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Abstract. Let K be a number field, R its ring of integers and H
the set of non-zero principal ideals of R. For each positive integer
k the set Bk(H) ⊂ H denotes the set of principal ideals for which
the associated block has at most k different factorizations. For
the counting functions associated to these sets asymptotic formu-
lae are known. These formulae involve constants that just depend
on the ideal class group G of R. Starting from a known combina-
torial description for these constants, we use tools from additive
group theory, in particular the notion of Davenport’s constant and
a classical addition theorem, to investigate them. We determine
their precise value in case G is an elementary group or a cyclic
group of prime power order. For arbitrary G we derive (explicit)
lower bounds.

1. Introduction

Let R be the ring of integers of an algebraic number field K and G
the ideal class group. If |G| > 1, then R respectively the monoid H of
non-zero principal ideals of R is not factorial. Quantitative aspects of
non-unique factorizations were first investigated by W. Narkiewicz and
then by many authors (see [20, Chapter 9], [12], [9]). Among others,
the following sets have been studied for every k ∈ N:

• Fk(H), the set of all non-zero principal ideals aR where a ∈ R
has at most k distinct factorizations,

• Bk(H), the set of all non-zero principal ideals aR where a ∈ R
and the associated block β(aR) has at most k distinct factor-
izations,

• Gk(H), the set of all non-zero principal ideals aR where a ∈ R
has factorizations of at most k different lengths.

If Z is any of these sets and x ∈ R≥1, then let Z(x) denote the number
of principal ideals aR ∈ Z with (R : aR) ≤ x. It has turned out that,
for x →∞, Z(x) has the following type of asymptotic behavior:

Z(x) ∼ Cx(log x)−A(log log x)B ,
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where C ∈ R>0, A ∈ R≥0 and B ∈ N0. For the sets Fk(H) and Gk(H),
the exponents A and B have received a lot of attention, but there are
still many open questions around them (see [18, 19, 5, 10, 13, 4, 26, 28]).
In this paper we concentrate on the set Bk(H). In [6] it was proved
that

A = 1− 1 + r∗(G)

|G|
where r∗(G) is the total rank of G ,

and a (rather involved) combinatorial description of B was given (in
terms of G and k). In Section 2 we first introduce the necessary ter-
minology to give this description (Definition 2.1.2) and then we derive
a result on the oscillatory behavior of the counting function associated
to Bk(H), which is based on recent work of M. Radziejewski (Theorem
2.3.2). In the subsequent sections, we start from the combinatorial
description of B and derive, for every k ∈ N, an explicit lower bound
for B (Theorem 7.1) and the precise value of B, in the case where G
is an elementary group or a cyclic group of prime power order (Theo-
rems 4.2, 5.4, and 6.1). For these investigations we use methods from
additive group theory, in particular the notion of Davenport’s constant
and a classical addition theorem.

2. Preliminaries

Let N denote the set of positive integers, P ⊂ N the set of prime
numbers and we set N0 = N ∪ {0}. For m,n ∈ Z let

[m, n] = {x ∈ Z | m ≤ x ≤ n}.
For n ∈ N let Cn denote a cyclic group with n elements. Let G be an
additively written finite abelian group. A subset G0 = {e1, . . . , er} ⊂ G
is called independent (resp. its elements are called independent), if
0 /∈ G0, e1, . . . , er are pairwise distinct and every equation of the form

r∑
i=1

miei = 0 with m1, . . . ,mr ∈ Z implies m1e1 = . . . = mrer = 0.

The maximal cardinality of an independent set of elements having
prime power order is called the total rank of G, which will be denoted
by r∗(G). Then

r∗(G) =
∑
p∈P

rp(G)

where, for every p ∈ P, rp(G) denotes the p-rank of G. Our terminology
in factorization theory is consistent with that in [7] and with the survey
articles in [2]. For convenience and to fix notations, we recall some key
notions and some basic facts.

Monoids and factorizations. Throughout, a monoid is a multi-
plicatively written commutative cancellative semigroup with identity
element. Let H be a monoid. We denote by H× the group of invertible
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elements of H and by Hred = {aH× | a ∈ H} the associated reduced
monoid of H. We call H reduced if H× = {1} (and then Hred = H).
An element u ∈ H is called an atom of H (or an irreducible element
of H), if u /∈ H×, and for all a, b ∈ H, u = ab implies that a ∈ H× or
b ∈ H×. We denote by A(H) the set of atoms of H, and H is called
atomic if every a ∈ H \H× is a product of atoms. An element p ∈ H
is called a prime of H, if p /∈ H×, and for all a, b ∈ H, p | ab implies
that p | a or p | b. Then H is factorial, if it is atomic and every atom
of H is a prime.

For a set P , we denote by F(P ) the free abelian monoid with basis
P . It is a reduced factorial monoid, and every a ∈ F(P ) has a unique
representation of the form

a =
∏
p∈P

pvp(a), where vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P,

whence
|a| =

∑
p∈P

vp(a) ∈ N0.

