

0
i

��1
. As we argued at the end of part 1, there exists, for i � t, factorizations

y00i 2 Z( (B)), each containing exactly jy0ij = ki atoms, such that
Qt

i=1 y
00
i = x001 . For i � t, let A0i =
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d�ki(kid)�(y
00
i ), and for i 2 [t + 1; jF j], let A0i = Ai. Then, with x1 =

QjF j
i=1A

0
i and x2 = x02, we have

that x = x1x2 is a factorization of B, and since  (x) = x001(
QjF j

i=t+1 y
0
i)x

0
2 = x01x

0
2, we get that jxj � jzj =

j (x)j � j (z)j = jx0j � j (z)j = j. Finally, using (6.4) and (6.5), we have

d(z; x) � d(z1; x1) + d(z2; x2) � t+ d(z2; x2) � d(z01; x
0
1) + d(z02; x

0
2) = d(z0; x0);

establishing the claim.

3. The argument is just a variation on the proof of parts 1 and 2.

We now address the additional statements. Suppose that F0 is �nite. By Proposition 5.5, we know that
the Structure Theorem holds for B(F0 [ fdg) and that �(F0 [ fdg) is �nite. Thus, by parts 1 and 2, we get
that the Structure Theorem holds for B(F0 [ dN) and that �(F0 [ dN) is �nite. Since �(F0 [ dN) is �nite,
Proposition 5.8 implies that cmon(F0 [ dN) is �nite. �

The systems of sets of lengths of B(F0[dN) and B(F0[fdg) are very closely related, but they are di�erent
in general. For �nite F0, the elasticity of B(F0 [ fdg) is accepted (Proposition 5.5), yet we see in Corollary
6.11 that this is in general not the case for B(F0 [ dN).

Proposition 6.10. Let d 2 N�2 and G0 = f�d;�1g [ (1 + dN0) [ dN0.

1. The Structure Theorem holds for B(G0). More precisely, each L 2 L(G0) is an arithmetical progression
with di�erence d� 1.

2. For each B 2 B(G0) and adjacent lengths k and l of L(B), we have d(Zk(B);Zl(B)) = d+ 1.

3. �(G0) =1.

4. cmon(G0) = d+ 1.

Proof. Before we start the argument for the individual parts, we start with some general remarks. We begin
by investigating A(G0). Let A 2 A(G0). If kd j A for some k 2 N0, then A = (kd)(�1)dl(�d)k�l for some
l 2 [0; k]. In particular, we thus have two atoms containing d, namely U1 = d(�1)d and Ud = d(�d). Suppose

supp(A) \ dN0 = ;. Then A+ =
QjA+j

i=1 (1 + kid) with ki 2 N0. It follows that jA+j 2 f1; dg. Moreover,

if jA+j = d, then �1 - A and therefore A = A+(�d)�(A
+)=d. Thus, either jA+j = 1 or else jA+j = d and

A = A+(�d)�(A
+)=d. Conversely, each zero-sum sequence B 2 B(G0nf0g) with B

+ =
Qd

i=1(1+kid), ki 2 N0
and �1 =2 supp(B�) is an atom.

Let B 2 B(G0 n f0g) and let z 2 Z(B). In view of the considerations just made, there exists a unique
decomposition z = z1zd such that for each A j z1 we have jA

+j = 1 and for each A j zd we have jA+j = d.
We denote jzdj by td(z). Since jB

+j = jz1j+ djzdj, it follows that

(6.6) jzj = jz1j+ jzdj = jB+j � (d� 1)jzdj = jB+j � (d� 1)td(z);

i.e., jzj is determined by B+ and td(z).
By Proposition 6.9 and since 0 is a prime, it su�ces to consider the set G1 = f�d;�1g [ (1 + dN0)[ fdg

for the proof of parts 1 and 3.

1. Let B 2 B(G1). Let z 2 Z(B) and let z = z1zd be de�ned as above. We observe that, since v�1(A) � 1
for each A that neither ful�ls jA+j = d nor equals Ud, we have

(6.7) td(z) �

�
jB+j � vd(B)

�
� v�1(B)

d

By (6.6), we get that L(B) is contained in an arithmetical progression with di�erence (d � 1). In view of
this, it su�ces to establish the following claim.
Claim 1: If jzj < max L(B), then there exists some z0 2 Z(B) with jz0j = jzj+ (d� 1) and d(z; z0) = d+ 1;
in particular, td(z

0) = td(z)� 1. Moreover, d(z; z0) � d+ 1.
To prove this, we �rst investigate the case jzj = max L(B).

Claim 2: If td(z) = 0 or v�1(A) � 1 for each A j z, then jzj = max L(B).
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Proof of Claim 2. If td(z) = 0, the claim is clear by (6.6). Thus, assume v�1(A) � 1 for each A j z. In

view of the characterization of atoms, it follows that z1 = z01U
vd(B)
d and v�1(A) = 1 for each atom A j z01. In

particular, we have jz1j = v�1(B) + vd(B). In view of d � td(z) = jB+j � jz1j, this implies

td(z) =

�
jB+j � vd(B)

�
� v�1(B)

d
:

Thus equality holds in (6.7), which by (6.6) implies that jzj is maximal.
Proof of Claim 1. Suppose jzj < max L(B). By Claim 2, we know that td(z) > 0 and that there exists some
atom C j z such that v�1(C) > 1. In view of the characterization of atoms given above, we have v�1(C) � d
and jC+j = 1. Since td(z) > 0, there exists some atom Ad j z with jA

+
d j = d. Let z = AdCz0. We consider

the zero-sum sequences B1 = (�d)�1Ad(�1)
d and B2 = (�1)�dC(�d). Clearly, �(B1B2z0) = B. We note

that B2 is an atom as jB+
2 j = 1. Yet, since jB+

1 j = d but v�1(B1) � 1, we get that B1 is not an atom;
more precisely, max L(B1) = d. Thus, replacing the two atoms Ad and C in z by the atom B2 and any
factorization of length d of B1 completes the claim.

