# Scaling Limit of the Abelian Sandpile in $\mathbb{Z}^2$

Lionel Levine (Cornell University)

CIRM, June 5, 2014

Joint work with Wesley Pegden (Carnegie Mellon) and Charles Smart (MIT)

#### Talk Outline

- ► The abelian sandpile as a growth model
  - ▶ origins in physics: Bak-Tang-Wiesenfeld 1987, Ostojic 2002, Dhar-Sadhu-Chandra 2008.
- ► Least Action Principle
- Existence of the scaling limit (Pegden-Smart 2011)
- ▶ The set  $\Gamma(\mathbb{Z}^2)$

#### The Abelian Sandpile as a Growth Model

- ▶ Start with a pile of n chips at the origin in  $\mathbb{Z}^d$ .
- ▶ Each site  $x = (x_1, ..., x_d) \in \mathbb{Z}^d$  has 2d neighbors

$$x \pm e_i, \qquad i = 1, \ldots, d.$$

▶ Any site with at least 2d chips is unstable, and topples by sending one chip to each neighbor.

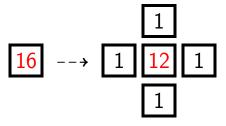
#### The Abelian Sandpile as a Growth Model

- ▶ Start with a pile of n chips at the origin in  $\mathbb{Z}^d$ .
- ▶ Each site  $x = (x_1, ..., x_d) \in \mathbb{Z}^d$  has 2d neighbors

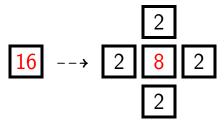
$$x \pm e_i, \qquad i = 1, \ldots, d.$$

- ► Any site with at least 2d chips is unstable, and topples by sending one chip to each neighbor.
- This may create further unstable sites, which also topple.
- Continue until there are no more unstable sites.

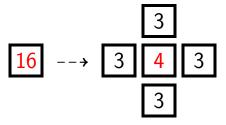
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ► Sites with 4 or more chips are unstable.



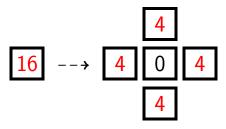
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ► Sites with 4 or more chips are unstable.



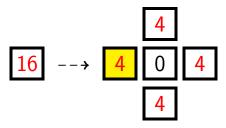
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



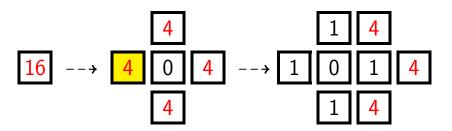
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



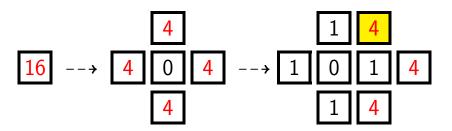
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



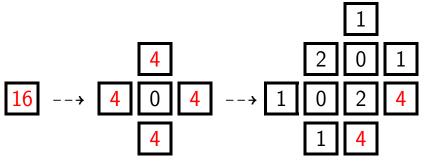
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ► Sites with 4 or more chips are unstable.



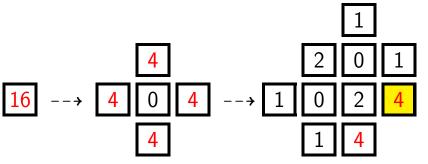
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



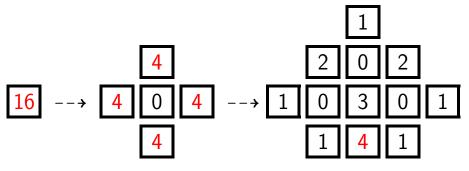
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ► Sites with 4 or more chips are unstable.



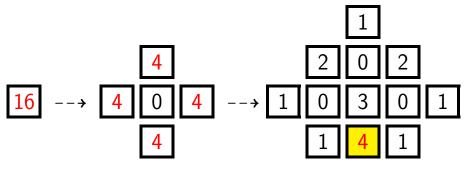
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ► Sites with 4 or more chips are unstable.



