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RWRE on Z: definitions

Let p be alaw on (0, 1).
Define an i.i.d. sequence w = (wy)yez With law p (“environment”).
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ex.: it = pdo + (1 —p)dg, i = B(a, b) (Beta distribution)
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(Given w) Quenched law P, of Markov chain of transition w

(Random w) Annealed law P of RWRE:

P() = E[P,()] = / Po()dp® (w)
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RWRE on Z: definitions

Let 4 be alaw on (0, 1).
Define an i.i.d. sequence w = (wy)rez With law p (“environment”).

wW-1 wo w1

L _2. - . . .
o 1w l—wo 1—=wy

ex.: it = pdo + (1 —p)dg, i = B(a, b) (Beta distribution)

(Given w) Quenched law P, of Markov chain of transition w

(Random w) Annealed law P of RWRE:
P() = E[P,()] = / Po()dp® (w)

Under P, the RW “learns” about w; transitions are reinforced.
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Potential — Transience and speed
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Potential — Transience and speed
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1% Vig)<V(z—1)©w, > 1
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Potential — Transience and speed

-3 -2 -1 0 1 2 3

1% Vig)<V(z—1)©w, > 1
| e*\/(x)

Define V by V(0) = 0 and w, = e g
. 1- X
ie. V(x) =logp; + - - - + log p, for x > 0, where p, = @

X
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Potential — Transience and speed

-3 -2 -1 0 1 2 3

1% Vig)<V(z—1)©w, > 1

Define V by V(0) = 0 and w, =

—V(x)
e~ V() + e~ Vix—1)’ ¢ &) = Cx,x+l

1—
ie. V(x) =logp; + - - - + log p, for x > 0, where p, =

Theorem (Solomon 1975)

X—>00

I~ X, — +oo  iff E[log po] < 0(&< V(x) — —o0)
-a.s.,
(Xy)n recurrent iff E[log po] =0
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Potential — Transience and speed

-3 -2 -1 0 1 2 3

1% Vig)<V(z—1)©w, > 1

Define V by V(0) = 0 and w, = ,emVW = Cyq

e~ V() + e—Vi—1)

1—
ie. V(x) =logp; + - - - + log p, for x > 0, where p, =

Theorem (Solomon 1975)

P,-as. { X, — +oo iff E[log pg] < 0(< V(x) — —o0)
(

X—00
for P-a.e. w, | (X,), recurrent iff E[log pg] = 0

v>0 ifE[p) <1

X
@ Assume E[log po] < 0. P-a.s., . — v where {v — 0 else.
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Fluctuations: KKS theorem

Hypotheses

(a) 3k > 0 such that E[pg] = 1, and E[p§ (log po)+] < 0o
(b) The law of log pg is non-arithmetic.

Ex. For u = B(a,b), k = b —a.

Theorem (Kesten-Kozlov-Spitzer 1975)

Assume (a)-(b). Then, under P,
X, (law _ : Nk
0 f0<r< 1,22 B 4.5,V E[eiS¢] = e~ (=)
n n
X, — i . @
oIl < k<2 I ytigs, E[eiS<] = e(~i)
n'/k n
X, — vn (law >
@ Ifxk > 2, —2/\/’(0,0)
vnooon
where A,; > 0 (S is a totally asymmetric x-stable r.v.)
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Fluctuations: KKS theorem

Hypotheses

(a) Ik > 0 such that E[e"'°¢] = 1, and E[p§ (log po)+] < 00
(b) The law of log py is non-arithmetic.

Ex. For u = B(a,b), Kk = b — a.

