RECOLLECTIONS ON TOPOLOGY

BRUNO VALLETTE

CONTENTS

1.	Topological spaces	1
2.	Product topology	2

1. TOPOLOGICAL SPACES

Definition 1.1 (Topological space). A *topology* on a set X is a collection $\mathcal{T} \subset \mathcal{P}(X)$ of subsets of X satisfying

(1) $\emptyset, X \in \mathcal{T}$,

(2) $\bigcup_{i \in I} O_i \in \mathcal{T}$, for any set *I* and for $O_i \in \mathcal{T}$, $i \in I$,

(3) $\bigcap_{i \in I} O_i \in \mathcal{T}$, for any finite set *I* and for $O_i \in \mathcal{T}$, $i \in I$.

The elements O of \mathcal{T} are called the *open sets* and their complements are called the *closed sets*. The data (X, \mathcal{T}) is called a *topological space*. (When the topology is obvious, we will use just the notation X of the underline set to refer to the topological space.)

REMARK 1.2. One can equivalently define a topology by the data of the closed subsets satisfying the axiom (1), the stability under any intersection and the stability under any finite union.

EXAMPLES 1.3.

- Normed vector spaces,
- Metric spaces,
- ♦ The *trivial* topology $(X, \mathcal{P}(X))$,
- ♦ The *discrete* topology $(X, \{\emptyset, X\})$.

The inclusion defines a partial order on the set of topologies of a given set X.

Definition 1.4 (Finer topology). A topology \mathcal{T}_2 on a set *X* is said to be *finer* than another one \mathcal{T}_1 when $\mathcal{T}_1 \subset \mathcal{T}_2$. (In the other way round, the topology \mathcal{T}_1 is *coarse* than the topology \mathcal{T}_2 .)

EXAMPLE 1.5. The discrete topology $\mathcal{P}(X)$ is finer than the trivial topology $\{\emptyset, X\}$.

Definition 1.6 (Continuous map). A set theoretical map $f: X \to Y$ between two topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is *continuous* when

$$f^{-1}(O) \in \mathcal{T}$$
, for any $O \in \mathcal{S}$.

It is equivalent to ask that the pre-image of any closed set of the target is a closed set of the source.

Proposition 1.7 (Stability under composition). Continuous maps are stable under composition.

Date: September 22, 2024.

Proof. The proof is straightforward and thus left to the reader.

Definition 1.8 (Homeomorphism). A continuous map $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ between two topological spaces is an *homeomorphism* when it is invertible and when its inverse is also continuous.

Two topological spaces are *homeomorphic* when there exists an homeomorphism between them. This defines an equivalence relation on topological spaces.

Definition 1.9 (Compact space). A topological space (X, \mathcal{T}) is called *compact* when every open cover of X

$$X = \bigcup_{i \in I} O_i, \text{ for } O_i \in \mathcal{T},$$

admits a finite subcover

$$X = \bigcup_{j=1}^{n} O_{i_j}$$
, for $i_j \in I$.

This axiom is called the *Borel-Lebesgue property*. In France, for instance in Bourbaki, a compact space is moreover required to be *separated* (or *Hausdorff*): for any pair of different points $x \neq y \in X$, there exists two disjoint open sets O and U such that $x \in O$ and $y \in U$.

2. PRODUCT TOPOLOGY

Definition 2.1 (Product topology). The *product topology* on the cartesian product $X \times Y$ of two topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is the coarse topology among the ones for which the canonical projections $\pi_X \colon X \times Y \to X$ and $\pi_Y \colon X \times Y \to Y$ continuous.

This topology is well-defined: for instance, it is given by the intersection of all the topologies for which the canonical projections are continuous.

Proposition 2.2 (Explicit description). *The product topology is given by the unions of products of open sets:*

$$\left\{\bigcup_{i\in I}O_i\times U_i,\ O_i\in \mathcal{T}, U_i\in \mathcal{S},\ for\ any\ i\in T\right\}\ .$$

Proof. The proof was performed in class; one can do it by "Analyse-SynthŔse".

Corollary 2.3. Let X, Y, and Z be three topological spaces. Any map $f: X \to Y \times Z$ is continuous if and only if the two composites $\pi_Y \circ f: X \to Y$ and $\pi_Z \circ f: X \to Z$ with the canonical projections are continuous.

Proof.

 (\Rightarrow) : This is a direct corollary of the stability of continuity under composition (Proposition 1.7).

(\Leftarrow): The pre-image under the composite $\pi_Y \circ f$ of any open set $\bigcup_{i \in I} O_i \times U_i$ of $Y \times Z$ is equal to

$$f^{-1}\left(\bigcup_{i\in I}O_i\times U_i\right) = \bigcup_{i\in I}f^{-1}\left(O_i\times U_i\right) = \bigcup_{i\in I}\underbrace{\left(\pi_Y\circ f\right)^{-1}\left(O_i\right)}_{\text{open set of }X} \cap \underbrace{\left(\pi_Z\circ f\right)^{-1}\left(U_i\right)}_{\text{open set of }X}$$

which is an open set of X since the two composites $\pi_Y \circ f \colon X \to Y$ and $\pi_Z \circ f \colon X \to Z$ are continuous.

П

RECOLLECTIONS ON TOPOLOGY

Theorem 2.4 (Product of compact sets, Tychonoff 1935). *The product of any collection of compact topological spaces is compact.*

Proof. The proof of this statement is more involved than the previous ones, so we skip it. \Box

UNIVERSITÉ SORBONNE PARIS NORD, LABORATOIRE DE GÉOMÉTRIE, ANALYSE ET APPLICATIONS, CNRS, UMR 7539, VILLETANEUSE, FRANCE *E-mail address*: vallette@math.univ-paris13.fr