Principaux théorèmes d'intégration

Soit (E, A, μ) un espace mesuré.

Théorème (Théorème de convergence monotone)

a) Soit $(f_n)_{n\geq 0}$ une suite **croissante** de fonctions mesurables **positives** sur E. On a :

$$\lim_{n\to\infty} \int f_n \ d\mu = \int \lim_{n\to\infty} f_n \ d\mu.$$

b) Soit $(f_n)_{n\geq 0}$ une suite de fonctions mesurables **positives**. On a :

$$\int \sum_{n=0}^{\infty} f_n \ d\mu = \sum_{n=0}^{\infty} \int f \ d\mu.$$

Théorème (Théorème de convergence dominée (de Lebesgue))

Soit $(f_n)_{n\geq 0}$ une suite de fonctions mesurables de E dans \mathbb{C} , et f une fonction mesurable de E dans \mathbb{C} . On suppose que :

- (limite) pour μ -presque tout $x \in E$, $f_n(x) \xrightarrow[n \to \infty]{} f(x)$;
- (domination) il existe une fonction $\varphi: E \to \mathbb{R}_+$ mesurable telle que $\int \varphi \, d\mu < \infty$ et

pour tout $n \in \mathbb{N}$, pour μ -presque tout $x \in E$, $|f_n(x)| \leq \varphi(x)$.

On a alors : f est intégrable, de même que f_n pour tout $n \in \mathbb{N}$,

$$\int |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0 \quad \text{et} \quad \int f_n \ d\mu \underset{n \to \infty}{\longrightarrow} \int f \ d\mu.$$

Théorème (Théorème de continuité sous l'intégrale)

Soit $f:(t,x)\mapsto f(t,x)$ une fonction de $I\times E$ dans $\mathbb C$ (où I est un intervalle de $\mathbb R$). On suppose que:

- (mesurabilité) pour tout $t \in I$, $x \mapsto f(t,x)$ est mesurable;
- (continuité) pour μ -presque tout $x \in E$, $t \mapsto f(t,x)$ est continue sur I;
- (domination) il existe une fonction $\varphi: E \to \mathbb{R}_+$ mesurable telle que $\int \varphi \, d\mu < \infty$ et

pour tout $t \in I$, pour μ -presque tout $x \in E$, $|f(t,x)| \leq \varphi(x)$.

Alors la fonction

$$F: t \mapsto F(t) = \int f(t,x) \ d\mu(x)$$

est bien définie pour tout $t \in I$, et est continue sur I.

Théorème (Théorème de dérivation sous l'intégrale)

Soit $f:(t,x)\mapsto f(t,x)$ une fonction de $I\times E$ dans $\mathbb C$. On suppose que :

- (existence de F) pour tout $t \in I$, $x \mapsto f(t,x)$ est intégrable;
- (dérivabilité) pour μ -presque tout $x \in E$, $t \mapsto f(t,x)$ est dérivable sur I, de dérivée notée $\frac{\partial f}{\partial t}$;
- (domination de la dérivée) il existe une fonction $\varphi: E \to \mathbb{R}_+$ mesurable telle que $\int \varphi d\mu < \infty$ et

pour tout
$$t \in I$$
, pour μ -presque tout $x \in E$, $\left| \frac{\partial f}{\partial t}(t,x) \right| \leq \varphi(x)$.

Alors la fonction

$$F: t \mapsto F(t) = \int f(t,x) \ d\mu(x)$$

est dérivable sur I et, pour tout $t \in I$,

$$F'(t) = \int \frac{\partial f}{\partial t}(t,x) \ d\mu(x).$$

Théorème (Théorème d'holomorphie sous l'intégrale)

Soit $f:(z,x)\mapsto f(z,x)$ une fonction de $U\times E$ dans \mathbb{C} , où U est un ouvert de \mathbb{C} . On suppose que :

- (mesurabilité) pour tout $z \in U$, $x \mapsto f(z,x)$ est mesurable;
- (holomorphie) pour μ -presque tout $x \in E$, $z \mapsto f(z,x)$ est holomorphe sur U, de dérivée notée $\frac{\partial f}{\partial z}$;
- (domination de f!) il existe une fonction $\varphi: E \to \mathbb{R}_+$ mesurable telle que $\int \varphi \, d\mu < \infty$ et

pour tout $z \in U$, pour μ -presque tout $x \in E$, $|f(z,x)| \le \varphi(x)$.

Alors la fonction

$$F: z \mapsto F(z) = \int f(z,x) \ d\mu(x)$$

est holomorphe sur U, et, pour tout $z \in U$, la fonction $x \mapsto \frac{\partial f}{\partial z}(z,x)$ est intégrable et

$$F'(z) = \int \frac{\partial f}{\partial z}(z, x) \ d\mu(x).$$

Soit (E, \mathcal{A}, μ) et (F, \mathcal{B}, ν) deux espaces mesurés.

Théorème (Théorème de Fubini-Tonelli)

Pour toute fonction mesurable **positive** f sur $E \times F$,

$$\int_{E\times F} f(x,y)\,d(\mu\otimes\nu)(x,y) = \int_E \bigg(\int_F f(x,y)d\nu(y)\bigg)d\mu(x) = \int_F \bigg(\int_E f(x,y)d\mu(x)\bigg)d\nu(y). \tag{*}$$

Théorème (Théorème de Fubini-Lebesgue)

Pour toute fonction mesurable $f: E \times F \to \mathbb{C}$, telle que

$$\int_{E\times F} |f(x,y)| d(\mu\otimes\nu)(x,y) < \infty,$$

la suite d'égalités (*) reste vraie.

NB. Par le théorème de Fubini-Tonelli, la condition équivaut à

$$\int_{E} \left(\int_{F} \big| f(x,y) \big| d\nu(y) \right) d\mu(x) < \infty \qquad \text{ou} \qquad \int_{F} \left(\int_{E} \big| f(x,y) \big| d\mu(x) \right) d\nu(y) < \infty.$$

Théorème (Théorème de changement de variable dans \mathbb{R}^d)

Soit U,D des ouverts de \mathbb{R}^d . Soit $f:D\to\mathbb{C}$ mesurable, et $\varphi:U\to D$ un \mathcal{C}^1 -difféomorphisme.

a) Si f est positive, alors

$$\int_{D} f(x) dx = \int_{U} f(\varphi(u)) |J_{\varphi}(u)| du$$

et

$$\int_{U} f(\varphi(u)) du = \int_{D} f(x) |J_{\varphi^{-1}}(x)| dx.$$

b) Si f est intégrable sur D, la première égalité précédente a un sens (autrement dit, $u \mapsto f(\varphi(u))|J_{\varphi}(u)|$ est intégrable sur U) et est vraie. Si $f \circ \varphi$ est intégrable sur U, alors il en est de même de la deuxième.