
Dual d’un espace vectoriel et formes
linéaires

1 Espace vectoriel

Dans ce cours on ne consid/‘ere que des d’espaces vectoriels sur le corps R .

Définition 1.1. Un espace vectoriel sur R est un ensemble E muni de deux opérations.
D’abord d’une addition, c’est à dire qu’à tout couple v, w ∈ E on peut associer v+w ∈ E
tel que les règles de calcul ordinaires dans Rn aient lieu. A savoir

• (u+ v) + w = u+ (v + w) pour tous u, v, w ∈ E;

• u+ v = v + u pour tous u, v ∈ E;

• u+ v = v + u pour tous u, v ∈ E;

• il existe un élément noté 0E tel que u+ 0E = u pour tout u ∈ E; pour tout u ∈ E il
existe un élément v ∈ E tel que u+ v = 0E.

De plus il existe une application de R×E −→ E notée (λ, v) −→ λ.v, telle que pour tout
λ, µ ∈ R (resp. C) et v, w ∈ E on ait

• 1.v = v;

• (λ+ µ).v = λ.v + µ.v;

• λ.(µ.v) = (λµ).v;

• λ.(v + w) = λ.v + λ.w.

Dans la suite λ.v sera noté λv pour simplifier.
Les éléments de R sont appelés les scalaires, les éléments de E les vecteurs. La seconde
opération est la multiplication par les scalaires.
Le vecteur 0E est appelé le vecteur nul, il sera noté 0 simplement, on fera attention à ne
pas le confondre avec 0 ∈ R. On a 0E.v = 0E (0v = 0 avec les notations allégées). On le
montre en observant que v = 1.v = (1 + 0).v = 1.v + 0.v = v + 0.v, soit v = v + 0.v puis
en simplifiant.
le vecteur v tel que u+ v = 0 est appelé l’opposé il est noté −u car il est égal à (−1)u.
Voici des exemples.

1. Si on considère Rn en prenant pour addition l’addition terme à terme : (x1, . . . , xn)+
(y1, . . . , yn) = (x1+y1, . . . , xn+yn) et pour multiplication par les scalaires λ(x1, . . . , xn) =
(λx1, . . . , λxn) on constate qu’on a un espace vectoriel.

2. L’ensemble des fonctions F(A,R) d’un sous-ensemble A de R (resp. C) dans R
(resp. C).
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3. L’ensemble des fonctions continues C(]a, b[,R) d’un intervalle ]a, b[ de R dans R.

4. L’ensemble des fonctions dérivables D(]a, b[,R) d’un intervalle ]a, b[ de R dans R.

5. L’ensemble des fonctions infiniment dérivables D∞(]a, b[,R) d’un intervalle ]a, b[ de
R dans R.

6. On peut évidemment considérer dans les exemples précédents des intervalles fermés
à gauche ou à droite.

7. L’ensemble des fonctions polynômes sur R.

8. Ceux de degré inférieur ou égal à un entier donné n.

9. En particulier on peut considérer l’ensemble des fonctions polynômes de degré
inférieur ou égal à 1. On les apellera fonctions affines, on peut aussi considérer le
sous-ensemble de celles qui sont nulles en l’origine : on les appellera formes linéaires
(voir plus loin).

Définition 1.2. Un sous-espace vectoriel F d’un espace vectoriel E est un sous-ensemble
F non-vide de E tel que :

• si u, v ∈ F alors u+ v ∈ F ;

• si λ ∈ R, (resp C) alors λu ∈ F .

• L’exemple 7 ci dessus est un sous-espace vectoriel de l’exemple 6 qui est lui même
un sous-espace de l’exemple 5.

• Rn−1 est un sous espace de Rn, identifiant Rn−1 aux n-uplets avec xn = 0.

• Si on considère le plan R2 avec son système de coordonnées standard toute droite
distincte passant par l’origine est un sous-espace (une droite qui ne passe pas par
l’origine n’est pas un sous-espace).

On rappelle que l’intersection d’une famille quelconque de sous-espaces vectoriels est un
sous-espace vectoriel.
On notera que le sous-ensemble réduit au vecteur nul 0 est un sous-espace noté {0}, on
l’appelle le sous-espace trivial.