2. By Proposition 6.9.3 and since 0 is a prime, it su�ces to consider G1 for �nding an upper bound on
d(Zk(B);Zl(B)). Thus, by Claim 2, we get that d(Zk(B);Zl(B)) � d + 1. The converse inequality follows
by (2.1) in view of Proposition 6.9.3 and part 1.

3. We consider B = (1 + kd)dd1+kd(�d)1+kd(�1)d(1+kd). We note that L(B) = f2 + kd; 1 + d + kdg
and z =

�
(1 + kd)d(�d)1+kd

�
� (d(�1)d)1+kd is its only factorization of length 2 + kd. The factorization

z0 =
�
(1 + kd)(�1)1+kd

�d
�
�
d(�d)

�1+kd
has length 1 + d+ kd and d(z0; z) = jz0j = 1+ d+ kd, implying that

�(B) � 1 + d+ kd, and the claim follows by letting k !1.

4. By part 2 and since 0 is prime, it is su�cient to show that, for any two factorizations z; y 2 Z(G0 nf0g)
with �(z) = �(y), we have that: if jzj = jyj, then z and y can be concatenated by a monotone 2-chain.
Clearly, in this case monotone means that each factorization in this chain has length jzj, i.e., we claim that
z and y can be concatenated by a 2-chain in Zjzj(�(z)). We proceed by induction on jzj. Let z; y 2 Z(G0)
with �(z) = �(y) and suppose that jzj = jyj. If jzj = 1, the statement is trivial. Thus, assume jzj � 2 and
that the statement is true for factorizations of length at most jzj � 1. We make the following claim.
Claim 3: There exist z0; y0 2 Z(�(z)) with jz0j = jy0j = jzj such that z and z0, as well as y and y0, can be
concatenated by a 2-chain in Zjzj(�(z)) and gcdfz0; y0g 6= 1.

We assume this claim is true and complete the argument. Let z0 and y0 be factorizations with the
claimed properties and let U 2 A(G0) with U j gcdfz0; y0g. We set z00 = U�1z0 and y00 = U�1y0. By
induction hypothesis, there exists a 2-chain z00 = z000 ; z

00
1 ; : : : ; z

00
s = y00 in Zjz00j(�(U

�1z0)). We note that
U � z00i 2 Zjzj(�(z)) for each i 2 [0; s]. Thus, z0 and y0 can be concatenated by a 2-chain in Zjzj(�(z)).
Combining these three chains, the result follows.
Proof of Claim 3. If 0 j z, then 0 j y and the claim is trivial. Thus, assume 0 - z.

Let z = z1zd and y = y1yd be as de�ned at the beginning of the proof and recall that jzj = jyj is equivalent
to td(z) = td(y).

Before starting the actual argument, we make three subclaims.
Claim 3.1: Let h j �(z1) and g j �(zd) with g; h 2 1+ dN0 and h � g. Then there exists a factorization x of
�(z) such that, with x = x1xd as above, �(x1)

+ = �(z1)
+gh�1 and �(xd)

+ = �(zd)
+hg�1 and d(z; x) � 2;

in particular, jxj = jzj.
To see this, let Ah j z1 and Ag j zd with h j Ah and g j Ag. We set A0h = hAgg

�1(�d)�(g�h)=d and

A0g = gAhh
�1(�d)(g�h)=d. Note that this process is well-de�ned and that A0g and A

0
h are atoms by the above

characterization of atoms. Let x = zA0gA
0
hA

�1
g A�1h . Noting that x1 = A0gA

�1
h z1 and xd = A0hA

�1
g zd, the

claim is established.
Claim 3.2: Suppose that td(z) = 0. Then z and y can be concatenated by a 2-chain in Zjzj(�(z)).

Informally, each atom in z and y contains exactly one positive element, hence distinct atoms containing
the same positive element can only di�er in the negative part. Successively exchanging (�1)d for �d and
vice versa, for suitable pairs of atoms, we can construct such a chain.
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To give a formal argument, we use the independent material of Section 7 which follows. Note that, in
this case, jzj = jyj = j�(z)+j and A(E(G�P )) = f(�d;�d); (�1;�1); ((�1)d;�d); (�d; (�1)d)g. Thus G0 �= Z
with G00 = f0; 1;�1g, where G0 and G00 are as de�ned before Theorem 7.3, whence D(S(G�P ); E(G

�
P )) = 2 by

(7.14). Hence Theorem 7.3 shows that there is a 2-chain concatenating z and y.
Claim 3.3: Suppose that td(z) = jzj. Then z and y can be concatenated by a 2-chain in Zjzj(�(z)).

Informally, since in this case supp(�(z)) = f�dg, we can apply an argument similar to the one in Claim
3.1, without additional condition on the relative size of g and h.

To get a formal argument, note that in this case �(z) 2 B(G0 n f�1g). By Lemma 5.3, we get that the
block monoid associated to B(G0 n f�1g) is B(f0 + dZ; 1 + dZg) � B(Z=dZ). However, B(f0 + dZ; 1 + dZg)
is factorial, and thus its catenary degree is 0; also note that the former monoid is thus half-factorial. Since
the catenary degree in the �bers of the block homomorphism is 2 (see Lemma 3.3), the claim follows.

Now, we give the actual proof of Claim 3. In view of Claim 3.2, we may assume that td(z) > 0. Hence,
let S j �(z) be a subsequence with supp(S) � 1 + dN0 and jSj = d. Moreover, assume that �(S) is minimal
among all such subsequences of �(z). We assert that there exists some x0 2 Zjzj(�(z)) such that S j �(x0d)
and z and x0 can be concatenated by a 2-chain in Zjzj(�(z)). Let x

0 2 Zjzj(�(z)) be a factorization such that
z and x0 can be concatenated by a 2-chain in Zjzj(�(z)) and such that S0 = gcdf�(x0d); Sg is maximal. We
show that S0 = S. Assume to the contrary that S0 6= S. Let h j �(x01) with hS

0 j S. We observe that there
exists some g j S0�1�(x0d) with g 2 1 + dN0 and g � h; otherwise, the sequence gh�1S would contradict the
minimality of �(S).