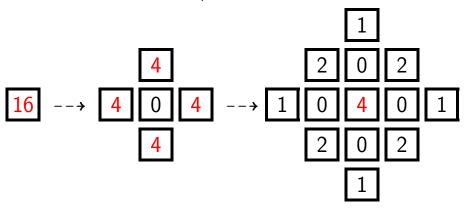
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



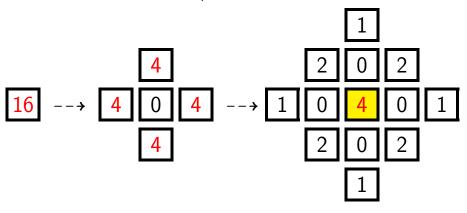
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



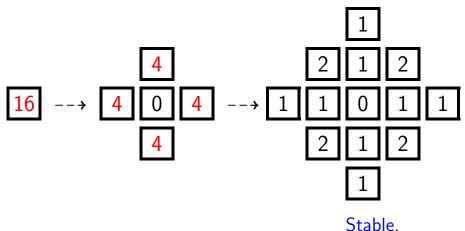
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



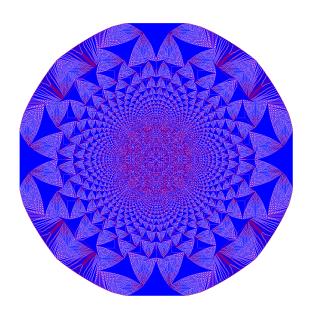
- ▶ Example: n=16 chips in  $\mathbb{Z}^2$ .
- ▶ Sites with 4 or more chips are unstable.



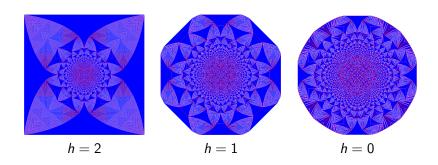
#### **Abelian Property**

- ► The final stable configuration does not depend on the order of topplings.
- ▶ Neither does the number of times a given vertex topples.

# Sandpile of 1,000,000 chips in $\mathbb{Z}^2$



# Sandpiles of the form $h + n\delta_0$



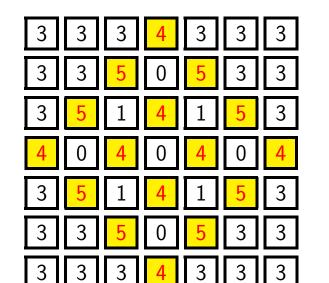


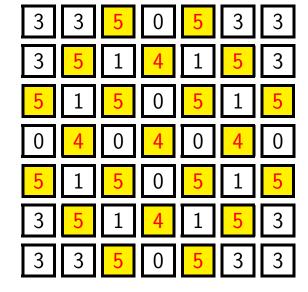
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|---|---|---|---|---|---|---|
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 4 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |

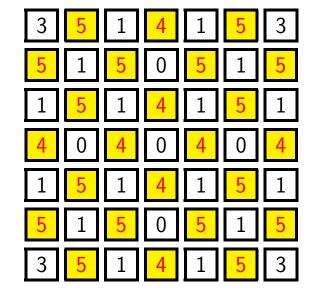
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|---|---|---|---|---|---|---|
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 4 | 3 | 3 | 3 |
| 3 | 3 | 4 | 0 | 4 | 3 | 3 |
| 3 | 3 | 3 | 4 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |

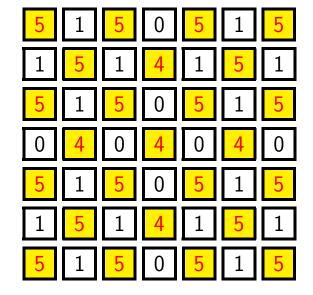
| 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|---|---|---|---|---|---|---|
| 3 | 3 | 3 | 4 | 3 | 3 | 3 |
| 3 | 3 | 5 | 0 | 5 | 3 | 3 |
| 3 | 4 | 0 | 4 | 0 | 4 | 3 |
| 3 | 3 | 5 | 0 | 5 | 3 | 3 |
| 3 | 3 | 3 | 4 | 3 | 3 | 3 |

