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Talk Outline

The abelian sandpile as a growth model

» origins in physics: Bak-Tang-Wiesenfeld 1987, Ostojic 2002,
Dhar-Sadhu-Chandra 2008.

Least Action Principle

Existence of the scaling limit (Pegden-Smart 2011)
The set [(Z?)



The Abelian Sandpile as a Growth Model

» Start with a pile of n chips at the origin in Z¢.
» Each site x = (x1,...,xq) € Z9 has 2d neighbors

xte, i=1,...,d.

» Any site with at least 2d chips is unstable, and topples by
sending one chip to each neighbor.
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The Abelian Sandpile as a Growth Model

Start with a pile of n chips at the origin in Z9.
Each site x = (x1,...,xq4) € Z9 has 2d neighbors

xte, i=1,...,d.

Any site with at least 2d chips is unstable, and topples by
sending one chip to each neighbor.

This may create further unstable sites, which also topple.

Continue until there are no more unstable sites.



Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.

» Sites with 4 or more chips are unstable.
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Stable.




Abelian Property

» The final stable configuration does not depend on the order of
topplings.
» Neither does the number of times a given vertex topples.



Sandpile of 1,000,000 chips in Z?




Sandpiles of the form h -+ ndg




What about h = 37















. Never stops toppling!
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. Never stops toppling!



. Never stops toppling!



A dichotomy

Any sandpile 7 : Z9 — N is either

» stabilizing: every site topples finitely often

> or exploding: every site topples infinitely often



An open problem

» Given a probability distribution u on N, decide whether the
i.i.d. sandpile 7 ~ [,y 1t is stabilizing or exploding.

» For example, find the smallest A such that i.i.d. Poisson()) is
exploding.



How to prove an explosion

» Claim: If every site in Z9 topples at least once, then
every site topples infinitely often.
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How to prove an explosion

Claim: If every site in Z9 topples at least once, then
every site topples infinitely often.

Otherwise, let x be the first site to finish toppling.

Each neighbor of x topples at least one more time, so x
receives at least 2d additional chips.

So x must topple again. =<«



The Odometer Function

» u(x) = number of times x topples.
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The Odometer Function

» u(x) = number of times x topples.

» Discrete Laplacian:
Au(x) = Z u(y) — 2d u(x)
yrox
= chips received — chips emitted
= Too(x) = 7(x)

where 7 is the initial unstable chip configuration
and 7, is the final stable configuration.



Stabilizing Functions

» Given a chip configuration 7 on Z¢ and a function
w29 = 7, call stabilizing for 7 if

T+ Aup <2d - 1.



Stabilizing Functions

» Given a chip configuration 7 on Z¢ and a function
w729 =7, call iy stabilizing for 7 if

T+ Aup <2d - 1.
» If u; and wy are stabilizing for 7, then

T+ Amin(ug, o) < 7+ max(Auwug, Aup)
<2d-1

so min(uy, u2) is also stabilizing for 7.



Least Action Principle

» Let 7 be a sandpile on Z9 with odometer function u.

» Least Action Principle:

If v : Z9 — Z> is stabilizing for 7, then u < v.
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Least Action Principle

Let 7 be a sandpile on Z9 with odometer function u.

Least Action Principle:
If v : Z9 — Z> is stabilizing for 7, then u < v.

So the odometer is minimal among all nonnegative stabilizing
functions:

u(x) = min{v(x)|v > 0 is stabilizing for 7}.

Interpretation: “Sandpiles are lazy.”



The Green function of Z4

» G:79 > Rand AG = —d.

» In dimensions d > 3,
G(X) = Eo#{k’Xk = X}

is the expected number of visits to x by simple random walk
started at 0.

> As x| — oo,

G(x) ~

calx*~4 d >3
g(x) =
clog|x| d=2.



An integer obstacle problem

» The odometer function for n chips at the origin is given by
u=nG+w

where G is the Green function of Z9, and w is the pointwise
smallest function on Z¢ satisfying

w > —nG
Aw <2d -1
w + nG is Z-valued



An integer obstacle problem

» The odometer function for n chips at the origin is given by
u=nG+w

where G is the Green function of Z9, and w is the pointwise
smallest function on Z¢ satisfying

w > —nG
Aw <2d -1
w + nG is Z-valued

» What happens if we replace Z by R?



Abelian sandpile Divisible sandpile
(Integrality constraint) (No integrality constraint)



Scaling limit of the abelian sandpile in Z9

» Consider s, = ndg + Aup, the sandpile formed from n chips at

the origin.

» Let r = n'/9 and
Sn(x) = sn(rx) (rescaled sandpile)
(rescaled odometer)

_2u,,(rx) — ng(rx)



Theorem (Pegden-Smart, 2011)

» There are functions w, s : RY — R such that as n — oo,

Wp — w locally uniformly in C(R9)

S5, —s weakly- in L®(RY).

Moreover s is a weak solution to Aw = s.



Two Sandpiles of Different Sizes

,000

=200

n

,000

=100

n

(scaled down by v/2)



Locally constant “steps” of s correspond to periodic
patterns:




Limit of the least action princpile

w=min{ve C(RY) |v>—gand D*(v+g) €T}

» g encodes the initial condition (rotationally symmetric!)

