

SUJET MAISON 2

INSTRUCTIONS. La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Toute réponse non justifiée ne recevra aucun point.

Exercice 1 (Extremum local). Soit $n \in \mathbb{N}^*$, soit $f : \mathbb{R}^n \to \mathbb{R}$ une application et soit $a \in \mathbb{R}^n$. On dit que l'application f admet en a un *minimum local* (respectivement *maximum local*) s'il existe $\rho > 0$ tel que

$$\forall x \in B(a, \rho), \quad f(x) \ge f(a) \quad (\text{respectivement } f(x) \le f(a)) .$$

On appelle extremum local un minimum local ou un maximum local.

(1) On suppose que l'application f est différentiable sur \mathbb{R}^n . Montrer que la différentielle $D_a f = 0$ s'annule en a si l'application f admet un extremum local en a.

Par définition de la différentiabilité de l'application f en a, il existe un nombre r>0, une application linéaire continue $\mathrm{D}_a f:\mathbb{R}^n\to\mathbb{R}$ et une application $\varepsilon:B(0,r)\subset\mathbb{R}^n\to\mathbb{R}$ vérifiant $\varepsilon(x)\xrightarrow[x\to0]{}0$, tels que

$$\forall h \in B(0,r) \;, \quad f(a+h) = f(a) + \mathrm{D}_a f(h) + \|h\| \varepsilon(h) \;.$$

Si l'application f admet un minimum local en a, alors il existe $\rho > 0$ tel que

$$\forall h \in B(0, \min(r, \rho)), \quad D_a f(h) + ||h|| \varepsilon(h) = f(a+h) - f(a) \ge 0.$$

Soit $x \in \mathbb{R}^n$ différent du vecteur nul $x \neq 0$ et soit $0 < t < \frac{\min(r, \rho)}{\|x\|}$. On appliquant l'égalité précédente à h = tx, qui vérifie $\|tx\| = t\|x\| < \min(r, \rho)$, on obtient

$$D_a f(tx) + ||tx|| \varepsilon(tx) = t (D_a f(x) + ||x|| \varepsilon(tx)) \ge 0.$$

En divisant par t puis en faisant tendre t vers 0, on aboutit à $\mathrm{D}_a f(x) \geqslant 0$, pour tout $x \neq 0$ de \mathbb{R}^n . Mais la linéarité de l'application différentielle $\mathrm{D}_a f$ donne alors $\mathrm{D}_a f(x) = -\mathrm{D}_a f(-x) \leqslant 0$. On en conclut que $\mathrm{D}_a f(x) = 0$, pour tout $x \in \mathbb{R}^n$. (Les mêmes arguments s'appliquent au cas où l'application f admet un maximum local en a.)

(2) L'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x, y) := x^2(x - 1) + y^3$$

admet-elle des extrema locaux?

On commence par remarquer la fonction f est de classe \mathscr{C}^{∞} car elle est polynomiale en x et en y. Nous avons vu à la question précédente que si l'application f admet un extremum local en a, alors sa différentielle y est nulle. On cherche donc les éléments $a \in \mathbb{R}^n$ tels que $\mathrm{D}_a f = 0$. (On les appelle les points critiques de l'application f.) Comme la fonction f est de classe \mathscr{C}^1 , sa différentielle est donnée par ses dérivées partielles :

$$D_a f(h, k) = h \frac{\partial f}{\partial x}(a) + k \frac{\partial f}{\partial y}(a) .$$

Les points critiques de f sont donc les éléments a de \mathbb{R}^n où les dérivées partielles s'annulent

$$\frac{\partial f}{\partial x}(a) = \frac{\partial f}{\partial y}(a) = 0 .$$

Ici, on a

$$\frac{\partial f}{\partial x}(x, y) = 3x^2 - 2x$$
 et $\frac{\partial f}{\partial y}(x, y) = 3y^2$.

Les deux seuls points critiques sont donc

$$(0,0)$$
 et $(\frac{2}{3},0)$.

