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Preface to the Second Edition

Apart from correction of misprints, inaccuracies and errors, the main differ-
ence between the second edition and the first is the addition of a new chapter
on Mac Lane (co)homology, written jointly with Teimuraz Pirashvili. It is
related to Hochschild homology, to algebraic K-theory and cohomology of
small categories as treated in the previous chapters (see the introduction to
Chapter 13). Appendix C has been modified accordingly.

The first list of references was reasonably up to date for papers dealing
with cyclic homology until 1992. It contains all the references mentioned
in Chapters 1 to 12 and in the appendices. Chapter 13 has its own list of
references. Since the publication of the first edition numerous results on the
cyclic theory have appeared, namely about the periodic theory, and also
about topological cyclic homology. For the convenience of the reader we give
a second list of references concerning the cyclic theory for the period 1992-96.

It is a pleasure to thank here all the colleagues who helped me to im-
prove this second edition, namely C. Allday, C.-F. Bédigheimer, J. Browkin,
B. Dayton, . Emmanouil, V. Franjou, A. Frabetti, J. Franke, F. Goichot,
V. Gnedbaye, J.A. Guccione, J.J. Guccione, P. Julg, W. van der Kallen, M.
Karoubi, C. Kassel, B. Keller, M. Khalkhali, J. Lodder, J. Majadas, J. Mc-
Cleary, M. Ronco, G. van der Sandt.

It is a pleasure to warmly thank Teimuraz Pirashvili for numerous en-
lightening conversations and for his kind collaboration on Chapter 13.

At 48°35'N and 7°48’E, January 21st, 1997.



Préface

Il y a maintenant 10 ans que I’homologie cyclique a pris son essor et le rythme
de parution des publications & son sujet confirme son importance. Durant ce
laps de temps l'effet de sédimentation a pu opérer et il devenait possible,
sinon nécessaire, de disposer d'un ouvrage de référence sur le sujet.

Je n’ai pu écrire ce livre que grace aux enseignements et a l'aide de
nombreux collégues, que je voudrais remercier ici. Les cours de topologie
algébrique d’'Henri Cartan, qui resteront certainement dans la mémoire de
ses auditeurs, ont constitué mon initiation et il est difficile d’en étre digne.
Max Karoubi m’a introduit a la K-théorie, topologique tout d’abord, puis
algébrique ensuite, et son enseignement n’a pas peu contribué & ma forma-
tion. Dan Quillen a été constamment présent tout au long de ces années.
Au début ce fut par ses écrits (cobordisme et groupes formels, homotopie
rationnelle), puis par ses exposés (K-théorie algébrique) et, plus récemment,
par une collaboration qui est a l'origine de ce livre. Les conversations et
discussions avec Alain Connes furent toujours stimulantes et exaltantes. Ses
encouragements et son aide furent pour moi un soutien constant. Je voudrais
aussi remercier Zbignew Fiedorowicz, Claudio Procesi et Ronnie Brown pour
leur collaboration efficace et amicale. Remerciements aussi & Keith Dennis
pour m’avoir donné 'opportunité de faire un cours sur I’homologie cyclique
a Cornell University au tout début de la rédaction et & Jean-Luc Brylin-
ski pour un semestre fructueux passé a Penn State University. Ce livre doit
aussi beaucoup a de nombreux autres collégues, soit pour des discussions, soit
pour des commentaires pertinents, en particulier & L. Avramov, P. Blanc, J.-
L. Cathelineau, C. Cuvier, S. Chase, P. Gaucher, F. Goichot, P. Julg, W.
van der Kallen, C. Kassel, P. Ion, J. Lodder, R. MacCarthy, A. Solotar, T.
Pirashvili, C. Weibel et le rapporteur. Mamuka Jiblaze a relu entierement le
manuscrit durant la phase finale et je lui en sais gré.

Je voudrais aussi mentionner tout particulierement Maria Ronco pour
m’avoir toujours écouté avec attention, pour avoir lu plusieurs versions de
ce livre et pour avoir corrigé de nombreuses imprécisions. Enfin et surtout
je terminerai en remerciant chaleureusement Daniel Guin pour le nombre
incalculable d’heures que nous avons passé ensemble devant un tableau noir
et dont je garde le meilleur souvenir.

Par 48° 35'N et 7° 48'E, le 12 janvier 1992.
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Introduction

Cyclic homology appeared almost simultaneously from several directions. In
one, Alain Connes [C] developed cyclic homology as a non-commutative vari-
ant of the de Rham cohomology, in order to interpret index theorems for
non-commutative Banach algebras, via a generalization of the Chern charac-
ter. In another, cyclic homology was shown to be the primitive part of the Lie
algebra homology of matrices by Boris Tsygan [1983], and by Dan Quillen
and myself [1983, LQ]. This relationship shows that cyclic homology can be
considered as a Lie analogue of algebraic K-theory, and, in fact, I met it for
the first time through the cyclic property of some higher symbols in algebraic
K-theory (cf. [Loday [1981]). There is still another framework where cyclic
homology plays an important role: the homology of S'-spaces, which provides
the connection between index theorems and algebraic K-theory. We will see
that cyclic homology theory illuminates a great many interactions between
algebra, topology, geometry, and analysis.

The contents of the book can be divided into three main topics:

- cyclic homology of algebras (Chaps. 1-5), which essentially deals with
homological algebra,

— cyclic sets and S'-spaces (Chaps. 6-8), which uses the simplicial tech-
nique and some algebraic topology,

- Lie algebras and algebraic K-theory (Chaps.9-11), which is about the
relationship with the homology of matrices under different guises.

The last chapter (Chap.12), which contains no proof, is essentially an
opening towards Connes’ work and recent results on the Novikov conjectures.

The cyclic homology of an algebra A consists of a family of abelian groups
HC,(A), n > 0, which are, in characteristic zero, the homology groups of
the quotient of the Hochschild complex by the action of the finite cyclic
groups. This is the reason for the term “cyclic”. The notation HC was for
“Homologie de Connes”, but soon became “Homologie Cyclique”. This very
first definition of Connes was slightly modified later on, so as to give a good
theory in a charateristic-free context. In any case, the basic ingredient is the
Hochschild complex, so the first chapter is about Hochschild homology, whose
groups are denoted HH,(A), n > 0. Chapter 2 contains several definitions
of cyclic homology, together with the basic properties of the functors HC,,.
The most important one is Connes periodicity exact sequence,
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... — HHy,(A) = HCp(A) » HCp_3(A) » HH,_1(A) > ...

In Chap. 3 we perform some computation for tensor algebras, symmetric al-
gebras, universal enveloping algebras and smooth algebras. We emphasize the
relationship with the de Rham cohomology (in the commutative case). For
smooth algebras, in characteristic zero, it takes the form of an isomorphism

HCn(4) = 23, /d2y) & Hpp'(4) © Hpp'(A) © ...

Chapter 4 is about the operations on cyclic homology: conjugation, deriva-
tion, product, coproduct, and A-operations. These latter operations bring in
some very interesting idempotents lying in the group algebra of the symmet-
ric group, called the Fulerian idempotents. They are related to combinatorics
(Eulerian numbers) and to the Campbell-Hausdorff formula. They permit
us to show the existence of a A-decomposition of the cyclic homology of a
commutative algebra,

HCn(A)= HCM(A)®...0 HCM(4) .

In both Chaps. 3 and 4 we give explicit isomorphisms and explicit homotopies
(instead of using the acyclic model method) so as to give the possibility to
extend these proofs to other settings (entire cyclic cohomology for instance).

In Chap. 5, important variations of cyclic homology are studied. The “neg-
ative cyclic homology”, introduced by J.D.S. Jones and T. Goodwillie, is the
right range for the Chern-Connes character. The “periodic cyclic theory” is
close to the de Rham theory for commutative algebras. The “dihedral the-
ory” comes in when dealing with skew-symmetric and symplectic matrices.
We also study cyclic homology of differential graded algebras, since it is an
efficient tool for computation.

The second part starts, in Chap. 6, with a detailed analysis of the rela-
tionship between the finite cyclic groups and the simplicial category A of
non-decreasing maps on finite sets. It gives rise to the cyclic category AC of
Connes. Other similar situations are studied for other families of groups: the
dihedral groups, the symmetric groups, the hyperoctahedral groups, and the
braid groups. The cyclic category permits us to interpret the cyclic groups
as derived functors and to construct cyclic sets and cyclic spaces. The main
point (Chap. 7) is that their geometric realizations are S*-spaces and that,
for any cyclic set X, there is an isomorphism

HC,(k[X]) = HE (| X],k) .

An important example, which arises naturally by this procedure, is the free
loop space of a topological space (equivalent to Witten’s way of handling the
free loop space of a manifold). We also include in this chapter the compu-
tation of the cyclic homology of a group algebra, which is going to play an
important réle in the construction of the Chern-Connes character. The study
of this character is carried out in Chap. 8. The classical Chern character is a



Introduction XVII

morphism from K-theory to de Rham cohomology. In the non-commutative
framework the range space is cyclic homology; in fact negative cyclic homol-
ogy is best. The construction of this Chern character

ch™ : Ko (A) = HCJ (A),

was the main motivation of Connes in building the cyclic theory. This chapter
ends up with an application to the idempotent conjecture.

The last part is essentially devoted to the relationship of the cyclic the-
ory with homology of matrices, either (under their additive structure) Lie
algebra homology, or (under their multiplicative structure) homology of the
general linear group or more precisely algebraic K-theory. Chapter 9 is an
account of the classical invariant theory used as a tool in Chap. 10. The main
result of Chap. 10 claims that the homology of the Lie algebra of matrices
is computable, in characteristic zero, in terms of cyclic homology (Loday-
Quillen-Tsygan theorem),

H.(gl(4)) = A(HC,_1(4)) .

This result is supplemented with some partial results on the computation
of H.(gl-(A)), r fixed. Conjectures (cf. 10.3.9) for the general case are pro-
posed in terms of the A-decomposition of HC,(A). Some variations are briefly
treated: adjoint representation as coefficients, skew-symmetric and symplectic
algebras. The last section introduces a completely new variant of Lie homol-
ogy, called “non-commutative Lie algebra homology” and denoted HL,(g),
n > 0. It consists in replacing, in the Chevalley-Eilenberg complex of the Lie
algebra g (used to define H,(g), the exterior module Ag by the tensor module
Tg. The tricky point was to find the correct differential in this framework.
Then, the analogue of the L-Q-T theorem mentioned above is

HL,(gl(A)) = T(HH,_,(A)) .

Important generalizations of this non-commutative theory, with Lie algebras
replaced by groups or spaces, are to be expected.

Chapter 11 is devoted to algebraic K-theory and its relationship to cyclic
homology. The first two sections form a short introduction to algebraic K-
theory of rings. Then we study in detail the relationship between the K-theory
of a nilpotent ideal I and the corresponding cyclic homology. The aim is to
prove the following isomorphism, due to T. Goodwillie,

The rest of the chapter is a continuation of the chapter on the Chern char-
acter, with a succinct account of secondary characteristic classes as done by
M. Karoubi.

We end this book with a chapter on “Non-Commutative Differential Ge-
ometry”. The aim is to give an overview of some applications of the cyclic
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theory to the Godbillon-Vey invariant, to the index theorem for Fredholm
modules, and to the Novikov conjecture on higher signatures and its K-
theoretic analogue. This chapter is expository and without any proof. All
these subjects are under active current research.

In this second edition we add a chapter on Mac Lane (co)homology which
is a variant of Hochschild (co)homology suitable to deal with when one works
with rings instead of k-algebras (to classify extensions for instance). On the
other hand algebraic K-theory gives rise to a “more additive” theory called
stable K -theory. It turns out that these two theories are isomorphic. The main
tool for this comparison is a third theory constructed from derived functors
over the category of polynomial functors (non-additive bimodules). This is
the subject of Chapter 13 which is a transition from the content of the first 12
chapters to topological Hochschild homology (T'"HH) and topological cyclic
homology (T'C).

Among the five appendices the first four are recapitulations of notions,
techniques and results used throughout the book. The last one, written by
Maria Ofelia Ronco, is a survey, with proofs, on “smooth algebras”.

