
Rappels sur les suites

Dans ce cours on rappelle les principales propriétés des suites nécessaires au cours.
Dans tout ce qui suit N désignera les entiers naturels positifs 0, 1, 2, ..., Z tous les entiers
naturels ...,−2,−1, 0, 1, 2, 3?.. et Q les nombres rationnels.
Enfin R désignera les réels, et C les complexes.

1 Suites réelles et complexes

Définition 1.1. Une suite réelle (un) est une application de N dans R, c’est à dire la
donnée d’une famille de réels u0, u1, . . . , un, . . ..

Exemples

• la suite (un) telle que un = n pour tout n;

• la suite (un) telle que un = 2n pour tout n.

• lLa suite (un) telle que un = αn pour tout n, où α est un réel donné.

• Une suite est dite constante si il existe un réel x tel que un = x pour tout n. On
parle aussi de suites constantes à partir d’un certain rang.

• Une suite est dite récurrente quand le terme un+1 est donné sous la forme un+1 =
f(un), dans ce cas on peut calculer tous les terme sde la suite à partir du moment
où on connait u0; par exemple si on suppose que u0 = 0 et que un+1 = un + 1 (dans
ce cas f(x) = x + 1) alors un = n pour tout n.

• si un+1 = αun et u0 = 1 (f(x) = αx) alors un = αn.

• On peut généraliser la notion précédente en supposant que pour tout n ≥ 2 un =
f(un−1, un−2), dans ce cas on peut calculer tous les termes de la suite dès que u0 et
u1 sont connus, par exemple si un = 2un−1 − un−2, et u0 = 0 et u1 = 1 on vérifie
que un = n;.

• On a par exemple des suites récurrentes linéaires du type

un = aun−1 + bun−2

dans ce cas on se demande quand une suite de la forme αn satisfait à une équation de
ce type : on voit que l’on a nécessairement α2−aα− b = 0. Cette dernière équation
est appelée l’équation caractéristique. Supposons qu’il y ait 2 racines distinctes
α1, α2 (réelles ou complexes) alors toute suite de la forme

un = sαn
1 + tαn

2

s, t réels ou complexes quelconques est une suite du type considéré.
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Un autre exemple de suite est celui des uites récurrentes homographiques données sous la
forme :

un =
aun−1 + b

cun−1 + d

2 Limites de suites réelles et complexes

Définition 2.1. On dit qu’une suite (réelle ou complexe) (un) tend vers une limite `
(réelle ou complexe) quand n tend vers l’infini si pour tout réel ε > 0 on peut trouver un
entier N(ε) (dépendant de ε tel que pour tout n ≥ N(ε) on a |un − `| ≤ ε. Ici |un − `|
dsésigne la valeur absolue si on parle de suites réelles, le module si on parle de suites
complexes.

Pour paraphraser cette définition ”sans ε” on veut que si n est assez grand (pour tout n
assez grand) un ne puisse s’éloigner de ` au delà d’une distance pescrite à l’avance. Et on
veut pouvoir faire cela pour une distance arbitrairement petite.

Si on considére maintenant ce que veut dire l’affirmation ”(un) ne tend pas vers ` quand
n tend vers l’infini” cela veut dire que l’on peut trouver un ε > 0 tel que l’on peut trouver
des valeurs aritrairement grandes de n telle que |un − `| > ε, c.a.d pour que pour tout k
entier on peut trouver une valeur n ≥ k telle que |un − `| > ε.

Dire qu’une suite n’ a pas de limite veut dire qu’il n’existe aucun ` qui soit limite de la
suite, soit que la propriété précédente est vraie pour tout `.

Par exemple la suite un = (−1)n n’a pas de limite. En effet si on prend un ` > 0, ` 6= 1
pour tout entier n on a |un − `| ≥ |`− 1|; si ` = 1 pour tous les entiers impairs 2k + 1 on
a u2k+1 = −1 et donc |u2k+1 − 1| = 2, donc la différence |un − 1| ne peut dans les deux
cas être rendue arbtrairement petite pour tout entier assez grand. On laisse le cas ` ≤ 0
en exercice. On pourra aussi considérer le cas de un = in.

Définition 2.2. On dit qu’une suite réelle (un) tend vers ”plus l’infini” (+∞) quand n
tend vers l’infini si pour tout réel µ on peut trouver un entier N(µ) (dépendant de µ) tel
que pour tout n ≥ N(µ) on a un ≥ µ.