- ♦ On voit que f(0,0) = 0 et que $f(0,y) = y^3$: il est donc impossible d'avoir $f(x,y) \ge 0$ ou $f(x,y) \le 0$ pour tout (x,y) dans une boule B((0,0),r) centrée en (0,0).
- ♦ De la même manière, on voit que $f\left(\frac{2}{3},0\right) = -\frac{4}{27}$ et que $f\left(\frac{2}{3},k\right) = -\frac{4}{27} + k^3$: il est donc impossible d'avoir $f(x,y) \ge -\frac{4}{27}$ ou $f(x,y) \le -\frac{4}{27}$ pour tout (x,y) dans une boule $B\left(\left(\frac{2}{3},0\right),r\right)$ centrée en $\left(\frac{2}{3},0\right)$.

En conclusion, la fonction f d'admet aucun extremum local.

Exercice 2 (Différentiabilité de l'inverse des matrices). Soit $n \in \mathbb{N}^*$. On rappelle du premier sujet maison que le sous-ensemble $GL_n(\mathbb{R})$ des matrices inversibles de taille $n \times n$ est un ouvert de $M_n(\mathbb{R})$.

(1) Montrer que l'application «inverse de matrice»

$$\begin{array}{cccc} \mathrm{Inv} \ : & \mathrm{GL}_n(\mathbb{R}) \subset \mathrm{M}_n(\mathbb{R}) & \to & \mathrm{M}_n(\mathbb{R}) \\ & M & \mapsto & M^{-1} \end{array}$$

est de classe \mathscr{C}^{∞} .

Pour une matrice inversible $M \in \mathrm{GL}_n(\mathbb{R})$, son inverse est égale à

$$M^{-1} = \frac{1}{\det M}{}^t \mathrm{Com}\, M \; ,$$

où $\operatorname{Com} M$ est la comatrice de M. On voit donc que les coefficients de l'inverse M^{-1} sont des fractions rationnelles des coefficients de la matrice M. Comme ces fonctions rationnelles sont de classe \mathscr{C}^{∞} , là où elles sont définies, ceci montre que l'application Inv est de classe \mathscr{C}^{∞} .

(2) On considère la base canonique $\{e_{ij}\}_{1 \leq i,j \leq n}$ de l'espace vectoriel $M_n(\mathbb{R})$, où la matrice e_{ij} est la matrice élémentaire possédant un 1 à la i^e ligne et j^e colonne et des 0 partout ailleurs. Calculer les dérivées partielles de l'application Inv en la matrice identité I, c'est-à-dire

$$\frac{\partial \text{Inv}}{\partial e_{ij}}(I)$$
, pour $1 \le i, j \le n$.

On rappelle la règle de multiplication des matrices élémentaires :

$$e_{ij}e_{kl}=\delta_{jk}e_{il}\;,$$

où δ_{jk} est le symbole de Kronecker, qui vaut 1 si j=k et 0 si $j\neq k$. Par définition des dérivées partielles, elles sont égales à

$$\frac{\partial \operatorname{Inv}}{\partial e_{ij}}(I) = \lim_{t \to 0} \frac{1}{t} \left(\left(I + t e_{ij} \right)^{-1} - I \right) \ .$$

CAS i = j: Pour $t \neq -1$, on a $(I + te_{ii})^{-1} = I - \frac{t}{1+t}e_{ii}$ donc

$$\frac{\partial \mathrm{Inv}}{\partial e_{ii}}(I) = \lim_{t \to 0} \frac{1}{t} \left(I - \frac{t}{1+t} e_{ii} - I \right) = \lim_{t \to 0} - \frac{1}{1+t} e_{ii} = -e_{ii} \ .$$

CAS $i \neq j$: Pour $t \neq -1$, on a $(I + te_{ij})^{-1} = I - te_{ij}$ donc

$$\frac{\partial \mathrm{Inv}}{\partial e_{ii}}(I) = \lim_{t \to 0} \frac{1}{t} \left(I - t e_{ij} - I \right) = \lim_{t \to 0} - e_{ij} = - e_{ij} \ .$$

Au final, les deux cas donnent le même résultat, à savoir

$$\left| \frac{\partial \text{Inv}}{\partial e_{ij}}(I) = -e_{ij} , \text{ pour } 1 \leqslant i, j \leqslant n \right|.$$

La formule de la différentielle en terme de dérivées partielles donne ici

$$\mathrm{D}_I \mathrm{Inv}(H) = \sum_{i,j=1}^n h_{ij}(-e_{ij}) = -H \label{eq:defDInv} \quad .$$

(4) Que vaut la différentielle D_M Inv de l'application Inv en $M \in GL_n(\mathbb{R})$?