Conceived as a comprehensive study of the cyclic homology theory, this
book requires some acquaintance with homological algebra and for some chap-
ters, some familiarity with the basic techniques of algebraic topology. However
it is conceivable to give a graduate course in homological algebra from the
first chapters or another one on the chapters on invariant theory and Lie alge-
bras. We have tried to make the statements and the proofs as self-contained
as possible, though at some particular points we refer to Cartan-Eilenberg
[CE] or Mac Lane [ML] for details. Beginning with chapter one is not the
only way to read this book. If one is only interested in the Lie algebra re-
sults, then one can go directly to Chap. 10 (or Chap. 9, if invariant theory is
not at one’s disposal). If one is interested in cyclic sets and S!-spaces, then
one can begin with Sects.6.1 and 6.2, and then go directly to Chap.7. For
the construction of the Chern character, read Sects. 1.1, 2.1, 5.1, and then
Chap. 8. More itineraries are possible, corresponding to other interests.

Most of the results are already in the literature, in research articles,
though several proofs are original. The bibliographical comments at the end
of each chapter try to give appropriate credit and information for further
reading.



Notation and Terminology

The standard language and notation of set theory, homological algebra and
algebraic topology is used throughout. For instance Z is the ring of integers,
Q, R, C, are the fields of rational, real and complex numbers respectively.
The arrow < (resp. —) stands for a monomorphism (resp. an epimorphism),
that is an injective (resp. surjective) map if in the category of sets.

Categories are denoted by boldface characters : (Sets) for the category of
sets, (Spaces) for the category of compactly generated spaces and continuous
maps, (k-Mod) for the category of k-modules and k-linear maps, etc.

A notation like m,(X) := [S™, X] indicates a definition of the left-hand
term.

Throughout the book k denotes a commutative ring, which sometimes
satisfies some conditions like k contains Q or k is a field. Every module M
over k is supposed to be symmetric and unital: Am = mA, lm = m. An
algebra A over k need not have a unit. If it has a unit, then it is called unital.
The term “k-linear map” is often abbreviated into “map”. Tensor products
are taken over k unless otherwise stated, and so ® = ®y.

The automorphism group of the set {1,2,...,n} is called a permutation
group and denoted by S,,. It is sometimes helpful to make it act on the set
{0,1,...,n — 1} instead. The sign of a permutation o € S, is denoted by
sgn(o) € {£1}.

For any discrete group G the group algebra k[G] is the free module over
k with basis G. On elements of G the product is given by the grouplaw. For
other elements it is extended by linearity.

More notation is introduced in Sect. 1.0 and in the appendices A, B and
C.

The symbol O indicates the end or the absence of a proof.

Standing assumption valid for the whole chapter or section are indicated
in the introduction of the relevant chapter or section.

The exercises are, most of the time, interesting resuits that we want to
mention, but do not prove. Hints or, more often, bibliographical references
are given in brackets.



Chapter 1. Hochschild Homology

Since cyclic homology is, in a certain sense, a variant of Hochschild homology
we begin with a chapter on this theory. Most of the material presented here
is classical and has been known for more than thirty years (except Sect. 1.4).
However our presentation is adapted to fit in with the subsequent chapters.
One way to think of the relevance of Hochschild homology is to view it as a
generalization of the modules of differential forms to non-commutative alge-
bras. In fact, as will be proved in Chap. 3, it is only for smooth algebras that
these two theories agree.

Hochschild homology of the k-algebra A (k being a commutative ring)
with coefficients in an A-bimodule M consists of a family of k-modules
H,(A, M) defined for any n > 0. The case M = A is of particular inter-
est for us since H, (A, A) is closely related to cyclic homology and we denote
it by HH,(A). There are several possible definitions of Hochschild homol-
ogy. Though one of the most popular is through derived functors (in fact
Tor-functors) we emphasize the original definition of Hochschild out of which
cyclic homology is constructed.

The main general properties of H H,, are proved in view of their counter-
part in cyclic homology. Computations will be found in Chap. 3 and also in
Sect. 7.4 for group algebras.

Section 1.0 on chain complexes consists of a list of background results in
homological algebra (mainly without proofs). It fixes the main notation and
notions used throughout the book.

Section 1.1 defines Hochschild homology via the Hochschild complex,
shows its equivalence with the Tor-definition (via the bar complex) and sets
up the normalized Hochschild complex which is often more convenient to use.

Section 1.2 is essentially devoted to the computation of Hochschild ho-
mology of matrix algebras. The main result asserts that the generalized trace
map induces an isomorphism. This Morita invariance is in fact proved in full
generality.

Section 1.3 emphasizes the relationship between Hochschild homolo-
gy, the module of derivations and the module of differential forms o (in
the commutative case). The so-called antisymmetrization map from “Q:\l , to

HH,(A) is of great importance for future computation. It shows that Hoch-

J.-L. Loday, Cyclic Homology
© Springer-Verlag Berlin Heidelberg 1998



2 Chapter 1. Hochschild Homology

schild homology is a good substitute for differential forms when the algebra
A is non-commutative.

Section 1.4 is slightly technical and can be skipped in a first reading. It
studies the case of nonunital algebras. Most of the results of this section are
due to M. Wodzicki. The cyclic operator, which is going to play a fundamental
role in cyclic homology (next chapter), crops up upon the attempt at defining
HH, for nonunital algebras. The notion of H-unitality (nonunital algebras
having the same properties as unital algebras as far as HH, is concerned)
plays a significant role in the applications (namely to excision in algebraic
K-theory).

Section 1.5 gives an account of Hochschild cohomology and its dual rela-
tionship with the homology theory.

Finally, Sect. 1.6 on simplicial modules can be thought of as an axiom-
atization of the preceding results, which will prove helpful in the sequel. It
serves as an introduction to the section on cyclic modules and cyclic sets.

1.0 Chain Complexes

This section is a quick summary on chain complexes and bicomplexes. Its
main purpose is to fix notation. Proofs and subsequent results can be found

in any text book on homological algebra, for instance Cartan-Eilenberg [CE],
Mac Lane [ML], Bourbaki [1980].

1.0.1 Definition. A chain complex C, of k-modules, or simply a complez C,
is a sequence of k-module homomorphisms

c) ...SHobeabh. SHoLobo,S.

such that d o d = 0. We adopt the classical convention of not putting any
index on the boundary map d, which is sometimes called the differential map.

We are mainly interested in non-negative chain complexes, that is we take
C_, =0if n > 0. So, in general, by “complex” we mean a non-negatively
graded chain complex over k. An element z € C,, is a chain of degree (or of
dimension) n. We adopt the notation |z| = n.

The cycles are the elements of Z,, = Ker(d : C,, = Cp—1). The boundaries
are the elements of B, = Im(d : Cy,4; = Cy). The relation d o d = 0 implies
B, C Z,. The homology groups (which are in fact k-modules) are defined by
H,(C.,d) = Z, /B, and are also denoted H,(C). The homology class of the
cycle z is denoted by [z] or simply by z.

1.0.2 Morphisms of Complexes. A map of complexes f : C — C' is a
collection of linear maps f, : C, — C, such that the following diagram is
commutative for any n
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C, — C,_

fnl J{fﬂ—l
!

c, — Cl_,
It obviously induces a map f, : H,(C) = H,(C’) (sometimes also denoted
simply by f). The map of complexes f is called a quasi-isomorphism (or chain
equivalence) if f, is an isomorphism for all n.

Two maps of complexes f and g: C — C’ are chain homotopic (or simply
homotopic) if there exist maps h = hy, : C,, = C],_; for all n such that

dh+hd=f—g

(by this we mean that for all n the morphisms dh, + h,_1d and f, — gn:
C, — C), are equal). The map h is called a homotopy from f to g.

A map of degree r is a family of maps f,: C, — C;,_, which commute
with the boundary maps.

1.0.3 Lemma. If f and g are chain homotopic, then f, = g. : H.(C) —
H.(C").

Proof. Let z be a cycle of C,, then f(z)—g(z) = (dh+hd)(z) = dh(z) because
d(z) = 0. Hence this difference is a boundary and the homology classes of
f(z) and g(z) are equal. a

An important particular example is the following: C = C’, f = idc, g = 0.
Then, if idc is homotopic to 0, the complex C, is said to be contractible (and
the homotopy a contracting homotopy).

1.0.4 Acyclicity and Resolutions. A non-negative chain complex C over
k is said to be augmented if there is given a k-linear map ¢ : Cp - M
such that eod = 0. Such an augmented complex is called a resolution of M if
H,(C)=0forn>0ande, : Hy(C) = M is an isomorphism. It is equivalent
to the vanishing of the homology groups of the complex

.2 C,=Ch1 2.5 Co > M—>0.

In this situation the complex C, is said to be acyclic.

One of the most powerful tools of homological algebra is the following fact.
Let (C.,¢€) and (C,€’) be two free resolutions of M (i.e. all the modules C,,
and CJ, are free; in fact projective suffices). Then there exists a chain map
f: C — C' over idys, and any two such chain maps are chain homotopic.

1.0.5 Exact Sequence of Complexes. An exact sequence of complezes

05C"'5C—-C">0
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is a pair of maps f : ¢’ — C and g : C — C” such that the sequence of
k-modules

0-5C,—=C,—>C]—0

is exact for any n. The most important consequence of this exactness hypoth-
esis is the existence of a canonical long exact sequence in homology

co. = Ho(C) = Ho(C) = Ho(C") 25 Ho_y(C') = Hoo1(C) > ...
... Ho(C") = 0.

This can be proved by applying the snake lemma repeatedly. If it happens that
C'(resp. C") is acyclic, then C — C” (resp. C' — C) is a quasi-isomorphism.
Recall that the boundary map 0 is constructed as follows. Let z € C!! be a
cycle with homology class [z]. Lift z as y in C,,, then d(y) has a trivial image in
Cy!_,, hence it comes from C/,_;. By construction 8([z]) = [d(y)] € Hn-1(C").

We now examine some particular types of complexes which will appear
very often throughout the book, those for which the differential map d is of
the form

d=> (-1)'d; : Cn = Cn_1 .
=0

1.0.6 Definition. A presimplicial module C is a collection of modules
Cn,n > 0, together with maps, called face maps or face operators,

di:Ch,—>Ch_y, ©1=0,...,n

such that
did; =d;_1d;, 0<j<j<n.

1.0.7 Lemma. Let d =Y. _(—1)d;, then dod = 0. In other words (C,,d)
15 a complez.

Proof. The sum dod = 3 (—1)"*/d;d; where 0 < j <n, 0 <1 <n—1 splits
into two parts according to i < j or i > j. The term (—1)**7d;d; of the first
part cancels with the term (—1)?~'*‘d;_;d; of the second part. a

For simplicial modules see Sect. 1.6.

A map of presimplicial modules f : C. = C’ is a collection of maps
fn: Cp = C! such that f,_; od;, = d; o f,. It implies that f,_;od=do f,
and so induces a map of complexes f : C, — C.. On homology the induced
map is denoted f. : H,(C\) = H.(C.).

1.0.8. A presimplicial homotopy h between two presimplicial maps f and g:
C — C' is a collection of maps h;: Cp, = C},;,i=0,...,n such that
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dih; = h;_1d; for i<j,

dihi =dihi—; for 0<i<n (cases i=j and 1=j+1),
dihj = hjdi—y for i>j+1,

doho = f and dppihn=g.

1.0.9 Lemma. If h, be a presimplicial homotopy from f to g, then h :=
Yo o(=1)'h; is a homotopy from f to g and therefore f. = g..

Proof. In order to compute dh + hd we remark that the term d;h; cancels
with the term d;h;_;. Then the term d;h; cancels with the term h;_,d; when
¢ < j and with the term h;d;—; when i > j +1. What is left over is doho and
dp+1hy, whence the result. O

1.0.10 Cochain Complexes. We will sometimes use complexes in the co-
homology framework, that is cochain complezes

(c*) Lot e Lo L
where § 0§ = 0. The homology groups of this complex are called cohomology
groups:

H™(C) =Ker(§:C" —» C"™1)/Im(6 : C"~1 —» C™) .