We apply Claim 3.1 to x0 (with these elements g and h) and denote the resulting factorization by x00. Since
it can be concatenated to z by a 2-chain in Zjzj(�(z)) and yet hS0 j gcdf�(x00d); Sg, its existence contradicts
the maximality of S0 for x0. Thus S0 = S.

Since S j �(x0d), we have that U = S(�d)�(S)=d j �(x0d). Let z
0
d 2 Z(�(x0d)) with U j z0d. Since td(�(x

0
d)) =

jx0dj, Claim 3.3 applied to x0d yields that x
0
d and z

0
d can be concatenated by a 2-chain in Zjx0

d
j(�(x

0
d)). We set

z0 = z0dx
0
1 and observe that x0 and z0, and thus z and z0, can be concatenated by a 2-chain in Zjzj(�(z)) and

U j z0

In the same way, noting that S depends only on �(z) and not on z, we get a factorization y0 2 Zjzj(�(z))
with U j y0 such that y and y0 can be concatenated by a 2-chain in Zjzj(�(z)). Since U j gcdfz0; y0g, the
claim is established. �

Proof of Theorem 6.4. By Lemma 3.3, it su�ces to consider B(GP ). The case d = 1 is trivial. Suppose
d � 2. One direction is merely Proposition 6.8. The other one follows, for the �rst type of set, by Proposition
6.9, and for the second type of set, by Proposition 6.10. �

By [1], it is known that Krull monoids with in�nite cyclic class group can have �nite, non-accepted elas-
ticity. The following result shows that, even if the Structure Theorem holds, the elasticity is not necessarily
accepted.

Corollary 6.11. Let all assumptions be as in Theorem 6.4. Suppose that the Structure Theorem holds for
H. Then exactly one of the following two statements holds :

(a) H is half-factorial or GP is �nite.
(b) �(H) = d and the elasticity is not accepted.

Proof. Half-factorial monoids obviously have accepted elasticity and monoids with GP �nite also have ac-
cepted elasticity (Proposition 5.5). Thus, we assume that H is not half-factorial and that GP is in�nite, and
show that under these assumptions �(H) = d and the elasticity is not accepted. Note that since H is not
half-factorial, we have d � 2.

We recall that if A 2 A(GP ) with (�1) j A, then jA+j = 1 (as explained in the proof of Proposition 6.10).
Let B 2 B(GP ). We show that �(B) < d. Assume to the contrary �(B) � d. That is, there exist

z; z0 2 Z(B) such that jz0j=jzj � d. By Lemma 4.3, we know that jA+j � d for each A 2 A(GP ). Thus, we
get jzj � v0(z) + jB+j=d, whereas clearly jz0j � v0(z

0) + jB+j.
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Consequently, we have �(B) � d, and �(B) = d is equivalent to the following: jA+j = d for each atom
A j z and jA0+j = 1 for each atom A0 j z0. It follows that v�1(B) = 0, i.e., B 2 B(GP n f�1g). By [1], or
Lemma 5.3 and [28, Proposition 6.3.1], we get that �(B(GP n f�1g)) � �(Z=dZ) = d=2 < d, a contradiction.

It remains to show that �(GP ) � d. We may assume that 0 =2 GP . We note the existence of the two
atoms 1(�1) and 1d(�d) in A(GP ). Thus, 1 and 1d are elements of A(GP )

+. Thus, ��(1d) � d, and the
claim follows by Lemma 4.12. �

Our proofs that the Structure Theorem does not hold rely on the existence of a single exceptional factor-
ization, yet the following example illustrates that sets of lengths can deviate by more than a single element
(or a globally bounded number of elements) from being an AAMP.

Example 6.12. Let d; k; l 2 N and e 2 [1; d� 1], and set B = (e+ kd)(�e+ `d)1(k+`)d(�1)(k+`)d(�d)k+`.
Then

L(B) = f1 + k + `+ (k + `)(d� 1)g [ f1 + e+ k + `+ i(d� 1) j i 2 [k; k + `� 1]g

[ f2� e+ k + `+ i(d� 1) j i 2 [`; `+ k]g

[ f2 + k + `+ i(d� 1) j i 2 [0; k + `� 1]g:

7. Chains of factorizations

In a large class of monoids and domains satisfying natural (algebraic) �niteness conditions, the catenary
degree is �nite (see [28] for an overview and [5, 29, 4, 38] for some recent work). However, the understanding
of the structure of the concatenating chains is still very limited. Whereas, on the one hand, the �niteness of
the monotone catenary degree is a rare phenomenon (inside the class of objects having �nite catenary degree),
the following two positive phenomena have been observed. First, in a large class of monoids, all problems
with the monotonicity of concatenating chains occur only at the beginning and the end of concatenating
chains ([15, Theorem 1.1], [16, Theorem 3.1]). Second, in various settings, there is a large subset consisting
of `big' elements having extremely nice concatenating chains (see [23, Theorem 4.3], [28, Theorems 7.6.9 and
9.4.11]).

Let H be a Krull monoid with in�nite cyclic class group and GP � G as always. By Theorem 5.2, it
su�ces to consider the situation where G+

P is in�nite and 2 � jG�P j <1. Our �rst result points out that, in
general, the monotone catenary degree is in�nite. In contrast to this, the main result (Corollary 7.4) shows
that there is a constant M� such that, for a large class of elements a, any two factorizations z and y of a
with y having maximal length can be concatenated by a monotone M�-chain of factorizations and thus, for
those factorizations z and y of a neither of which need be of maximal length, there is an M�-chain between
z and y which `changes direction' at most once.

