FEUILLE DE TRAVAUX DIRIGÉS 8

POLYNÔMES ET EXTENSION DE CORPS

Exercice 1 (Corps).

Soit A un anneau. Montrer que les propriétés suivantes sont équivalentes.

- (1) L'anneau A est un corps.
- (2) Les seuls idéaux de A sont les idéaux triviaux $\{0\}$ et A.
- (3) Tout morphisme d'anneaux non identiquement nul $f: A \to B$ est injectif.

Exercice 2 (Division euclidienne dans A[X]).

Soit A un anneau commutatif unitaire intégre et soit $P \in A[X]$, $P \neq 0$, de coefficient dominant inversible.

(1) Soit $F \in A[X]$, montrer qu'il existe $Q, R \in A[X]$, tels que l'on ait :

$$F = PQ + R \quad \text{et} \quad \deg(R) < \deg(P) \text{ ou } R = 0.$$

Exercice 3 (Racines d'un polynôme).

Soit A un anneau commutatif unitaire. On dit que $\xi \in A$ est une racine d'un polynôme $P \in A[X]$ si $P(\xi) = 0$.

- (1) Montrer que ξ est une racine de P si et seulement si $X \xi$ divise P dans A[X].
- (2) En déduire que, si A est intégre, le nombre de racines d'un polynôme P est inférieur ou égal à son degré.
- (3) Donner un contre-exemple lorsque A n'est pas intégre.
- (4) Déterminer les polynômes irréductibles de degré 3 de $\mathbb{Z}/2\mathbb{Z}[X]$ et ceux de degré 2 de $\mathbb{Z}/3\mathbb{Z}[X]$.

Exercice 4 (Racine rationnelle d'un polynôme à coefficients entiers).

Soit $P(X) = \sum_{i=0}^n a_i X^i \in \mathbb{Z}[X]$ un polynôme de degré n. Soit $r = \frac{p}{q}$ une racine de P dans le corps des fractions rationnelles \mathbb{Q} , où p et q sont premiers entre eux.

- (1) Montrer que p divise a_0 et que q divise a_n .
- (2) Déterminer si le polynôme $P(X) = 3X^3 + 2X^2 + X + 4$ est irréductible sur \mathbb{Q} .

Exercice 5 (Extension de corps).

On considère l'extension de corps $\mathbb{Q} \subset \mathbb{C}$ et $\alpha := \sqrt{2} + \sqrt{3}$.

- (1) Le nombre α est-il transcendant ou algébrique?
- (2) Quel est le degré de α sur \mathbb{Q} ?

- (3) Donner son polynôme minimal.
- (4) Montrer que l'anneau quotient $\mathbb{Q}[X]/(X^4-10X^2+1)$ est un corps et qu'il est isomorphe à $\mathbb{Q}[\alpha]$.