Dual d’un espace vectoriel et formes
linéaires

1 Espace vectoriel

Dans ce cours on ne consid/‘ere que des d’espaces vectoriels sur le corps R .

Définition 1.1. Un espace vectoriel sur R est un ensemble E muni de deur opérations.
D’abord d’une addition, c’est a dire qu’a tout couple v,w € E on peut associer v+w € E
tel que les regles de calcul ordinaires dans R™ aient lieu. A savoir

o (u+v)+w=u+(v+w) pour tous u,v,w € E;
e u+v=0v-4u pour tous u,v € I;
e u+v=0v+4u pour tous u,v € I,

o il existe un élément noté Op tel que u+ Op = u pour tout uw € E; pour tout uw € E 1l
existe un élément v € E tel que u +v = 0.

De plus il existe une application de R x E — E notée (A, v) — A.v, telle que pour tout
A €R (resp. C) etv,w € E on ait

o l.uv=uvw;
o (A\+p)w=Av+ pu;
o \.(pw)=(Ap)w;

e \(v+w)=Av+ A\w.

Dans la suite A.v sera noté \v pour simplifier.

Les éléments de R sont appelés les scalaires, les éléments de E les vecteurs. La seconde
opération est la multiplication par les scalaires.

Le vecteur O est appelé le vecteur nul, il sera noté 0 simplement, on fera attention a ne
pas le confondre avec 0 € R. On a Og.v = 0g (Ov = 0 avec les notations allégées). On le
montre en observant que v = 1.v = (1 +0).v = 1.v 4+ 0.v = v + 0.v, soit v = v 4+ 0.v puis
en simplifiant.

le vecteur v tel que u + v = 0 est appelé 'opposé il est noté —u car il est égal a (—1)u.
Voici des exemples.

1. Sion consideére R™ en prenant pour addition I’addition terme & terme : (z1,...,x,)+
Y1y, Yn) = (x14Y1, . .., Ty+yy,) et pour multiplication par les scalaires A\(xq, ..., x,) =
(Ax1,...,Az,) on constate qu’on a un espace vectoriel.

2. L’ensemble des fonctions F(A,R) d’un sous-ensemble A de R (resp. C) dans R
(resp. C).



3. L’ensemble des fonctions continues C(]a, b[, R) d’un intervalle ]a, b[ de R dans R.
4. L’ensemble des fonctions dérivables D(]a, b[, R) d’un intervalle |a, b[ de R dans R.

5. L’ensemble des fonctions infiniment dérivables D*(]a, b[, R) d’un intervalle |a, b[ de
R dans R.

6. On peut évidemment considérer dans les exemples précédents des intervalles fermés
a gauche ou a droite.

7. L’ensemble des fonctions polynomes sur R.
8. Ceux de degré inférieur ou égal a un entier donné n.

9. En particulier on peut considérer I'ensemble des fonctions polynomes de degré
inférieur ou égal a 1. On les apellera fonctions affines, on peut aussi considérer le
sous-ensemble de celles qui sont nulles en l'origine : on les appellera formes linéaires
(voir plus loin).

Définition 1.2. Un sous-espace vectoriel F' d’un espace vectoriel E est un sous-ensemble
F non-vide de E tel que :

o siu,v € F alorsu+veF;

o si\€R, (resp C) alors Au € F.

e [’exemple 7 ci dessus est un sous-espace vectoriel de 'exemple 6 qui est lui méme
un sous-espace de l'exemple 5.

e R"! est un sous espace de R”, identifiant R"~! aux n-uplets avec z,, = 0.

e Si on considere le plan R? avec son systéme de coordonnées standard toute droite
distincte passant par l'origine est un sous-espace (une droite qui ne passe pas par
I'origine n’est pas un sous-espace).

On rappelle que l'intersection d’une famille quelconque de sous-espaces vectoriels est un
sous-espace vectoriel.

On notera que le sous-ensemble réduit au vecteur nul 0 est un sous-espace noté {0}, on
I’appelle le sous-espace trivial.