Proposition 7.1. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors. Suppose that �d1;�d2; d1d2 2 GP , where 3 � d1 < d2,
gcd(d1; d2) = 1 and d1 � 1 - d2 � 1, and that GP contains in�nitely many positive integers congruent to
d1 + d2 modulo d1d2. Let d = gcd(d1 � 1; d2 � 1). Then, for every M; N � 0, there exists a 2 H and
z; z0 2 Z(a) such that

jz0j = jzj+ d � jzj+ d1 � 2;(7.1)

jzj 2 [min L(a) +N; max L(a)�N ]; and(7.2)

d
�
z;

jZj+d1�2[
i=1

Zi(a) n fzg
�
> M:(7.3)

In particular, cmon(H) =1 and �(H) =1
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Proof. That cmon(H) = �(H) =1 follows from (7.1) and (7.3), so we need only show (7.1), (7.2) and (7.3)
hold. By Lemma 3.3, it su�ces to prove the assertions for B(GP ). We may also w.l.o.g. assume

N � d2 � 1 and M � d1;

as the theorem holding for large values of M and N implies it holding for all smaller values.

In view of the hypotheses, there exists L 2 GP with

L > d2M � d1d2;(7.4)

L � d1 mod d2 and L � d2 mod d1:(7.5)

Let B 2 B(fd1d2;�d1;�d2; Lg) � B(GP ) be the sequence

B = L2d1d2N (�d2)
2d1LN (�d1)

2d2LN (d1d2)
2LN :

Let

A1 = Ld1(�d1)
L and A2 = Ld2(�d2)

L:

Since gcd(d1; d2) = 1, it follows, in view of (7.5) and by reducing modulo d1 and d2, respectively, that A1
and A2 are both atoms. Also de�ne

B1 = (d1d2)(�d1)
d2 and B2 = (d1d2)(�d2)

d1 ;

which, since they both contain exactly one positive integer, must also be atoms. In view of (7.5), de�ne

A0 = L(�d2)
L�d1
d2 (�d1);

which is an atom for the same reasons as those for the Bi.
Let z 2 Z(B) be given by

z = Ad2N
1 Ad1N

2 BLN
1 BLN

2 :

Since d = gcd(d1 � 1; d2 � 1), it follows that there exists an integer l 2 [1; d2 � 1] such that

l(d2 � d1) � �d mod d2 � 1:

Let

(7.6) l0 =
l(d2 � d1) + d

d2 � 1
2 N:

Then, since d = gcd(d1 � 1; d2 � 1) � d1 � 1, it follows that 1 � l0 � l � d2 � 1. Note that we have the
identities

�(Ad2
1 B

L
2 ) = �(Ad1

2 B
L
1 ) and �(A2B1) = �(Ad2

0 B2):

Thus, by considering the de�nition of z and recalling that N � d2 � 1 � l � l0, we see that

z0 = Ad2N�ld2
1 Ad1N+ld1�l

0

2 Al0d2
0 BLN+lL�l0

1 BLN�lL+l0

2

is another factorization z0 2 Z(B) besides z.
Note that jz0j � jzj = �l(d2 � d1) + l0(d2 � 1) = d. Moreover, since d1 � 1 - d2 � 1, d1 < d2 and

gcd(d1 � 1; d2 � 1) = d, it follows that d < d1 � 1. Thus (7.1) holds. Also, the factorizations

A2d1N2 B2LN
1 2 Z(B) and A2d2N1 B2LN

2 2 Z(B)

show that

min L(B) +N � min L(B) + (d2 � d1)N � jzj � max L(B)� (d2 � d1)N � max L(B)�N ;

whence (7.2) holds. It remains to establish (7.3). We begin with the following claim.
Claim 1: If AjB is an atom with d1d2 2 supp(A), then d1d2 is the only positive element dividing A and
vd1d2(A) = 1.
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Suppose instead that a jA(d1d2)
�1 with a 2 fL; d1d2g. Then we must have v�d2(A) < d1 and v�d2 <

d1, else (d1d2)(�d1)
d2 or (d1d2)(�d2)

d1 would be a proper, nontrivial zero-sum subsequence dividing A,
contradicting that A is an atom. But now (in view of (7.4))

2d1d2 > ��(A�) = �(A+) � a+ d1d2 � minfL; d1d2g+ d1d2 = 2d1d2;

a contradiction. So Claim 1 is established.

In view of Claim 1, we see that, in any factorization y of B, there will always be 2LN atoms A having
A(d1d2)

�1 consisting entirely of negative terms. Thus the length of any factorization of B is determined
entirely by the number of atoms containing an L. Moreover, by considering sums modulo di, we �nd (in view
of (7.5) and gcd(d1; d2) = 1) that (d1d2)(�d1)

d2 and (d1d2)(�d2)
d1 are the only atoms dividing B which

contain d1d2. As a result, we in fact have the factorization of B completely determined by how the 2d1d2N
terms equal to L are factored (that is, if yLjy is the subfactorization consisting of all atoms containing an L,
then �(y�1L y) has a unique factorization, which will always have length 2LN). We continue with the next
claim.
Claim 2: If AjB is an atom with L;�d1;�d2 2 supp(A), then vL(A) = 1.

Suppose instead that L2jA. In view of (7.5) and (7.4), both L�d1
d2

and L�d2
d1

are positive integers. Conse-

quently, we must have v�d1(A) <
L�d2
d1

and v�d2 <
L�d1
d2

, else

L(�d1)
(L�d2)=d1(�d2) or L(�d2)

(L�d1)=d2(�d1)

would be a proper, nontrivial zero-sum subsequence dividing A, contradicting that A is an atom. But now

2L� d1 � d2 > ��(A�) = �(A+) � 2L;

a contradiction. So Claim 2 is established.

In view of (7.5), gcd(d1; d2) = 1 and Claims 1 and 2, we see that if AjB is an atom with L 2 supp(A),
then either

(a) A = A1 and v�d2(A) = 0,
(b) A = A2 and v�d1(A) = 0, or
(c) vL(A) = 1 and vd1d2(A) = 0.

