Dual d’un espace vectoriel,
applications duales, changement de
bases

1 Forme bilinéaire canonique, orthogonalité

On ne considere que des d’espaces vectoriels sur le corps R , cependant tous les résultats
ci dessous s’appliqueraient pour des espaces vectoriels sur C

Définition 1.1. Soit E espace vectoriel et Ex son dual. On appelle dans ce contexte
forme bilinéaire canonique 'application de E x E* — R qui a un couple (v, ¢) associe
¢(x). On note < v, ¢ >.

Voici ses propriétés.

1. Soient vy,v9 € E, « € R ¢ € E* alors

<V F V2,0 >=< V1,0 >+ < v, 0>, <au,p>=a<v;p>

2. Soient ¢1, ¢ € E*, o € R, v € E alors

<V, D1+ Py >=< v, P01 >+ < v, 00 > < v, P >=a < vp; >

Définition 1.2. (Orthogonal d’un sous espace ) Etant donné un sous-espace F d’un
espace E on appelle orthogonal de F et on note F*+ le sous -espace de E* constitué par
les ¢ € E* tels que < v,¢ >= 0 pour tout v € F.

En fait il faut montrer que c’est un sous espace.
Proposition 1.3. Etant donnée une famille deur sous-espaces F' et G de E on a
FryGt=(FnG)*cE*

et
FrnGt=(F+G)*t cE”

Corollaire 1.4. Si F et G sont en somme directe alors i F+ NG+ = {0}.).
On remarquera que E+ = {0} et £ = {0}*.
Proposition 1.5. Soit F' un sous-espace de E, alors

dim(F) + dim(F+) = dim(E)



2 Transposition

Soit f: E — F une application linéaire. On définit son application transposée (ou
parfois appelée adjointe) *f: F* — E* par ¢ € F* — ¢ o f € E*. C'est une application
linéaire.

Proposition 2.1. On a pour toutv € E, ¢ € E*
< f(v),¢ >=<w,"f¢) >
De plus soient f: E — F et g: F — G des applications linéaires, alors
lgof)="fo'g

On remarquera que la transposée de l'identité de E est I'identité de E*.
Le théoreme suivant est tres important :

Théoreme 2.2. Le rang d’une application linéaire et de sa transposée sont lse meémes.
Ceci résulte de

Théoréme 2.3. On a

(Im(f)" = Ker'f

(Im')* = Ker(f)

3 Un exemple important
On considere les polynomes de degré inférieur ou égal a n, soit P,. Rappelons que

e Lesysteme (1, X, X2, ..., X") est une base des polynomes de degré inférieur ou égal
a n, 'espace est de dimension n + 1.

e Soit P; un polynéome de la forme X+ a_1 X1+ ...+ ap, 0 < i < n. le systeme
Py, P, ..., P, est une base des polynomes de degré inférieur ou égal a n.

Si on choisit un réel a arbitraire. L’application de ev, P, dans R qui a un polynéme P
associe P(a) est une forme linéaire.

e Siag,...,a, sont des réels deux a deux distincts les formes linéaires ev,,, .. ., ev,,
forment une base de P;.

e Cette base est la duale de la base donnée par les plynomes suivants (dits polynomes
d’interpolation de Lagrange) :

(X —ag) - (X —ai1)(X —aiy1) - (X —ay)

(ai —ao) -+ (a; — ai—1)(a; — aiy1) - (a; — an)

, 1=0,...,n

Ceci sera démontrée en exercice.



4 Matrices et transposition

Dans tout ce qui suit, E et F' sont deux espaces vectoriels de dimension finie respectives
n et p, on suppose données des bases B et B’.

Proposition 4.1. Soient ¢ une application linéaire de E dans F, sa matrice (dans B et
B') A = (a;;) a p lignes et n colonnes. La matrice (b; ;) de son application transposée
tp: F* — E* (dans les bases duales) a n lignes et p colonnes est la matrice, est notée
LA et est telle que b ; = aj.

En effet, notons e; les vecteurs de B, f; ceux de B', et e}, J; ceux des bases duales. par

définition de A
plei) = Z aeife

2:17'“’[)
et

On applique alors la relation

< @le), ff >=< e, o(f}) >

Le premier membre est par définition égal a a;; le second a b; ;. Le résultat suit.
On notera que si A a a ¢ lignes et p colonnes et B a p lignes et n colonnes, on a

(AB) ="(B)"(4)
qui a a ¢ lignes et n colonnes. ‘De plus si A est une matrice carrée on a :

det(A) = det(*A)

Voici enfin la formule de changement de bases. Soient B et B’ deux bases d'un méme
espace vectoriel. Soit P la matrice de passage définie par

fi= > puje

{=1,....,m

Soit () la matrice de passage dans le dual définie par

fi = Z Gh.i€h

h=1,....n

On calcule a partir de cette dernire formule la quantité

0ij =< [, [i >=<[;, Z i€y >= Z Gni < [ €p >= Z qh,iPh.j

h=1,...,n h=1,...,n h=1,...,n

Cette relation dit exactement que :



5 Formes bilinéaires, et application canonique

Soient F et F des espaces vectoriels.

Définition 5.1. Une forme bilinéaire ¢: E X F — R est une application vérifiant les
conditions 1 et 2 de la proposition 1.1. La plupart du temps on supposera que E = F.

On notera souvent < x,y > pour ¢(x,y).
La donnée d’une forme bilinéaire p: E x E — R permet de définir une application
linéaire ¢: F — E* :

Proposition 5.2. La forme bilinéaire p: Ex E — R détermine une application linéaire
x— ¢(z) € E* par la formule
P(2)(y) = e(z,y)

Définition 5.3. La forme bilinéaire p: E x E — R est non dégénérée si ¢ est un
1somorphisme.

Exemple : sur R” le produit scalaire < v,w >= ). v;w; est une forme bilinéaire non
dégénérée. Les v;, w; sont les coordonnées de v et w dans la base standard.
Si on considre 1'espace vectoriel des fonctions intégrables sur un intervalle /

(fi9) — / F(0)g(t)de

est une forme bilinéaire. Si on se restreint a P, elle est non dégénérée.

6 Bidual

Soient E un espace vectoriel. Le dual de E* est appelé le bidual de E et noté EF**. La
forme bilnéaire canonique de la section 1 détermine une application linéaire £ — FE**.
On se contentera d’énoncer :

Proposition 6.1. Cette application est injective. Elle est surjective si et seulement si E
est de dimension finie. Dans ce cas £ = E**.