The Hom functor permits us to go from chain complexes to cochain
complexes. Let C, be a complex of k-modules and M be a k-module. Put
C" = Homg(Cp, M) and 6(f) = (-1)"f od for f € C™ (remark the sign
convention), then obviously (C",4) is a cochain complex.

A non-negative cochain complex can be thought of as a negative complex
via the classical convention C_,, = C™.

1.0.11 Bicomplexes. A bicomplex (also called a double chain complex) is
a collection of modules Cp, 4 indexed by two integers p and g together with
a “horizontal” differential d": Cpq = Cp_1,4 and a “vertical” differential d":

Cpq = Cpg-1
dh
Co-14 ¢ GCpq

dvl ldv

h
Cp-lyq—l ¢ Cp,q—l

satisfying the following identities
d°d” = d"d" = d’d" +d"d® = 0.

Note that a complex of complexes, that is a complex in the category of
complexes is almost a bicomplex. The only difference is that the squares do
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commute (instead of anticommuting). But changing the sign of the boundary
map of every other row yields a bicomplex.

Suppose that the bicomplex C,, is in the first quadrant, that is Cp 4 = 0
ifp<Oorifg<O:

Coz — Clg — 022 —

J

COI «— 011 — 021 —

Lo

Coop ¢— Ciop «— Cyp +—
Then the k-module

(Tot Cos)ni= @ Cpgq
ptg=n
is well-defined (finite sum) and endowed with the differential d = d* + d°.
It is a complex called the total complex of the bicomplex (C..) and denoted
Tot(C\.) or simply Tot C. The homology groups H,(Tot C) are called the
homology groups of the bicomplez (C).

There are other ways of constructing homology groups from a bicom-
plex. For instance one can first take the homology of the vertical complexes:
H,(Cp,.) for a fixed p. Then the horizontal differential induces a map (d").:
Hy(Cp,») = Hy(Cp—1,4), and so, for a fixed g, there is defined a new complex
whose homology groups are denoted H;',’H;’ (C}. The relationship between
these groups and the homology groups of (C) (i.e. Tot C) is given by the
study of a “spectral sequence” (see Appendix D).

Similarly one can first take the horizontal homology and second the verti-
cal homology to get the groups Hy H”,‘(C ). This gives rise to another spectral
sequence.

In general the simultaneous study of both spectral sequences gives infor-
mation on the homology of the bicomplex C.

Later on we will use the following proposition which can be proved either
via a spectral sequence argument or via the staircase trick.

1.0.12 Proposition. Let C,, — C., be a map of bicomplezes which is a
quasi-isomorphism when restricted to each column. Then the induced map
on the total complezes is a quasi-isomorphism. In particular, suppose that
for all q the (horizontal) homology groups Hp(Cy q) are 0 for p > 0 and put
K, = Ho(C.). Then H,(TotC..) = Hn(K.,d"). In other words, under
the above hypothesis, the homology of the bicomplex is the homology of the
cokernel of the first two columns.
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1.0.13 Shifted Complexes. Let (C,d) be a complex and let p be an integer.
By definition C[p] is the complex such that C[p|, = C,_, with differential
operator (—1)Pd. In fact it is the tensor product of k[p] (that is k concentrated
in degree p) with C (see infra).

1.0.14 Tensor Product of Complexes. Let R be a ring and let (C,d)
(resp. (C,d)) be a non-negative complex of right R-modules (resp. left R-
modules). Their tensor product is the complex C ® rC’ defined as follows.
The module of n-chains is (C® gC’), = ®p+¢=nCp® rC, and the differential
map is defined by the formula

dz®y)=dR1+1Qd)(c®y)=dr®y+ (-1)*lzxdy.

1.0.15 Koszul Sign Convention. Let f: A — B and g: C — D be maps
of complexes of degrees |f| and |g| respectively. Then f®g: A®C - B®D
is defined by (f ® g)(a ® ¢) := (=1)19"9f(a) ® g(c). The moral is “when g
jumps over a the sign (—1)!9""1%l pops up”. This convention simplifies a lot
of expressions in homological algebra. As a consequence the composition of
maps is given by (f®g)o(f'®¢') = (—1)|9|'|f'|(fof’ ®gog'). Similarly the
additive commutator of (homogeneous) graded elements a and b is {a,b] =
ab — (—1)leblpg,

We will sometimes use Quillen’s notation + in place of (—1)19!'l%l when
no confusion can arise. This notation is such that the sign is always + when
all the elements are of even degree.

1.0.16 Kiinneth Formula. If C, and B,(C) are flat R-modules for all n,
then there is a short exact sequence

0— @ Hy(C)®rH,(CY— & Torf(Hy(C),H,(C"))—0.

ptg=n ptg=n-1
If moreover H,(C) is flat for all n, then there is a canonical isomorphism

+@9 H,(C)® rH,(C") = H,(C® C').
p+q=n

In particular this isomorphism holds when R is a field.

1.0.17 Universal Coefficient Theorem. Let R be a principal ideal domain
and let (C.,d) be a complex of projective R-modules. For any R-module M,
the cochain complex (Hompg(C,, M), §) is denoted H*(C, M). Then, for each
n, there is an exact sequence

0 = Ext(Hn_1(C), M) - H™(C, M) — Hom(H,(C), M) = 0 .

In particular if R is a field, then H"(C, M) — Hom(H,(C), M) is an isomor-
phism.
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The dual statement is an exact sequence

0 — Tor(H™*(C), M) - H,(C,M) — Hom(H™(C), M) - 0.

Exercises

E.1.0.1. Let 0 > C’ = C — C” — 0 be an exact sequence of complexes
and let o (resp. a3, gz, resp. a”) be an endomorphism of C’ (resp. C, resp.
C") such that o/ commutes with ; and that a; commutes with . Show
that, if o, = o/ =0, then (a; 0 a2). = 0.

E.1.0.2. Let a and b be two elements of the ring A such that the left anni-
hilator of a (resp. b) is the ideal Ab (resp. Aa). Show that the sequence

o A A A S AN A A AJAa— 0

is a free resolution of the A-module A/Aa. Make this construction explicit in
the following cases:

(i) A = Rle], ring of dual numbers over the ring R (¢? = 0),
(ii) A = k[G] where G is a cyclic group of order n + 1 with generator t. Take
a=1—tandb=14+t+...+t"

1.1 Hochschild Homology

In this section we introduce Hochschild homology of an associative (not nec-
essarily commutative) unital k-algebra (k being a commutative ring) and we
state a few elementary facts about it. Our definition is the original defini-
tion of Hochschild (instead of the definition with derived functors) since it
is more closely related to the definition of cyclic homology given in Chap. 2.
Other important notions are introduced such as the trace map, the module
of Kahler differentials, the bar complex and the normalized bar complex.

1.1.0 Bimodules. Let A be a k-algebra. A bimodule over A is a (symmetric)
k-module M on which A operates linearly on the left and on the right in such
a way that (am)a’ = a(ma’) for a,a’ € A and m € M. The actions of A and k
on M are always supposed to be compatible, for instance : (Aa)m = A(am) =
a(Am), A € k,a € A,m € M. When A has a unit element 1 we always assume
that 1m = m1 = m for all m € M. Under this unital hypothesis, the bimodule
M is equivalent to a right A ® A°®-module via m(a' ® a) = ama’.
The product map of A is usually denoted p: A ® A — A, u(a,b) = ab.

1.1.1 Hochschild Boundary. Consider the module C,(4, M) := M ® A®"
(where ® = ®) and A®" = A®...® A, n factors). The Hochschild boundary
is the k-linear map b: M ® A®"™ — M ® A®"~1 given by the formula
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n—1
b(m,ay,...,a,) :=(may,ag,...,a,) + Z(—l)’(m,al, RN B PE P
i=1
+ (-1)™(anm,a1,...,an-1) .

This formula makes sense because A is an algebra and M is an A-
bimodule. The main example we are going to look at is M = A. It will
prove useful to introduce the operators d;: M ® A®™ — M ® A®"~! given by

do(m,ay,...,a,) = (may,az,...,a,),
(1.1.1.1) d;(m,ayq,...,a,) = (Mm,a1,...,8,8i41,...,8,) for 1<i<n,
dn(m,ay,...,a,) :={apm,ay,...,an-1) .

With this notation one has
b= (-1)'d; .
i=0
1.1.2 Lemma. bo b = 0.
Proof. It is immediate to check that

did]‘=dj_1di for 0<t<3<n,

(hence M ® A®™ is a presimplicial module), from which b0 b = 0 follows (cf.
1.0.6 and 1.0.7). a

1.1.3 Hochschild Complex and Hochschild Homology Groups. As a
consequence of lemma 1.1.2 we get the Hochschild complez

C(A,M) = C.(A,M): o MEAS Y M @At

—MA—M

where the module M ® A®" is in degree n.
In the case where M = A the Hochschild complex

C(4) = C,(A): Ly ABMHL by gen by b ge2 by Y

is sometimes called the cyclic bar complez in the literature.

By definition the nth Hochschild homology group of the unital k-algebra
A with coefficients in the A-bimodule M is the nth homology group of the
Hochschild complex (C, (A, M), b). The direct sum @&y,>0H, (A, M) is denoted
H,(A, M) (see 1.1.4 and 1.1.17 for other notation).

A priori one does not need the existence of a unit to construct the
Hochschild complex. However Hochschild homology of non-unital algebras
is defined slightly differently. This will be dealt with in Sect.1.4.
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1.1.4 Functoriality, Notation H H,. This construction is obviously func-
torial in M: a bimodule homomorphism f : M — M’ induces a map
f« t HJ(A,M) —» H,(A,M'), fu(m,a1,...,a,) = (f(m),a1,...,a,). It is
also functorial in A in the following sense. Let g : A — A’ be a k-algebra
map and M’ be an A’-bimodule. Via g the module M’ can be considered
as an A-bimodule and there is defined a map g, : H,(4,M') —» H, (A", M")
given by g.(m,ay,...,a,) = (m,g(a1),...,9(an)).

In the particular case M = A we write C,(A) instead of C.(4, A) and
HH,(A) instead of H,(A, A). Any k-algebra map f : A — A’ (which need
not preserve the unit) induces a homomorphism f, : HH,(A) — HH,(4’).
So HH,, is a (covariant) functor from the category of associative k-algebras
to the category of k-modules. This functor respects the product, that is
HH,(Ax A'Yy= HH,(A)® HH,(A’) (cf. Exercise E.1.1.1).

1.1.5 Module Structure Over the Center. Let Z(A) be the center of A,
ie. Z(A) ={z € A| za = az for all a € A}. There is an action of Z(A) on
Cn(A, M) given by z - (m,ay,...,a,) = (zm,ay,...,a,). Since z commutes
with A, this is an endomorphism of the complex. So H,(A, M) is a module
over Z(A). In fact the right action (mz instead of zm in the formula) gives
the same module structure on the homology groups (cf. Exercise E.1.1.2). In
particular when A is commutative then HH,(A) is an A-module.

1.1.6 Elementary Computations. The group
Ho(A,M)=Ms=M/{am —ma|a€ A, me M}

is also called the module of coinvariants of M by A. Let [A, A] denote the
additive commutator sub-k-module generated by [a,a’] = aa’ —d'a, for a,a’ €
A. Then HHo(A) = A/[A, A]. If A is commutative, then HHy(A) = A. When
A = k the Hochschild complex for M =k is

Y "I WL IS TN AL

therefore HHy(k) = k and HH,(k) =0 for n > 0.

Let k[e] be the algebra of dual numbers (that is €2 = 0). If 2 is invertible
in k, then for any n > 1, 1 ® e®?"*1) (resp. € ® €®2") is a cocycle whose
homology class spans H Hy,, +1(k[e]) (resp. H Hap(k[e])).

Denote by M,.(R) the associative ring of 7 x r-matrices with entries in
the ring R.

1.1.7 Lemma. For any ring R the abelianized trace map Tr: M,(R) —
R/[R, R) induces an isomorphism Tr,: M, (R)/[M,(R), M (R)] = R/[R, R].