Let y 2 Z(B) be a factorization with d(z; y) � M and let yLjy and zLjz be the corresponding sub-
factorizations consisting of all atoms which contain an L. In view of the de�nition of z, since d(z; y) � M
and L > d2M (by (7.4)), and since (d1d2)(�d1)

d2 is the only atom containing a �d1 in z
�1
L z, it follows that

v�d1(�(yL)) � v�d1(�(zL)) +Md2 = d2NL+Md2 < d2NL+ L;

thus the multiplicity m1 of the atom A1 in y is at most d2N (since each such atom A1 requires L terms
equal to �d1). Likewise,

v�d2(�(yL)) � v�d2(�(zL)) +Md1 = d1NL+Md1 < d1NL+ L;

whence the multiplicity m2 of the atom A2 in y is at most d1N .
Letm0 be the number of atoms dividing y containing exactly one term L. Hence, since all atoms containing

an L must be of one of the three previously described forms, it follows that

(7.7) d1m1 + d2m2 +m0 = vL(B) = 2d1d2N:

Let m0
0, m

0
1 and m

0
2 be analogously de�ned for z instead of y. Then m0

0 = 0, m0
1 = d2N and m0

2 = d1N . In
view of (7.7) and the comments after Claim 1, and since m1 � d2N = m0

1 and m2 � d1N = m0
2, it follows

that
jyj = jzj+ (m0

1 �m1)(d1 � 1) + (m0
2 �m2)(d2 � 1) � jzj;

moreover, unless m1 = m0
1 and m2 = m0

2, then jyj � jzj+d1� 1. On the other hand, if m1 = m0
1 = d2N and

m2 = m0
2 = d1N , then m0 = 0 (in view of (7.7)), whence zL = yL (recalling that all atoms containing an

L must be of one of the three previously described forms), from which z = y follows by the comments after
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the proof of Claim 1. Consequently, we conclude that d(z; y) �M implies either y = z or jyj � jzj+ d1 � 1,
which establishes (7.3), completing the proof. �

The following lemma helps describe when an atom can contain more than one positive term.

Lemma 7.2. Let G0 � Z be a condensed set such that G�0 is �nite and nonempty. Let M = jminG0j,
let U 2 A(G0) and let RjU� be the subsequence consisting of all negative integers with multiplicity at least
M � 1 in U . Suppose there is some L 2 �(U+) n f�(U+)g such that

(7.8) jU+j � 2; L � (M � 1)2; and �(U+) � L+ (M � 1)2:

Then the following statements hold:

1. There is some a 2 supp(U) \G�0 with va(U) �M � 1, i.e., R is nontrivial.

2. For any such a 2 supp(R), we have (�L+ aZ) \ �(U�) = ;.

3. There exists a subsequence R0jU� with RjR0 such that L =2 hsupp(R0)i = nZ and jR0�1U�j � n� 2;
in particular, supp(R) � supp(R0) � nZ does not generate Z.

Proof. 1. Let ULjU
+ be a proper subsequence with sum equal to L. Note that jG�0 j � M . Thus �(U+) �

L � (M � 1)2 > (M � 2)jG�0 j, whence the pigeonhole principle implies that there is some a 2 supp(U)\G�0
with va(U) �M � 1.

2. Let ajU� with va(U) �M � 1 and let �a : Z! Z=aZ denote the natural homomorphism. We say that
a sequence T is a zero-sum sequence (zero-sum free, resp.) modulo a if �a(T ) 2 F(Z=aZ) has the respective
property. Suppose (�L + aZ) \ �(U�) is nonempty and let S be a zero-sum free modulo a subsequence
SjU� (possibly trivial) with �(S) � �L mod a. Note that any zero-sum free modulo a subsequence T jU�

has length at most D(Z=aZ)� 1 = jaj � 1 [28, Theorem 5.1.10], and thus

(7.9) j�(T )j � (jaj � 1) � jmin
�
(supp(U) \G�0 ) n fag

�
j � (M � 1)2 � L;

in particular, j�(S)j � (M � 1)2 � L.

Now factor S�1U� = S0S1 � : : : � Sta
va(U

�), where S0 is zero-sum free modulo a and each Si, for i � 1, is
an atom modulo a. In view of j�(S0)j � (M � 1)2 (from (7.9)) and the hypothesis �(U+) � L+ (M � 1)2,
we have

(7.10) j�(SS1 � : : : � Sta
va(U

�))j = j�(S�10 U�)j � L:

If j�(SS1 � : : : � St)j � L, then it follows, in view of (7.10) and the de�nitions of S and the Si, that we can
append on to SS1 � : : : � St a su�cient number of terms equal to a so as to obtain a subsequence BLjS

�1
0 U�

with SS1 � : : : � StjBL and �(BL) = �L, and now ULBLjU is a proper, nontrivial zero-sum subsequence,
contradicting that U is an atom. Therefore j�(SS1 � : : : �St)j > L, and let t0 < t be the maximal non-negative
integer such that j�(SS1 � : : : � St0)j � L, which exists in view of j�(S)j � (M � 1)2 � L. By its maximality,
we have

(7.11) j�(S1 � : : : � St0)j > L� j�(S)j � j�(St0+1)j � L� j�(S)j � jajM;

where the second inequality follows by recalling that St0+1 is an atom modulo a and thus has length at most
D(Z=aZ) = jaj. From the de�nitions of all respective quantities, both the left and right hand side of (7.11)
is divisible by a, whence

j�(S1 � : : : � St0)j � L� j�(S)j � jaj(M � 1) :

But now we see, in view of va(U) � M � 1 and the de�nition of t0, that we can append on to SS1 � : : : � St0
a su�cient number of terms equal to a so as to obtain a subsequence BLjS

�1
0 U� with SS1 � : : : � St0 jBL and

�(BL) = �L, once again contradicting that U is an atom. So we conclude that (�L+aZ)\�(U�) is empty.

