EXAM 2 - ALGEBRAIC TOPOLOGY

LAST NAME, First name

Grade:

The exam will last 45 minutes. No document or electronic device is allowed.

Exercise 1.

◇ Give the definition of the grassmannian manifolds. How are their topologies defined?

Exercise 2.

 \diamond We consider the action of the linear group $\operatorname{GL}_n(\mathbb{R})$, made up of invertible matrices, on \mathbb{R}^n by left multiplication: $(M, X) \mapsto MX$ for $M \in \operatorname{GL}_n(\mathbb{R})$ and $X \in \mathbb{R}^n$. Describe the quotient space $\mathbb{R}^n/\operatorname{GL}_n(\mathbb{R})$: the underlying set and its topology.

Exercise 3.

 \diamond Let X be a path-connected topological space and let \mathcal{R} be an equivalence relation on X. Is the quotient space X/\mathcal{R} path-connected? If yes, prove it, if not give a counter-example.

Exercise 4.

♦ Let $n \ge 1$. Show that the quotient space B^n/S^{n-1} is homeomorphic to the sphere S^n , where the sphere $S^{n-1} = \partial B^n$ is the boundary of the ball B^n .

Exercise 5.

 \diamond Let $x \in S^1$ be a point of the circle. Give a topological space homeomorphic to the quotient space

 $\frac{S^1 \times S^1}{S^1 \times \{x\} \cup \{x\} \times S^1}$

Exercise 6.

 \diamond Give two equivalent but different definitions of the complex projective space $\mathbb{P}^{n}(\mathbb{C})$ as a quotient space, for $n \ge 0$. Give a cell decomposition of $\mathbb{P}^{n}(\mathbb{C})$.