The monoid Z(H) = F
(
A(Hred)

)
is called the factorization monoid

of H. The unique homomorphism π : Z(H) → Hred satisfying π |
A(Hred) = id is called the factorization homomorphism of H. It is
surjective if and only if H is atomic, and it is an isomorphism if and only
if H is factorial. For a ∈ H, the elements in Z(a) = π−1(aH×) ⊂ Z(H)
are called the factorizations of a , and L(a) = {|z| | z ∈ Z(a)} ⊂ N0

is called the set of lengths of a. For k ∈ N we set

Fk(H) = {a ∈ H | |Z(a)| ≤ k} and Gk(H) = {a ∈ H | |L(a)| ≤ k} .

Then Fk(H) ⊂ Gk(H), and H is factorial if and only if it is atomic and
H = F1(H).

Block monoids. Let G be an additively written abelian group and
G0 ⊂ G a subset. An element

S =
l∏

i=1

gi =
∏

g∈G0

gvg(S)

of the free abelian monoid F(G0) is called a sequence in G0. We denote
by

• |S| = l =
∑

g∈G0
vg(S) ∈ N0 its length, by

• σ(S) =
∑l

i=1 gi =
∑

g∈G0
vg(S)g ∈ G its sum, and by

• Σ(S) = {
∑

i∈I gi | ∅ 6= I ⊂ [1, l]} ⊂ G the set of sums of
non-empty subsequences of S.

Then B(G0) = {S ∈ F(G0) | σ(S) = 0} is an atomic submonoid of
F(G0), called the block monoid over G0. It is factorial if and only if
G0 \ {0} is independent (see [6, Proposition 3]). Its elements are called
blocks (or zero-sum sequences), its atoms are called minimal zero-sum
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sequences and the identity element 1 ∈ B(G0) is also called the empty
sequence. The sequence S is said to be zero-sumfree, if 0 /∈ Σ(S). A
sequence T ∈ F(G0) is called a subsequence of S, if it is a divisor of
S in the monoid F(G0) (equivalently, vg(T ) ≤ vg(S) for all g ∈ G0).
Subsequences T1, . . . , Ts of S are called disjoint, if their product is a
divisor of S. For brevity, we set

A(G0) = A
(
B(G0)

)
, Fk(G0) = Fk

(
B(G0)

)
, and Gk(G0) = Gk

(
B(G0)

)
.

Krull monoids. Let H be a reduced Krull monoid (see [14, Chapter
22]), H ↪→ D = F(P ) a divisor theory, G = {[a] | a ∈ D} the class
group of H and G0 = {[p] | p ∈ P} ⊂ G the set of classes containing
primes. The block monoid B(G0) is a reduced Krull monoid and the
homomorphism β : H → B(G0), defined by

β(a) =
l∏

i=1

[pi] for every a =
l∏

i=1

pi ∈ H, where p1, . . . , pl ∈ P,

is called the block homomorphism of H. It is a transfer homomorphism
(see [8]) and, among others, we have

β
(
A(H)

)
= A(G0) and Gk(H) = {a ∈ H | β(a) ∈ Gk(G)} .

For every k ∈ N we define

Bk(H) = {a ∈ H | β(a) ∈ Fk(G)}

and clearly

Fk(H) ⊂ Bk(H) ⊂ Gk(H).

Let R be the ring of integers of an algebraic number field K, I•(R)
the set of non-zero ideals of R and H = H(R) the set of non-zero
principal ideals of R. Then H is a Krull monoid, the embedding H ↪→
I•(R) is a divisor theory whose class group G is the usual ideal class
group of R. Thus G is finite and every class contains a prime divisor.
For k ∈ N and x ∈ R≥1, the functions

Fk(x) = |{aR ∈ Fk(H) | (R : aR) ≤ x}|,
Bk(x) = |{aR ∈ Bk(H) | (R : aR) ≤ x}| and

Gk(x) = |{aR ∈ Gk(H) | (R : aR) ≤ x}|

are just the counting functions already discussed in the introduction.
There is a general combinatorial machinery to tackle “block depen-
dent” factorization properties. We introduce the necessary combinato-
rial terms (for a more general setting see [12, Section 4]).

Definition 2.1. Let G be a finite abelian group.
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(1) For a subset Q ⊂ G and a sequence S ∈ F(G \Q), we set

Ω(Q,S) = SF(Q) ∩ B(G) ,

and the pair (Q,S) is called a k-system, if ∅ 6= Ω(Q,S) ⊂
Fk(G).

(2) For every k ∈ N, we define

bk(G) = max{|S| |Q ⊂ G with Q \ {0} independent, |Q| = 1 + r∗(G),

and S ∈ F(G \Q) with ∅ 6= Ω(Q,S) ⊂ Fk(G)} .

Note that for |G| ≤ 2 we have bk(G) = 0.