3. In view of part 2, we see that

(7.12) �L =2 hai+�(U�):
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Now, if ja�va(U
�)U�j � jaj � 2, then supp(R) = fag (recall jaj � M and vg(R) � M � 1 for all g 2

supp(R)) and the �nal part of the lemma holds with R0 = R in view of (7.12). Therefore we may assume

y = ja�va(U
�)U�j � jaj � 1. Note that (7.12) implies that

�a(�L) =2 �y(�a(a
�va(U

�)U�)0y) = �(�a(U
�)) 6= Z=aZ:

As a result, applying the Partition Theorem (see [34, Theorem 3]) to �a(a
�va(U

�)U�)0y, now yields part

3 (to be more precise, we apply that result with sequences S = S0 = �a(a
�va(U

�)U�)0y and number of
summands n = y; also note that the resulting coset from the Partition Theorem must be a subgroup in view
of the high multiplicity of 0 and that RjR0 since vg(R) �M � 1 > jaj � 2 for all g 2 supp(R)). �

Before stating the next result, we need to �rst introduce some notions. Let G0 � Z n f0g be a condensed
set such that G�0 is �nite and nonempty, and let B 2 B(G0). If z = A1 � : : : � An 2 Z(B), with Ai 2 A(G0),
then we let

z+ = A+1 � : : : �A
+
n 2 F(A(G0)

+)

and Z(B)+ = fz+ j z 2 Z(B)g. We can then de�ne a partial order on Z(B)+ by declaring, for z+; y+ 2
Z(B)+, that z+ � y+ when z+ = A+1 � : : : �A

+
n 2 Z(B)+, where Ai 2 A(G0),

y = (B1;1 � : : : �B1;k1) � (B2;1 � : : : �B2;k2) � : : : � (Bn;1 � : : : �Bn;kn)

with Bj;i 2 A(G0) and A+j = B+
j;1 � : : : �B

+
j;kj

for j 2 [1; n] and i 2 [1; kj ]:

We then de�ne �(B) to be all those factorizations z 2 Z(B) for which z+ 2 Z(B)+ is maximal with respect
to this partial order.

Note that, if z; y 2 Z(B) with z+ � y+, then jzj < jyj. Thus �(B) includes all factorizations z 2 Z(B) of
maximal length jzj = max L(B), and equality holds, namely

(7.13) �(B) = fz 2 Z(B) j jzj = jB+jg;

when max L(B) = jB+j. If H is a Krull monoid, ' : H ! F(P ) a co�nal divisor homomorphism and a 2 H,
then we de�ne

�(a) = fz 2 Z(a) j �(z) 2 �(�(a))g :

For a pair of monoids H � D, we recall the de�nition of the relative Davenport constant, originally
introduced in [24] and denoted D(H;D), which is the minimum N 2 N [ f1g such that if z 2 Z(D) =
F(A(D)) with �(z) 2 H, then there exists z0jz with �(z0) 2 H and jz0j � N .

Next, we introduce two new monoids associated to F(G0). We assume that ; 6= G0 � Z n f0g, yet here
we do not assume that G0 is condensed. Consider the free monoid F(G0)�F(G0) and let

E(G0) = f(S1; S2) 2 F(G0)�F(G0) j �(S1) = �(S2)g � F(G0)�F(G0)

the subset of pairs of sequences with equal sum and

S(G0) = f(S1; S2) 2 F(G0)�F(G0) j S1 = S2g � E(G0) � F(G0)�F(G0)

the subset of symmetric pairs. Note both E(G0) and S(G0) are monoids; furthermore, S(G0) is saturated
and co�nal in E(G0), and E(G0) is saturated and co�nal in F(G0) � F(G0). Thus, if we let G

0 denote the
class group of the inclusion S(G0) ,! E(G0) and let

G00 = f[u] 2 G0 j u 2 A(E(G0))g � G0;

then [24, Lemma 4.4] shows that (recall that, due to the co�nality, the de�nition of the class group in that
paper is equivalent to the present one)

(7.14) D(S(G0); E(G0)) = D(G00):

Note that, if (S1; S2) 2 A(E(G0)), then S1(�S2) 2 A(G0 [ �G0), whence jS1j + jS2j � D(G0 [ �G0); by
[28, Theorem 3.4.2.1], we know that, for a �nite subset P of an abelian group, we have both D(P ) and A(P )
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�nite. Consequently, if G0 is �nite, then D(G0 [ �G0) is �nite, whence A(E(G0)) is �nite, which in turn
implies G00, and hence also D(G00), is �nite. Therefore, in view of (7.14), we conclude that

(7.15) D(S(G0); E(G0)) <1

for G0 �nite.

Theorem 7.3. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors, and suppose that G�P is �nite. Let a 2 H and M =
jmin(supp(�(a)))j.

1. For any factorization z 2 Z(a), there exists a factorization y 2 �(a) and a chain of factorizations
z = z0; : : : ; zr = y of a such that

jzj = jz0j � � � � � jzrj = jyj and d(zi; zi+1) � maxfM � D(S(G�P ); E(G
�
P )); 2g <1

for all i 2 [0; r � 1]; in fact �(z0)
+ � �(z1)

+ � : : : � �(zr)
+, where � is the partial order from the

de�nition of �(�(a)).

2. For any two factorizations z; y 2 �(a) with �(z)+ = �(y)+, there exists a chain of factorizations
z = z0; : : : ; zr = y of a such that

�(z)+ = �(zi)
+ = �(y)+ and d(zi; zi+1) � maxfD(S(G�P ); E(G

�
P )); 2g <1

for all i 2 [0; r � 1]; in particular, jzj = jzij = jyj for all i 2 [0; r].

Proof. We set B = �(a). By Lemma 3.3, it su�ces to prove the assertion for B(GP ) and B. As 0 is a prime
divisor of B(GP ), we may w.l.o.g. assume 0 =2 supp(B).

Note D(S(G�P ); E(G
�
P )) <1 follows from (7.15). Also, for zi; zi+1 2 Z(S), we have jzij � jzi+1j whenever

z+i � z+i+1, and jzij = jzi+1j whenever z
+
i = z+i+1 (where � is the partial order from the de�nition of �(B)).

