Intégration & probabilités MACS 1

Bilan de la partie intégration

Laurent Tournier

Novembre 2018

Les notions clés

Espace mesuré (E, \mathcal{A}, μ) .

- E ensemble
- A tribu sur E: ensemble de sous-ensembles de E tel que
 - $\emptyset \in \mathcal{A} \text{ (et } E \in \mathcal{A});$

 - si $A \in \mathcal{A}$, alors $A^c = E \setminus A \in \mathcal{A}$; si $A_n \in \mathcal{A}$ pour tout $n \in \mathbb{N}$, alors $\bigcup_n A_n \in \mathcal{A}$ (et $\bigcap_n A_n \in \mathcal{A}$).
- ullet μ mesure sur $\mathcal A$: fonction $\mathcal A o [0,\infty]$ telle que

$$\mu\Big(\biguplus_{n\in\mathbb{N}}A_n\Big)=\sum_{n\in\mathbb{N}}\mu(A_n).$$

Les notions clés

Espace mesuré (E, \mathcal{A}, μ) .

- E ensemble
- A tribu sur E: ensemble de sous-ensembles de E tel que
- μ mesure sur \mathcal{A} : fonction $\mathcal{A} \to [0, \infty]$ telle que

$$\mu\Big(\biguplus_{n\in\mathbb{N}}A_n\Big)=\sum_{n\in\mathbb{N}}\mu(A_n).$$

Exemples:

- $\mathcal{A} = \mathcal{P}(E)$, et $\mu = \delta_x$, ou $\mu = \sum_{n \in \mathbb{N}} \alpha_n \delta_{x_n}$, avec $\alpha_n \geq 0$, $x_n \in E$ (cas "discret")
- $\mathcal{A} = \mathcal{B}(\mathbb{R}^d)$, et par exemple

•
$$\mu = \sum_{n \in \mathbb{N}} \alpha_n \delta_{x_n}, \, \mu(A) = \sum_{n \in \mathbb{N} : x_n \in A} \alpha_n$$

- $\mu = \lambda_d$ (mesure de Lebesgue sur \mathbb{R}^d), $\lambda_1 (= \lambda)$, λ_2 , λ_3 : longueur, aire volume
- $\mu = (\lambda_d)_{|K}$ (mesure de Lebesgue sur \mathbb{R}^d restreinte à K): $(\lambda_d)_{|K}(A) = \lambda_d(A \cap K)$,
- $\mu = f \cdot \lambda_d = f(x) d\lambda_d(x) = f(x) dx$ (mesure de densité f, où $f(x) \geq 0$ pour tout $x \in \mathbb{R}^d$), $\mu(A) = \int f d\lambda_d = \int \mathbf{1}_A(x) f(x) dx$
- un mélange comme $\mu = \alpha_0 \delta_0 + f(x) dx$, ou ...

L'intégrale par rapport à une mesure

 (E,\mathcal{A},μ) espace mesuré, $f:E o\mathbb{R}$ (mesurable). On peut définir $\int f\,d\mu$ dans 2 cas :

- si f est **positive** (même à valeurs dans $[0,\infty]$) ; dans ce cas $\int f\,d\mu\in[0,\infty]$
- si f est **intégrable** par rapport à μ , c'est-à-dire que $\int |f| d\mu < \infty$.

Dans le cas positif, la définition se déduit du cas des fonctions indicatrices :

$$\operatorname{\mathsf{Pour}} A \in \mathcal{A}, \qquad \int \mathbf{1}_{\!A} d\mu = \mu(A).$$

Par linéarité, on définit l'intégrale des fonctions étagées $f=\sum_{i=1}^n \alpha_i \mathbf{1}_{A_i}$ (avec $\alpha_i \geq 0 \ \forall i$, ou

 $\mu(A_i) < \infty \ \forall i$):

$$\int f d\mu = \sum_{i=1}^{n} \alpha_i \mu(A_i).$$

Par limite croissante, on définit l'intégrale des fonctions f positives :

$$\int f \, d\mu = \lim_n \int f_n \, d\mu \in [0,\infty], \quad \text{où, pour tout } n \in \mathbb{N}, f_n \text{ est \'etag\'ee} \geq 0, \text{ et } \forall x \in E, \lim_n \uparrow f_n(x) = f(x)$$