Proof. The trace map tr: M,(R) — R is defined by tr(a) = Y, a;, and the
abelianized trace map Tr is the composition with the projection onto R/[R, R].
It is sufficient to show that Ker (Tr) = [M,(R), M(R)].
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The fundamental property of the abelianized trace map is Tr(a8) =
Tr(Ba). It implies Ker (Tr) D [M,(R), M,(R)].

The module Ker (Tr) is generated by the elementary matrices E;;(a),
i # 7, (a in the (7, j)-position and 0 everywhere else) and the diagonal matri-
ces c such that Y, o; € [R, R]. From the equality E;;(a) = [E;;(a), E;;(1)],
i # j, we deduce that E;j(a) € [M,(R),M,(R)]. From the equality
[Eij(a), E;i(1)] = Eii(a) — Ejj(a) we deduce that a diagonal matrix which is
in Ker (Tr) is equivalent to Ej;(c), with ¢ € [R, R], modulo [M,.(R), M, (R)].
Therefore Ker (Tr) C [M,.(R), M.(R)]. O

1.1.8 Corollary. HHy(M,.(A)) = A/[A, A]. O

This is in fact a particular case of a more general theorem valid for all n,
see the next section on Morita invariance.

1.1.9 Kahler Differentials. For A unital and commutative let {2}, , be the
A-module of Kdhler differentials. It is generated by the k-linear symbols da
for a € A (so d(Aa+ ub) = Ada+pudb, A\, 1 € k and a,b € A) with the relation

(1.1.9.1) d(ab) = a(db) + b(da), a,be A,

Remark that du = 0 for any u € k. See also 1.3.7 for another definition of
L.

1.1.10 Proposition. If A is a unital and commutative, then there is a
canonical isomorphism HH,(A) = Qi&;k' If M is a symmetric bimodule (i.e.

am =ma for alla € A and m € M, then H,(A, M) §M®A.Q}4|k.

Proof. Since A is commutative the map b: A ® A — A is trivial. Therefore
HH,(A) is the quotient of A® A by the relation

(1.1.10.1) ab®c—a®bc+ca®®b=0.

The map HH,(A) — “Qiﬂk’ which sends the class of a ® b to adb, is well-
defined because of (1.1.9.1). In the other direction adb is sent to the class of
a ® b which is a cycle because A is commutative. It is obviously a module
homomorphism which sends d(ab) — adb — bda to 0 because of (1.1.10.1). It
is immediate to check that these two maps are inverse to each other. O

More information on these matters is given throughout the book, but espe-
cially in Sect. 1.3 and in Chap. 3, where the relationship between Hochschild
homology and exterior differential forms is treated.

The comparison of the definition of Hochschild homology given above and
the definition in terms of derived functors (in fact Tor-functors) is via the
so-called “bar resolution” that we now introduce.
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1.1.11 Bar Complex. Let A°P? be the opposite algebra of A. The product
of a and b in A°P is given by a - b = ba. Let A° = A ® A°P be the enveloping
algebra of the associative and unital algebra A. The left A®-module structure
of A is given by (a ® a’)c = aca’. Consider the following complex, called the
bar complex

(1.111.1) ¢ s A8t Y gen VY @2

where A®? is in degree 0 and where ¥ = Y1~ (—1)'d; (note that the sum
is only up to n — 1) with the notation introduced in 1.1.1. The map b’ = :
A® A — Ais an augmentation for the bar complex.

1.1.12 Proposition-definition. Let A be a unital k-algebra. The complex
C® s a resolution of the A®-module A. It is called the “bar resolution” of
A.

An n-chain of the bar resolution is often denoted by aglai|az| ... |an]@n+1-

Proof. It is immediate to see that the cokernel of the last map is precisely
p: A®2 — A, The operator

s: A®" — A®L s(ay, .. a,) = (1,00, .., a,),

called the extra degeneracy, satisfies the formulas d;s = sd;_; for ¢ =
1,...,n — 1 and dps = id. Therefore b's + sb’ = id and s is a contracting
homotopy, showing that the b'-complex is acyclic (cf. 1.0.3). O

Remarks. We only used the fact that A has a left unit in the preceding
proof (to check d o s = id). If A has a right unit then take s(a;,...,a,) =
(a1,...,an,1). Remark also that the boundary map & of the bar complex is
completely determined by the following conditions

(a) b is left A-module homomorphism,

(b) &' = p on A®?,

(c) Vs + st/ =1d.

In fact there is an isomorphism C?*"(4) = C,(4, A ® A°P).

1.1.13 Proposition. If the unital algebra A is projective as a module over
k, then for any A-bimodule M there is an isomorphism

H,(A, M) =TorA (M, A) .

Proof. Since A is k-projective by hypothesis, A®™ is also k-projective and
A®"+2 = A ® A®" ® A is an A°-projective left module (the module struc-
ture is given by (A, i) - (@o,...,an41) = (Aao,a1,...,an,ans14). So the bar
resolution is a projective resolution of A as an A®-module.
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Upon tensoring this projective resolution with M considered as a right
module over A® we obtain the Hochschild complex, because 1;; ® b’ becomes
b under M ® 4 A®"+2 = M @ A®". This proves the proposition. O

So, under the hypothesis that A is projective over k, Hochschild homology
is a particular example of the homology theory of augmented rings, the aug-
mentation (in the sense of Cartan-Eilenberg) being A® AP — A, a®b — ab.
Suppose, moreover, that A is augmented over k viae : A — k. Let M be a
right A-module, that we consider as an A-bimodule, denoted M¢, with left
A-module structure given by a - m = e(a)m. Then (cf. [CE, p. 186]), there is
an isomorphism

H, (A, M¢®) = Tor(M,k) .

Note that thanks to a theorem of D. Lazard, (cf. Bourbaki [1980, p. 14]),
one can replace the hypothesis “A projective over k” by “A flat over k" in
the above proposition.

1.1.14 Normalized Hochschild Complex. When A is unital there is a
large subcomplex D, of the Hochschild complex which is acyclic, and it is
often helpful to get rid of it. The submodule D, of M ® A®" is generated
by the so-called degenerate elements, that is the elements (m,ay,...,a,) for
which at least one of the a;’s is equal to 1. The quotient of the Hochschild
complex by the sub-complex D, of degenerate elements is called the normal-
ized Hochschild complex. Put A = A/k (where k is mapped into k- 1 in A),
then M ® A®"/D, = M ® A°". Tt is denoted by C,(A, M), or simply by
C,(A) when M = A.

1.1.15 Proposition. The complez D, is acyclic and the projection map
C.(A, M) - C.(A, M) is a quasi-isomorphism of complezes.

Proof. This is a general fact about simplicial modules and will be proved in
1.6.5. O

1.1.16 Relative Hochschild Homology. Let I be a two-sided ideal of A
with quotient A/I. The relative Hochschild homology groups HH,(A, I) (not
to be confused with H,(A,I)) are, by definition, the homology groups of the
complex Ker (C(A) - C(A/I)). They fit into the long exact sequence:

...~ HH,(A,I) > HH,(A) » HH,(A/I) > HH,_,(A,I) > ...

which is the homology exact sequence of a short exact sequence of complexes
(cf. 1.0.5). More generally for any k-algebra map A — B one can define
relative Hochschild homology groups HH,(A — B), which fit into a long
exact sequence by taking the homology of the cone-complex of C.(4) —
C.(B). Similarly, one can abstractly define birelative Hochschild homology
groups, etc.

The next result is about localization of Hochschild homology.
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1.1.17 Proposition. Let Z(A) be the center of A and let S be a multiplica-
tive subset of Z(A) containing 1 but not 0. For any left A-module M the
localization of M at S is Mg = Z(A)s ® aM, where Z(A)s is Z(A) localized
at S. When A is flat over k, there are canonical isomorphisms

Hn(A,M)s = H,(A,Ms) = Hy(As, Ms) .

Proof. Since we suppose A flat over k, we can use, by proposition 1.1.13, the
definition of Hochschild homology in terms of derived functors. The three fam-
ily of groups under investigation define homological functors (8-functors in
the sense of Cartan-Eilenberg [CE]) of the A-bimodule M. They are equipped
with natural maps

H,(A,M)s + H,(A,Ms) = H,(As, Ms) .

To prove that they are isomorphisms it is sufficient to treat the case n = 0
(cf. loc. cit.), for which it can be checked by direct inspection. O

1.1.18 Change of Ground Ring. Though the notation does not mention
k, the Hochschild homology groups depend on the choice of k. For instance
HH,(C) =0if k = C but HH(C) # 0if k = Q. If we want to emphasize the
choice of the ground ring k, we write HH,(A|k) or HH¥(A). For any ring
homomorphism k& — K (always preserving the unit) a K-algebra A is also a
k-algebra. It is immediate that there is defined a canonical map of k-modules

HH.(Alk) » HH.(A|K) .

1.1.19 Localization of the Ground Ring. Let S be a multiplicative subset
of k (containing 1 and not 0) and let ks be the localization of k at S. If A
is flat over k, then the induced morphism HH,(Alk) ® xks — HH,(As|ks)
is an isomorphism. In particular, if A is a Q-algebra, then HH,(A|Z) @ Q =
HH,(4]Q)

Exercises

E.1.1.1. Let A and A’ be two unital k-algebras. Show that there is a canonical
isomorphism

HH,(Ax A" = HH,(A)® HH.(4') .

[If A and A’ are flat over k one can use the Tor definition. Otherwise one can
construct an explicit homotopy, see 1.2.15.]
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E.1.1.2. A left (resp. right) action of z € Z(A) on C.(A, M) is given by

z-(mya,...,an) = (zm,ay,...,a,)
[tesp. (m,a1,...,a,) - 2 = (mz,a1,...,a,)]. Show that these two actions
are homotopic. [There exists a simplicial homotopy, h;(m,ai,...,a,) =
(ma A1y evyQiy 25 Qiply .- aan)-]

E.1.1.3. Let f;: A; = A1, ¢ € N, be an infinite family of k-algebra homo-
morphisms, whose inductive limit is denoted lim; A;. Show that Hochschild
homology commutes with inductive limits:

colim HH,(A;) = HH,(colim 4;) .

E.1.1.4. Let G be a discrete group and M a k[G]-bimodule, where k[G] is

the group algebra of G. Let M be the k-module M considered as a right
G-module for the adjoint action m9 = g~'mg. Show that there is a canonical
isomorphism

o~

H,(k[G], M) = H.(G,M) ,

where the latter group is the homology of the discrete group G (cf. Appendix
C and 7.4.2).

E.1.1.5. Find a unital k-algebra A such that the map k — HHy(A) is zero.
[Try A = kfu,v]/(uwv — vu = 1) (non-commutative polynomials).]

E.1.1.6. Let I and J be two 2-sided ideals of the unital k-algebra A. Define
birelative Hochschild homology HH,(A;1,J) so that there is a long exact
sequence

...~ HH,(A,I) > HH,(A/J, I+ J/J)
— HH, 1(A;1,J) > HH, (A1) —> ...

Suppose that I N J = 0. Show that HH,(A4;1,J) = 0 for n = 0 and that
HH{(ALLJ)=1® aed.

E.1.1.7. Let 0 - M’ - M — M" — 0 be an exact sequence of A-bimodules
which are flat over k. Show that there is a long exact sequence in homology

o Ho(A,M") = Hy (A, M) = Hy(A,M") - Ho_ (A M) > ...

E.1.1.8. Let A be a commutative algebra and let A C A’ be an étale exten-
sion. Show that
HH.(A)® HH,(A)® 44" .

(If A is flat over k use the Tor definition. For the general case see Geller-
Weibel [1991].)
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1.2 The Trace Map and Morita Invariance

The trace map for matrices can be extended to the Hochschild complex. It
induces an isomorphism on homology (Morita invariance). In fact Morita
invariance can be proved in full generality. The existence of the generalized
trace map permits us to enlarge the set of morphisms of the category of
algebras on which Hochschild homology is defined. A slight generalization
using separable algebras leads to the computation of Hochschild homology of
triangular matrix algebras.

1.2.0 The Trace. Let M be a bimodule over the k-algebra A and let M, (M)
be the module of 7 x r matrices with coefficients in M.
Bordering by zeroes 0

o — .
6 - 00

defines an inclusion inc: M,. (M) = M,41(M). In the limit we get U, M, (M)
= Mo (M) which we usually denote by M(M). When M = A this inclusion
is a map of algebras which does not respect the unit.

