
Dual d’un espace vectoriel,
applications duales, changement de

bases

1 Forme bilinéaire canonique, orthogonalité

On ne considère que des d’espaces vectoriels sur le corps R , cependant tous les résultats
ci dessous s’appliqueraient pour des espaces vectoriels sur C

Définition 1.1. Soit E espace vectoriel et E∗ son dual. On appelle dans ce contexte
forme bilinéaire canonique l’application de E × E∗ −→ R qui à un couple (v, φ) associe
φ(x). On note < v, φ >.

Voici ses propriétés.

1. Soient v1, v2 ∈ E, α ∈ R φ ∈ E∗ alors

< v1 + v2, φ >=< v1, φ > + < v2, φ >, < αv1, φ >= α < v1;φ >

2. Soient φ1, φ2 ∈ E∗, α ∈ R, v ∈ E alors

< v, φ1 + φ2 >=< v, φ1 > + < v, φ2 > < v, αφ1 >= α < vφ1 >

Définition 1.2. (Orthogonal d’un sous espace ) Etant donné un sous-espace F d’un
espace E on appelle orthogonal de F et on note F⊥ le sous -espace de E∗ constitué par
les φ ∈ E∗ tels que < v, φ >= 0 pour tout v ∈ F .

En fait il faut montrer que c’est un sous espace.

Proposition 1.3. Etant donnée une famille deux sous-espaces F et G de E on a

F⊥ +G⊥ = (F ∩G)⊥ ⊂ E∗

et
F⊥ ∩G⊥ = (F +G)⊥ ⊂ E∗

Corollaire 1.4. Si F et G sont en somme directe alors i F⊥ ∩G⊥ = {0}.).

On remarquera que E⊥ = {0} et E = {0}⊥.

Proposition 1.5. Soit F un sous-espace de E, alors

dim(F ) + dim(F⊥) = dim(E)
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2 Transposition

Soit f : E −→ F une application linéaire. On définit son application transposée (ou
parfois appelée adjointe) tf : F ∗ −→ E∗ par φ ∈ F ∗ 7→ φ ◦ f ∈ E∗. C’est une application
linéaire.

Proposition 2.1. On a pour tout v ∈ E, φ ∈ E∗

< f(v), φ >=< v, tfφ) >

De plus soient f : E −→ F et g : F −→ G des applications linéaires, alors

t(g ◦ f) = tf ◦ tg

On remarquera que la transposée de l’identité de E est l’identité de E∗.
Le théorème suivant est très important :

Théorème 2.2. Le rang d’une application linéaire et de sa transposée sont lse mêmes.

Ceci résulte de

Théorème 2.3. On a

(Im(f)⊥ = Kertf

(Imt)⊥ = Ker(f)

3 Un exemple important

On considère les polynômes de degré inférieur ou égal à n, soit Pn. Rappelons que

• Le système (1, X,X2, . . . , Xn) est une base des polynômes de degré inférieur ou égal
à n, l’espace est de dimension n+ 1.

• Soit Pi un polynôme de la forme X i + a−1X
i−1 + . . . + a0, 0 ≤ i ≤ n. le système

P0, P2, . . . , Pn est une base des polynômes de degré inférieur ou égal à n.

Si on choisit un réel a arbitraire. L’application de eva Pn dans R qui à un polynôme P
associe P (a) est une forme linéaire.

• Si a0, . . . , an sont des réels deux à deux distincts les formes linéaires eva0 , . . . , evan

forment une base de P ∗n .

• Cette base est la duale de la base donnée par les plynômes suivants (dits polynômes
d’interpolation de Lagrange) :

(X − a0) · · · (X − ai−1)(X − ai+1) · · · (X − an)

(ai − a0) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
, i = 0, . . . , n

Ceci sera démontrée en exercice.
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4 Matrices et transposition

Dans tout ce qui suit, E et F sont deux espaces vectoriels de dimension finie respectives
n et p, on suppose données des bases B et B′.

Proposition 4.1. Soient ϕ une application linéaire de E dans F , sa matrice (dans B et
B′) A = (ai,j) a p lignes et n colonnes. La matrice (bi,j) de son application transposée
tϕ : F ∗ −→ E∗ (dans les bases duales) a n lignes et p colonnes est la matrice, est notée
tA et est telle que bi,j = aj,i.

En effet, notons ei les vecteurs de B, fj ceux de B′, et e∗i , f ∗j ceux des bases duales. par
définition de A

ϕ(ei) =
∑

`=1,...,p

a`,if`

et
tϕ(f ∗j ) =

∑
h=1,...,n

bh,jeh

On applique alors la relation

< ϕ(ei), f
∗
j >=< ei,

tϕ(f ∗j ) >

Le premier membre est par définition égal à aj,i le second à bi,j. Le résultat suit.
On notera que si A a a q lignes et p colonnes et B a p lignes et n colonnes, on a

t(AB) = t(B)t(A)

qui a a q lignes et n colonnes. ‘De plus si A est une matrice carrée on a :

det(A) = det(tA)

Voici enfin la formule de changement de bases. Soient B et B′ deux bases d’un même
espace vectoriel. Soit P la matrice de passage définie par

fj =
∑

`=1,...,n

p`,je`

Soit Q la matrice de passage dans le dual définie par

f ∗i =
∑

h=1,...,n

qh,ie
∗
h

On calcule à partir de cette dernire formule la quantité

δi,j =< fj, f
∗
i >=< fj,

∑
h=1,...,n

qh,ie
∗
h >=

∑
h=1,...,n

qh,i < fj, e
∗
h >=

∑
h=1,...,n

qh,iph,j

Cette relation dit exactement que :

Q = t(P−1) = (tP )−1
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5 Formes bilinéaires, et application canonique

Soient E et F des espaces vectoriels.

Définition 5.1. Une forme bilinéaire ϕ : E × F −→ R est une application vérifiant les
conditions 1 et 2 de la proposition 1.1. La plupart du temps on supposera que E = F .

On notera souvent < x, y > pour ϕ(x, y).
La donnée d’une forme bilinéaire ϕ : E × E −→ R permet de définir une application
linéaire ϕ̂ : E −→ E∗ :

Proposition 5.2. La forme bilinéaire ϕ : E×E −→ R détermine une application linéaire
x 7→ ϕ̂(x) ∈ E∗ par la formule

ϕ̂(x)(y) = ϕ(x, y)

Définition 5.3. La forme bilinéaire ϕ : E × E −→ R est non dégénérée si ϕ̂ est un
isomorphisme.

Exemple : sur Rn le produit scalaire < v,w >=
∑

i viwi est une forme bilinéaire non
dégénérée. Les vi, wj sont les coordonnées de v et w dans la base standard.
Si on considre l’espace vectoriel des fonctions intégrables sur un intervalle I

(f ; g) 7→
∫

I

f(t)g(t)dt

est une forme bilinéaire. Si on se restreint à Pn elle est non dégénérée.

6 Bidual

Soient E un espace vectoriel. Le dual de E∗ est appelé le bidual de E et noté E∗∗. La
forme bilnéaire canonique de la section 1 détermine une application linéaire E −→ E∗∗.
On se contentera d’énoncer :

Proposition 6.1. Cette application est injective. Elle est surjective si et seulement si E
est de dimension finie. Dans ce cas E ∼= E∗∗.
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