Comme la matrice M est inversible et comme $\mathrm{GL}_n(\mathbb{R})$ est un ouvert de $\mathrm{M}_n(\mathbb{R})$, pour tout matrice $H \in \mathrm{M}_n(\mathbb{R})$ de norme suffisament petite, on a que M+H est inversible, c'est-à-dire $M+H \in \mathrm{GL}_n(\mathbb{R})$. En utilisant la différentielle de l'application Inv en l'identité I, on a

$$\begin{split} \operatorname{Inv}(M+H) &= (M+H)^{-1} = M^{-1} \left(I + H M^{-1}\right)^{-1} = M^{-1} \left(I + \operatorname{D}_I \operatorname{Inv} \left(H M^{-1}\right) + \left\|H M^{-1}\right\| \varepsilon \left(H M^{-1}\right)\right) \\ &= M^{-1} - M^{-1} H M^{-1} + \left\|H M^{-1}\right\| M^{-1} \varepsilon \left(H M^{-1}\right) \ . \end{split}$$

Pour $H \neq 0$ et ||H|| suffisamment petit, on a

$$\left\|\frac{\left\|HM^{-1}\right\|}{\|H\|}M^{-1}\varepsilon\left(HM^{-1}\right)\right\| \leq \left\|M^{-1}\right\|^{2}\left\|\varepsilon\left(HM^{-1}\right)\right\| \xrightarrow[H\to 0]{} 0.$$

Comme l'application $\mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R})$ définie par $H \mapsto -M^{-1}HM^{-1}$ est linéaire et continue, car $\mathrm{M}_n(\mathbb{R})$ est de dimension finie, on voit que la différentielle de l'application Inv en M est égale à

$$\boxed{\mathrm{D}_{M}\mathrm{Inv}(H)=-M^{-1}HM^{-1}}\ .$$

Exercice 3 (Calcul du wronskien). Soit I un intervalle de \mathbb{R} et soient $p,q:I\to\mathbb{R}$ deux fonctions continues. On considère l'équation différentielle scalaire d'ordre 2:

$$(\star) \qquad \qquad y'' + p(t)y' + q(t)y = 0 .$$

Soient φ, ψ deux solutions de l'équation différentielle (\star).

(1) Trouver une équation différentielle vérifiée par le wronskien W de φ et ψ .

Par définition, le wronskien de φ et ψ est égal à

$$W = \begin{vmatrix} \varphi & \psi \\ \varphi' & \psi' \end{vmatrix} = \varphi \psi' - \varphi' \psi .$$

On calcule sa dérivée

$$W' = \varphi'\psi' + \varphi\psi'' - \varphi''\psi - \varphi'\psi' = \varphi\psi'' - \varphi''\psi = -\varphi(p\psi' + q\psi) + (p\varphi' + q\varphi)\psi = -\varphi p\psi' + p\varphi'\psi$$
$$= -p(\varphi\psi' - \varphi'\psi) = -pW.$$

3

Donc le wronskien de deux solutions vérifie l'équation différentielle

$$\boxed{\mathbf{W}' = -p(t)\mathbf{W}} \ .$$

L'équation (\triangle) est une équation différentielle linéaire scalaire homogène d'ordre 1. Ses solutions forment un sous-espace vectoriel de dimension 1 de l'espace $\mathscr{C}^1(I,\mathbb{R})$ des fonctions de classe \mathscr{C}^1 de I vers \mathbb{R} . Cet espace vectoriel de solutions est engendré par toute fonction de la forme $e^{-\pi(t)}$, où $\pi(t)$ est une primitive de p(t) qui peut être $\int_a^t p(s)ds$. Au final, le wronskien est donc égal à

$$\left| \mathbf{W}(t) = \mathbf{W}(a)e^{\int_a^t p(s)ds} \right|.$$

REMARQUE. On a vu dans le cours que les deux solutions sont linéaires indépendantes si et seulement si leur wronskien ne s'annule jamais, c'est-à-dire $W(t) \neq 0$, pour tout $t \in I$. Le calcul ci-dessus permet de retrouver ce résultat. En effet, si W(a) = 0, alors W(t) = 0, pour tout $t \in I$, et si $W(a) \neq 0$, alors $W(t) \neq 0$, pour tout $t \in I$.