The (ordinary) trace map tr: M, (M) — M is given by

tr(a) = Zaii .
i=1

It is clear that tr is compatible with inc and defines tr: M(M) — M.

1.2.1 Definition. The generalized trace map (or simply trace map)
tr M, (M) @ M. (A)®" - M ® A®"

is given by
tr(@®B®...®N) =Y Cigi, ® Biri ® - ® i 5

where the sum is extended over all possible sets of indices (ig, ..., in).

The module M,.(M) (resp. M,(A)) can be identified with M, (k) @ M
(resp. M,(k) ® A). Under this identification any element of M, (M) (resp.
M, (A)) is a sum of elements like ua with u € M,.(k) and a € M (resp.
a€A).

1.2.2 Lemma. Let u; € M, (k), ag € M and a; € A for i > 1. The general-
1zed trace map takes the form

(1.2.2.1) tr{upao ® ... ® Upapn) = tr(up...Up)ao ® ... ®ap .
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Proof. Since (ua);; = u;ja one has

tI‘(’U,an ®... ® unan) = Z(U’O)ioil (ul)iliz e (un)inioao R...Q Ay -

The expected formula follows from the identity

tr(ug ... up) = Z(Uo)ioil(ul)iliz oo (Un)inio - U

1.2.3 Corollary. The generalized trace map is a morphism of complezes
from C (M, (A), M,.(M)) to C.(A, M).

Proof. In fact we can prove that tr is a morphism of presimplicial modules.
Using lemma 1.2.2 it is sufficient to verify that d; o tr = tr o d; on elements
like ugag ®. .. ®uya,. It is immediate for i = 0,..., n—1. For ¢ = n it follows
from the identity tr(vu,) = tr(u,v) in the commutative ring k. O

In the following theorem tr, and inc, denote the morphisms induced on
homology by the trace map tr and the inclusion map inc respectively.

1.2.4 Theorem (Morita Invariance for Matrices). Let A be a unital
k-algebra. Then for any r > 1 (including r = oo) the maps

tr, : Hi(M(A), M.(M)) - H,(A, M)
and
inc, : H,(A, M) = H,(M,(A), M.(M))

are isomorphisms and inverse to each other.

Proof. It is immediate that tr o inc = id, therefore it suffices to prove
that inc o tr is homotopic to id. In fact there is a presimplicial homotopy
h = Y (—1)th; (cf. 1.0.8) constructed as follows. For i = (0,...,n) let
hi: Mo (M)QM,(A)®" - M, (M)®M,(A)®"*! be defined by the formula

h; (Olo, .. .,a”) = ZEjl (Ol?k) ® E; (Ol,lcm) R...
. ®En (o) ® E1(1) @' @2 ®...®a",

where the sum is extended over all possible sets of indices (j,k,m,...,p,q).
In this formula o° is in M,.(M) and the others a® are in M,.(A); the index
s is put as a superscript in order to make the formula more readable.

The maps h; satisfy the first three relations of 1.0.8. We verify only the
formula dyh, = hodp and leave the others to the diligent reader. On one hand
it comes

dohy (@°,...,0") =Y Eji (ak0hm) @ Eim(1) @0’ ®...®a"

because Ej1(a)E1;(b) = E;1(ab). On the other hand
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hodo (@°,...,a") = hg (@®a’,d?,...,a")
= z Ejl ((aoal)jl) ® Ell(l)az R... a”.

But (a%a)jm = ¥}, a9y, therefore we have dohy = hodo.

Put h = Y1 ((—1)¢h;, for instance h(a) = Y E;i(ejk) ® E1x(1) when
n =0, and h(a, B) = Ej1(ajk ® E1x(1) ® B — Ej1(ajk) ® E11(Bri) Ev(1) when
n=1

Then from the relations above one concludes that hd+dh = dohg—d, 41 hn
(cf. lemma 1.0.9). One computes dohg = id and dy,4+1hy, = inc o tr. Therefore
td is homotopic to inc o tr as wanted and this finishes the case r finite.

For r = oo we have M(A) = lim, M,(A), hence H,(M(A), M(M)) =
lim, H,(M,(A),M,.(M)) = H.(A,M) (cf. Exercise E.1.1.3). Note that
M(A) is not unital, however it is H-unital (cf. section 1.4). 0O

The general framework of Morita equivalence is as follows.

1.2.5 Definition. Let R and S be two unital k-algebras. They are called
Morita equivalent if there is an R-S-bimodule P, an S-R-bimodule @, an
isomorphism of R-bimodules v : P ®s @ = R and an isomorphism of S-
bimodules v: Q Qg P = S.

This implies that we have the following equivalence of categories:
Q ®r —: left R-mod — left S-mod (with inverse P ®s —),
— ®g P: right R-mod — right S-mod (with inverse — ®g Q),
Q ®r — ®r P: R-bimod — S-bimod (with inverse P ®s — ®s Q).
As a consequence P is projective as a left R-module and as a right S-module,
and similarly for Q.

1.2.6 Example. Let A be a ring, then A and M, (A) are Morita equivalent.
For R= A and S = M, (A), take P = A" (row vectors) and Q = A" (column
vectors).

1.2.7 Theorem. If R and S are Morita equivalent k-algebras and M is an
R-bimodule, then there is a natural isomorphism

H.(R,M) = H,(S,Q®z M ®g P).

Proof. First we show that the isomorphisms u and v can be supposed to
satisfy the following formulas:

(1.2.7.1)
qu(p®q) =v(g®p)d ,
pu(g®p) =u(p®q)p’, forall p,p'eP andall ¢,¢€Q.

In fact the first formula is a consequence of the second.
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As a consequence u (resp. v) becomes a ring homomorphism for the prod-

uct (p®q)(p'® ') =p®v(q®@p)q (resp. (¢®p)(¢ ®P) = q@u(p®q)p').
The two composite isomorphisms

u®id
PRsQ®rP—RQprP=P

1dQu
and PRsQRRrRP——PRsS=P

differ only by an automorphism a of P. Thus a can be considered as an
element of R* (= group of invertible elements of R) because tensoring with
idg gives Autp_gs(P, P) = Autg(R,R) = R*. In fact a is in the center of
R. Replacing u by au (which is still an isomorphism) makes the first formula
hold. The second formula follows immediately (cf. Bass [1968, p.60-62]).

From now on the isomorphisms u and v are supposed to satisfy (1.2.7.1).

There exist elements {p1,...,ps} and {p},...,p;} in P and {q1,...,qs}
and {q,...,¢;} in Q such that u(Zp; ® ¢;) = 1 and v(Xq; ® p;) = 1 be-
cause u and v are isomorphisms. For each n > 0 define v, : (M ® R®") —
(Q®r M ®g P,S®") by

Yn(m,ay,...,a,) =

Z (qjo ®mQpj, , U(qjl ® alpjz) yees U (an ® anpjo))

where the sum is taken over all sets of indices (jo, ..., jn) such that 1 < j, < s,
and define ¢,, : (Q ®r M ®g P,S®") - M ® R®" by

P (@M ®p,by,...,by) =
> (u(ph, ®q) mu(p®ak,),u(ph, ®bigk,) -, u (Ph, ®bnai,))

where the sum is taken over all sets of indices (ko, k1,kz,...,kn) such that
1<k, <t

When v and v satisfy (1.2.7.1) ¢ and ¢ are complex homomorphisms. The
composite ¢ is homotopic to the identity through a simplicial homotopy h
defined by

h; (maal,' . "an) = Z (mu (pjo ®q;co) U (p;co ®qjo) au (pjl ® Q;cl)q' ..
u (p;c,‘_l ® qji—l) au (pji+1 ® qLi-{-l) ’u (p;% ® q]z) ’ai+17 st ’an) ‘

where the sum is extended over all sequences (jo, . . ., j;) and (ko, . .., k;) such
that 1 < j, < s and 1 < k, < t. Verifying that the h;’s form a simplicial
homotopy is left to the reader. Similarly ¥¢ is homotopic to the identity. [
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1.2.8 Example. Let e be an idempotent (e? = e) in R such that R = ReR.
Then put S = eRe. These two algebras are Morita equivalent for P = Re and
@ = eR. One of the maps is simply the inclusion of S into R. For instance if
R = M,(A) and e = Ey, then S = A, ¢ =inc and ¢ = tr.

At first glance theorem 1.2.7 does not seem to be symmetric in R and S.
However, if one puts U = M ®g P, then M =2 U ®s @ and the homology
isomorphism becomes H,(R,U®sQ) = H.(S,Q®gU), which is a symmetric
formula.

1.2.9 Functoriality of Hochschild Homology. We already noted that
HH,(A) is functorial in the k-algebra A. In fact we can enlarge the category
of k-algebras with more morphisms as follows.

Let (k-ALG) be the category whose objects are unital k-algebras A and
such that a morphism from A to B is the isomorphism class of an A-B-
bimodule 4 Mp which is projective and finitely generated as a B-module (the
“ordinary” category of algebras over k is denoted (k-Alg)). Composition of
morphisms is by tensor product of modules: gNcosM g = (4Mp)®p(5Nc).

The functor (k-Alg) — (k-ALG) sends f : A = B to the isomorphism
class of 4 Bp with the A-module structure coming from f. In this category
the generalized trace map defines a morphism from M, (A) to A.

1.2.10 Proposition. Hochschild homology A — HH,(A) is a well-defined
functor from the category (k-ALG ) to the category of k-modules.

Proof. Let M = 4Mp be a morphism from A to B. Then the action
of A on M and the zero action of A on B defines a k-algebra mor-
phism A — Endp (M @ B) (not preserving the unit element). The two
k-algebras Endg (M @ B) and B are Morita equivalent: take P = M and
Q = (M & B)* = Homp(M & B, B). Hence the morphism from HH,(A) to
HH,(B) is, by 1.2.7, the composite

HH,(A) —» HH,(End(M)) = HH,(B) .
Checking that (M o N) = (N ® M), is a straightforward calculation. O

Remark. More generally, if V is a B-bimodule and 4 Mg a bimodule defining
morphism in (k-ALG), then there is defined an A-bimodule V' and a k-
module homomorphism H, (A, V') - H.(B,V). The module V' is f*(M ®p
V ®p M*). More details on Morita invariance can be found in Kassel [1989a].

In some instances (such as in theorem 1.2.15 below) it is helpful to be
able to deal with a non-commutative ground ring as follows.

1.2.11 HH Over Non-commutative Ground Ring. Let A be a not
necessarily commutative ring with unit and let S be a subring of A (so that
in particular A is an S-bimodule). By definition the group of n-chains Cj (A)



1.2 The Trace Map and Morita Invariance 21

is A®s A®s A...A®s (n + 1 factors A), which means A®s™*! factored
by the relation (aq,...,a,s) = (sag,...,a,) for any s € S and a; € A (this
explains the presence of the last ®g). For instance A®s = A/[A, S].

Remark that if S = k is commutative and central, then C5(A4) = C,(A).
It is straightforward to check that the Hochschild boundary map b is com-
patible with this equivalence relation so that there is a well-defined complex
(C3(A),b). Its nth homology group is denoted HHZ(A). It is sometimes
called relative Hochschild homology, but we will not use this terminology
here since it conflicts with 1.1.16.

1.2.12 Separable Algebras. By definition a unital k-algebra S is said to
be separable over k if the S-bimodule map u : S ® S°° — S splits. This is
equivalent to the existence of an idempotent e = Yu; @ v; € S ® S°P such
that Yu;v; = 1 and (s® 1)e = (1® s)e for any s € S (e is the image of 1
under the splitting map). Examples of separable algebras are: the algebra of
T X r-matrices, the group algebra k[G] where G is a finite group whose order
is invertible in k, a simple algebra over a field k whose center is a separable
extension of k.

The following is a slight generalization of theorem 1.2.4.

1.2.13 Theorem. Let S be separable over k. Then for any unital S-algebra
A there is a canonical isomorphism

HH,(A) = HHS(A) .

Proof. (Sketch). There is an obvious canonical epimorphism ¢ : C,(A) —
C5(A).