Par différence entre parties positive et négative, on en déduit la définition quand f est intégrable :

$$\int f d\mu = \int f_+ d\mu - \int f_- d\mu \in \mathbb{R}.$$

Intégrale discrète, intégrale de Riemann

Intégrale par rapport à une mesure discrète

On a

$$\int f \, d\delta_x = f(x).$$

Plus généralement, pour $\mu = \sum_{n \in \mathbb{N}} \alpha_n \delta_{x_n}$,

$$\int f d\mu = \sum_{n \in \mathbb{N}} \alpha_n f(x_n),$$

à condition que $f \geq 0$ ou que f soit intégrable par rapport à μ (c.-à-d. que $\sum_{n \in \mathbb{N}} \alpha_n |f(x_n)| < \infty$)

Intégrale par rapport à la mesure de Lebesgue

Pour $f: I \to \mathbb{R}$ continue par morceaux (ou Riemann-intégrable),

$$\int_{I} f \, d\lambda = \int_{I} f(x) dx$$

 $\begin{aligned} &\text{lorsque } I = [a,b], \text{ et cela reste vrai pour } I =]a,b[\text{ avec } a,b \in \overline{\mathbb{R}} \text{ lorsque on suppose de plus que } f \geq 0, \text{ ou que } f \text{ est intégrable sur }]a,b[\text{ (c'est-à-dire que } \int_{]a,b[} |f(x)| dx < \infty). \end{aligned}$

Théorèmes de convergence

Théorème de convergence monotone

Soit $(f_n)_n$ une suite croissante de fonctions mesurables, de E dans $[0,\infty]$. On a

$$\int \lim_{n} \uparrow f_n \, d\mu = \lim_{n} \uparrow \int f_n \, d\mu.$$

Théorème de convergence dominée

Soit $(f_n)_n$ une suite de fonctions mesurables, de E dans \mathbb{R} . On suppose que

- pour presque tout $x \in E$, $f_n(x)$ converge quand $n \to \infty$;
- $\bullet \ \ \text{pour presque tout} \ x \in E, \text{pour tout} \ n \in \mathbb{N}, \quad |f_n(x)| \leq \varphi(x), \quad \text{où} \ \int \varphi(x) d\mu(x) < \infty.$

Alors

$$\int \lim_n f_n \, d\mu = \lim_n \int f_n \, d\mu.$$

Espace produit

Soit (E, \mathcal{E}, μ) et (F, \mathcal{F}, ν) deux espaces mesurés.

On peut définir $(E \times F, \mathcal{E} \otimes \mathcal{F}, \mu \otimes \nu)$ de telle sorte que, pour tous $A \in \mathcal{E}$ et $B \in \mathcal{F}$,

$$A \times B \in \mathcal{E} \otimes \mathcal{F}$$
 et $(\mu \otimes \nu)(A \times B) = \mu(A)\nu(B)$

On a même une formule générale : si $C \in \mathcal{E} \otimes \mathcal{F}$,

$$(\mu \otimes \nu)(C) = \int_{E} \nu(C_{x}) d\mu(x) = \int_{F} \mu(C^{y}) d\nu(y)$$

où, pour $x \in E$, $C_x = \{y \in F \mid (x,y) \in C\}$ et pour $y \in F$, $C^y = \{x \in E \mid (x,y) \in C\}$ sont les "tranches" de C.

Espace produit

Soit (E, \mathcal{E}, μ) et (F, \mathcal{F}, ν) deux espaces mesurés.

On peut définir $(E \times F, \mathcal{E} \otimes \mathcal{F}, \mu \otimes \nu)$ de telle sorte que, pour tous $A \in \mathcal{E}$ et $B \in \mathcal{F}$,

$$A \times B \in \mathcal{E} \otimes \mathcal{F}$$
 et $(\mu \otimes \nu)(A \times B) = \mu(A)\nu(B)$

On a même une formule générale : si $C \in \mathcal{E} \otimes \mathcal{F}$,

$$(\mu \otimes \nu)(C) = \int_E \nu(C_x) d\mu(x) = \int_F \mu(C^y) d\nu(y)$$

où, pour $x \in E$, $C_x = \{y \in F \mid (x,y) \in C\}$ et pour $y \in F$, $C^y = \{x \in E \mid (x,y) \in C\}$ sont les "tranches" de C.

La formule correspond exactement au cas $f=\mathbf{1}_{\mathcal{C}}$ du théorème suivant :

Théorèmes de Fubini

Pour $f: E \times F \to \mathbb{R}$ mesurable, on a

$$\int_{E\times F} f\,d(\mu\otimes\nu) = \int_E \left(\int_F f(x,y)d\nu(y)\right)d\mu(x) = \int_F \left(\int_E f(x,y)d\mu(x)\right)d\nu(y)$$

si $f \geq 0$ (Fubini-Tonelli), ou si f est intégrable par rapport à $\mu \otimes \nu$ (Fubini-Lebesgue), c'est-à-dire si

$$\int_{E} \biggl(\int_{F} |f(x,y)| d\nu(y) \biggr) d\mu(x) < \infty \qquad \text{(ou } \int_{F} \biggl(\int_{E} |f(x,y)| d\mu(x) \biggr) d\nu(y) < \infty).$$

