Exercise sheet n°4 : Introduction to continuous random variables

- **Exercise 1** 1. Find the cumulative distribution function of the (discrete) uniform distribution on $\{1, \ldots, n\}$. Plot the function for n = 5.
 - 2. Let X be a uniform distribution on [0; 1]. Find its cumulative distribution function.

Exercise 2 Let X be the exponential distribution of parameter 1.

- 1. Find the cumulative distribution function of X using its density.
- 2. Find the cumulative distribution function of X^2 .
- 3. What is its density?
- 4. Find the density of X^n , for all $n \in \mathbb{N}^*$.

Exercise 3 Let U be the uniform distribution on [0, 1].

- 1. Let $n \in \mathbb{N}^*$. Show that [nU] is a uniform distribution on $\{0, 1, \ldots, n-1\}$ (for all $x \in \mathbb{R}, [x]$ is the floor function of x).
- 2. Let a > 0. Find the distribution $-\frac{1}{a}\ln(U)$.

Exercise 4 Let $X \sim \mathcal{N}(\mu, \sigma^2)$, for $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.

- 1. Express the cumulative distribution function of $\frac{X-\mu}{\sqrt{\sigma^2}}$ as an integral.
- 2. Using a change of variables under the integral sign, show that $\frac{X-\mu}{\sqrt{\sigma^2}} \sim \mathcal{N}(0,1)$.

Exercise 5 Let X be a point chosen uniformly from [0, 2]. What is the probability that the equilateral triangle whose sides have length X has a surface greater than 1?

Exercise 6 Let $n \in \mathbb{N}^*$ and G_n be a geometric distribution of parameter p = 1/n.

- 1. Compute $\mathbb{P}(G_n > k), \forall k \in \mathbb{N}$.
- 2. For all positive real number x and for all integer n, we denote by [nx] the floor function of nx. Compute

$$\lim_{n \to \infty} \mathbb{P}(G_n > [nx]).$$

We denote by $\ell(x)$ the above limit.

3. The function $F : x \in \mathbb{R}_+ \mapsto 1 - \ell(x)$ (and $F : x \in \mathbb{R}_-^* \mapsto 0$) is the cumulative distribution function of a "classical" random variable. Which one is it? Justify your response.