Using the idempotent e one can construct a splitting ¢ of ¢ and also a
homotopy from 1 o ¢ to id as in the proof of 1.2.4:

Y(ao,...,an) = Z V;00U; Q@ Uja1U @ ... ® Umanl; . O

2,5,0,...,m

1.2.14 Corollary. Let S be separable over k and A be a k-algebra. If, more-
over, S is flat over k, then HH,(S® A) =2 HH,(A) ® S/[S, S].

Proof. 1t is easily checked that C¥(S ® A) & C.(A) ® S/[S, S]. Therefore
theorem 1.2.13 yields

HH.(S® A)X HH?(S® A) = HH.(A)® S/[S,S] . O

This corollary applied to S = M,.(k) gives essentially the same proof as in
1.2.4.
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1.2.15 Theorem. Let A and A’ be unital k-algebras and let M be an A-A'-
bimodule. Denote by A M
=[5 ¥

the triangular matriz algebra. Then the two canonical projections from T to
A and A’ induce an 1somorphism HH,.(T) =< HH.(A) ® HH,.(A).

Proof. Let ida 0
-[% 4]
and
= 0 o0
0 dida |

Then the algebra S = ke + ke’ is separable over k (takee=e Qe+ ®¢€').
Let us show that the projection maps induce an isomorphism 7 : C3(T) =
C.(A)®C.(A’) on chains. The inclusion maps induce a morphism ¢ such that
mot = id. In fact L o ™ = id as well, since in C?(T) one has the following
. . . a; my

identity (with z; = [ 0 a ])

(3

0 0
(.TQ,...,.Tn) =<E|:Cg) O:l+[0 T;Z):lil,l‘l,...,l‘n)

0 m
]axla"'azn)'l'(l:o a,0:|€l,.’r1,...,1‘n)
0

]
N
m
—
o&
o O

= (age, . ..,ane) + (age’, ..., ane’) .

Applying Theorem 1.2.13 gives
HH,(T)= HHS(T)= HH.(A)® HH.(4') . O

Exercises

E.1.2.1. Morita Invariance Revisited.

(a) Let R be a unital k-algebra and let e be an idempotent in R. Suppose that
R = ReR and put S = eRe. Show that R and S are Morita equivalent
(e.s. R=M,(A) and S = A).

(b) Show that for any pair of Morita equivalent algebras (R, S), there exists
an integer r > 0 and an idempotent e € M, (R) such that eM,(R)e = S.

(c) Suppose now that R is projective over k {(e.g. k is a field). Show that
the functors H,(eRe,e(—)) form a family of 8-functors (in the sense of
Cartan-Eilenberg) which agree with H, (R, —) for n = 0. Conclude that
they agree for all n.
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E.1.2.2. Transitivity of the Trace Map. Let r and s be two positive
integers. Show that the composite

HH,(M,s(A)) = HH, (M (M,(A))) = HH,(M,(A)) = HH,(A)

is the trace map for rs x rs matrices.

E.1.2.3. Let A be a commutative k-algebra and let o be an invertible fi-
nite dimensional matrix with coefficients in A. Then (a~!,a) is a cycle in
C1(M(A)). Show that its class in HH;(M(A)) = HH,(A) is the class of
((det @)~!, det ).

It is sufficient to prove it for k = Z and A = Z[z;;,det™"] where det is
the determinant of the matrix (x;;). It is obvious for n = 1, then true for
diagonal matrices. Finally diagonialize the generic matrix.]

1.3 Derivations, Differential Forms

Derivations and differential forms are very closely related to Hochschild ho-
mology and also, as will be seen later, to Hochschild cohomology. We first
introduce the algebraic notion of derivation and study the action of inner
derivations. This gives rise to a link between the Hochschild boundary and
the Chevalley-Eilenberg boundary.

Then the module of Kahler differentials 2} « 1s introduced; it gives rise to
the module of n-forms {27, . The case of a polynomial algebra is emphasized.
We describe two maps which relate Hochschild homology with the module of
n-forms and show that, rationally, the last module is a direct factor of the
first.

Standing Assumptions.In this section A is a commutative and unital k-
algebra and M is a unitary A-module (considered sometimes as a symmetric
A-bimodule), except at the very beginning (1.3.1-1.3.5) where A need not be
commutative.

1.3.1 Derivations. By definition a derivation of A with values in M is a
k-linear map D : A — M which satisfies the relation

(1.3.1.1) D(ab) = a(Db) + (Da)b for all a,b€ A.

The module of all derivations of A in M is denoted Der(A4, M) or simply
Der(A) when M = A.

1.3.2 Inner Derivations. Any element u € A defines a derivation ad(u)
called an inner derivation:

ad(u)(a) = [u,a] = ua — au .
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This operation is extended to Cy,(A, M) by the following formula

ad(u)(ao, . ..,an) = Z (@oy. .., qim1, [U, 4], Qit1, ..., an).
0<i<n

It is easily checked that ad(u) commutes with the Hochschild boundary.

1.3.3 Proposition. Let h(u) : C,(A, M) — Cpi1(A, M) be the map of
degree 1 defined by

h(u) (ao,...,a,) := Z (=1)" (a0, ..., i, 8, i1, .-, an) -

0<i<n
Then the following equality holds:
bh(u) + h(u)b = —ad(u) .
Consequently ad(u). : H,(A, M) — H,(A, M) is the zero map.

Proof. Let h;(ag,...,an) = (ao,...,8i, U, Qit1,...,8n), and so h(u) =
> o<icn(—1)*h;. These maps h; satisfy the relations (1.0.8) of a presimpli-
cial homotopy except that d;h; — d;h;_1 is not zero but sends (ag,ay, .- .,ax,)
to (ao,a1,...,ai—1,—[u,a;],@it1,. .., as). Therefore h(u)b + bh(u) = doho —
dnt1hn + ¥.;(dih; — dihi—1) = —ad(u) which is the expected formula. The
last assertion is a consequence of lemma 1.0.9. a

1.3.4 The Antisymmetrisation Map e,,. Let S, be the symmetric group
acting by permutation on the set of indices {1,...,n}. Then by definition the
permutation o € S,, acts (on the left) on (ao,...,a,) € Cn(A, M) by

(1341) g (ao,al, .. .,an) = (ao,aa_l(l), Ag=1(2)y <+ aa-l(n)) .

Extending this action by linearity gives an action of the group algebra k[S,]
on C,(A, M). By definition the antisymmetrization element e, is

En 1= Z sgn (o)o € k[Sy] .
gESy,

We still denote by e, its action on C,(A, M). By definition the antisym-
metrization map
en: MQATA — C,(A, M)

sends the element ay ® a; A ... A a, to ex(ag,...,an).

In order to understand the behavior of the antisymmetrization map with
respect to the Hochschild boundary we need to introduce the Chevalley-
Filenberg map § : M @ A"A — M ® A"~ A which is classically given by the
following formula
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(1.3.4.2)

n
Sag®ar A Aan) =Y (1) [a0,ai] ® a1 A AGA... Aay
=1
+ Y ()P la®faia] Aai A AGA L AGA. . Aay .
1<i<j<n

Remark that this map uses only the Lie algebra structure of A (deduced

from its associative algebra structure) and the Lie module structure of M
(cf. Chap. 10).

1.3.5 Proposition. For any k-algebra A and any A-bimodule M the follow-
ing square is commutative

M®A"A — %  C.(AM)
) 1o
MeAa s Co_(AM).

In particular if A is commutative and M symmetric then boe, = 0.

Proof. The proof is done by induction on n. For n = 0 there is nothing to
prove. For n = 1, ; = id and b(ag,a1) = aoa; — ajag. On the other hand
Ep = id and 6(00,(11) = [ao,al] = apa; — a;ap, SO bEl = E()(S.

Suppose now that be, = €,_16. Put a = (ap,...,a,) and for any y in A
put (a,y) = (ag,...,an,y). We first remark that, with this notation and the
notation of Proposition 1.3.3, we have the relation

(13.5.1) eni1(e9) = (~1)h(y)en(a)
One gets
bent1(a,y) = (—1)"bh(y)en(a) by (1.3.5.1)
= (—=1)"(—ad(y) — h(y)b)en(a) by 1.3.3,
= (—=1)""ad(y)en(a) + (=1)""*h(y)en_16(a) by induction ,
= (—1)"*ad(y)en(a) + en(6(a),y) by (1.3.5.1)
= eq0(a,y)
If A is commutative and M symmetric then § = 0, whence the second
assertion of the proposition. |

1.3.6 Other Examples of Derivations. Let ¥ = R and let U C R” be
a non-empty open set. The algebra of C*-functions f : U — R is denoted
C>(U). For each i the partial differential operator 8/8z; : C*°(U) — C>*(U),
f > 0f/0z; is a derivation of C*°(U) with values in the same algebra.
Similarly let A = k[zy,...,z,] be the polynomial algebra on n vari-
ables. The algebraic partial differential operator 8/8x; is determined by
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(0/0z;)(x;) = 6;; (= Kronecker symbol) and the rule (1.3.1.1). Let dz, ...,
dx, be a set of indeterminates and let M = kdz; @ ... ® kdzx, be a free k-
module. Then the map d: A — M, da := (8a/0z;)dz, & ... ® (8a/0z,)dz,
is a derivation of A (da is called the formal derivation of a in this case).

Let A = ®nczAn be a commutative graded algebra. Define da, = na,
for a homogeneous element a,, € A, and extend d by linearity. Then d is a
derivation (sometimes called the Fuler derivation).

1.3.7 Universal Derivation. The derivation d : A — M is said to be
universal if for any other derivation § : A — N there is a unique A-linear
map ¢ : M — N such that § = ¢ od. It is constructed as follows. Let I be
the kernel of the multiplication p : A ® A — A. The algebra A ® A (and
hence I) is an A-bimodule for the multiplication on the left factor and on the
right factor. Let us show that the A-bimodule I/I? is symmetric, i.e. the two
A-module structures agree. As an A-module, [ is generated by the elements
1z —zQ®1, z € A. The difference a(1®z—2zQ®1) - (1Qz -z ® 1)a =
(a®@z—az®1)-(1Q@za—zQ®a)isequal to (1®a—-a®1)(1®z—z®1),
which is in IZ.

The map d : A — I/I? dz = class of (1® z — z ® 1) is obviously a
derivation. It is universal since for any derivation § : A — N, there is a unique
map ¢ = I/I? = N such that § = ¢od. It is given by ¢(1®z—z®1) = §(z).

1.3.8 Module of Kahler Differentials. In 1.1.9 we introduced the module
of Kahler differentials ‘Q}H . generated by the elements adb, for a,b € A. It

turns out that d : A — .Q}‘” , is the universal derivation. The isomorphism
I/1? =~ Q}Mk isgiven by (1®z —z®1) — dz.

1.3.9 Proposition. The canonical A-linear map
Hom (245, M) = Der(4, M), f+ fod

s an tsomorphism. In other words the functor Der s representable and rep-
resented by (2*.

Proof. This statement follows from the universality of .Q},‘I  shown in 1.3.7
and 1.3.8. a

1.3.10 Example: Polynomial Algebra. Let V be a free module over & and

let A=S (V) be the symmetric algebra of V. If V is finite dimensional with

basis z1,...,Zn, then one gets the polynomial algebra S(V) = k[z1,...,Z.].
Let us prove that there is a canonical isomorphism

S(V)@V'-\_-’.Qé(v)lk, a®v+—->adv.

Any derivation D on S(V) is completely determined by the value of D on V.
So the map S(V) = S(V)®V, vy... v, = Y. v1...0;... v, ®v; is a universal
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derivation. Hence by proposition 1.3.9 the S(V)-map Qé(vnk = S(V)eV
given by d(vy...vp) = Y . v1...0;...v, ®v;, an isomorphism.
In particular, as a k[zy,...,z,]-module, .(2,1{ Ik is generated by

zl,---vzn]
d:l‘l, e ,dIL'n.

1.3.11 The Module Qzl i of Differential Forms. By convention we put

Q%“c = A. The A-module of differential n-forms is, by definition, the exterior
product
Qﬁuc = Aﬁﬂ,{qk .

