FICHE 2 - ESPÉRANCE, INDÉPENDANCE

Exercice 1 Manipulation des définitions

- 1. Soit A et B deux événements indépendants. Montrer que A et B^c sont indépendants aussi.
- **2.** On lance deux dés, on note X_1 et X_2 les résultats, et S leur somme. Démontrer que X_1 et S ne sont pas indépendantes.
- **3.** Soient X et Y des variables aléatoires à valeurs dans \mathbb{N} . Écrire les formules permettant de calculer les quantités suivantes : $\mathbb{E}[X]$, $\mathbb{E}[X+1]$, $\mathbb{E}[3^X]$, $\mathbb{P}(X$ est pair), $\mathbb{E}[X+Y]$, $\mathbb{E}[XY^2]$, $\mathbb{P}(X=Y)$, $\mathbb{P}(X\geq Y)$. Dans le cas où X et Y sont indépendantes, simplifier ces expressions lorsque cela est possible.

Exercice 2 Fonctions indicatrices

Soit (Ω, \mathbb{P}) un espace de probabilités discret. Si $A \subset \Omega$ est un événement, on note $\mathbf{1}_A : \Omega \to \{0, 1\}$ la fonction indicatrice de A:

pour tout
$$\omega \in \Omega$$
, $\mathbf{1}_A(\omega) = \begin{cases} 1 & \text{si } \omega \in A \\ 0 & \text{si } \omega \notin A. \end{cases}$

- 1. Pour des événements A et B, exprimer $\mathbf{1}_{A^c}$ et $\mathbf{1}_{A\cap B}$ en fonction de $\mathbf{1}_A$ et $\mathbf{1}_B$.
- **2.** Vérifier que, pour tout événement A, $\mathbb{P}(A) = \mathbb{E}[\mathbf{1}_A]$.
- **3.** Soit A_1, \ldots, A_n des événements. On note N le nombre d'événements parmi ceux-ci qui se produisent. Exprimer N à l'aide de fonctions indicatrices, et en déduire une expression de $\mathbb{E}[N]$.

Exercice 3 Covariance

Soit deux variables aléatoires X et Y. On définit leur covariance par :

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

1. Montrer que

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

et

$$Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y).$$

- **2.** Supposons X et Y indépendantes. Montrer Cov(X,Y) = 0. Qu'en déduit-on pour Var(X+Y)?
- **3. Attention :** la réciproque est fausse. Supposons que la loi de X est donnée par $\mathbb{P}(X=1) = \mathbb{P}(X=-1) = \frac{1}{2}$ et que $Y=X^2$. Donner la loi de Y et calculer Cov(X,Y). X et Y sont-elles indépendantes ?

Exercice 4 Estimateur de la moyenne

Soit X_1, \ldots, X_n des variables aléatoires indépendantes de même loi de moyenne μ et de variance σ^2 . On pose

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- 1. Calculer $\mathbb{E}[\overline{X}_n]$.
- **2.** Calculer $Var(\overline{X}_n)$.