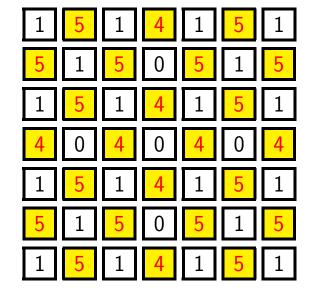
3 3 3 3 3 3











#### A dichotomy

Any sandpile  $\tau: \mathbb{Z}^d \to \mathbb{N}$  is either

- stabilizing: every site topples finitely often
- ▶ or *exploding*: every site topples infinitely often

#### An open problem

- ▶ Given a probability distribution  $\mu$  on  $\mathbb{N}$ , decide whether the i.i.d. sandpile  $\tau \sim \prod_{\mathbf{x} \in \mathbb{Z}^2} \mu$  is stabilizing or exploding.
- ▶ For example, find the smallest  $\lambda$  such that i.i.d. Poisson( $\lambda$ ) is exploding.

#### How to prove an explosion

▶ Claim: If every site in  $\mathbb{Z}^d$  topples at least once, then every site topples infinitely often.

#### How to prove an explosion

- ▶ Claim: If every site in  $\mathbb{Z}^d$  topples at least once, then every site topples infinitely often.
- ▶ Otherwise, let *x* be the first site to finish toppling.

#### How to prove an explosion

- ▶ Claim: If every site in  $\mathbb{Z}^d$  topples at least once, then every site topples infinitely often.
- Otherwise, let x be the first site to finish toppling.
- ► Each neighbor of *x* topples at least one more time, so *x* receives at least 2*d* additional chips.
- ▶ So x must topple again.  $\Rightarrow \Leftarrow$

#### The Odometer Function

• u(x) = number of times x topples.

#### The Odometer Function

- u(x) = number of times x topples.
- Discrete Laplacian:

$$\Delta u(x) = \sum_{y \sim x} u(y) - 2d u(x)$$

#### The Odometer Function

- u(x) = number of times x topples.
- Discrete Laplacian:

$$\Delta u(x) = \sum_{y \sim x} u(y) - 2d u(x)$$
= chips received – chips emitted

#### The Odometer Function

- u(x) = number of times x topples.
- Discrete Laplacian:

$$\Delta u(x) = \sum_{y \sim x} u(y) - 2d u(x)$$

$$= \text{chips received} - \text{chips emitted}$$

$$= \tau_{\infty}(x) - \tau(x)$$

where  $\tau$  is the initial unstable chip configuration and  $\tau_{\infty}$  is the final stable configuration.

### **Stabilizing Functions**

▶ Given a chip configuration  $\tau$  on  $\mathbb{Z}^d$  and a function  $u_1: \mathbb{Z}^d \to \mathbb{Z}$ , call  $u_1$  stabilizing for  $\tau$  if

$$\tau + \Delta u_1 < 2d - 1$$
.

### **Stabilizing Functions**

▶ Given a chip configuration  $\tau$  on  $\mathbb{Z}^d$  and a function  $u_1: \mathbb{Z}^d \to \mathbb{Z}$ , call  $u_1$  stabilizing for  $\tau$  if

$$\tau + \Delta u_1 \leq 2d - 1$$
.

▶ If  $u_1$  and  $u_2$  are stabilizing for  $\tau$ , then

$$\tau + \Delta \min(u_1, u_2) \le \tau + \max(\Delta u_1, \Delta u_2)$$
  
 
$$\le 2d - 1$$

so  $min(u_1, u_2)$  is also stabilizing for  $\tau$ .

#### **Least Action Principle**

- Let  $\tau$  be a sandpile on  $\mathbb{Z}^d$  with odometer function u.
- ► Least Action Principle:

If  $v : \mathbb{Z}^d \to \mathbb{Z}_{>0}$  is stabilizing for  $\tau$ , then  $u \leq v$ .

#### **Least Action Principle**

- Let  $\tau$  be a sandpile on  $\mathbb{Z}^d$  with odometer function u.
- ► Least Action Principle:

If 
$$v: \mathbb{Z}^d \to \mathbb{Z}_{\geq 0}$$
 is stabilizing for  $\tau$ , then  $u \leq v$ .

