FEUILLE DE TRAVAUX DIRIGÉS 7

ESPACES VECTORIELS QUOTIENTS ET ANNEAUX QUOTIENTS

1. Anneaux

Définition 1 (Anneau). Un anneau (A, +, .) est un ensemble A muni de deux lois de composition internes $+, . : G \times G \to G$ telles que

- (A, +) est un groupe abélien,
- la loi . est associative,
- la loi . est distributive par rapport à la loi +, i.e. pour tout $a,b,c\in A$ on a a.(b+c)=a.b+a.c et (a+b).c=a.c+b.c.

Si la loi . admet un élément neutre, on parle d'anneau *unitaire*. Si la loi . est commutative, on parle d'anneau *commutatif*. Un élément de A est dit *inversible* s'il l'est pour la loi . de A.

Le neutre de la loi + est souvent noté 0 et le neutre de la loi . est souvent noté 1.

Définition 2 (Anneau intégre). Un anneau est dit *intégre* s'il n'a pas de diviseur de zéro, i.e. si a.b = 0 alors a = 0 ou b = 0.

Définition 3 (Sous-anneau). Un sous-ensemble $B \subset A$ d'un anneau A est un sous-anneau de A si les restrictions de + et de . à B en font un anneau.

Définition 4 (Idéal). Un sous-ensemble $I \subset A$ d'un anneau A est un idéal de A si

- (I, +) est un sous-groupe de (A, +),
- pour tout $x \in I$ et $a \in A$, on a $a.x \in I$ et $x.a \in I$.

Définition 5 (Morphisme d'anneaux). Soient (A, +, .) et (A', +', .') deux anneaux. Un morphisme d'anneaux est une application $\varphi : A \to A'$ telle que $\varphi(x+y) = \varphi(x) + \varphi(y)$ et $\varphi(x,y) = \varphi(x) \cdot \varphi(y)$ pour tout $x, y \in A$.

Le noyau d'un morphisme d'anneaux φ est égal à

$$Ker \varphi := \varphi^{-1}(\{0'\}) = \{x \in A; \varphi(x) = 0'\}.$$

2. Corps

Définition 6 (Corps). Un *corps* est un anneau commutatif $(\mathbb{K}, +, .)$ [en France] tel que $(\mathbb{K} - \{0\}, .)$ soit un groupe, c'est-à-dire que tout élément non nul est inversible pour la loi ".".

3. Espaces vectoriels

On rappelle qu'un espace vectoriel sur un corps \mathbb{K} est un groupe abélien (V, +, 0) muni d'une loi de composition externe (multiplication scalaire) $\mathbb{K} \times V \to V$, $(\lambda, u) \mapsto \lambda.\mu$ telle que

$$1.u = u$$

$$(\lambda \times \mu).u = \lambda.(\mu.u)$$

$$(\lambda + \mu).u = \lambda.u + \mu.u$$

$$\lambda.(u + v) = \lambda.u + \lambda.v$$

pour tout $\lambda, \mu \in \mathbb{K}$ et $u, v \in V$.

Exercice 1 (Espaces vectoriels quotients).

Soit V un espace vectoriel sur un corps \mathbb{K} et soit W un sous-espace de V. Donc W est en particulier un sous-groupe distingué de (V, +, 0).

- (1) On considère le groupe abélien quotient V/W. Montrer qu'il existe une unique structure de \mathbb{K} -espace vectoriel sur V/W telle que la projection $\pi:V\twoheadrightarrow V/W$ soit une application linéaire.
- (2) Pour $V = \mathbb{R}^2$ et $W = \{(x, 0), x \in \mathbb{R}\}$, à quoi correspondent graphiquement les élements de V/W dans le plan affine.
- (3) Avec les coordonnées canoniques de \mathbb{R}^2 , on définit l'application $s:V\to V$ par la formule $s\bigl((x,y)\bigr):=(y,y)$. Montrer que s définie une application linéaire $\bar s:V/W\to V$ et interpréter la graphiquement.
- (4) Que vaut $\pi \circ \bar{s}$? Interpréter graphiquement la composée $\bar{s} \circ \pi$.
- (5) Si on pose $X := (1,1).\mathbb{R}$, à quoi est isomorphe V (en fonction de X et W)?
- (6) Reprenez les questions précédentes avec V et W quelconque.

Exercice 2 (Anneaux quotients).

Soit A un anneau et soit I un sous-groupe du groupe abélien (A, +, 0). Donc I est en particulier un sous-groupe distingué de (A, +, 0).

- (1) On considère le groupe abélien quotient A/I. Montrer qu'il existe une unique structure de d'anneau sur A/I telle que la projection $\pi:A \to A/I$ soit un morphisme d'anneaux.
- (2) Quels sont les seuls idéaux de l'anneau \mathbb{Z} ?
- (3) Pour tout $n \in \mathbb{Z}$, le groupe abélien quotient $\mathbb{Z}/n\mathbb{Z}$ est aussi un anneau tel que la projection canonique $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ soit un morphisme d'anneaux. Qu'est-ce que cela signifie au niveau des calculs faits dans $\mathbb{Z}/n\mathbb{Z}$?
- (4) Que vaut 17 * (31 + 111) modulo 9?

Exercice 3 (Idéaux premiers, idéaux maximaux).

On se place dans un anneau commutatif unitaire A.

Un idéal I est dit premier si pour tout $x,y\in A$ tels que $x.y\in I$, alors on a $x\in I$ ou $y\in I$.

- (1) Montrer que I est premier si et seulement si l'anneau quotient A/I est intègre.
- (2) Déterminer les idéaux premiers de \mathbb{Z} et de $\mathbb{K}[X]$. Un idéal I est dit maximal s'il l'est pour l'inclusion, c'est-à-dire si les seuls idéaux contenant I sont I et A.
- (3) Montrer que I est un idéal maximal si et seulement si l'anneau A/I est un corps.
- (4) Déterminer les idéaux maximaux de \mathbb{Z} .
- (5) Montrer que tout idéal maximal est premier.
- (6) Réciproquement, si A est principal, montrer qu'un idéal premier $I \neq \{0\}$ est maximal.
- (7) L'anneau \mathbb{Z} est-il principal?
- (8) L'anneau $\mathbb{K}[X]$ est-il principal?