Pour paraphraser cette définition ”sans µ” on veut que si n est assez grand (pour tout n
assez grand) un est plus grand qu’une valeur quelconque pescrite à l’avance.

Dire qu’une suite ne tend pas vers ”plus l’infini” (+∞) quand n tend vers l’infini veut
dire qu’il existe µ réel tel que l’on peut trouver des entiers n arbitrairement grands tels
que un ≤ µ.

On a évidemment les définitions analogues pour une suite tendant vers −∞.

Le théoréme suivant est fondamental

Théoréme 2.3. Soit (un) une suite réelle croissante (un ≤ un+1 pour tout n) et majorée
(un ≤ M pour un certain réel M et tous les entiers n). Alors la suite admet une limite `.
Le résultat analogue a lieu pour les suites décroissantes minorées.
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Remarque 2.4. On peut se contenter de supposer que la suite est croissante (ou décroissante)
à partir d’un certain rang. C’est à dire que un ≤ un+1 pour tout n ≥ n0.
Par ailleurs une suite croissante pour laquelle il n’existe pas de majorant, soit de réel M tel
que un < M pour tout n) tend vers +∞ (résultat analogue pour les suites décroissantes).

Le théorème suivant donne une condition nécessaire et suffisante pour qu’une suite tende
vers une limite.

Théoréme 2.5. (Critére de Cauchy) Une condition nécessaire et suffisante pour qu’une
suite réelle ou complexe admette une limite est que pour tout ε > 0 on puisse trouver un
entier Nε tel que pour tous les entiers m, n ≥ Nε on ait |um − un| ≤ ε.

On notera que la limite ` n’apparait pas dans l’énoncé.

Considérons pour finir le cas des suites récurrentes homographiques.

un =
aun−1 + b

cun−1 + d

On a d’abord

Lemme 2.6. Soit un une suite récurrente donnée par un = f(un−1). Où on suppose que
f est une fonction continue. Alors si la suite ` admet une limite ` on a f(`) = ` .

Ceci s’applique au cas des récurrences homographiques, on a donc si ` est une limite

` =
a` + b

c` + d

notons α et β les deux racines (éventuellement complexes) de cette équation. Si elles sont
distinctes on montre que :

un − α

un − β
= k

un−1 − α

un−1 − β

soit

un − α

un − β
= kn u0 − α

u0 − β

si α = β on a
1

un − α
=

1

un−1 − α
+ k

soit

1

un − α
=

1

u0 − α
+ nk

On a

k =
a− cα

a− cβ

(premier cas) et

k =
c

a− cα

(second cas) dans ces formules.
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Ces relations permettent, en fonction du module de k de décider de la limite de la suite
de la suite. Dans le premier cas si |k| < 1 (resp. |k| > 1) la suite tend vers α (resp. β)
(si toutefois u1 6= β (resp. α). Si |k| = 1 il n’y a pas en général de limite. On laisse au
lecteur le soin de vérifier tous les cas particuliers et le second cas.
On notera cependant que dans le cas ou les coefficients sont réels et les solutions de
l’équation donnant ` sont complexes conjuguées alors la constante k est de module 1.
Donc alors, sauf si u0 est une des racines il n’y a pas convergence.
On rappellera aussi :

Théoréme 2.7. Soit une fonction f de R dans R, telle que f(`) = ` pour un certain réel
`. Supposons que f est dérivable et que |f ′(x)| soit inférieur à une constante c < 1 pour
tout x assez proche de ` (x ∈]`−δ, `+δ[ pour un certain δ > 0). Alors si u0 ∈∈]`−δ, `+δ[
la suite récurrente un = f(un−1) admet pour limite `.
Par contre si |f ′(x)| soit supérieur à une constante c > 1 pour tout x assez proche de `
(x ∈]` − δ, ` + δ[ pour un certain δ > 0. Alors si u0 ∈]` − δ, ` + δ[ la suite récurrente
un = f(un−1) n’admet pas ` pour limite.

Exemples Si on prend f(x) = sin(cx) avec 0 ≤ c < 1 on peut appliquer le résultat
précédent avec δ = +∞.

Voici un exemple moins trivial.
Si on prend f(x) = 1

2
(x + a2

x
), a > 0. Les limites possibles sont a et −a. Supposons que

la valeut initiale soit positive, il en sera de même des suivantes. La dérivée en a vaut 0.
Considérant les valeurs prises par la dérivée on constate qu’on peut appliquer le théoréme
avec δ = a(1− 1√

3
). En fait on peut montrer qu’il y a toujours convergence.
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