► So the odometer is minimal among all nonnegative stabilizing functions:

$$u(x) = \min\{v(x) \mid v \ge 0 \text{ is stabilizing for } \tau\}.$$

▶ Interpretation: "Sandpiles are lazy."

## The Green function of $\mathbb{Z}^d$

- $G: \mathbb{Z}^d \to \mathbb{R}$  and  $\Delta G = -\delta_0$ .
- ▶ In dimensions  $d \ge 3$ ,

$$G(x) = \mathbb{E}_0 \# \{ k | X_k = x \}$$

is the expected number of visits to x by simple random walk started at 0.

• As  $|x| \to \infty$ ,

$$G(x) \sim g(x) = \begin{cases} c_d |x|^{2-d} & d \ge 3\\ c_2 \log |x| & d = 2. \end{cases}$$

#### An integer obstacle problem

ightharpoonup The odometer function for n chips at the origin is given by

$$u = nG + w$$

where G is the Green function of  $\mathbb{Z}^d$ , and w is the pointwise smallest function on  $\mathbb{Z}^d$  satisfying

$$w \ge -nG$$
$$\Delta w \le 2d - 1$$
$$w + nG \text{ is } \mathbb{Z}\text{-valued}$$

#### An integer obstacle problem

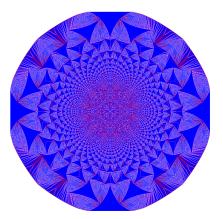
▶ The odometer function for *n* chips at the origin is given by

$$u = nG + w$$

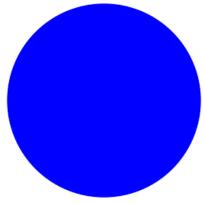
where G is the Green function of  $\mathbb{Z}^d$ , and w is the pointwise smallest function on  $\mathbb{Z}^d$  satisfying

$$w \ge -nG$$
 
$$\Delta w \le 2d - 1$$
  $w + nG$  is  $\mathbb{Z}$ -valued

▶ What happens if we replace  $\mathbb{Z}$  by  $\mathbb{R}$ ?



Abelian sandpile (Integrality constraint)



Divisible sandpile (No integrality constraint)

### Scaling limit of the abelian sandpile in $\mathbb{Z}^d$

▶ Consider  $s_n = n\delta_0 + \Delta u_n$ , the sandpile formed from n chips at the origin.

▶ Let 
$$r = n^{1/d}$$
 and

$$\bar{s}_n(x) = s_n(rx)$$
 (rescaled sandpile)  
 $\bar{w}_n(x) = r^{-2}u_n(rx) - ng(rx)$  (rescaled odometer

$$^{-2}u_n(rx) - ng(rx)$$
 (rescaled odometer)

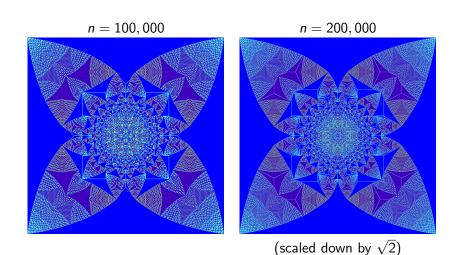
#### Theorem (Pegden-Smart, 2011)

▶ There are functions  $w, s : \mathbb{R}^d \to \mathbb{R}$  such that as  $n \to \infty$ ,

$$ar w_n o w$$
 locally uniformly in  $C(\mathbb R^d)$   $ar s_n o s$  weakly-\* in  $L^\infty(\mathbb R^d)$ .

Moreover s is a weak solution to  $\Delta w = s$ .

### Two Sandpiles of Different Sizes



# Locally constant "steps" of *s* correspond to periodic patterns:



#### Limit of the least action princpile

$$w = \min\{v \in C(\mathbb{R}^d) \mid v \ge -g \text{ and } D^2(v+g) \in \Gamma\}.$$

- ▶ g encodes the initial condition (rotationally symmetric!)
- ► Γ is a set of symmetric *d* × *d* matrices, to be described. It encodes the sandpile "dynamics."