Définition 1.3. (Somme de deux sous-espaces) Etant donnés deuz sous-espaces F et
G d’un espace E (on abrége sous-espace vectoriel eu sous-espace et espace vectoriel en
espace) leur somme notée F' + G est le sous-espace constitué par les vecteurs de la forme
u~+v pour toutu € F, v e G.

Si FNG = {0} la somme est dite directe, et dans ce cas on note '@ G. On dit aussi que
F et G sont en somme directe et le sous-espace F'® G est appelé la somme directe de F'

et G.

Proposition 1.4. Etant donnée une famille de sous-espaces F; et1 =1,...,n d’un espace
E leur somme est directe si et seulement si ['une des deux conditions suivantes a lieu :

e L’équation v1 + ... +x, = 0 avec x; € Fyi,...,x, € F, a pour seule solution
Ty =...=x,=0.



e Pourtouti, 1 <i1<mn, ona

(Fl—i-—i-Efl)mE:{O}

Définition 1.5. St F' et G sont des sous-espaces de E, si ils sont en somme directe et si
F & G =FE on dit que G est un supplémentaire de F' (et F' un supplémentaire de G ).

Un sous-espace a toujours un supplémentaire. Mais ce supplémentaire n’est pas unique.
Par exemple si on consideére le plan R? avec son systéme de coordonnées standard pour E et
I’axe des abscices pour F', toute droite distincte passant par 1’origine est un supplémentaire
pour F.

Si on considere I'espace R? avec son systéme de coordonnées standard pour E et le plan
des z,y pour F, toute droite non contenue dans ce plan et passant par l'origine est un
supplémentaire pour F.

2 Systemes de vecteurs et dimension

Soit E un espace vectoriel. Un systéme de vecteurs de E est une famille (vy,...,v,) de
vecteurs de F.

Définition 2.1. Un systeme (vy,...,v,) est li€ si il existe Ay, ..., \, non tous nuls tels
que A1 + ... + A\u, = 0. 51 le systéme n’est pas li€ il est libre.

Un systéme (v;);er est li€ si il existe \;, i € I presque tous nuls (nuls sauf un nombre fini
d’entre eux) tels que Y, ; A\jv; = 0. Si le systéme n’est pas li¢ il est libre.

e Un systeme qui contient le vecteur nul est lié.

Un systeme qui contient deux fois le méme vecteur est lié.

Un systeme qui contient un sous-systeme lié est lié.

Un systeme qui est contenu dans un sous-systeme libre est libre.

Parmi les polynomes de degré inférieur ou égal a n le systeme 1, X, X2, ..., X" est
libre.

Soit P; un polynome de la forme X+ a_; X*"1 4 ... 4 ag, parmi les polynomes de
degré inférieur ou égal a n le systeme Py, P, ..., P, est libre.

e Parmi les fonctions de R dans R le systeme 1,¢e”,...,e"" est libre.

Etant donné un syteme (vy, . .., v,) une combinaison linéaire de ces vecteurs est un vecteur
de la forme A\jv; + ...+ \,v,. L’ensemble des combinaisons linéaires d'un systeme de
vecteurs est un sous-espace vectoriel appelé le sous-espace engendré par le systeme.

Définition 2.2. Un systéme (vi,...,v,) (resp. (vi)icr) est générateur pour un espace
vectoriel B st tout vecteur de E est combinaison linéaire des v;.

Définition 2.3. Un systeme (vy,...,v,) (resp. (v;)icr) est une base d’un espace vectoriel
E si il est générateur et libre.



Soit I'espace R", et soit ¢; = (0,...,0,1,0,...,0) ou le terme 1 est en position i. Le
systeme (eq, ..., e,) est une base de R™ appelé la base standard.

On appelle espace vectoriel de dimension finie tout espace vectoriel admettant une famille
génératrice finie. Le théoreme suivant est fondamental.

Théoreme 2.4. Toutes les bases d’un espace vectoriel de dimension finie on le méme
nombre d’éléments appelé dimension de [’espace.