Theorem (Kesten-Kozlov-Spitzer 1975)

Assume (a)-(b). Then, under PP, (let 7(x) = inf{n : X, = x})
Xn aw _ aw
°If0<r<122 B (4,.8,)~ /% 7](;2 ) 4,5,
n X n
X, — Vi (law —1
@Ifl < <2 VI _ itdy s, Ut ACOPY
nl/k n xl/r x
X - aw - x aw
0 Ifk > 2,22 W prg, 52) O % ) g, 07
N N
where A, > 0 (S is a totally asymmetric x-stable r.v.)
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Main result

Theorem (Enriquez-Sabot-T.-Zindy 2010)

@ ForO< k <2(k#1),

’]T/{z 1/}{
Ay =2 ———(Ck)*E[p§ 1
(| Sil’l(ﬂ'lﬁj)‘( K) [pO 0og pO])

where Ck is Kesten’s renewal constant: P(R > t) ~ Cgt~" with
R=1+pi+pip2+---.
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Main result

Theorem (Enriquez-Sabot-T.-Zindy 2010)

@ ForO< k <2(k#1),

’]T/{z 1/}{
Ay =2 ———(Ck)*E[p§ 1
(| Sil’l(ﬂ'lﬁj)‘ ( K) [pO 0og pO])

where Ck is Kesten’s renewal constant: P(R > t) ~ Cgt~" with
R=1+pi+pip2+---.

@ Description of the quenched behaviour for 0 < x < 2
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Sample trajectory (0 < k < 1)
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Sample trajectory (1 < k < 2)
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Sample

ectory (1 < k < 2)
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General scheme of proof

Excursions of V: eg = 0, e,41 = inf{k > e,|V(k) < V(e,)}.
V
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General scheme of proof

Excursions of V: ¢y = 0, e,+1 = inf{k > ¢,|V(k) < V(e,)}.

ren) = 3 (Tlers) = 7lex)

k
__( small exc. n high exc.
o H < h, H > h,

e There are very few large excursions (= crossing times almost i.i.d.)
Crossings of small excursions is o(n'/*) (0 < x < 1)
Fluctuation of crossings of small excursions is o(n'/*) (1 < k < 2)
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Crossing time of a (high) excursion

Goal: estimate P(7(e;) > 1) as t — oo.

P(7(e1) > t) = P(r(e1) > t,H > logt — loglog?) + o(t™")
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Crossing time of a (high) excursion

Goal: estimate P(7(e;) > 1) as t — oo.
P(7(e1) > t) = P(r(e1) > t,H > logt — loglog?) + o(t™")

T(€1)2F1+"'—|—FN
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Crossing time of a (high) excursion

Goal: estimate P(7(ey) > 1) as t — oo.
P(7(er) > t) =P(7(e1) > t,H > logt —loglogt) + o(t™")

4 S Te)=Fi+ - +Fy+S$
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Crossing time of a (high) excursion

Goal: estimate P(7(ey) > 1) as t — oo.

P(7(er) > t) =P(7(e1) > t,H > logt —loglogt) + o(t™")

V S T(@]):F1+"'+FN+S
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Crossing time of a (high) excursion

Goal: estimate P(7(ey) > 1) as t — oo.

P(7(er) > t) =P(7(e1) > t,H > logt —loglogt) + o(t™")
V S T(@]):F1+"'+FN+S
A ~ E,[FIN
~ E,[F|E,[N]e

e~ &(1),
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Crossing time of a (high) excursion

Goal: estimate P(7(ey) > 1) as t — oo.

P(7(er) > t) =P(7(e1) > t,H > logt —loglogt) + o(t™")

Vv T(e1)=F1+--+Fy+S
S EEPeE ~ E,[FIN
~ E,[F|E,[N]e
\/RFT H ~ M\ Mse"'e
?‘ e~ &(1),
a2l > M=5"T1_ V), M= 0V —H

e My, M>, H are almost independent on {H > h} with & large
o Property (Feller — Iglehart): P(ef > u) ~ Cu™"

Thus, P(7(e1) > t) ~ Ct~" for some (rather explicit) C.
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Interlude on heavy-tailed distributions

Let Ty, T5, ... bei.i.d. r.v. > 0 such that

P(T; >1t) ~ Ct".