On considère

$$p(t) = \frac{4t - 2}{2t + 1}$$
 et $q(t) = -\frac{8}{2t + 1}$.

(3) Calculer le wronskien de deux solutions de l'équation différentielle (★).

Ici on a

$$p(t) = \frac{4t - 2}{2t + 1} = 2\frac{2t - 1}{2t + 1} = 2\left(\frac{2t + 1}{2t + 1} - \frac{2}{2t + 1}\right) = 2\left(1 - \frac{2}{2t + 1}\right).$$

Une primitive est donnée par

$$\pi(t) = 2(t - \ln(2t + 1)).$$

Donc le wronskien de deux solutions de l'équation différentielle (\star) est égal à $W(t)=ce^{-2(t-\ln(2t+1))}$, avec $c\in\mathbb{R}$, c'est-à-dire

$$W(t) = ce^{-2t}(2t+1)^2$$

(4) Montrer que e^{-2t} est solution de (\star) .

Par un calcul direct, on a

$$\left(e^{-2t}\right)'' + \frac{4t-2}{2t+1}\left(e^{-2t}\right)' - \frac{8}{2t+1}e^{-2t} = e^{-2t}\left(4-2\frac{4t-2}{2t+1}-\frac{8}{2t+1}\right) = e^{-2t}\frac{8t+4-2(4t-2)-8}{2t+1} = 0.$$

(5) Décrire l'ensemble des solutions de l'équation différentielle (★).

Posons $\varphi=e^{-2t}$ la première solution et cherchons une seconde solution ψ telle que leur wronskien soit égal à $e^{-2t}(2t+1)^2$, c'est-à-dire

$$\varphi \psi' - \varphi' \psi = e^{-2t} (\psi' + 2\psi) = e^{-2t} (2t + 1)^2$$
.

Ceci donne l'équation différentielle linéaire scalaire du premier ordre

$$\psi' + 2\psi = (2t+1)^2$$
.

L'espace vectoriel de dimension 1 des solutions de l'équation homogène associée est engendrée par la fonction e^{-2t} . On utilise la méthode de la variation de la constante pour trouver une solution particulière à l'équation générale : on cherche une solution de la forme $\rho(t)e^{-2t}$. Cette dernière vérifie

$$\rho'(t)e^{-2t} = (2t+1)^2 \iff \rho'(t) = (2t+1)^2 e^{2t}$$
.

En cherchant une primitive de la forme $\rho(t)=(at^2+bt+c)e^{2t}$, avec $a,b,c\in\mathbb{R}$, on voit que $\rho(t)=(2t^2+\frac{1}{2})e^{2t}$ convient. Ceci donne que $2t^2+\frac{1}{2}$ est solution de l'équation différentielle (\star) , chose que l'on vérifie à la main.

Comme l'équation (\star) est une équation différentielle scalaire d'ordre 2, son ensemble de solutions forme un espace vectoriel de dimension 2 qui admet pour base les deux fonctions e^{-2t} et $4t^2+1$: les solutions de l'équation différentielle (\star) sont de la forme

$$\lambda e^{-2t} + \mu (4t^2 + 1)$$
, avec $\lambda, \mu \in \mathbb{R}$.

Exercice 4 (Système différentiel linéaire d'ordre 2). On considère le système différentiel linéaire d'ordre 2

$$\begin{cases} x'' + x' + 4y' - x - 3y = 0, \\ y'' - 3y' + x + 3y = 0. \end{cases}$$

où les solutions sont de la forme $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \in \mathbb{R}^2$, avec $t \in \mathbb{R}$.

(1) Que pouvez-vous dire de l'ensemble & des solutions de l'équation différentielle linéaire (*)?

Comme il s'agit d'un système différentiel linéaire homogène d'ordre 2 et de dimension 2, on sait que ses solutions forment un espace vectoriel de dimension $2 \times 2 = 4$.

(2) Donner un système différentiel (♡) d'ordre 1 équivalent à (♠).