Let z 2 Z(B) and let y 2 �(B) with z+ � y+. We will construct a chain of factorizations z = z0; : : : ; zr of
B such that z+i � z+i+1, either zr = y or z+ < z+r , and

d(zi; zi+1) � M � D(S(G�P ); E(G
�
P )) <1 (when z+i < z+i+1 )(7.16)

d(zi; zi+1) � D(S(G�P ); E(G
�
P )) <1 (when z+i = z+i+1 );(7.17)

for i 2 [0; r � 1]. Since both parts of the proposition follow by iterative application of this statement, the
proof will be complete once we show the existences of such a chain of factorizations z = z0; : : : ; zr = y.

Since z+ � y+, we have

z = A1 � : : : �An

y = (B1;1 � : : : �B1;k1) � (B2;1 � : : : �B2;k2) � : : : � (Bn;1 � : : : �Bn;kn)

with Aj ; Bj;i 2 A(G0) and A
+
j = B+

j;1 � : : : � B
+
j;kj

, for j 2 [1; n] and i 2 [1; kj ]. Then A
+
j = B+

j;1 � : : : � B
+
j;kj

and �(Aj) = �(Bj;i) = 0, for all j and i. Thus, for j 2 [1; n], let

Tj = (A�j ; (B
�
j;1 � : : : �B

�
j;kj

)) 2 E(G�P ):

For each j 2 [1; n], let
Tj;1 � : : : � Tj;lj 2 Z(E(G�P ))

be a factorization of Tj with each Tj;i 2 A(E(G
�
P )). Now let

(7.18) T =

nY
j=1

ljY
i=1

Tj;i 2 Z(E(G�P )):

However, since z; y 2 Z(B) both factor the same element B, we in fact have

�(T ) 2 S(G�P ):



36 A. GEROLDINGER, D. J. GRYNKIEWICZ, G. J. SCHAEFFER, AND W. A. SCHMID

Let T = T 0T 00 where T 0jT is the maximal length sub-factorization with all atoms dividing T 0 from S(G�P ).

If T 00 = 1, then Aj =
Qkj

i=1Bj;i for every j 2 [1; n]. In view of Aj ; Bj;i 2 A(GP ), we get kj = 1 for every
j 2 [1; n], that is z = y, and so there is nothing to show. Therefore we may assume T 00 is nontrivial and

proceed by induction on jzj and then jT 00j, assuming (7.16) and (7.17) hold for z0 2 Z(B) when z+ < z0
+
or

when z+ = z0
+
and jR00j < jT 00j, where R00 is de�ned for z0 as T 00 was for z.

Let W =
Q

j2J

Q
i2Ij

Tj;i be a nontrivial subsequence of T 00, where J � [1; n] and Ij � [1; lj ] for j 2 J ,

such that �(W ) 2 S(G�P ). Note, since �(T
0) 2 S(G�P ) (by de�nition) and since �(T ) 2 S(G�P ) (by (7.18)),

we have �(T 00) 2 S(G�P ), whence we may w.l.o.g. assume jW j � D(S(G�P ); E(G
�
P )) (in view of the de�nition

of the relative Davenport constant). WriteW =
Q

j2J Wj with eachWj =
Q

i2Ij
Tj;i 2 Z(E(G�P )). Moreover,

for j 2 J , let �(Wj) = (Xj ; Yj) 2 E(G
�
P ).

De�ne a new factorization z1 = z01 � : : : � z
0
n 2 Z(G�P ) by letting z0j = Aj for j =2 J and letting z0j 2

Z(AjX
�1
j Yj) for j 2 J|by construction Xj is a subsequence of Aj , and since (Xj ; Yj) 2 E(G�P ), we have

�(Xj) = �(Yj), and thus �(AjX
�1
j Yj) = �(Aj) = 0 for all j 2 J , so z1 is well de�ned. Also, since

�(W ) = �(
Q

j2J Wj) 2 S(G
�
P ), it follows (by de�nition of S(G�P )) thatY

j2J

Xj =
Y
j2J

Yj ;

and thus z1 2 Z(B). Moreover, by construction, we have z+ � z+1 , and by Lemma 4.3, we have jBj j � M
for all j. Thus

(7.19) d(z; z1) �M jJ j �M jW j �M � D(S(G�P ); E(G
�
P )):

Additionally, if z 2 �(B), then z+ � z+1 implies that z+ = z+1 = y+, whence jzj = jz1j and jz
0
j j = 1 for all j,

in which case the estimate (7.19) improves to

d(z; z1) � jJ j � jW j � D(S(G�P ); E(G
�
P )):

Finally, if z+ = z+1 , then, by construction, the sequence R = R0R00|whose role for z1 is analogous to the
role of T = T 0T 00 for z|can be de�ned so that R00 = T 00W�1, in which case jR00j < jT 00j. Consequently,
applying the induction hypothesis to z1 completes the proof. �

Corollary 7.4. Let H be a Krull monoid and ' : H ! F(P ) a co�nal divisor homomorphism into a free
monoid such that the class group G = C(') is an in�nite cyclic group that we identify with Z. Let GP � G
denote the set of classes containing prime divisors, and suppose that G�P is �nite.

Let a 2 H with max L(a) = j�(a)+j + v0
�
�(a)

�
and let M = jmin(supp(�(a)))j. Then, for any factor-

ization z 2 Z(a) and any factorization y 2 Z(a) with jyj = jmax L(a)j, there exists a chain of factorizations
z = z0; : : : ; zr = y of a such that jzj = jz0j � � � � � jzrj = jyj and

d(zi; zi+1) � maxfM � D(S(G�P ); E(G
�
P )); 2g � maxfjminGP j � D(S(G

�
P ); E(G

�
P )); 2g <1

for all i 2 [0; r � 1].

Proof. This follows from directly from Theorem 7.3 in view of (7.13). �

We end this section with a result showing that the assumption max L(a) = j�(a)+j+ v0
�
�(a)

�
holds for a

large class of a 2 H. We formulate the result in the setting of zero-sum sequences. Since B(GP ) is factorial
when M = jminGP j � 1, the assumption M � 2 below is purely for avoiding distracting technical points in
the statement and proof.