T s+ Ty (law
Then, if 0 < k < 1, % (taw) (CT(1 - K)V~ES,
n'/r n

and, if 1 < Kk < 2,
nl/s

For k > 2, CLT.

k)RS,

Heavy-tail phenomenon:
e#{1 <i<n:T>en'/"} ) P(Ce™")
o (for0 < Kk < 1)E|: Z Til{T,»<5n'/~}:| ~ C&‘l*nnl/n

1<i<n

= Up to an error of order ¢! =, it s given by the P(Ce™") terms
larger than en'/*.
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Interlude on heavy-tailed distributions

Let Ty, T, ... bei.i.d. r.v. > 0 such that
P(T; >1t) ~ Ct".

T Tn aw
% aw) (CT(1 - k)5S,
n/r n

Ty + -+ T, — nE[T}) (iaw
and,if 1 <k <2, —© +1/ nEIL] (o) _ep(1 = gy,
nt/r n
For k > 2, CLT.

Then, if 0 < xk < 1,

Heavy-tail phenomenon:
: . 1/k (law —K
e #{1<i<n:T;>en }‘QP(CE )

o (or 1 < n<2)Var( D Tl g o) ~ €20l
1<i<n
l—r/2 Tit-+T,—nE[T]
b} nl/rx

= Up to an error of order € is given by the (centered)

P(Ce~*) terms larger than en'/*,
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Next steps of the proof of the main result (KKS)

Let i, = L logn — loglogn (hence e = g,n'/", ¢, = 10;[, cf. 7 ~ Me")

o Bl )= () (%)

k

@ Neglect (fluctuations of) crossing times of small excursions
@ Ensure large excursions are way appart of each other w.h.p.

@ Neglect time spent “backtracking” far away to the left of a high
excursion before crossing it

Laurent Tournier Annealed and quenched fluctuations of RWR



Next steps of the proof of the main result (KKS)

Let i, = L logn — loglogn (hence e = g,n'/", ¢, = 1();", cf. 7 ~ Me™)

o Bl )= () (%)

k

@ Neglect (fluctuations of) crossing times of small excursions
@ Ensure large excursions are way appart of each other w.h.p.

@ Neglect time spent “backtracking” far away to the left of a high
excursion before crossing it

@ Replace neglected parts by independent versions of them (which are
negligible as well)

= Reduction to i.i.d. copies of 7(e; ), hence the (annealed) limit theorem.
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Consequences of the quenched description

0<r<l

7(e,) is mainly given by a few terms Me' e attached to deep valleys.

The time spent in-between is negligible in comparison to them.

= Localization in a (random) deep valley. (cf. Enriquez-Sabot-Zindy)
I<Kk<2

The fluctuations of 7(e,) are mainly given by a few terms Me' (e — 1)
attached to deep valleys.

= Practical interest (explicit confidence intervals,...)

The fluctuations of 7(e,) are almost a sum of i.i.d. terms like Me (e — 1)
(re-introducing independent small valleys).

7(e,) — E.[7(e,)] " M
E( aw o |0) =k ; PTGy

= Limit theorem for the law of the quenched law of fluctuations

IfTy,Ts,...areiid. with P(T > 1) ~ Ct " and 0 < k < 2,

T;
nl/k

where ¢ is a PPP of intensity Arr~ ("1 dr.

1<i<n}<’ﬂ>>{§,-i>l}
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Consequences of the quenched description

0<r<l

7(e,) is mainly given by a few terms Me' e attached to deep valleys.

The time spent in-between is negligible in comparison to them.

= Localization in a (random) deep valley. (cf. Enriquez-Sabot-Zindy)
I<Kk<2

The fluctuations of 7(e,) are mainly given by a few terms Me' (e — 1)
attached to deep valleys.

= Practical interest (explicit confidence intervals,...)

The fluctuations of 7(e,) are almost a sum of i.i.d. terms like Me (e — 1)
(re-introducing independent small valleys).

7(ea) — Eulr(en)] " M
‘C( nl/k w) =L Z nl/k (eiil)
= Limit theorem for the law of the quenched law of fluctuations

P (T<en> = 5:[T<en>1’ ) (w0 (Z (e )

where ¢ is a PPP of intensity s~ ("t dr. And W; is Wasserstein distance.
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