Proposition 2.2. Let G be a finite abelian group with |G| ≥ 3 and
k ∈ N.

(1) If (Q,S) is a k-system, then Q \ {0} is independent.
(2) There exist finitely many k-systems (Qi, Si) with i ∈ [1, m] such

that

Fk(G) =
m⋃

i=1

Ω(Qi, Si).

(3) bk(G) > 0.

Proof. See [6], Proposition 3, Theorem 1 and Corollary 1. �

By Proposition 2.2.1 it is clear that

bk(G) = max{|S| | (Q,S) a k-system and |Q| = 1 + r∗(G)} ,

which is an alternative way to define bk(G) (see [6, Definition 3]).
In the following theorem we summarize results on the asymptotic

behavior of the functions Bk(x). The first part of the theorem is proved
in [6, Theorem 2]. The second part is an immediate consequence of
recent results obtained in [25, 24] building, among others, on results of
[17, 16].

Theorem 2.3. Let R be the ring of integers of an algebraic number
field K, H the set of non-zero principal ideals, G the ideal class group
with |G| ≥ 3, and k ∈ N.

(1) For x ≥ ee,

Bk(x) = x(log x)−1+(1+r∗(G))/|G|(Vk(log log x) + O(
(log log x)M

(log x)γ
)
)

with Vk ∈ C[X] a polynomial with positive leading coefficient
and deg Vk = bk(G), γ = 1

|G|(1 − cos 2π
|G|) and M ∈ N depends

on k and K.
(2) The error-term

Bk(x)− 1

2πi

∫
C
ζ
(
s,Bk(H)

)xs

s
ds,
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is subject to oscillations of positive lower logarithmic frequency
and size x

1
2
−ε, where

ζ
(
s,Bk(H)

)
=

∑
aR∈Bk(H)

1

(R : aR)s
for <(s) > 1,

and the contour of integration C goes counterclockwise around
the points 1

2
and 1.

Proof. We briefly outline the argument.
1. By Proposition 2.2, Fk(G) is a finite union of k-systems. For a

subset Q ⊂ G and a sequence S ∈ F(G \Q), the asymptotic behavior
of the counting function

Ω(Q,S)(x) = |{aR ∈ H | β(aR) ∈ Ω(Q,S) and (R : aR) ≤ x}|
is studied in [15]. Combining these two results the assertion follows.

2. By [25, Theorem 1], it suffices to verify that the Mellin trans-
form of the error-term fulfills certain conditions. (Note that in the
terminology of [24] the result of [25, Theorem 1] can be expressed by
saying, that the function is subject to oscillations of lower logarithmic
frequency γ and size xθ−ε.) Using again the decomposition of Fk(G),
this can be done analogously as it was done in [24] for the functions
Gk(x). Indeed, the technical results there, namely Theorem 6, Lemma
3 and Lemma 4, are formulated for counting functions Ω(Q,S)(x), and
thus they can be applied immediately. Note that in order to apply [25,
Theorem 6], we use that bk(G) is positive. �

3. Auxiliary Results

In this section we recall respectively establish some auxiliary results.

Lemma 3.1. Let G be a finite abelian group.

(1) If G′ ⊂ G is a subgroup and k ∈ N, then bk(G
′) ≤ bk(G).

(2) If G = G1⊕G2 and ki ∈ N for i ∈ [1, 2], then bk1k2(G1⊕G2) ≥
bk1(G1) + bk2(G2).

Proof. This is [6, Proposition 7], except for the cases |G| ≤ 2, and
|G1| ≤ 2 or |G2| ≤ 2. However, the statements are obvious for |G| ≤ 2.
And, if |G1| = 2, say, then 2. follows from 1., since G2 ⊂ G and
bk1(G1) = 0. �

In the following lemma we fix a subset Q ⊂ G and compare factor-
ization properties of the elements of Ω(Q,S) with those of Ω(Q, T ) for
a subsequence T of S.

Lemma 3.2. Let G be a finite abelian group, Q ⊂ G such that Q \ {0}
is independent, Si ∈ F(G \Q) and ki ∈ N for i ∈ [1, 2]. If Ω(Q,Si) 6⊂
Fki

(G) for i ∈ [1, 2], then

Ω(Q,S1S2) 6⊂ Fk1+k2(G).
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In particular, if S ∈ F(G \ Q) such that Ω(Q, S) 6= ∅ and T a sub-
sequence of S such that Ω(Q, T ) 6⊂ Fk(G) for some k ∈ N, then
Ω(Q,S) 6⊂ Fk(G).