#### Limit of the least action princpile

$$w = \min\{v \in C(\mathbb{R}^d) \mid v \ge -g \text{ and } D^2(v+g) \in \Gamma\}.$$

- ▶ g encodes the initial condition (rotationally symmetric!)
- ▶  $\Gamma$  is a set of symmetric  $d \times d$  matrices, to be described. It encodes the sandpile "dynamics."
- ▶  $D^2u \in \Gamma$  is interpreted in the sense of viscosity:

$$D^2\phi(x)\in\Gamma$$

whenever  $\phi$  is a  $C^{\infty}$  function touching u from below at x (that is,  $\phi(x) = u(x)$  and  $\phi - u$  has a local maximum at x).

#### The set $\Gamma$ of stabilizable matrices

▶  $\Gamma = \Gamma(\mathbb{Z}^d)$  is the set of  $d \times d$  real symmetric matrices A for which there exists a slope  $b \in \mathbb{R}^d$  and a function  $v : \mathbb{Z}^d \to \mathbb{Z}$  such that

$$\Delta v(x) \le 2d - 1$$
 and  $v(x) \ge \frac{1}{2}x \cdot Ax + b \cdot x$ 

for all  $x \in \mathbb{Z}^d$ .

#### The set □ of stabilizable matrices

▶  $\Gamma = \Gamma(\mathbb{Z}^d)$  is the set of  $d \times d$  real symmetric matrices A for which there exists a slope  $b \in \mathbb{R}^d$  and a function  $v : \mathbb{Z}^d \to \mathbb{Z}$  such that

$$\Delta v(x) \le 2d - 1$$
 and  $v(x) \ge \frac{1}{2}x \cdot Ax + b \cdot x$ 

for all  $x \in \mathbb{Z}^d$ 

- ► How to test for membership in **!**?
  - ▶ Start with  $v(x) = \left[\frac{1}{2}x \cdot Ax + b \cdot x\right]$ .
  - ▶ For each  $x \in \mathbb{Z}^d$  such that  $\Delta v(x) \ge 2d$ , increase v(x) by 1. Repeat.

### Testing for membership in **□**

▶  $A \in \Gamma$  if and only if there exists b such that the sandpile

$$s_{A,b} = \Delta \lceil q_{A,b} \rceil$$

- is stabilizable, where  $q_{A,b}(x) = \frac{1}{2}x \cdot Ax + b \cdot x$ .
- ▶ if A, b have rational entries, then  $s_{A,b}$  is periodic.
- ► Topple until stable, or until every site has toppled at least once.

# The structure of $\Gamma(\mathbb{Z}^2)$

Parameterize  $2 \times 2$  real symmetric matrices by

$$M(a,b,c) = \frac{1}{2} \begin{bmatrix} c+a & b \\ b & c-a \end{bmatrix}.$$

# The structure of $\Gamma(\mathbb{Z}^2)$

Parameterize  $2 \times 2$  real symmetric matrices by

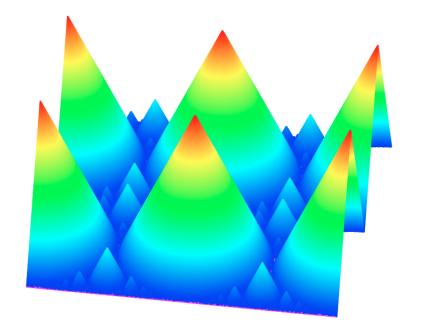
$$M(a,b,c) = \frac{1}{2} \begin{bmatrix} c+a & b \\ b & c-a \end{bmatrix}.$$

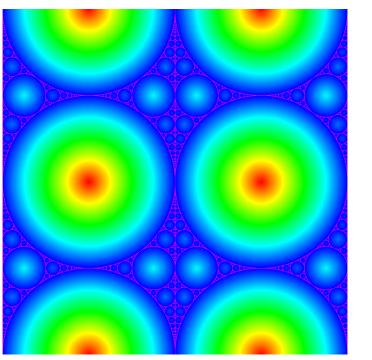
Note that if  $A \leq B$  (that is, B-A is positive semidefinite) and  $B \in \Gamma$  then  $A \in \Gamma$ . In particular,

