# **EXAM 2 - ALGEBRAIC TOPOLOGY**

LAST NAME, First name: Grade:

The exam will last 45 minutes. No document or electronic device is allowed.

### Exercise 1.

 $\diamond$  Show that the real linear group is homeomorphic to  $\mathrm{GL}_n(\mathbb{R}) \cong \mathrm{O}(n) \times \mathbb{R}^{\frac{n(n+1)}{2}}$ . (It is not required to prove the continuity of the various maps.)



### Exercise 2.

♦ We consider the following inclusion of the interval into the disc

$$f: I = [0, 1] \to D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$
 defined by  $f(x) := (x, 0)$ .

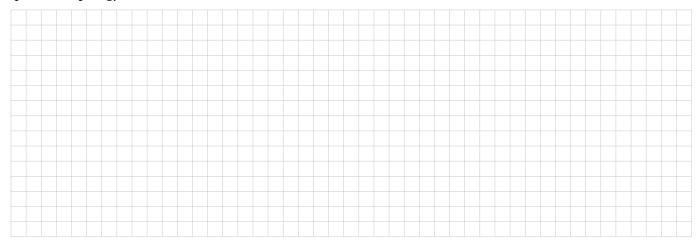
Draw the pushout P defined by

and give it a cellular decomposition. (No proof is required.)



### Exercise 3.

 $\diamond$  We consider the equivalence relation on  $\mathbb R$  defined by:  $x \sim y$  si  $y - x \in \mathbb Q$ . What are the open sets of the quotient topology on  $\mathbb R/\sim$ ?

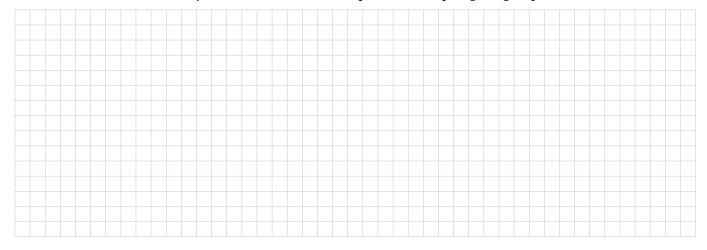


# Exercise 4.

 $\diamond$  We consider the transitive topological action of the special linear group  $\mathrm{SL}_2(\mathbb{R})$  on the Poincaré half-plane  $H:=\{z\in\mathbb{C}\mid \mathrm{Im} z>0\}$  defined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \coloneqq \frac{az+b}{cz+d} \ .$$

Show that the stabilizer of any element  $z \in H$  is isomorphic to the topological group  $S^1$ .



 $\diamond$  Show that the Poincaré half-plane is homeomorphic to  $H \cong \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}(2)$ .