Proof. If Ω(Q,Si) 6⊂ Fki
(G) for i ∈ [1, 2], then there exist blocks Bi

with |Z(Bi)| ≥ ki + 1 for i ∈ [1, 2]. Since B1B2 ∈ Ω(Q,S1S2) and
|Z(B1B2)| ≥ |Z(B1)| + |Z(B2)| − 1 ≥ k1 + k2 + 1, the result follows.
The ‘in particular’-statement follows by noting that Ω(Q,S) 6= ∅ is
equivalent to Ω(Q, S) 6⊂ F0(G), and Ω(Q, T−1S) 6= ∅ if both Ω(Q,S)
and Ω(Q, T ) are non-empty. �

4. Elementary Groups

A finite abelian group, G, is called elementary if every element in G
has squarefree order, i.e., G is equal to a direct sum of cyclic groups of
prime order. Also, elementary groups are characterized by the property
that every subgroup is a direct summand. Thus for elementary groups
maximal independent sets are necessarily generating. This fact sim-
plifies the investigations considerably and allows us to determine the
value of bk(G) for elementary groups. Namely, we show (see Theorem
4.2) that equality holds at the lower bound (implicitly) obtained in [6].

First we introduce some additional notation and recall basic facts.
Let E = {e1, . . . , er} ⊂ G be an independent generating set. For each
g ∈ G there exist uniquely determined coordinates bi ∈ [0, ord(ei)− 1]
for i ∈ [1, r] such that g = −

∑r
i=1 biei, and if g /∈ E, there exists a

uniquely determined atom Ag ∈ A({g} ∪ E) with vg(Ag) = 1, namely

Ag = g
∏r

i=1 ebi
i (see [27] for more general results of this type). For

i ∈ [1, r] let πi : G → 〈ei〉 denote the projection, with respect to
{e1, . . . , er}, on the i-th coordinate.

Proposition 4.1. Let G be a finite abelian group with |G| ≥ 3. Fur-
ther, let {e1, . . . , er} be an independent generating set, r2 = {i ∈ [1, r] |
ord(ei) = 2}, and Q = {e1, . . . , er} ∪ {0}. If S ∈ F(G \Q) and

|S| >
r∑

i=1

(ord(ei)− 1)−
⌈r2

2

⌉
,

then there exists a subsequence T of S with |T | ≤ max{ord(ei) | i ∈
[1, r]} and Ω(Q, T ) 6⊂ F1(G).

Proof. We start with the following immediate observations. For each
h ∈ G \ Q, since h 6= 0, there exists some i ∈ [1, r] with πi(h) 6= 0.
Moreover, if j ∈ [1, r] and ord(ej) = 2, since h /∈ {0, ej}, there exists
some i ∈ [1, r] \ {j} with πi(h) 6= 0.

Let S ∈ F(G \ Q) with |S| >
∑r

i=1(ord(ei) − 1) −
⌈

r2

2

⌉
. By our

above considerations it follows that there exists some ι ∈ [1, r] and a
subsequence T of S such that πι(g) 6= 0 for each g|T and |T | ≥ ord(eι).

We consider the block B =
∏

g|T A
vg(T )
g . Clearly, B ∈ Ω(Q, T ). For each



ON INVARIANTS RELATED TO NON-UNIQUE FACTORIZATIONS 8

g|T we have eι|Ag, and |T | ≥ ord(eι). Thus it follows that e
ord(eι)
ι |B.

Consequently, B has at least two different factorizations into atoms
and Ω(Q, T ) 6⊂ F1(G). �

Theorem 4.2. Let k ∈ N and G = ⊕r
i=1Cpi

be an elementary group
with |G| ≥ 3. Then

bk(G) = (k − 1) max{pi | i ∈ [1, r]}+
r∑

i=1

(pi − 1)−
⌈

r2(G)

2

⌉
.

Proof. Without restriction assume p1 ≤ · · · ≤ pr. We set s = r2(G).
First we prove that the expression on the right hand side is a lower

bound for bk(G). In case s = r, i.e., G = Cr
2 , the statement is just [6,

Proposition 9]. Thus assume s < r. By repeated application of Lemma
3.1.2 we have that

bk(G) ≥ b1(C
s
2) +

r−1∑
j=s+1

b1(Cpj
) + bk(Cpr).

The result follows since r2(G) = s by definition, b1(C
s
2) =

⌊
s
2

⌋
by [6,

Proposition 9], and bk(Cp) = kp− 1 for p ≥ 3 by [6, Proposition 8].
We proceed to prove that the expression is an upper bound. This is

done by induction on k. Let Q ⊂ G with |Q| = 1+ r∗(G) such that Q\
{0} is independent. Note that since G is elementary, Q is a generating
set and the orders of the elements of Q are uniquely determined.

Let k = 1 and S ∈ F(G \Q) with |S| >
∑r

i=1(pi − 1)−
⌈

r2(G)
2

⌉
such

that Ω(Q,S) 6= ∅. By Proposition 4.1 there exists a subsequence T of S
with |T | ≤ pr and Ω(Q, T ) 6⊂ F1(G). The result follows by Lemma 3.2.

Let k ≥ 2 and S ∈ F(G\Q) with |S| > (k−1)pr+
∑r

i=1(pi−1)−
⌈

r2(G)
2

⌉
.