Définition 1.3. (Somme de deux sous-espaces) Etant donnés deux sous-espaces F et
G d’un espace E (on abrège sous-espace vectoriel eu sous-espace et espace vectoriel en
espace) leur somme notée F +G est le sous-espace constitué par les vecteurs de la forme
u+ v pour tout u ∈ F , v ∈ G.
Si F ∩G = {0} la somme est dite directe, et dans ce cas on note F ⊕G. On dit aussi que
F et G sont en somme directe et le sous-espace F ⊕G est appelé la somme directe de F
et G.

Proposition 1.4. Etant donnée une famille de sous-espaces Fi et i = 1, . . . , n d’un espace
E leur somme est directe si et seulement si l’une des deux conditions suivantes a lieu :

• L’équation x1 + . . . + xn = 0 avec x1 ∈ F1, . . . , xn ∈ Fn a pour seule solution
x1 = . . . = xn = 0.
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• Pour tout i, 1 ≤ i ≤ n, on a

(F1 + . . .+ Fi−1) ∩ Fi = {0}

Définition 1.5. Si F et G sont des sous-espaces de E, si ils sont en somme directe et si
F ⊕G = E on dit que G est un supplémentaire de F (et F un supplémentaire de G).

Un sous-espace a toujours un supplémentaire. Mais ce supplémentaire n’est pas unique.
Par exemple si on considère le plan R2 avec son système de coordonnées standard pour E et
l’axe des abscices pour F , toute droite distincte passant par l’origine est un supplémentaire
pour F .
Si on considère l’espace R3 avec son système de coordonnées standard pour E et le plan
des x, y pour F , toute droite non contenue dans ce plan et passant par l’origine est un
supplémentaire pour F .

2 Systèmes de vecteurs et dimension

Soit E un espace vectoriel. Un système de vecteurs de E est une famille (v1, . . . , vn) de
vecteurs de E.

Définition 2.1. Un système (v1, . . . , vn) est lié si il existe λ1, . . . , λn non tous nuls tels
que λ1v1 + . . .+ λnvn = 0. Si le système n’est pas lié il est libre.
Un système (vi)i∈I est lié si il existe λi, i ∈ I presque tous nuls (nuls sauf un nombre fini
d’entre eux) tels que

∑
i∈I λivi = 0. Si le système n’est pas lié il est libre.

• Un système qui contient le vecteur nul est lié.

• Un système qui contient deux fois le même vecteur est lié.

• Un système qui contient un sous-système lié est lié.

• Un système qui est contenu dans un sous-système libre est libre.

• Parmi les polynômes de degré inférieur ou égal à n le système 1, X,X2, . . . , Xn est
libre.

• Soit Pi un polynôme de la forme X i + a−1X
i−1 + . . . + a0, parmi les polynômes de

degré inférieur ou égal à n le système P0, P2, . . . , Pn est libre.

• Parmi les fonctions de R dans R le système 1, ex, . . . , enx est libre.

Etant donné un sytème (v1, . . . , vn) une combinaison linéaire de ces vecteurs est un vecteur
de la forme λ1v1 + . . . + λnvn. L’ensemble des combinaisons linéaires d’un système de
vecteurs est un sous-espace vectoriel appelé le sous-espace engendré par le système.

Définition 2.2. Un système (v1, . . . , vn) (resp. (vi)i∈I) est générateur pour un espace
vectoriel E si tout vecteur de E est combinaison linéaire des vi.

Définition 2.3. Un système (v1, . . . , vn) (resp. (vi)i∈I) est une base d’un espace vectoriel
E si il est générateur et libre.
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Soit l’espace Rn, et soit ei = (0, . . . , 0, 1, 0, . . . , 0) où le terme 1 est en position i. Le
système (e1, . . . , en) est une base de Rn appelé la base standard.
On appelle espace vectoriel de dimension finie tout espace vectoriel admettant une famille
génératrice finie. Le théorème suivant est fondamental.

Théorème 2.4. Toutes les bases d’un espace vectoriel de dimension finie on le même
nombre d’éléments appelé dimension de l’espace.