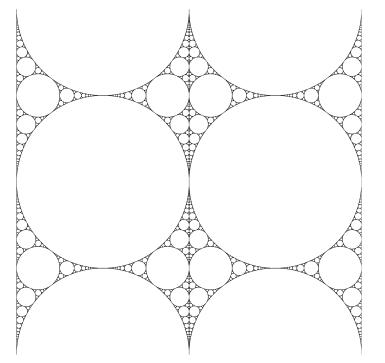
$$\Gamma = \{ M(a, b, c) \mid c \le \gamma(a, b) \}$$

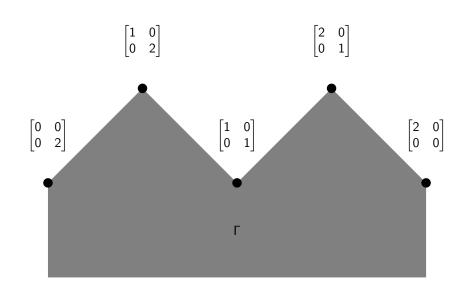
for some function  $\gamma: \mathbb{R}^2 \to \mathbb{R}$ .

Graph of  $\gamma(a, b)$ 







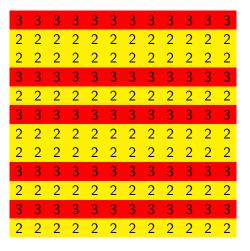


The Laplacian of

$$v(x) = \frac{1}{2}x_1(x_1+1) + \frac{1}{2}x_2(x_2+1)$$

The Laplacian of

$$v(x) = \frac{1}{2}x_1(x_1+1) + \frac{1}{2}x_2(x_2+1) + \lceil \varepsilon x_2^2 \rceil$$



The Laplacian of

$$v(x) = \frac{1}{2}x_1(x_1+1) + x_2(x_2+1)$$

| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |

The Laplacian of

$$v(x) = \frac{1}{2}x_1(x_1+1) + \frac{1}{2}x_2(x_2+1) + \lceil \varepsilon x_1^2 \rceil$$

The Laplacian of

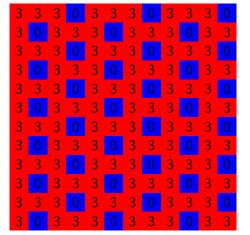
$$v(x) = \frac{1}{2}x_1(x_1+1) + \frac{1}{2}x_2(x_2+1) + \lceil \varepsilon x_1^2 + \varepsilon x_2^2 \rceil$$

# Another example

We have  $\frac{1}{4}\begin{bmatrix} 5 & 2 \\ 2 & 4 \end{bmatrix} \in \partial \Gamma$  because

$$v(x) = \left\lceil \frac{1}{8} (5x_1^2 + 4x_1x_2 + 4x_2^2 + 2x_1 + 4x_2) \right\rceil$$

has Laplacian

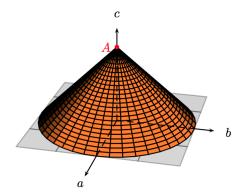


# Rank-1 cones

The set  $\Gamma(\mathbb{Z}^2)$  is a union of downward cones

$$\{B \mid B \leq A\},\$$

for a set of *peaks*  $A \in \mathcal{P}$ .



# Periodicity

Since the matrices

$$M(2,0,0) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and  $M(0,2,0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

have integer valued discrete harmonic quadratic forms

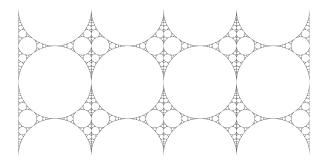
$$u(x) = \frac{1}{2}x_1(x_1+1) - \frac{1}{2}x_2(x_2+1)$$
 and  $u(x) = x_1x_2$ ,

we see that  $\gamma$  is  $2\mathbb{Z}^2$ -periodic.