Exemple: $\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{B}(\mathbb{R}^{d'}) = \mathcal{B}(\mathbb{R}^{d+d'})$, $\lambda_d \otimes \lambda_{d'} = \lambda_{d+d'}$, et le théorème de Fubini est valide avec "dx" (c'est-à-dire $d\lambda_d(x)$)) au lieu de " $d\mu(x)$ " et " $d\nu(x)$ "

Mesure image, théorème de transfert

Soit (E, \mathcal{E}, μ) un espace mesuré, (F, \mathcal{F}) un espace mesurable, et $\varphi : E \to F$.

On définit la mesure $\varphi_* \mu$ sur F par

pour tout
$$B \in \mathcal{F}$$
, $(\varphi_*\mu)(B) = \mu(\varphi^{-1}(B))$.

La formule correspond exactement au cas $f = \mathbf{1}_C$ du théorème suivant :

Théorème de transfert

Pour $f: E \to \mathbb{R}$ mesurable, on a

$$\int_{E} f(\varphi(x)) d\mu(x) = \int_{F} f(y) d(\varphi_* \mu)(y)$$

 $\operatorname{si} f \geq 0,$ ou $\operatorname{si} f \circ \varphi$ est intégrable par rapport à $\mu,$ c'est-à-dire si

$$\int_{E} |f(\varphi(x))| \, d\mu(x) = \int_{F} |f(y)| d(\varphi_*\mu)(y) < \infty.$$

Changement de variable affine, dans \mathbb{R}^d

Soit $M: \mathbb{R}^d \to \mathbb{R}^d$ une application linéaire (ou affine). Pour $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\lambda_d(M(B)) = |\det M| \lambda_d(B).$$

Autrement dit, la mesure image de λ_d par M est $\frac{1}{|\det M|}\lambda_d$, lorsque M est inversible.

En particulier, λ_d est invariante par les rotations et symétries orthogonales ($M^TM = I$ donc $\det M = \pm 1$)

Pour $B=[0,1]^d$, M(B) est le parallélotope engendré par les vecteurs colonnes de M: M envoie le cube engendré par e_1,\ldots,e_d sur le parallélotope engendré par $M(e_1),\ldots,M(e_d)$.

On a donc, pour toute fonction $f:D\to\mathbb{R}$ mesurable,

$$\int_{U} f(Mx)dx = \int_{D} f(y) \frac{1}{|\det M|} dy$$
$$= \frac{1}{|\det M|} \int_{D} f(y) dy,$$

à condition d'avoir $f \ge 0$, ou que f soit intégrable sur D.

Changement de variable différentiable, dans \mathbb{R}^d

Quelle est la mesure image de λ_d par une application non linéaire $\varphi: \mathbb{R}^d \to \mathbb{R}^d$, injective ?

Soit $y \in \mathbb{R}^d$. Près de $x = \varphi^{-1}(y)$, si φ est différentiable, $\varphi(x+h) \simeq y + d\varphi_x(h)$: autrement dit, φ est presque égale à l'application affine $x+h\mapsto y+d\varphi_x(h)$ lci, $d\varphi_x$ est la différentielle de $\varphi=(\varphi_1,\ldots,\varphi_d)$: c'est l'application linéaire de matrice $(\frac{\partial \varphi_i}{\partial x_i})_1 \le i,j \le d$.

Donc la mesure image de λ_d par φ est, "près de y", "presque égale à" $\frac{1}{|\det d\varphi_x|}\lambda_d=|\det(d\varphi^{-1})_y|\lambda_d.$

On suppose que $\varphi:U o D$ est un \mathcal{C}^1 -difféomorphisme, c'est-à-dire que φ est bijective, et que φ et φ^{-1} sont de classe \mathcal{C}^1 . Alors la mesure image par φ de la mesure de Lebesgue sur U est la mesure de densité $|\det(d\varphi^{-1})|$ par rapport à la mesure de Lebesgue sur D: en abrégé,

$$\varphi_* dx = |\det(d\varphi^{-1})_y| dy.$$

On a donc, pour toute function $f: D \to \mathbb{R}$ mesurable,

$$\int_{U} f(\varphi(x))dx = \int_{D} f(y)|J\varphi^{-1}(y)|dy,$$

où $J\varphi^{-1}(y)=|\det(d\varphi^{-1})_y|$, à condition d'avoir $f\geq 0$, ou que $f\circ \varphi$ soit intégrable sur U.