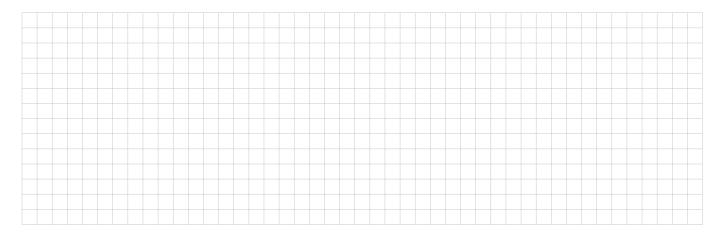

CONTRÔLE CONTINU 2 - SÉMINAIRE CATÉGORIES


NOM, Prénom :	Note:
La durée du contrôle est de 40 minutes. Les documents et appareils électroniques ne sont p	as autorisés.
Exercice 1.	
Soit $\mathscr C$ une catégorie localement petite et $f:A\to B$ un de ses morphismes. Po considère les applications <i>tiré-en-arrière</i> $f^*:\operatorname{Flech}_{\mathscr C}(B,C)\to\operatorname{Flech}_{\mathscr C}(A,C)$, définie pa $\operatorname{\it en-avant} f_*:\operatorname{Flech}_{\mathscr C}(C,A)\to\operatorname{Flech}_{\mathscr C}(C,B)$, définie par $f_*(g)\coloneqq f\circ g$.	
\diamond Donner une caractérisation de la propriété " f est un monomorphisme" en foncou du poussé-en-avant f_* . (On ne demande pas de démonstration.)	ction du tiré-en-arrière f^*
\diamond Donner une caractérisation de la propriété " f est un isomorphisme" en fonction du poussé-en-avant f_* . (On ne demande pas de démonstration.)	on du tiré-en-arrière f^* ou
Exercice 2. \diamond Soit $F: \mathscr{C} \to \mathscr{D}$ un foncteur et soit $f: A \to B$ un monomorphisme de la catégor un monomorphisme de la catégorie \mathscr{D} ? Si oui, le démontrer, sinon donner un contr	
THE HIGHER CONTROL OF THE CALEGORIES σ_{1} , σ_{2} OILL TE DEMONITER STRONG CONNER IN CONTR	

 \diamond Soit $f:A\to B$ un isomorphisme de la catégorie $\mathscr C$. Est-ce que F(f) est un isomorphisme de la catégorie $\mathscr D$? Si oui, le démontrer, sinon donner un contre-exemple.


Exercice 3.

 \diamond On considère le foncteur «oubli» O: $\mathscr{V}ect_{\mathrm{fini}} \to \mathscr{V}ect$ de la catégorie des espaces vectoriels de dimension finie vers celle des espaces vectoriels qui oublie l'information d'être de dimension finie. Est-ce que ce foncteur est fidèle? Est-ce que ce foncteur est plein?

Exercice 4.

⋄ Est-ce que les deux catégories suivantes sont isomorphes, c'est-à-dire reliées par un isofoncteur ? Si oui, le démontrer, sinon, le justifier.