# Associating a matrix to each circle

If C is a circle of radius r centered at (a, b), define

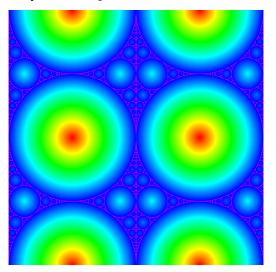
$$A_C := \frac{1}{2} \begin{bmatrix} a+2+r & b \\ b & -a+2+r \end{bmatrix}.$$



Let  $\mathcal{A}$  be the circle packing in the (a,b)-plane generated by the vertical lines a=0, a=2 and the circle  $(a-1)^2+b^2=1$ , repeated horizontally so it is  $2\mathbb{Z}^2$ -periodic.

# The Apollonian structure of $\Gamma$

Theorem (L-Pegden-Smart 2013)  $B \in \Gamma$  if and only if  $B \le A_C$  for some  $C \in A$ .



## Analysis of the peaks

Theorem (L-Pegden-Smart 2013)

 $B \in \Gamma$  if and only if  $B \leq A_C$  for some  $C \in \mathcal{A}$ .

Proof idea: It is enough to show that each peak matrix  $A_C$  lies on the boundary of  $\Gamma$ .

## Analysis of the peaks

#### Theorem (L-Pegden-Smart 2013)

 $B \in \Gamma$  if and only if  $B \leq A_C$  for some  $C \in A$ .

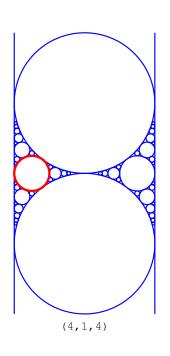
Proof idea: It is enough to show that each peak matrix  $A_{\mathcal{C}}$  lies on the boundary of  $\Gamma$ .

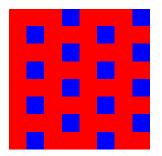
For each  $A_C$  we must find  $v_C:\mathbb{Z}^2 o \mathbb{Z}$  and  $b_C \in \mathbb{R}^2$  such that

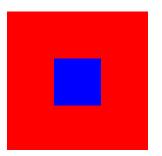
$$\Delta v_C(x) \le 3$$
 and  $v_C(x) \ge \frac{1}{2}x \cdot A_C x + b_C \cdot x$ 

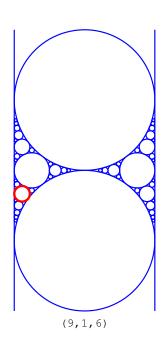
for all  $x \in \mathbb{Z}^2$ .

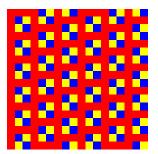
We use the recursive structure of the circle packing to construct  $v_C$  and  $b_C$ .