Ce théorème s’étend aux espaces vectoriels de dimension infinie. Mais on n’en parlera pas
ici, donc dans toute la suite, E est un espace vectoriel de dimension finie.

• Le système (1, X,X2, . . . , Xn) est une base des polynômes de degré inférieur ou égal
à n, l’espace est de dimension n+ 1.

• Soit Pi un polynôme de la forme X i + a−1X
i−1 + . . . + a0, 0 ≤ i ≤ n. le système

P0, P2, . . . , Pn est une base des polynômes de degré inférieur ou égal à n.

• L’espace des solutions d’une équation différentielle linéaire d’ordre n sans second
membre est de dimension n.

• L’espace des suites linéaires récurrentes satisfaisant à une relation du type :

uk = ak−1uk−1 + . . .+ ak−nuk−n

est de dimension n.

Soit F ⊂ E un sous-espace vectoriel de E. Alors, F est de dimension finie, et

dim(F ) ≤ dim(E)

De plus, on a dim(F ) = dim(E) ⇐⇒ F = E.

Définition 2.5. On appelle rang d’un système de vecteurs d’un espace E la dimension
du sous-espace vectoriel engendré par ce système.

Le rang est toujours inférieur au nombre de vecteurs du système et à la dimension de
l’espace ambiant E.

3 Sous espaces et sommes directes

Proposition 3.1. Soient 1. F et G deux sous-espaces vectoriels de E. On a

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G).

2. F et G sont en somme directe si et seulement si
dim(F +G) = dim(F ) + dim(G).
3. On a équivalence entre:
(i) E = F ⊕G
(ii) E = F +G et dim(E) = dim(F ) + dim(G)
(iii) F ∩G = {0} et dim(E) = dim(F ) + dim(G)

A titre d’exemple et de contre exemple on regardera la somme de deux plans distincts de
R3.
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Définition 3.2. Si F et G sont des sous-espaces de E, si ils sont en somme directe et si
F ⊕G = E on dit que G est un supplémentaire de F et F un supplémentaire de G.

La troisième partie de la proposition précédente se généralise en

Proposition 3.3. Soient
3. On a équivalence entre:
(i)

E = ⊕i=1,...,nFi

(ii)

E =
∑

i=1,...,n

Fi

et dim(E) = Σi=1,...,n dim(Fi)

La proposition suivante explique comment construire une base d’un espace vectoriel E
qui est somme directe de deux sous-espaces F et G.

Proposition 3.4. La réunion d’une base quelconque de F et d’une base quelconque de G
est une base de E. autrement dit si (v1, . . . , vk) est une base de F , (w1, . . . , w`) une base
de G (v1, . . . , vk, w1, . . . , w`) est une base de E.

Le résxultat s’étend à une somme directe de n sous-espaces.

4 Application linéaire, rang, projecteurs

Dans tout ce qui suit, E et F sont deux espaces vectoriels de dimension finie.

Définition 4.1. Soit f : E −→ F une application, on, dit que c’est une application
linéaire si les deux conditions sont satisfaites pour tout λ ∈ R, v, w ∈ E :

• f(λv) = λf(v)

• f(v + w) = f(v) + f(w).

La somme de deux applications linéaires est linéaire. Si on multiplie une application
linéaire par un scalaire on obtient encore une application linéaire. L’ensemble des appli-
cations linéaires de E dans F forme un espace vectoriel noté L(E,F ). Sa dimension est
dim(E)dim(F ).
Si f est une application linéaire de E dans F , et g une application linéaire de F dans G
alors g ◦ f est une application linéaire de E dans G.

Le noyau de f est l’ensemble des v ∈ E tels que f(v) = 0. C’est un sous-espace vectoriel
de E noté Ker(f).

L’image de f est l’ensemble des f(v), v ∈ E. C’est un sous-espace vectoriel de E noté
Im(f).

Définition 4.2. On appelle rang de f la dimension de l’image de f .

Définition 4.3. Le rang d’un système de vecteurs (v1, . . . , vn) est la dimension du sous-
espace qu’il engendre.
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Si (e1, . . . , en) est une base de E, le rang de f est le rang du système de vecteurs
(f(e1), . . . , f(en)).