Ce théoreme s’étend aux espaces vectoriels de dimension infinie. Mais on n’en parlera pas
ici, donc dans toute la suite, F est un espace vectoriel de dimension finie.

e Lesysteme (1, X, X2, ..., X") est une base des polynomes de degré inférieur ou égal
a n, I’espace est de dimension n + 1.

e Soit P; un polynéome de la forme X+ a_; X1+ ...+ ap, 0 < i < n. le systeme
Py, P, ..., P, est une base des polynomes de degré inférieur ou égal a n.

e [’espace des solutions d'une équation différentielle linéaire d’ordre n sans second
membre est de dimension n.

e [’espace des suites linéaires récurrentes satisfaisant a une relation du type :
Up = AQp—1Uk—1 + -« + Qp—pUp—pn
est de dimension n.
Soit F' C F un sous-espace vectoriel de F. Alors, I’ est de dimension finie, et
dim(F) < dim(FE)
De plus, on a dim(F) = dim(F) < F =FE.

Définition 2.5. On appelle rang d’un systeme de vecteurs d’un espace E la dimension
du sous-espace vectoriel engendré par ce systeme.

Le rang est toujours inférieur au nombre de vecteurs du systeme et a la dimension de
I’espace ambiant E.

3 Sous espaces et sommes directes
Proposition 3.1. Soient 1. F et G deux sous-espaces vectoriels de E. On a
dim(F + G) = dim(F) + dim(G) — dim(F N G).

2. F et G sont en somme directe si et seulement si
dim(F + G) = dim(F) + dim(G).

3. On a équivalence entre:

(i) E=F&G

(1)) E = F + G et dim(F) = dim(F) 4+ dim(G)

(iii)) F NG = {0} et dim(E) = dim(F) + dim(G)

A titre d’exemple et de contre exemple on regardera la somme de deux plans distincts de
R3.



Définition 3.2. Si F' et G sont des sous-espaces de E, si ils sont en somme directe et si
F®G=F on dit que G est un supplémentaire de F et F' un supplémentaire de G.

La troisieme partie de la proposition précédente se généralise en

Proposition 3.3. Soient
3. On a équivalence entre:

(i)
E=®i=1,. nF

E:ZE

1=1,....n

(i)

et dim(F) = X, _, dim(F;)

La proposition suivante explique comment construire une base d'un espace vectoriel F
qui est somme directe de deux sous-espaces F et G.

Proposition 3.4. La réunion d’une base quelconque de F et d’une base quelconque de G
est une base de E. autrement dit si (vy,...,v;) est une base de F, (wq,...,w;) une base
de G (v1,...,V5,w1,...,wy) est une base de E.

Le résxultat s’étend a une somme directe de n sous-espaces.

4 Application linéaire, rang, projecteurs

Dans tout ce qui suit, F et F' sont deux espaces vectoriels de dimension finie.

Définition 4.1. Soit f : E — F wune application, on, dit que c’est une application
linéaire si les deux conditions sont satisfaites pour tout A € R, v,w € E :

o [(Av) =Af(v)
o flot+w)=fv)+ flw).

La somme de deux applications linéaires est linéaire. Si on multiplie une application
linéaire par un scalaire on obtient encore une application linéaire. L’ensemble des appli-
cations linéaires de £ dans F' forme un espace vectoriel noté L(E, F'). Sa dimension est
dim(E)dim(F).

Si f est une application linéaire de E dans F', et g une application linéaire de F' dans G
alors g o f est une application linéaire de E dans G.

Le noyau de f est 'ensemble des v € E tels que f(v) = 0. C’est un sous-espace vectoriel
de E noté Ker(f).

L’image de f est I'ensemble des f(v), v € E. C’est un sous-espace vectoriel de E noté

I f).

Définition 4.2. On appelle rang de f la dimension de l'image de f.

Définition 4.3. Le rang d’un systéme de vecteurs (vy,...,v,) est la dimension du sous-
espace qu’il engendre.