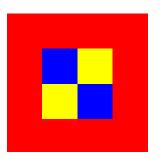


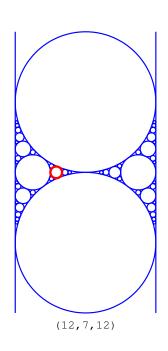


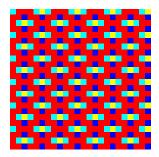


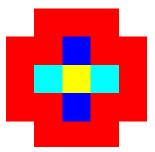


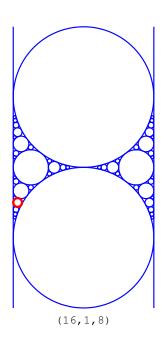


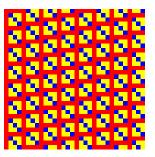


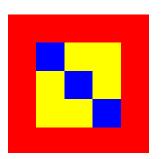


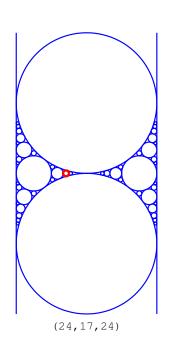


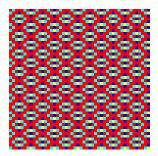


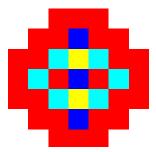












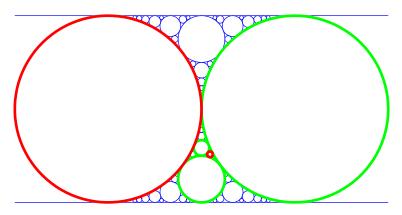
### Curvature coordinates

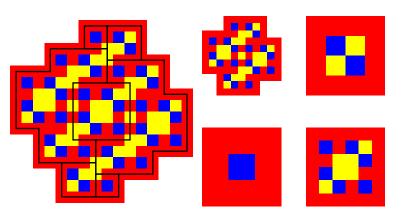
## (Descartes 1643; Lagarias-Mallows-Wilks 2002)

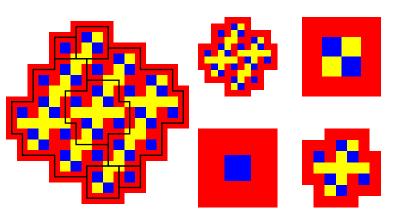
If  $C_0$  has parents  $C_1$ ,  $C_2$ ,  $C_3$  and grandparent  $C_4$ , then

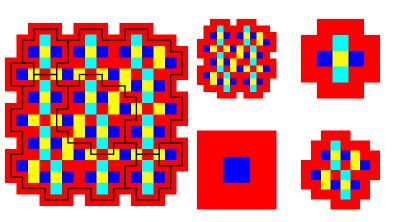
$$C_0 = 2(C_1 + C_2 + C_3) - C_4$$

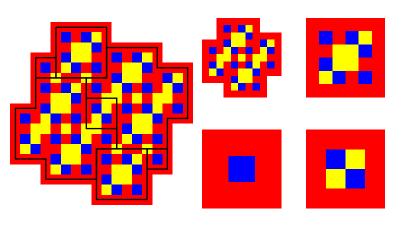
in curvature coordinates C = (c, cx, cy).





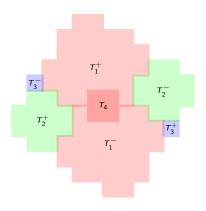




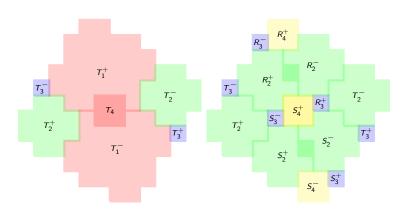


#### Inductive tile construction

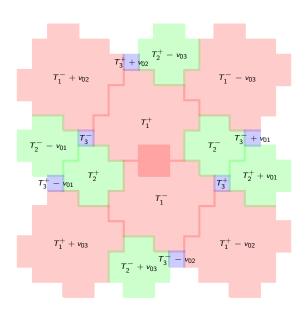
We build tiles from copies of earlier tiles, using ideas from Stange 2012 "The Sensual Appolonian Circle Packing" to keep track of the tile interfaces.



#### Inductive tile construction



#### Inductive tile construction



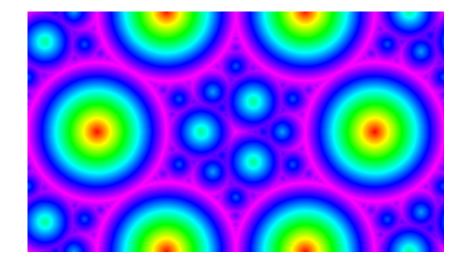
## Other lattices, higher dimensions

We have described the set  $\Gamma(\mathbb{Z}^2)$  in terms of an Appolonian circle packing of  $\mathbb{R}^2$ .

What about  $\Gamma(\mathbb{Z}^d)$  for  $d \geq 3$ ?

In general any periodic graph G embedded in  $\mathbb{R}^d$  has an associated set of  $d \times d$  symmetric matrices  $\Gamma(G)$ , which captures some aspect of the infinitessimal geometry of  $\frac{1}{n}G$  as  $n \to \infty$ .

# $\Gamma$ for the triangular lattice



# Thank you!

#### Reference:

L.-Pegden-Smart, arXiv:1309.3267

The Apollonian structure of integer superharmonic matrices