Again by Proposition 4.1 there exists a subsequence T |S with |T | ≤
pr and Ω(Q, T ) 6⊂ F1(G). By induction hypothesis Ω(Q, T−1S) 6⊂
Fk−1(G) and the result follows by Lemma 3.2. �

5. Cyclic groups of prime power order

We start with a technical lemma. We use the following notations.
For subsets A1, . . . , As ⊂ G and n ∈ N we set

∑s
i=1 Ai = {

∑s
i=1 ai |

ai ∈ Ai}, but nA = {na | a ∈ A} and not the n-fold sum of A.

Lemma 5.1. Let G be a cyclic group of prime power order pm with
m ≥ 2. If S ∈ F(G \ {0}) and |S| ≥ 2p − 1, then there exists a zero-
sumfree subsequence T of S with |T | ≤ p such that σ(T ) ∈ p G \ {0}.

Proof. Let S ∈ F(G\{0}) and |S| = 2p−1. We assume S ∈ F(G\p G),
since otherwise the result follows by setting T = g with g ∈ p G \ {0}.
Further, let π : G → G/p G denote the canonical projection.

We note that it suffices to show that there exists a subsequence T
of S such that σ(T ) ∈ p G \ {0}. Suppose T is such a sequence. Then
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π(T ) ∈ F(G/pG), the sequence obtained by projecting each element
of T , is a zero-sum sequence. We consider its factorization into atoms,
say U1, . . . , Us are sequences such that

∏s
i=1 Ui = T and π(Ui) is an

atom for each i ∈ [1, s]. It follows that Ui is zero-sumfree and |Ui| ≤ p
for each i ∈ [1, s], and since σ(T ) 6= 0, there exists some j ∈ [1, s] such
that σ(Uj) 6= 0.

We assert that for every R ∈ F(G \ p G) we have |Σ(R) ∪ {0}| ≥
min{|R|+1, pm} and |Σ(π(R))∪{0}| ≥ min{|R|+1, p}. Let R =

∏r
i=1 gi

and for each j ∈ [1, r] we set Aj =
∑j

i=1{0, gi}. We have |A1| =
|π(A1)| = 2. By I. Chowla’s theorem (see for example [21, Theorem
2.1]) it follows for each j ∈ [2, r] that |Aj| ≥ min{|Aj−1| + 1, pm}
and |π(Aj)| ≥ min{|π(Aj−1)| + 1, p}, thus |Aj| ≥ min{j + 1, pm} and
|π(Aj)| ≥ min{j + 1, p}. Since Σ(R) ∪ {0} = Ar and Σ(π(R)) ∪ {0} =
π(Ar), the assertion follows.

Let S = S1S2 with |S1| = p and |S2| = p− 1. Since |Σ(S1) ∪ {0}| ≥
p + 1 > |G/p G|, there exist two, possibly empty and not necessarily
disjoint, subsequences T1, T

′
1 of S1 such that π(σ(T1)) = π(σ(T ′

1)) but
σ(T1) 6= σ(T ′

1). Moreover, since Σ(π(S2)) ∪ {0} = G/p G, there exists
a subsequence T2 of S2, such that π(σ(T2)) = −π(σ(T1)). We have
σ(T1T2), σ(T ′

1T2) ∈ p G and σ(T1T2) 6= σ(T ′
1T2), thus setting T = T1T2

or T = T ′
1T2 the result follows. �

As the following example shows the value 2p − 1 in Lemma 5.1 is
best possible.

Example 5.2. Let G be as in Lemma 5.1. The sequence (−g)p−1gp−1,
for some generating element g ∈ G, has length 2p − 2 and no subse-
quence with sum in p G \ {0}.

The following proposition will be the main tool in the proofs of The-
orems 5.4 and 6.1.

Proposition 5.3. Let G be cyclic of prime power order pm with m ≥ 2
and S ∈ F(G \ {0}) with |S| ≥ pm + pm−1− 1. For each n ∈ [1, m− 1],
there exist pm−n + pm−n−1 − 1 disjoint, zero-sumfree subsequences T of
S with |T | ≤ pn and σ(T ) ∈ pn G \ {0}.

Proof. Let S ∈ F(G \ {0}) and |S| ≥ pm + pm−1 − 1. We prove the
result by induction on n. Let n = 1. We note that

pm + pm−1 − 1 = (pm−1 + pm−2 − 2)p + 2p− 1.