Proposition 7.5. Let G0 � Z n f0g be a condensed set with jG0j � 2. Let B 2 B(G0) be such that, for
M = jmin(supp(B))j, we have M � 2 and min(supp(B)+) �M(M2�1). Then, at least one of the following
statements holds :
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(a) There exists a subset A � supp(B�) and a factorization z 2 Z(B) such that hsupp(B+)i 6� hAi (in
particular, hAi 6= Z) and every atom U jz has

(7.20) vx(U) � 2M � 2 for all x 2 supp(B) nA:

(b) (i) max L(B) = jB+j, and
(ii) for any factorization z 2 Z(B), there exists a chain of factorizations z = z0; : : : ; zr of B such

that
jzj = jz0j < � � � < jzrj = jB+j and d(zi; zi+1) �M2

for all i 2 [0; r � 1].

Proof. We assume (a) fails and show that (b) follows. Note, by Lemma 4.3, that vx(U) � M � 2M � 2
holds for any atom U 2 A(G0) and x � 0, whence (7.20) can only fail for some x 2 G�0 . To establish (i)
and (ii), we need only show that, given an arbitrary factorization z 2 Z(B) with jzj < jB+j, there is another
factorization z0 2 Z(B) with jzj < jz0j and d(z; z0) �M2. We proceed to do so.

Let z 2 Z(B) with jzj < jB+j. Then there must exists some atom U0jz such that jU+
0 j � 2. Let

A � supp(B) be all those a for which there exists some atom V jz with va(V ) � 2M � 1. We must have

(7.21) hsupp(B+)i � hAi;

else (a) holds. Let a1; : : : ; at 2 A be those elements such that va(U0) � M � 2, let at+1; : : : ; ajAj be the
remaining element of A and, for all i 2 [1; t], let Uijz be an atom with vai(Ui) � 2M � 1. Note that Ui 6= U0
for i � t since otherwise

2M � 1 � vai(Ui) = vai(U0) �M � 2 � 2M � 2;

a contradiction. Also, t < jAj �M since otherwise

2M(M2 � 1) � 2min(supp(B+)) � �(U+
0 ) = ��(U�0 ) �M(2M � 2);

a contradiction.
We proceed to describe a procedure to swap only negative integers between the Ui which results in new

blocks U 00; U
0
1; : : : ; U

0
t 2 B(G0) with U

0
0U

0
1 � : : : �U

0
t = U0U1 � : : : �Ut, with U

0+
i = U+

i for all i, and with U 00 not
an atom. Once this is done, then, letting zi 2 Z(U 0i), we can de�ne z0 to be

z0 = z0z1 � : : : � ztU
�1
0 U�11 � : : : � U�1t z:

Then jz0j > jzj in view of U 00 not being an atom, while, in view of t � jAj � 1 � M � 1 and Lemma 4.3, we
have

d(z; z0) �
tX

i=0

jU+
i j � (t+ 1)M �M2:

Thus the proof of (i) and (ii) will be complete once we show such a process exists.
Observe, for i 2 [1; t], that we can exchange a

ci;j
i jUi for c

ai
i;j jU0 provided there is some term ci;j 2 supp(U�0 )

with vci;j (U0) � ai and vai(Ui) � ci;j , and this will result in two new zero-sum subsequences obtained by
only exchanging negative terms. The idea in general is to repeatedly and simultaneously perform such swaps
for the ai using disjoint sequences

(7.22)

tY
i=1

�
caii;1c

ai
i;2 � : : : � c

ai
i;ri

� ��� U0a�M+1
t+1 � : : : � a�M+1

jAj

with

(7.23)

ri�1X
j=1

jci;j j < M � 1 but

riX
j=1

jci;j j �M � 1

for all i 2 [1; t], and let U 00; U
0
1; : : : ; U

0
t be the resulting zero-sum sequences. Then vai(U

0
0) �M�1 for i � t+1

by construction, and vai(U
0
0) �

Pri
j=1 jci;j j � M � 1 for i � t; consequently, in view of min(supp(B+)) �

M(M2�1) � (M�1)2 and jU 00
+j = jU+

0 j � 2, we see that we can apply Lemma 7.2 to U 00, whence (7.21) and
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va(U
0
0) �M � 1 for a 2 A imply that U 00 cannot be an atom, and hence the U 0i have the desired properties.

Thus it remains to show that a sequence satisfying (7.22) and (7.23) exists and that each ai, for all i 2 [1; t],
has su�cient multiplicity in Ui.

Note that (7.23) and the de�nition of ai 2 A imply

riX
j=1

jci;j j �
ri�1X
j=1

jci;j j+ jci;ri j �M � 2 +M � vai(Ui)

for all i 2 [1; t]. Thus the multiplicity of each ai in Ui is large enough to perform such simultaneous swaps.
Also,

(7.24)
���� tY

i=1

(caii;1c
ai
i;2 � : : : � c

ai
i;ri

)
��� � tX

i=1

(2M � 2)jaij:

We turn our attention now to showing (7.22) and (7.23) hold.

We can continue to remove subsequences caii;j jU0a
�M+1
t+1 � : : : � a�M+1

jAj until the multiplicity of every term

is less than M . But this means a sequence satisfying (7.22) and (7.23) can be found, in view of the estimate
(7.24), provided

j�(U�0 )j � (M � 1)

jAjX
i=t+1

jaij �M(M � 1)j supp(B�)j �
tX

i=1

(2M � 2)jaij :

However, if this fails, then we have (since jU+
0 j � 2)

2M(M2 � 1) � 2min(supp(B+)) � �(U+
0 ) = ��(U�0 ) = j�(U�0 )j

<

tX
i=1

(2M � 2)jaij+ (M � 1)

jAjX
i=t+1

jaij+M(M � 1)j supp(B�)j

< (2M � 2)

jAjX
i=1

jaij+M(M2 � 1) � (2M � 2)

MX
i=1

i+M(M2 � 1)

= 2M(M2 � 1);

a contradiction, completing the proof. �
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