(Note that the exterior product is over A, not k.) It is spanned by the elements
apda; A ... Aday,, for a; € A, that we usually write agda, .. .da,.
For instance, if A = S(V'), then by 1.3.10 there is a canonical isomorphism

(1.3.11.1) D2y 2S(V) @A™V .

1.3.12 Proposition. For any commutative k-algebra A and any A-module
M the antisymmetrization map induces a canonical map:

En M4 .Qzlk - H,(A,M).

In particular if M = A it gives e, : 2, — HHn(A).

Proof. In the commutative case the map 6 of proposition 1.3.5 is 0. Therefore
the map €, : M @ A"A — H,(A, M) is well-defined (take the homology
in 1.3.5). In order to show that it factors trough M ® 2%k (where D =

AZ(Q}‘I,C)) it suffices to show that

en(mz,y,as,a4,...,0,) +en(my, z,a3,a4,...,an)
—en(m,zy,a3,a4,...,0,)

is a boundary. For n = 1 this element is precisely b(m,z,y). More generally
this element is equal to

—b (Z sgn (o)o. (m,z,y,as,a4,. .., an)> ,

o

where the sum is extended over all permutations ¢ € S,,4; verifying o(1) <
a(2). O

1.3.13 Remark. The proof of the existence of &,, which is given here,
is purely combinatorial. There is another one using the shuffle product in
Hochschild homology. This will be given in Sect. 4.2.

1.3.14 Lemma. Let m, : C,(A,M) > M ®,4 2Lk be the surjective map
gwen by my(ag,...,an) = aoda; ...da,. Then m, 0b=0.
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Proof. In the expansion of m,_1b(ag,...,a,) the element aga;da; .. .;l.c\zi
...da, appears twice: once from m,_1d;_; and once from m,_;d;. Since the
signs in front of it are different, the sum is 0. a

1.3.15 Proposition. For any commutative k-algebra A and any A-module
M the well-defined map

7o Hy(A M) - M ®4 QZM
is functorial in A and M.
In particular if M = A it gives 7, : HH,(A) — .Qzlk.
Proof. This is an immediate consequence of the previous lemma. O
The maps m, and e, are related by the following
1.3.16 Proposition. The composite map 7, o €, is multiplication by n! on

M ®4 Qzlk. So, if k contains Q, then M ®4 .Q:Ik is a direct summand of
H,.(A,M).

Proof. The equality m, 0 e, = nlid follows from aodas-1(1)...dag-1(n) =
sgn(o)apday . ..da, for all ¢ € S, and #S, = n!. O

Exercises

E.1.3.1 Let k be a field and let K be a separable algebraic extension of k.
Show that .Q}‘{Ik = 0, n > 1. [Show that any derivation is trivial and use
1.3.5.]

E.1.3.2 Let Ag be the commutative algebra A localized at the multiplicative
subset S. Show that Q= “Qzlk QR4 Ag = (.Q;‘Wc)g.

E.1.3.3 Let k,A and B be commutative rings and let ¥k -+ A — B be
homomorphisms. Show that there is an exact sequence

24, ® aB = Qpp — 1, = 0.
Let W be an A ® B-module. Show that
Q}&®B|k ®agp W = (inc ®a W) ® (Q}g“c ®pB W)
and that 0,14xB|k = Q}Uk &) .(2113“6.
E.1.3.4 Show that Der(A4, A) has a natural Lie algebra structure.

E.1.3.5 Show that doo = 0 in “Quluz is equivalent to: « is algebraic. Show that

Derz(R,R) is nonzero if one assumes the axiom of choice [cf. P. Dehornoy,
Un exemple d’élimination de I’axiome du choix, preprint).
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1.4 Nonunital Algebras and Excision

In order to understand how Hochschild homology behaves with respect to
extensions of k-algebras

0>I—>A—-A/I->0

we need a definition for Hochschild homology of nonunital algebras since in
general the two-sided ideal I has no unit. Though the Hochschild complex
makes perfect sense for nonunital algebras its homology is not the right one.
It has to be modified by “adding” a complex which is acyclic when A is unital
(proposition 1.4.5). The striking point is that the cyclic operator, which is
going to play a fundamental role in cyclic homology, comes in naturally.
With this definition at hand, one can ask when does the following long exact
homology sequence hold:

... HH,(I) » HHn(A) —» HH,(A/T) = HH,_,(I) ~ ...

When this happens for any A, the k-algebra I is said to satisfy excision.
This property can be translated into the existence of a Mayer-Vietoris exact
sequence.

The answer is the following: there is a weaker notion of ‘having a unit’, it
is ‘being H-unital’, which means essentially that the bar complex is acyclic
(1.4.6). Then the main theorem of this chapter, which is due to M.Wodzicki,
asserts that being H-unital and satisfying excision are equivalent properties
(1.4.10).

The philosophy is that H-unital algebras behave like unital algebras with
respect to homology. For instance one proves that H-unital algebras satisfy
Morita invariance (1.4.14).

This section is taken out of Wodzicki [1989].

1.4.0 Homology Functors for Nonunital Algebras. There is a standard
way to extend a functor F' from unital algebras with values in abelian groups
to the category of not necessarily unital algebras (nonunital algebras for
short).

Let I be a nonunital k-algebra. One can form a unital k-algebra I, as
follows. As a k-module I, = k & I and the multiplication structure is given
by (A, u)(i,v) = (A, Av + up + uv). The unit is (1,0) and it is customary to
write A -1+ u for (A, u).

By definition the extension of F' to nonunital k-algebras is given by

F(I) := Coker(F(k) — F(I,)) .

Note that the map k — I, A — (A,0) is unital.
Suppose that F' commutes with the product of unital algebras, that is
the map F(A x A') - F(A) x F(A’) induced by the two projections is an
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isomorphism. Then the two definitions of F'(A) (A as a unital algebra and as
a nonunital algebra) agree. Indeed there is an isomorphism of unital algebras
Ap ZkxA A 14+u— (M- 14 + u) compatible with the inclusions of k
which gives

Coker(F(k) — F(A4)) = Coker(F(k) — F(k) x F(A)) = F(A).

1.4.1 Hochschild Homology for Nonunital Algebras. Since HH,, is a
functor from unital algebras to k-modules one can extend its definition to
nonunital algebras as above:

HH,(I) := Coker(HH,(k) - HH,(I)) .

Since H H,, commutes with the product (cf. Exercise E.1.1.1), this definition
coincides with the usual one when I is unital.

1.4.2 Reduced Hochschild Homology. Suppose that the map k — A is
injective and let k[0] be the complex consisting in k in degree 0. Then the
reduced Hochschild complez is defined by the following exact sequence, where

(A® 2%, b) is the normalized Hochschild complex (cf. 1.1.14),

—Q* —Q*
0 - k[0] = (A®A ,b) - (A®A ’b),ed 0.
Remark that the reduced Hochschild complex is the same as the normalized
Hochschild complex except that the module A in degree 0 is replaced by
A = A/k. The homology of this reduced complex is called reduced Hochschild
homology and denoted HH,(A). From the above exact sequence one obtains
an exact sequence in homology

(1.4.2.1) 0— HH(A) = HH,(A) = k — HHy(A) = HHy(A) - 0,

and HH,(A) = HH,(A) for n > 2.

Suppose that A is augmented, that is A = I, and therefore A = I. Then
it is immediate that HH,(I;) = HH,(I) with the definition of HH,(I)
given in 1.4.1. On the other hand the Hochschild complex (C,(I),b) (resp.
the bar complex (C.(I),b')) described in 1.1.1 (resp. 1.1.11) is well-defined
since it does not use the existence of a unit.

1.4.3 Naive Hochschild Homology and Bar Homology. It will prove
useful to introduce the following homology theories. For any k-algebra I (uni-
tal or not) let HHV(I) = H,(C.(I),b) be the “naive” Hochschild homol-
ogy. If I is unital, then HH?*V(I) = HH,(I). For any k-module V the com-
plex (V ® C,(I),1®¥') is denoted C**(I; V) (or simply CPa*(I) if V = k)
and its homology is HP*'(I; V).



1.4 Nonunital Algebras and Excision 31

1.4.4 Proposition. For any not necessarily unital k-algebra I there is an
exact sequence

... = HH™V(I) —» HH,(I) - H®* (I) - HH™Y(I) - ...

Proof. The group HH,(I) is the homology of the complex (I+ ® I®* b)yeq.
For n > 0 the chain-module I, ® I®" is isomorphic to I®"*! @ (k® I®"). For
n = 0 it is just . Let us identify the boundary map on this decomposition.
On the component I®"*! it is simply b and the image is in the component
I®™. For the component k ® I®" the image of (1,ai,...,a,) is
(al, e ,an) - (1, aijaz,ag, .. .an) +...+ (—1)"_1(1,a1, e ,an_lan)
+(=1D)™(an,a1,...,an-1) -

This sum can be written as the sum of two terms:
(a1y... a,) + (=1)™(an,a1,-..,an-1)
which lies in I®" and
—(1,a102,03,...,8,) + ... + (=1)""'(1,a1,...,an_1an)

which lies in k ® I®"~!. Define the operator ¢t on I®" by t(ay,...,an) =
(=)™ Y(an,ai,...,a,_1) and identify k®I®" with I®". Then the boundary
map [®"+1 @ [®" — [®" @ [®"~1 takes the matricial form

b 1-t
0 -V

1.4.5 Proposition. The complez (I ® I$*,b)req is isomorphic to the total
complez of the bicomplex CC(I){2}:

So we have the following

ent+l JOn+1

b —b’
1-t

®n ——  qen

b —b’

b —b’
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Therefore Hochschild homology of the nonunital algebra I is the homol-
ogy of CC(I){?}. Since (C,(I),b) is the first column of this bicomplex and
(Cy(I),—b") is the second one, there is an exact sequence of complexes

0 = (C.(I),b) = Tot CC(I)# - (C,.(I),-¥)[-1] = 0
from which proposition 1.4.4 follows by taking the homology.

(1.4.5.1) We already noted that if I has a unit then (C.(I),b’) is acyclic
(cf. 1.1.12). So in the unital case naive Hochschild homology coincides with
Hochschild homology. However it may happen that this is still the case even
if I has no unit, and this justifies the following

1.4.6 Definition (M. Wodzicki). The not necessarily unital k-algebra I is
said to be homologically unital, or H-unital for short, if for any k-module V'
the bar complex CP>(I; V) = (V® C.(I),1®V') is acyclic with 0 augmenta-
tion, i.e. HP>(I;V) = 0.

Remark that if I is flat over k, then, by the universal coefficient theorem,
it suffices that (C.(I),b’) is acyclic. Of course unital algebras are H-unital
(cf. 1.1.12). In fact the existence of a left (or a right) unit suffices to imply
H-unitality (cf. Remark following 1.1.12). Here are more examples.

1.4.7 Definition. The k-algebra I is said to have local units if for every finite
family of elements a; € I there is an element u € I such that ua; = a;,u = a;
for all s.

For instance if A is unital, then the algebra of matrices M(A4) = colim,, M,,(4)
has local units but is not unital.

1.4.8 Proposition. Algebras with local units are H-unital.

Proof (Sketch). Start with a cycle in the bar complex. Since it involves only
a finite number of elements in I, there exists a unit for these elements. It can
be used to construct a homotopy (inductively) as in the proof of 1.6.5. O

1.4.9 The Excision Problem. Let A be a (not necessarily unital) k-algebra
and I a two-sided ideal such that A — A/I is k-split. Then there exists a
natural map from the homology of I to the relative homology of A modulo
I (cf. 1.1.16)

HH,(I) - HH,(A,I) .

The ideal I is said to be ezcisive (or to satisfy excision) for Hochschild
homology if this natural map is an isomorphism in all such situations. It
implies that the following sequence is exact

... HH,(I) > HH,(A) » HH,(A/T) » HH,_,(I) > ...

Similar excision properties can be stated analogously for HH"*"V and H®?",
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1.4.10 Theorem (Wodzicki’s Excision Theorem). The following are
equivalent

(a) I is H-unital,

(b) I is excisive for Hochschild homology.