Thus the result follows be repeated application of Lemma 5.1. Let
n ≥ 2. By induction hypothesis we know that there exist disjoint zero-
sumfree subsequences Ti of S with |Ti| ≤ pn−1 and σ(Ti) ∈ pn−1 G\{0}
for each i ∈ [1, pm−n+1+pm−n−1]. Let S ′ denote the sequence formed by
the σ(Ti). The sequence S ′ is a sequence in pn−1 G \ {0}. Since pn−1 G
is a cyclic group with pm−n+1 elements and |S ′| = pm−n+1 + pm−n − 1,
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we can apply the result for ‘n = 1’ to the group pn−1 G and ob-
tain that there exists for i ∈ [1, pm−n + pm−n−1 − 1] disjoint subsets
Ji ⊂ [1, pm−n+1 +pm−n−1] such that |Ji| ≤ p, the sequence

∏
j∈Ji

σ(Tj)

is zero-sumfree and σ(
∏

j∈Ji
σ(Tj)) ∈ p(pn−1 G) \ {0}. We consider the

sequences
∏

j∈Ji
Tj for i ∈ [1, pm−n+pm−n−1−1]. Clearly, these are dis-

joint subsequences of S. For the length we have |
∏

j∈Ji
Tj| ≤ |Ji|pn−1 ≤

pn and for the sum σ(
∏

j∈Ji
Tj) = σ(

∏
j∈Ji

σ(Tj)) ∈ pn G\{0}. We fac-

torize
∏

j∈Ji
Tj = SiBi where Bi is a zero-sum sequence, possibly the

empty sequence, and Si is zero-sumfree. It follows immediately that
|Si| ≤ pn and σ(Si) ∈ pn G\{0} for each i ∈ [1, pm−n +pm−n−1−1]. �

Now we are ready to prove the main result of this section.

Theorem 5.4. Let k ∈ N and G be a cyclic group of prime power
order pm. Then

bk(G) = kpm + pm−1 − 2.

Proof. For m = 1 the result is a special case of [6, Proposition 8] (or
Theorem 4.2), thus we assume m ≥ 2. Let g ∈ G be a generating

element, Q = {0, pm−1g} and S = (−g)kpm−1gpm−1−1. We assert that
∅ 6= Ω(Q,S) ⊂ Fk(G). This proves the lower bound. First we deter-
mine the atoms A ∈ A({0, g,−g, pm−1g}) that satisfy vg(A) ≤ pm−1−1
and v−g(A) ≤ kpm − 1, i.e., can occur in a factorization of a block
in Ω(Q,S). If A is an atom with vg(A) > 0 and v−g(A) > 0, then
clearly A = (−g)g. Since there cannot exist a zero-sum sequence

gj(pm−1g)k with 0 < j < pm−1, it follows that 0, (−g)pm−1
(pm−1g),

(−g)pm
, (pm−1g)p and (−g)g are the only atoms with the prescribed

properties.
Since σ(S) = pm−1g, it follows that Ω(Q, S) is non-empty. Let B ∈

Ω(Q, S) and let B =
∏l

i=1 Ui be a factorization into atoms. It follows
that exactly pm−1− 1 of the atoms are equal to (−g)g. Thus it suffices

to consider blocks in Ω(Q, (−g)kpm−pm−1
). Let B′ be such a block and∏n

i=1 Vi a factorization into atoms. We have that

Vi ∈ {0, (−g)pm−1

(pm−1g), (−g)pm

, (pm−1g)p}

for each i ∈ [1, n]. Thus the factorization is determined by giving the
number ν of i ∈ [1, n] such that Vi = (−g)pm

. Clearly, ν ∈ [0, k − 1]
and therefore |Z(B′)| ≤ k.

We prove the upper bound by induction on k. First we prove a
preparatory assertion. Let {0} ⊂ Q ⊂ G with |Q| = 2 and S ∈
F(G \Q) with |S| > pm + pm−1 − 2. Then there exists a subsequence
T of S with |T | ≤ pm such that Ω(Q, T ) 6⊂ F1(G).

We have Q = {0, plg} for some generating element g ∈ G and l ∈
[0, p − 1]. We apply Proposition 5.3 with n = m − 1 and obtain that
there exist p disjoint subsequences T1, . . . , Tp of S such that |Ti| ≤ pm−1
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and σ(Ti) ∈ pm−1 G \ {0} for each i ∈ [1, p]. Let bi ∈ [1, p − 1] such
that σ(Ti) = −bip

m−1g and we set

Bi = Ti(p
lg)bip

m−1−l

.

We set T =
∏p

i=1 Ti and B =
∏p

i=1 Bi. Since B ∈ Ω(Q, T ), it suffices to

show that |Z(B)| > 1. We have
∑p

i=1 bi ≥ p and therefore (plg)pm−l | B.

On the other hand we note that (plg)pm−l - Bi. Thus there exists a

factorization of B, in which the atom (plg)pm−l
does not occur. This

implies that there exist at least two different factorizations of B and
proves the assertion.