Si (e1,...,e,) est une base de E, le rang de f est le rang du systéeme de vecteurs

(f<61>7 ce 7f<€n))

Proposition 4.4. (théoréme du rang) On a
rang(f) = dim(£) — dim(ker f)

Soit £’ un supplémentaire dans FE de ker f. L’application f restreinte a E’ induit un
isomorphisme sur E’. On a donc rang(f) = dim(Imf) = dim(£) — dim(ker f).

Proposition 4.5. Soit f : E — F une application linéaire, et supposons que dim E =
dim F' et qu’elle est finie. On a alors équivalence entre

(i) f est injective

(ii) f est surjective

(iii) f est bijective

On va maintenant considérer des applications linéaires particulieres les projecteurs. Soit
E = F &G une décomposition en somme directe. Tout vecteur x € E s’écrit x = xp+ x4,
xp € F, g € G. Le projecteur parallelement a G sur F' est 'application de £ dans F
qui a x associe g, on le notera p. En voici les propriétés :

e p est linéaire;

e Ker(p) =G;
o Im(p) = F}
o p? =p.

En fait

Théoréme 4.6. Une application linéaire p est un projecteur si et seulement si p*> = p.
Dans ce cas c’est le projecteur parallélement a Ker(p) sur Im(p).

Si E est un espace vectoriel ’ensemble des applications linéaires de E dans lui méme est
noté L(F).

On note GL(E) I'ensemble des apliccations linéaires inversibles de F dans E. La composée
de deux applications inversibles est inversible.

5 Hyperplans et formes linéaires, dual

Soit F/ un espace de dimension n. On appelle hyperplan de E tout sous-espace vectoriel
H de E de dimension n — 1.

Supposons que E est de dimension n.

On a équivalence entre:

(i) H est un hyperplan de E;

(i) Pour tout vecteur v € E, v ¢ H E est somme directe de H et de Ruo.

Une frorme linéaire sur E est une application linéaire de £ dans R (resp. C) . Si ¢ une
forme linéaire non nulle. D’apres le théoreme du rang, son noyau est un hyperplan de F.



Soit H un hyperplan de E. Il existe une forme linéaire non nulle ¢ sur F telle que
H = ker ¢. On dit que ¢ est une équation de H.

Soit v € E tel que F = H & Rov. Soit p la projection sur Rv parallelement a H. Il
suffit alors de prendre pour ¢ l'application de F dans R telle que, pour tout x € FE,
p(x) = p(z)v.

Par exemple dans R?, les hyperplans sont les plans passant par lorigine. Ils ont une
équation du type ax + by + cz = 0 ; ¢(x,y,2) = ax + by + cz est la forme linéaire
correspondante.

Définition 5.1. L’ensemble des formes linéaires est un espace vectoriel sur R qu’on
appelle le dual de E et que l’on note E*.

Théoréme 5.2. Soit un espace vectoriel E de dimension n et de base B = (eq,...,ey).
L’espace vectoriel E* est de dimension n et admet pour base (en particulier) le systéme
de formes linéaires (e7,...,e}), ou ef est défini par e} (e;) = 0;, avec 6;; =1 sii =73, 0

sinon. Cette base de E* est appelée base duale de la base B.

Note : 0; ; est appelé le symbole de Kronecker.

Quelques détails sur la démonstration.

D’abord une forme linéaire ¢ est déterminée par ses valeurs sur la base. En efftet siv € E
est donné par v = x1 Fy + - - - + z,e, on a (par linéarité) ¢(v) = z1d(er) + - - - + xpd(ey).
Donc la forme est déterminée dés que 'on connait les valeurs ¢(e;) pour tout i.

Ensuite 'application qui a v associe sa coordonnée x; dans la base B est la forme linéaire
ef. Donc la formule ci dessus devient

¢ = dler)er + -+ dlen)ey,

Le fait que la famille des e} soit libre résulte de ce qui suit. Si on a a1e] +---+ape), =0,
en appliquant cette identité au vecteur e; on obtient a; = 0.

Le résultat suit : la famille est libre et génératrice, donc est une base (on la note souvent
B*).



