FEUILLE DE TRAVAUX DIRIGÉS 2

Exercice 1.

- (1) Tracer dans le plan \mathbb{R}^2 la droite d'équation $x_2 = 2x_1 + 1$.
- (2) Représenter les points A et B de coordonnées respectives (1,2) et (5,0). Donner l'équation de la droite passant par ces deux points.

Exercice 2.

- (1) On considère l'ensemble $A := \{(x_1, x_2) \in \mathbb{R}^2 ; x_1 > 0\}$. Représenter graphiquement cet ensemble. Cet ensemble est-il un ouvert? Décrire la frontière Fr A de l'ensemble A. L'ensemble A est-il un fermé? Que vaut le complémentaire A^c ?
- (2) On considère l'ensemble $B:=\{(x_1,x_2)\in\mathbb{R}^2\,;\,x_1\leq 0\}$. Est-il un fermé de \mathbb{R}^2 ? Est-il un ouvert de \mathbb{R}^2 ?
- (3) On pose $C := \{(x_1, x_2) \in \mathbb{R}^2 ; x_1 = 0\}$. Est-il fermé? Décrire la frontière Fr C de l'ensemble C. Est-il ouvert?
- (4) Soit D l'ensemble défini par $D := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0, x_2 > 0\}$. Représenter graphiquement cet ensemble. Cette ensemble est-il ouvert? Est-il fermé?
- (5) Quelle figure décrit l'ensemble E défini par $E := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 9\}$? Représenter cet ensemble. Décrire la frontière Fr E de l'ensemble E. Cet ensemble est-il fermé? Si oui, le démontrer. Est-il ouvert? Est-il borné?
- (6) Donner un exemple d'ensemble qui n'est pas borné?

Exercice 3. On considère les ensembles $A_1 := \{(x_1, x_2) \in \mathbb{R}^2 ; x_1 > 0\}$ et $A_2 := \{(x_1, x_2) \in \mathbb{R}^2 ; x_2 > 0\}$.

- (1) Représenter graphiquement les ensembles A_1 et A_2 ainsi que leur intersection $A_1 \cap A_2$ et leur union $A_1 \cup A_2$. Donner la définition de $A_1 \cap A_2$ et de $A_1 \cup A_2$ (sous la même que nous avons défini A_1 et A_2). Décrire le complémentaire de $A_1 \cap A_2$.
- (2) Montrer que $A_1 \cap A_2$ est ouvert.
- (3) On considère $B := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0 \text{ ou } x_2 \ge 0\}$. Montrer que B est un fermé de \mathbb{R}^2 .

Exercice 4. On pose $f(x_1, x_2) := x_1^2 + x_1x_2 + x_2^2 + 5$ et $g(x_1, x_2) := x_1x_2 - 5$.

- (1) De quel type sont ces deux fonctions?
- (2) Que vaut la fonction f + g? Calculer f(0,0), f(1,-1)?

Exercice 5. On pose

$$\begin{cases} f : (x_1, x_2) \mapsto \frac{4x_1 + 7x_2}{x_1 + 3x_2 - 5}. \end{cases}$$

- (1) La fonction f est une fonction de quel type?
- (2) Quel est le domaine de définition de f? Représenter graphiquement ce domaine. S'agit-il d'un ouvert? S'agit-il d'un fermé? Est-il borné?

Exercice 6. On pose

$$\begin{cases} f : (x_1, x_2) \mapsto \frac{x_2}{x_2 - x_1^2}, \\ g : (x_1, x_2) \mapsto \frac{x_2}{x_1}. \end{cases}$$

1

(1) De quel type sont ces deux fonctions?

- (2) Donner les domaines de définition de f et de g. Sont-il des ouverts? Sont-ils fermés? Sont-ils bornés?
- (3) Calculer la somme des fractions rationnelles f + g et le quotient $\frac{f}{g}$.

Exercice 7. On considère la fonction

$$h: (x_1, x_2) \mapsto \frac{x_1^2 + 5x_2^2}{4 - x_1^2 - x_2^2}.$$

(1) Quel est le domaine de définition de h? À quoi correspond ce domaine géométriquement? Est-il ouvert? Est-il fermé? Est-il borné?

On considère la fonction

$$k: (x_1, x_2) \mapsto \sqrt{h(x_1, x_2)}.$$

(2) Quelle est le domaine de définition de k? À quoi correspond ce domaine géométriquement? Est-il ouvert? Est-il fermé? Est-il borné?

Exercice 8. Considérons la fonction

$$f: \qquad \mathbb{R}^2 \xrightarrow{} \mathbb{R}$$
$$(x,y) \longmapsto \frac{xy}{x^2 + y^2}.$$

Quel est le domaine de définition \mathcal{D}_f de f? Est-il ouvert? Est-il fermé? Est-il borné?