» [ is a set of symmetric d x d matrices, to be described.
It encodes the sandpile “dynamics.”



Limit of the least action princpile

w=min{ve C(RY) |v>—gand D*(v+g) €T}

» g encodes the initial condition (rotationally symmetric!)

» [ is a set of symmetric d x d matrices, to be described.
It encodes the sandpile “dynamics.”

» D%y €T is interpreted in the sense of viscosity:
D?¢(x) eT

whenever ¢ is a C* function touching v from below at x
(that is, ¢(x) = u(x) and ¢ — u has a local maximum at x).



The set [ of stabilizable matrices

» [ =T(Z%) is the set of d x d real symmetric matrices A for
which there exists a slope b € R? and a function v : Z¢ — 7Z

such that

Av(x)<2d—1 and v(x) > 3x - Ax+b-x

for all x € 9.



The set [ of stabilizable matrices

» [ =T(Z%) is the set of d x d real symmetric matrices A for
which there exists a slope b € R? and a function v : Z¢ — 7Z
such that

Av(x)<2d—1 and v(x) > 3x - Ax+b-x

for all x € Z9.
» How to test for membership in ['?
> Start with v(x) = [1x - Ax+ b-x].

» For each x € Z9 such that Av(x) > 2d, increase v(x) by 1.
Repeat.



Testing for membership in [

» A e[ if and only if there exists b such that the sandpile

sab=Alqas]

is stabilizable, where ga p(x) = 3x - Ax + b~ x.

» if A, b have rational entries, then s, 4 is periodic.

» Topple until stable, or until every site has toppled at least
once.



The structure of I'(Z?)

Parameterize 2 x 2 real symmetric matrices by

lic+a b
M(a,b,c):2[ b c—a]’



The structure of I'(Z?)

Parameterize 2 x 2 real symmetric matrices by

l{c+a b
M(a,b,c):2|: b C—a:|.

Note that if A < B (that is, B — A is positive semidefinite) and
B €T then A€ T. In particular,
={M(a,b,c) | c <~(a b)}

for some function v : R> — R.



Graph of v(a, b)










Cross section




Cross section

The Laplacian of

xi(x1 + 1)+ 3x(x + 1)

=1
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Cross section
The Laplacian of

v(x) = 3xa(xa + 1) + oo + 1) + [ex3]
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Cross section
The Laplacian of

v(x) = 1x1(x1 + 1) + 20 + 1)




Cross section

The Laplacian of

xi(x1+1) + 2xa(x + 1) + [ext]

1
2

v(x)

is
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Cross section

The Laplacian of

is
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Another example

We have 7 [37] € OF because
1
v(x) = [8(5)(12 + 4dx1x0 + 4X22 + 2x1 + 4x2)w

has Laplacian




Rank-1 cones

The set [(Z?) is a union of downward cones
{B|B <A},

for a set of peaks A € P.




Periodicity
Since the matrices

1 0

M(2,0,0) = [0 o

] and M(o,z,O)ZE (1)]

have integer valued discrete harmonic quadratic forms
u(x) = 1x(x +1) = 2x0e+1) and u(x) = xx,

we see that v is 2Z?-periodic.



Associating a matrix to each circle

If C is a circle of radius r centered at (a, b), define

l}i}f}'n,m

e { P

PO o S,

P

Let A be the circle packing in the (a, b)-plane generated by the
vertical lines a =0, a = 2 and the circle (a — 1) + %> =1,
repeated horizontally so it is 2Z2-periodic.



The Apollonian structure of [

Theorem (L-Pegden-Smart 2013)
B eT ifand only if B < Ac for some C € A.
- -




Analysis of the peaks
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Proof idea: It is enough to show that each peak matrix Ac lies on
the boundary of T



Analysis of the peaks

Theorem (L-Pegden-Smart 2013)
B e T if and only if B < Ac for some C € A.

Proof idea: It is enough to show that each peak matrix Ac lies on
the boundary of T

For each Ac we must find v¢ : Z2 — Z and bc € R? such that
Ave(x) <3 and  ve(x) > 3x - Acx + be - x
for all x € Z2.

We use the recursive structure of the circle packing to construct
vc and bc.
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Curvature coordinates

(Descartes 1643; Lagarias-Mallows-Wilks 2002)
If Cp has parents Ci, Co, C3 and grandparent (4, then

G=2(G+G+G)—G

in curvature coordinates C = (c, cx, cy).
















Inductive tile construction

We build tiles from copies of earlier tiles, using ideas from Stange
2012 “The Sensual Appolonian Circle Packing” to keep track of
the tile interfaces.

Ty



Inductive tile construction




Inductive tile construction




Other lattices, higher dimensions

We have described the set [(Z?) in terms of an Appolonian circle
packing of R2.

What about I'(Z9) for d > 3?7

In general any periodic graph G embedded in R? has an associated
set of d x d symmetric matrices ['(G), which captures some aspect
of the infinitessimal geometry of %G as n — oo.



[ for the triangular lattice




Thank you!

Reference:
L.-Pegden-Smart, arXiv:1309.3267
The Apollonian structure of integer superharmonic matrices
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