FEUILLE DE TRAVAUX DIRIGÉS 4

SOUS-GROUPES DISTINGUÉS ET GROUPES QUOTIENTS

Exercice 1 (Le groupe diédral D_6 [suite]).

On reprend l'énoncé de l'exercice 2 de la feuille de Travaux Dirigés 2. Soit $H := <\sigma>$ le sous-groupe de D_6 engendré par σ .

- (1) Le sous-groupe H est-il distingué dans D_6 ?
- (2) Existe-t-il une structure de groupe sur D_6/H telle que la projection canonique $\pi: D_6 \twoheadrightarrow D_6/H$ soit un morphisme de groupes?
- (3) Donner deux paires (a,b) et (a',b') d'éléments de D_6 tels que a et a' (respectivement b et b') soient dans la même classe à gauche modulo H et tels que a.b ne soient pas dans le même classe que a'.b' module H.

On considère le sous-ensemble $R := SO(2) \cap D_6$ de D_6 formé des seules rotations.

- (4) Pourquoi R est-il un sous-groupe de D_6 ?
- (5) Montrer que R est un sous-groupe distingué des D_6 de deux manières différentes.
- (6) Décrire le groupe quotient D_6/R . À quel groupe connu, ce quotient est-il isomorphe?
- (7) Décrire le produit dans le groupe quotient D_6/R à l'aide de représentants quelconques de deux classes.
- (8) Donner un système de représentants $\Theta \subset D_6$ des classes à gauche modulo R.
- (9) Est-il possible de trouver un système de représentants qui forme un sous-groupe de D_6 ? Dans ce cas, à quoi est isomorphe le groupe quotient D_6/R ?

Exercice 2 (Le groupe symétrique S_4 [suite]).

On reprend l'exercice 3 de la feuille de Travaux Dirigés 2. Soit H := < (1234) > le sous-groupe engendré par (1234).

- (1) Le sous-groupe H est-il distingué non trivial de \mathbb{S}_4 ?
- (2) Donner un sous-groupe distingué de S_4 .
- (3) Décrire le groupe quotient associé.

Exercice 3 (L'exemple \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$).

- (1) Soit $n \in \mathbb{Z}$, montrer que $n\mathbb{Z} := \{n.k, k \in \mathbb{Z}\}$ est un sous-groupe de $(\mathbb{Z}, +, 0)$.
- (2) Pourquoi $n\mathbb{Z}$ est-il un sous-groupe distingué de \mathbb{Z} ?

- (3) Montrer que tous les sous-groupes de $\mathbb Z$ sont de cette forme.
 - Comme dans le cours, on note $(\mathbb{Z}/n\mathbb{Z}, \bar{+}, n\mathbb{Z})$ le groupe quotient. Pour tout $k \in \mathbb{Z}$, on notera \bar{k} la classe $k + n\mathbb{Z}$ de k modulo n.
- (4) Démontrer que $\mathbb{Z}/n\mathbb{Z}$ est un groupe abélien.
- (5) Que vaut $\overline{137} + \overline{212}$ dans $\mathbb{Z}/13\mathbb{Z}$?
- (6) "Arithmétique horlogère" [Gauss]

Je dois partir demain pour San Fransisco à 9 heures. Le train mettra 126 heures pour relier Nice à Vladivostok. Il faudra ensuite 358 heures au bateau pour franchir le Golden Gate Bridge. En arrivant au Pier 1, vais-je pouvoir boire mon café favori au Farmer Market dont les horaires d'ouverture sont 7 heures - 13 heures?

Exercice 4 (Groupe symétrique, groupe alterné).

- (1) Montrer que le groupe alterné $\mathcal{A}_n := \{ \sigma \in \mathfrak{S}_n ; \operatorname{sgn}(\sigma) = 1 \}$ est un sous-groupe distingué du groupe symétrique \mathfrak{S}_n .
- (2) Décrire l'ensemble quotient $\mathfrak{S}_n/\mathcal{A}_n$ et en donner un système de représentants.
- (3) À quel groupe est isomorphe le groupe quotient $\mathfrak{S}_n/\mathcal{A}_n$?

Exercice 5.

- (1) Montrer que $(\mathbb{Q}/\mathbb{Z}, \bar{+})$ est un groupe de torsion, c'est-à-dire que tous ses éléments ont un ordre fini.
- (2) Montrer que \mathbb{Q}/\mathbb{Z} possède un unique sous-groupe d'ordre n pour tout $n \in \mathbb{N}^*$ et qu'il est cyclique.