Licence 2 – Semestre 1 – TD 4

Séries numériques à termes positifs

Exercice 1

Etudier la convergence des séries suivantes :

1.
$$\frac{2}{5} + \frac{1}{2} \left(\frac{2}{5}\right)^2 + \frac{1}{3} \left(\frac{2}{5}\right)^3 + \dots + \frac{1}{n} \left(\frac{2}{5}\right)^n + \dots$$

2.
$$\frac{1}{\sqrt{1.2}} + \frac{1}{\sqrt{2.3}} + \frac{1}{\sqrt{3.4}} + \dots + \frac{1}{\sqrt{n(n+1)}} + \dots$$

3.
$$\frac{1}{2} + \frac{\sqrt[3]{2}}{3\sqrt{2}} + \frac{\sqrt[3]{3}}{4\sqrt{3}} + \dots + \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}} + \dots$$

4.
$$\frac{2}{1} + \frac{2.5}{1.5} + \frac{2.5.8}{1.5.9} + \dots + \frac{2.5.8...(3n-1)}{1.5.9...(4n-3)} + \dots$$

5.
$$\frac{1}{2} + \left(\frac{2}{5}\right)^3 + \left(\frac{3}{8}\right)^5 + \dots + \left(\frac{n}{3n-1}\right)^{2n-1} + \dots$$

6.
$$\sum_{n=1}^{+\infty} \cos\left(\frac{1}{n}\right)$$

7.
$$\sum_{n=1}^{+\infty} \arcsin \frac{1}{\sqrt{n}}$$

$$8. \sum_{n=1}^{+\infty} \ln\left(1 + \frac{1}{n}\right)$$

9.
$$\sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)^{n^2}$$

10.
$$\sum_{n=2}^{+\infty} \frac{1}{n \cdot \ln n \cdot \ln(\ln n)}$$

$$11. \sum_{n=1}^{+\infty} \left(1 - \cos \frac{\pi}{n}\right)$$

12.
$$\sum_{n=2}^{+\infty} \frac{1}{n\sqrt[3]{n} - \sqrt{n}}$$

Exercice 2

Etudier la nature des séries dont les termes généraux sont les suivants :

1.
$$u_n = \frac{a^n}{(1+a)(1+a^2)\dots(1+a^n)}, n \ge 1, a > 0$$

2.
$$u_n = \frac{1}{1 + \frac{1}{2} + \dots + \frac{1}{n}}, n \ge 0$$

Exercice 3

Etudier la convergence/divergence des séries numériques suivantes :

1)
$$\sum \left(\sum_{p=1}^{n} k^{p}\right)^{n} \text{ pour } 0 \le k < 1/2$$
,

$$2) \quad \sum \left(\sum_{p=1}^{n} (1/2)^p\right)^n \quad .$$

Exercice 4

Soient $u_n \geq 0$ et $v_n \geq 0$, on suppose que les séries de termes généraux u_n et v_n sont convergentes. Etudier les séries de terme général $w_n = \sqrt{u_n v_n}$ et $t_n = \frac{1}{n} \sqrt{u_n}$.

Exercice 5

Soit $u_n \ge 0$ tel que $\sum_{n=0}^{\infty} u_n$ est une série convergente. Montrer que la série de terme général $v_n = \frac{u_n}{1+u_n}$ est convergente.

Exercice 6

Pour
$$n = 2p$$
, $u_{2p} = \frac{1}{2^p}$;
pour $n = 2p - 1$, $u_{2p-1} = \frac{1}{2^{p+1}}$

On considère la suite de terme général u_n défini comme suit. Pour n=2p, $u_{2p}=\frac{1}{2^p}$; pour n=2p-1, $u_{2p-1}=\frac{1}{2^{p+1}}$. Etudier la nature de cette série en utilisant successivement les règles de D'Alembert et de Cauchy. Calculer la somme de cette série.