Proposition 4.4. (théorème du rang) On a

rang(f) = dim(E)− dim(ker f)

Soit E ′ un supplémentaire dans E de ker f . L’application f restreinte à E ′ induit un
isomorphisme sur E ′. On a donc rang(f) = dim(Imf) = dim(E)− dim(ker f).

Proposition 4.5. Soit f : E −→ F une application linéaire, et supposons que dimE =
dimF et qu’elle est finie. On a alors équivalence entre
(i) f est injective
(ii) f est surjective
(iii) f est bijective

On va maintenant considérer des applications linéaires particulières les projecteurs. Soit
E = F ⊕G une décomposition en somme directe. Tout vecteur x ∈ E s’écrit x = xF +xG,
xF ∈ F , xG ∈ G. Le projecteur parallèlement à G sur F est l’application de E dans E
qui a x associe xF , on le notera p. En voici les propriétés :

• p est linéaire;

• Ker(p) = G;

• Im(p) = F ;

• p2 = p.

En fait

Théorème 4.6. Une application linéaire p est un projecteur si et seulement si p2 = p.
Dans ce cas c’est le projecteur parallèlement à Ker(p) sur Im(p).

Si E est un espace vectoriel l’ensemble des applications linéaires de E dans lui même est
noté L(E).
On note GL(E) l’ensemble des apliccations linéaires inversibles de E dans E. La composée
de deux applications inversibles est inversible.

5 Hyperplans et formes linéaires, dual

Soit E un espace de dimension n. On appelle hyperplan de E tout sous-espace vectoriel
H de E de dimension n− 1.

Supposons que E est de dimension n.
On a équivalence entre:
(i) H est un hyperplan de E;
(ii) Pour tout vecteur v ∈ E, v 6∈ H E est somme directe de H et de Rv.

Une frorme linéaire sur E est une application linéaire de E dans R (resp. C) . Si φ une
forme linéaire non nulle. D’après le théorème du rang, son noyau est un hyperplan de E.
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Soit H un hyperplan de E. Il existe une forme linéaire non nulle φ sur E telle que
H = kerφ. On dit que φ est une équation de H.
Soit v ∈ E tel que E = H ⊕ Rv. Soit p la projection sur Rv parallèlement à H. Il
suffit alors de prendre pour φ l’application de E dans R telle que, pour tout x ∈ E,
p(x) = φ(x)v.
Par exemple dans R3, les hyperplans sont les plans passant par l’origine. Ils ont une
équation du type ax + by + cz = 0 ; φ(x, y, z) = ax + by + cz est la forme linéaire
correspondante.

Définition 5.1. L’ensemble des formes linéaires est un espace vectoriel sur R qu’on
appelle le dual de E et que l’on note E∗.

Théorème 5.2. Soit un espace vectoriel E de dimension n et de base B = (e1, . . . , en).
L’espace vectoriel E∗ est de dimension n et admet pour base (en particulier) le système
de formes linéaires (e∗1, . . . , e

∗
n), où e∗i est défini par e∗i (ej) = δi,j, avec δi,j = 1 si i = j, 0

sinon. Cette base de E∗ est appelée base duale de la base B.

Note : δi,j est appelé le symbole de Kronecker.
Quelques détails sur la démonstration.
D’abord une forme linéaire φ est déterminée par ses valeurs sur la base. En efftet si v ∈ E
est donné par v = x1E1 + · · ·+ xnen on a (par linéarité) φ(v) = x1φ(e1) + · · ·+ xnφ(en).
Donc la forme est déterminée dés que l’on connait les valeurs φ(ei) pour tout i.
Ensuite l’application qui à v associe sa coordonnée xi dans la base B est la forme linéaire
e∗i . Donc la formule ci dessus devient

φ = φ(e1)e
∗
1 + · · ·+ φ(en)e∗n

Le fait que la famille des e∗i soit libre résulte de ce qui suit. Si on a a1e
∗
1 + · · ·+ ane

∗
n = 0,

en appliquant cette identité au vecteur ei on obtient ai = 0.
Le résultat suit : la famille est libre et génératrice, donc est une base (on la note souvent
B∗).
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