En posant $Z := \begin{pmatrix} x \\ y \end{pmatrix}$, le système différentiel (\spadesuit) s'écrit

$$Z^{\prime\prime} + MZ^{\prime} + NZ = 0 \;, \quad \text{avec} \quad M \coloneqq \begin{pmatrix} 1 & 4 \\ 0 & -3 \end{pmatrix} \quad \text{et} \quad N \coloneqq \begin{pmatrix} -1 & -3 \\ 1 & 3 \end{pmatrix} \;.$$

En considérant maintenant le «vecteur colonne par blocs» $Y := \begin{pmatrix} Z \\ Z' \end{pmatrix}$, l'équation différentielle (*) est éguivalente à l'équation différentielle linéaire d'ordre 1 et de dimension 4 suivante

$$Y' = \underbrace{\begin{pmatrix} 0 & I_2 \\ -N & -M \end{pmatrix}}_{A} Y .$$

Cette équation (♥) s'écrit explicitement

$$\begin{pmatrix} x' \\ y' \\ x'' \\ y'' \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 3 & -1 & -4 \\ -1 & -3 & 0 & 3 \end{pmatrix}}_{A} \begin{pmatrix} x \\ y \\ x' \\ y' \end{pmatrix}.$$

(3) Résoudre le système différentiel (♡) d'ordre 1.

On voit que la matrice A a 4 valeurs propres distinctes 0, 1, -1, 2 car

$$rgA = rg(A - I_4) = rg(A + I_4) = rg(A - 2I_4) = 3$$
.

A chaque fois, la dimension du sous-espace propre associé est de dimension 1 et donc la matrice A est diagonalisable. Soit λ une valeur propre et soit X_{λ} un vecteur propre de A de valeur propre λ . On voit que $e^{\lambda t}X_{\lambda}$ est solution de l'équation différentielle (\heartsuit) :

$$\left(e^{\lambda t}X_{\lambda}\right)'=\lambda e^{\lambda t}X_{\lambda}=e^{\lambda t}AX_{\lambda}=A(e^{\lambda t}X_{\lambda})\ .$$

Un calcul direct montre que $\begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix}$ est vecteur propre de A de valeur propre 0, $\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$ est vecteur propre de A de valeur propre -1 et $\begin{pmatrix} 1 \\ -1 \\ 2 \\ -2 \end{pmatrix}$ est vecteur propre de A de valeur propre -1 et $\begin{pmatrix} 1 \\ -1 \\ 2 \\ -2 \end{pmatrix}$ est vecteur propre

de A de valeur propre 2 . On prétend donc que <u>les quatre applications suivantes forment une base de</u> solutions de (\heartsuit) :

$$\begin{bmatrix}
3 \\
-1 \\
0 \\
0
\end{bmatrix}, e^{t} \begin{pmatrix}
1 \\
-1 \\
1 \\
-1
\end{pmatrix}, e^{-t} \begin{pmatrix}
7 \\
-1 \\
-7 \\
1
\end{pmatrix}, e^{2t} \begin{pmatrix}
1 \\
-1 \\
2 \\
-2
\end{pmatrix}$$

Nous avons déjà montré qu'il s'agissait de solutions et que la dimension de l'espace des solutions est égale à 4. Il ne reste plus qu'à montrer que ces quatre solutions sont linéairement indépendantes. Soient $a,c,b,d\in\mathbb{R}$ tels que

$$a \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix} + be^{t} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} + ce^{-t} \begin{pmatrix} 7 \\ -1 \\ -7 \\ 1 \end{pmatrix} + de^{2t} \begin{pmatrix} 1 \\ -1 \\ 2 \\ -2 \end{pmatrix} = 0.$$

En évaluant en t = 0, on trouve

$$a \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} + c \begin{pmatrix} 7 \\ -1 \\ -7 \\ 1 \end{pmatrix} + d \begin{pmatrix} 1 \\ -1 \\ 2 \\ -2 \end{pmatrix} = 0 .$$

Comme la matrice est diagonalisable, ces quatre vecteurs propres forment une base, donc a = b = c = d = 0.

(4) En déduire toutes les solutions du système différentiel (*) d'ordre 2.

Par définition de $Y := \begin{pmatrix} Z \\ Z' \end{pmatrix}$, les deux premières coordonnées des fonctions qui donnent une base de l'équation différentielle (\heartsuit) donnent une base des solutions de l'équation différentielle (\spadesuit) :