The inductive argument is a simple application of our assertion and
Lemma 3.2. For k = 1 the statement is now obvious. Let k ≥ 2
and further let {0} ⊂ Q ⊂ G with |Q| = 2 and S ∈ F(G \ Q) with
|S| > kpm + pm−1 − 2 such that Ω(Q, S) 6= ∅. By our assertion there
exists a subsequence T of S with |T | ≤ pm and Ω(Q, T ) 6⊂ F1(G). It
follows that |T−1S| > (k− 1)pm + pm−1− 2 and Ω(Q, T−1S) 6= ∅. Thus
by induction hypothesis Ω(Q, T−1S) 6⊂ Fk−1(G) and by Lemma 3.2
this implies Ω(Q, S) 6⊂ Fk(G). �

6. A Further Class of Groups

In the following theorem we show that a combination of Theorem
4.2 and Theorem 5.4, respectively the proofs, can be used to determine
bk(G) for groups that are direct sums of an elementary and a cyclic
group of prime power order (with the restriction that the orders of the
two direct summands have to be co-prime).

Theorem 6.1. Let k ∈ N, G′ be an elementary group and G = Cpm⊕G′

with p - |G′|. Then

bk(G) = (k − 1) max{pm, p′}+ b1(Cpm) + b1(G
′),

where p′ = max{p ∈ P | p | |G′|}.

Proof. By Lemma 3.1.2 we have

bk(G) ≥ max{bk(Cpm) + b1(G
′), b1(Cpm) + bk(G

′)}

and thus by Theorem 4.2 and Theorem 5.4 we have bk(G) ≥ (k −
1) max{pm, p′} + b1(Cpm) + b1(G

′). Since for m = 1 the group G is
elementary, we can assume m ≥ 2.

Let {e0, e1, . . . , er} be an independent generating set of G with max-
imal cardinality and such that 〈e0〉 = Cpm and 〈{e1, . . . , er}〉 = G′. Let
{0} ⊂ Q ⊂ G such that |Q| = 1 + r∗(G) and Q \ {0} is independent.

For each g ∈ Q \ {0}, since ord(g) is a prime power and p - |G′|, we
have g = ae0 for some a ∈ N or g ∈ G′. Therefore we may assume,
possibly after replacing e0 by a′e0 with a′ ∈ N co-prime to p, that
Q = {ple0} ∪ Q′ with l ∈ [0, m− 1] and Q′ ⊂ G′. We have Q′ \ {0} is
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independent with maximal cardinality r∗(G′). Since G′ is an elementary
group, it follows that 〈Q′〉 = G′.

We consider k = 1 and prove a slightly more general statement in
order to be able to prove the general case with an inductive argument.

Let S ∈ F(G \Q) with |S| > b1(Cpm)+b1(G
′) and Ω(Q,S) 6= ∅. We

show that there exists a subsequence T of S such that Ω(Q, T ) 6⊂ F1(G)
and |T | ≤ max{pm, p′}.

Every g ∈ G has a unique representation g = cg + hg with cg =
π0(g) ∈ Cpm and hg ∈ G′. We consider the subsequence T of S of those
elements g|S with π0(g) = 0. Note that if |G′| = 2, then, since g /∈ Q,
it follows that T is the empty sequence.

We distinguish two cases.
Case 1: |T | > b1(G

′). Since T ∈ F(G′ \ Q′) with |T | > b1(G
′), it

follows by Proposition 4.1 and Theorem 4.2 that there exists a subse-
quence T ′ of T with |T ′| ≤ p′ such that ∅ 6= Ω(Q′, T ′) 6⊂ F1(G

′). Since
F1(G

′) = B(G′) ∩ F1(G) and Ω(Q′, T ′) ⊂ Ω(Q, T ′), this implies, using
Lemma 3.2, that Ω(Q, T ) 6⊂ F1(G).

Case 2: |T | ≤ b1(G
′). Then |T−1S| > b1(Cpm). We consider the

projection R = π0(T
−1S), the sequence in Cpm obtained by applying

π0 to each element of T−1S. We note that if π0(g) = ple0, then hg 6= 0.
The argument is now almost the same as in the proof of Theorem 5.4.
Note that in Proposition 5.3 the only condition on the sequence is that
the elements are non-zero, thus the possible occurrence of ple0 in R
causes no problem. We obtain that there exist disjoint subsequences
T1, . . . , Tp of R such that |Ti| ≤ pm−1 and σ(Ti) ∈ pm−1 Cpm \ {0} for
each i ∈ [1, p]. Let bi ∈ [1, p− 1] such that σ(Ti) = −bip

m−1e0 and we
set

Bi = Ti(p
lg)bip

m−1−l

.

Let Ti denote the subsequence of T−1S such that Ti is obtained by
projection of Ti. The sequence T i(p

lg)bip
m−1−l

is in general no zero-sum
sequence. However, there exists a uniquely determined zero-sumfree
sequence Fi ∈ F(Q′) such that Bi = FiT i(p

lg)bip
m−1−l

is a zero-sum
sequence. We set T =

∏p
i=1 T i and B =

∏p
i=1 Bi. Clearly, we have

|T | ≤ pm. Since B ∈ Ω(Q, T ), it suffices to show that |Z(B)| > 1. This

follows since (plg)pm−l | B but (plg)pm−l - Bi.
This proves the result for k = 1 and the result for general k follows

by Lemma 3.2 and the usual inductive argument, as in the proofs of
Theorem 4.2 and 5.4. �

7. Lower Bounds

In Theorem 7.1 we establish lower bounds for bk(G) valid for arbi-
trary finite abelian groups. Then, in Example 7.2, we compare these
bounds for cyclic groups.
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First, we recall the definition of Davenport’s constant and some re-
sults. For a finite abelian group G Davenport’s constant, D(G), is
defined as the maximal length of a minimal zero-sum sequence, i.e.,
D(G) = max{|A| | A ∈ A(G)}.

Let G ∼= ⊕r
i=1Cni

with 1 < n1| . . . |nr. Then

(†) D(G) ≥ 1 +
r∑

i=1

(ni − 1)

and it is known that equality holds if r ≤ 2 or nr is a prime power
(i.e., G is a p-group) (see [29, 22, 23]). However, it is also known that
equality in Equation (†) does not hold in general. More precisely, for
each r ≥ 4 there are known infinitely many groups with rank r such
that equality does not hold (see [11]) and the problem to determine
D(G) in general is wide open. It is even open whether for groups with
rank 3 equality holds in (†) or not (see [3, 1] for recent results).

Theorem 7.1. Let G = ⊕r
i=1Cp

mi
i

with prime powers pmi
i and |G| ≥ 3.

(1) Let k ∈ N and r2 = |{i ∈ [1, r] | pmi
i = 2}|. Then

bk(G) ≥ (k − 1) max{pmi
i | i ∈ [1, r]}+

r∑
i=1

(pmi
i + pmi−1

i − 2)−
⌈r2

2

⌉
.

(2) b1(G) ≥ D(⊕r
i=1Cp

mi−1
i

).

Proof. 1. The result follows by Lemma 3.1.2, Theorem 4.2 and Theo-
rem 5.4.

2. Let {e1, . . . , er} ⊂ G be an independent generating set with
ord(ei) = pmi

i for each i ∈ [1, r]. Further, let Q = {0} ∪ {pmi−1
i ei |

i ∈ [1, r]} and G′ = 〈Q〉. We note that |Q| = 1 + r∗(G) and G/G′ ∼=
⊕r

i=1Cp
mi−1
i

.

First we show that there exists a sequence S ∈ F(G \Q) with |S| =
D(G/G′) such that σ(S) ∈ G′ but σ(T ) /∈ G′ for every proper 1 6= T |S.
If D(G/G′) = 1, we set S = g for some g ∈ G \ Q. Thus we assume
D(G/G′) ≥ 2. By definition of D(G/G′) there exists a minimal zero-

sum sequence S =
∏l

i=1 gi ∈ F(G/G′) with |S| = D(G/G′). Let

S ∈ F(G) such that S is the projection of S, i.e., S =
∏l

i=1 gi such

that gi + G′ = gi for each i ∈ [1, l]. Since σ(S) = 0 ∈ G/G′, we
have σ(S) ∈ G′, and since S is a minimal zero-sum sequence, we have
σ(T ) /∈ G′ for each proper 1 6= T |S. Since D(G/G′) ≥ 2, it follows that
S ∈ F(G \G′) ⊂ F(G \Q).

It suffices to show that ∅ 6= Ω(Q,S) ⊂ F1(G). The set Q \ {0} is
independent and generates G′, thus there exists for every h ∈ G′ a
uniquely determined zero-sumfree sequence F ∈ F(Q) with σ(F ) = h
(for h = 0 this is the empty sequence). Since σ(S) ∈ G′, it is clear
that Ω(Q, S) 6= ∅. Let B ∈ Ω(Q, S) and B =

∏n
i=0 Ui a factorization

into atoms. Without restriction let U0 /∈ A(Q). Thus U0 = S ′F ′ with
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1 6= S ′|S and F ′ ∈ F(Q). It follows that σ(S ′) ∈ G′ and therefore
S ′ = S. Moreover, F ′ is zero-sumfree and thus uniquely determined.
Since U−1

0 B ∈ B(Q) and B(Q) is factorial, the atoms U1, . . . , Un are
uniquely determined as well and |Z(B)| = 1. �

The following example shows that there exist groups for which the
bound in 1. yields better estimates than the one in 2., and vice versa.

Example 7.2. Let n =
∏r

i=1 pmi
i with mi ∈ N and different primes pi.

First we note that if pmi
i = 2 for some i ∈ [1, r], then the lower bounds

for Cn are equal to those for Cn
2
. Thus we assume that pmi

i 6= 2 for
i ∈ [1, r].

By Proposition 7.1.1 we get

b1(Cn) ≥
r∑

i=1

(pmi + pmi−1 − 2)

but 2. yields

b1(Cn) ≥ D(⊕r
i=1Cp

mi−1
i

) = D(C∏r
i=1 p

mi−1
i

) =
r∏

i=1

pmi−1
i .

Thus depending on n either the former or the latter estimate is better.
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