Proof. The comparison of the exact sequence of proposition 1.4.4 for I with
the similar exact sequence for the pair (A4, I) implies that excision for HP*
and HH®" implies excision for HH,. We first prove excision for HP*", The
method of proof is quite interesting and will be used several times in this
section. Since the aim is to prove the acyclicity of a certain complex, the
point is to show that this complex can be viewed as the total complex of a
certain multicomplex. Then it is sufficient to verify that this multicomplex is
acyclic in at least one direction.

1.4.11 Proposition. If I is H-unital, then I is excisive for HP*',

Proof. The point is to prove acyclicity for the complex L, = Ker(CP>"(A4) —
CP(A/I)). There is defined the following decreasing filtration on L.:

F,L,, = linear span of {(ai,...,a,)| at least n — p a;’s belong to I} .

The associated spectral sequence is in the first quadrant and we will show

that E;q =0.
In order to compute the complex (EJ ,d°) we introduce the following
notation. Let n = (ng, ..., n;) be an (I+1)-tuple of integers such that ng,n; >

0 and the others are > 0. Put |n| = ng + ...+ n; and I(n) = . For a given n
let Y, (n) denote the total complex of the following multiple complex

((4/D®) no — |nf] @ C2* (D) @ ... & C* (1))

Using the k-splitting A = I ® A/I it can be shown that the complex (Eg*, d®)
is canonically isomorphic to @Y, (n) where the sum is extended over all n such
that |n| = p and I(n) > 1 (rearrange the entries).

Let us show how it works on an example. Let u; € I and s; € S = A/I.
The element = (s, ug, us, 54, us, us) is in FpLg and so defines an element
in FL¢/F1Ls = E3,. It is the image, under the canonical isomorphism, of
y = (81, 54) ® (uz,u3) @ (us, ug). The image of = under V' is

(Sluz,%, 84,Us,ue) - (Sl,uzus, 34,u5,u6) + (31,U2»U334au5,u6)

— (81, u2,u3, S4us, ug) + (S1, Uz, Us, S4, UsUs) .

But (sju2,us, s1,us, us) (and some of the other terms) is in F}Ls and so it
has trivial image in F3Ls/F) Ls. Finally there remains only

“(31,UQU3, 34’u57u6) + (317u2au3a 547“’5“6)

whose image under the canonical isomorphism is
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—(s1,84) ® (ugu3) ® (us, ue) + (51, 54) @ (u2,u3) ® (usug) .

This element is precisely b'(y) in the multi-complex.
Since I is H-unital, the complex Y. (n) is acyclic for any n and so E}, =0
as claimed. In conclusion the abutment of the spectral sequence is 0, that is

H,(L.) = 0. O

We now prove excision for HH"?",

1.4.12 Proposition. If A — A/I is k-split and if I is H-unital, then I is
excisive for HH",

Proof. As before we identify A with 7@ A/I. The kernel M, = Ker (Cs(4) —
C.(A/I)) carries the following filtration :

FyMpq = linear span of {(ao, ..., ap4+q) | at leastg + 1 a;’s belong to I} .

The associated spectral sequence is in the first quadrant. It is immediate that
(ES,,do) = (C«(I),b). For p > 0 there is a decomposition

BR. = (4/1)® ® CY*(I)[-1] ® DS, ,

where D0 = linear span of {(ao, ..., aptq)| there exists 0 < j<i<p+gq
such that a; € A/I aj € I'}. We will show that =0 forp > 0.

Denoting by D!, the homology of (D9 o d°), 1t comes

(1.4.12.1) E}), = HX (I;(A/D®F) ® D;, .
In order to compute D,l,* we introduce a new filtration:

'FsD}, s = linear span of {(a, ..., ap4rys)| there exists p+s <1 < p+r+s
such that a; € A/I}.

The associated spectral sequence converges to D, . Its E’-term (a
graded complex) can be identified with @I®7[-1] ® Y (n) where the direct
sum is extended over all n such that |n| = p,!(n) and ng4; > 1.

Since I is H-unital, the homology of this direct sum is trivial and hence
DL, =o.

In 1.4.11 we have proved that HP*"(I) = 0. An easy generalization of this
proof shows that, in fact, H,E’“(I ; V) = 0 for any k-module V. In particular
HY*(I; (A/1)?") = 0.

Summarizing, from (1.4.12.1) we get

E;*=O for p>0.

In conclusion the edge map (C,(I),b) = (E3,,d°) = M, induces an isomor-
phism in homology as wished. O

1.4.13 End o_f the Proof of Theorem 1.4.10. As remarked earlier, exci-
sion for HH™*"V and H®*" implies excision for HH.
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It remains to show that b) = a). Consider the k-algebra I & V with
multiplication given by (u,v)(v/,v') = (uu/,0). Then HP*>'(I;V) is a di-
rect summand of HH,(I & V). The excision property for I implies that
HP* (I;V) =0. O

1.4.14 Theorem (Morita Invariance of Hochschild Homology for
Matrices over H-unital Algebras). Let I be an H-unital k-algebra.
Then for any integer v (including r = o) the algebra of matrices M, (I)
is H-unital and the maps tr, : HH, (M, (I),M.(M)) - H.(I,M) and
inc, : H,(I,M) —» H,(M.(I),M.(M)) are isomorphisms and inverse to
each other.

Proof. Let us first prove that M,(I) is H-unital. Put B = M, (k) so that
M ()= T®M,(k)=I®B.Let M = I ® (B/k - 1) be the module which
is embedded in the exact sequence

0=+I-I®B—+M—-0.
For any k-module V the complex C?* (I ® B;V) is filtered by
F,C2 (I ® B; V) = linear span {(sy, ..., sn;v)| at least g s;s belong to I } .

Then there is a natural identification Gr,C®* (I ® B;V) = CP*(I x M;V)
where, in the semi-direct product I x M, M? = 0. Counting the number of
entries which lie in M gives a decomposition C?*'(I x M; V) = &2,CP>"(1).
Our aim is to show that the homology of C?2*(1) is 0.

Again we filter it by

F,CE (1) = linear span {(r1,...,m;v)|r; € [ forj < q—1} .

The associated spectral sequence Eﬁq = Hp4(CP*" (1)) can be computed
from Ep, = C*(I; (B/k-1)@V)®Cp%,_, (1-1)[l-1], where C2¥_, (I-1)[I-1]
is viewed as a trivial complex concentrated in dimension [ — 1.

Since I is H-unital by hypothesis, C®2(I; (B/k-1)) is acyclic and therefore
E}, = 0. Whence H,(C?*(I)) = 0 and finally H** (I ® B;V) = 0, that is
I® B = M,(I) is H-unital.

We now turn to the proof of the Morita invariance. The morphism of split
extensions

0 — I — I — k — 0

\ { \J
0 — M, () — M (Iy) — M (k) — O

leads to a commutative diagram of exact rows

0—  HHJ() — HH(I,) —  HH() —0

{ 1 {
0 — HH,(M.,(I) — HH.WM.(I;)) — HH.M,.(k)) —0
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since I is H-unital (apply theorem 1.4.10). Morita invariance for H-unital
algebras follows then from Morita invariance for unital algebras (cf. 1.2.4).
The proof for r = co follows by taking the inductive limit. O

Exercises

E.1.4.1. Let k[e] be the algebra of dual numbers, that is €2 = 0. Let I be
the ideal ek[e]. Show that HP2"(I) # 0 (i.e. I is not H-unital).

E.1.4.2. Show that if the nonunital k-algebra I satisfies I? # I then the
Morita invariance for matrices does not hold.

E.1.4.3. Let g be a Lie algebra over k. Let U(g) be its universal enveloping
algebra and I(g) the augmentation ideal. Show that I(g) is H-unital if and
only if H,(g,k) = 0 for all n > 0 (cf. Chap. 10 for these notions).

E.1.4.4. By definition the cone of k is the ring Ck of infinite (countable)
dimensional matrices (a;;), 1 < ¢, j, having only a finite number of elements
in each column and in each row. For any k-algebra A the cone of Ais CA =
CkQ®A. This algebra contains the algebra of finite dimensional matrices M(A)
as a two-sided ideal. The quotient SA = CA/M(A) is called the suspension
of A.

(a) Show that M(A), CA and SA are H-unital whenever A is H-unital
(note that M(A) is not unital even when A is).

Suppose now that A is unital.

(b) Show that HH,(CA) = 0 and that HH,(SA) = HH,_;(A).

(c) Let

0 1

T = 0 1 eCA

and 7 its class in SA. Show that 7 is invertible so that Alz,z~!] — SA,
z — 7 is well-defined. Show that the induced homomorphism in Hochschild
homology is surjective.

(d) Using the results of Sect. 4.2, show that the product by
z € HH, (k[z,z™"))

defines a map HH,,_1(A) — HH,(A[z,z~!]) which is inverse to the surjec-
tive map described in c) (cf. Connes [C, II Cor. 6], Wodzicki [1989], Feigin-
Tsygan [FT]).

E.1.4.5. Mayer-Vietoris sequence for Hochschild homology. Let

A —— B

| Ls

C —— D
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be a Cartesian square of unital k-algebras with f surjective and k-split. Show
that if Ker f is H-unital, then there is a long exact sequence

.. HH,(A) = HH,(B) ® HH,(C) — HH,(D) — HH,_1(A) — ... .

E.1.4.6. Show that the excision theorem is true under the hypothesis A and
A/I are H-unital (cf. Wodzicki [1989)).

E.1.4.7. Show that theorem 1.2.15 is true under the hypothesis A is H-unital
(cf. Wodzicki [1989)).

1.5 Hochschild Cohomology, Cotrace, Duality

In this section we give an account of Hochschild cohomology. It is essentially
a translation of the definitions and results of the previous sections in the
cohomological framework; therefore we omit most of the proofs. On top of
that we treat the pairing between homology and cohomology, which gives
the most general definition of the residue homomorphism. The last part is
concerned with the case of topological algebras, which is easier to deal with
in cohomology and which is important for applications.

Note that the seminal article [C] of Connes is written in this framework.

1.5.1 Definition. Let A be a k-algebra and M an A-bimodule. Hochschild
homology was shown to be the homology of the complex M ® 4.CP2"(A),
where CP*(A) is the bar resolution of A (cf. 1.1.11 and 1.1.12). So one defines
Hochschild cohomology of A with coeflicients in M as

H™(A,M) = H,(Hom4-(C?*(A), M)) .
The coboundary map 8’ in the Hom-complex is given by
B'(¢) =—(-1)"¢o¥

for any cochain ¢ in Homa.(CE**(A), M). Explicitly, such a cochain ¢ is
completely determined by a k-linear map f : A®™ — M. The relationship is
given by

é(ao[a1].-.|an] @ns1) = aof (a1,...,an) QGny1 -

Then the formula for the coboundary map is

(1.5.1.1)

ﬁ(f) (ala""an+1) = alf(a2,---,an+1)
+ Z (=1)'f(a1,. .-, Qiit1, - -, Qn1)

0<i<n+1
+ (_1)n+1f (a'la ey an) Gn41 -
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(Compare with the map b in the homological framework, cf. 1.1.1). Hence
H™(A, M) is the homology of the complex (C™(A, M), 3) where C™(A4, M) =
Homy (A®™, M).

The cohomological groups (in fact k-modules) H"(A,M) are Z(A)-
modules where Z(A) is the center of A. In particular if A is commutative,
then they are A-modules.

For fixed A, H"(A, —) is a functor from the category of A-bimodules to
the category of k-modules (or Z(A)-modules as wished).

Any k-algebra homomorphism f : A’ — A defines an A’-module structure
on M, denoted f*M, and a map

f*:H"(A,M)— H"(A, f*M) .
So f — f* is contravariant.

1.5.2 Low-dimensional Computations, Derivations. For n = 0,
HOY(A, M) is the subgroup of invariants of M,

HAM)=M*={meM|am=ma forany a in A}.

For n = 1 a 1-cocycle is a k-module homomorphism D : A — M satisfying
the identity

D(aa’) = aD(a’) + D{(a)a’, for a and da' €A.

Such a map is called a derivation (or sometimes a crossed homomorphism)
from A to M and the k-module of derivations is denoted Der(A4, M) (cf.
1.3.1). It is a coboundary if it has the form ady,(a) = [m,a] = ma — am
for some fixed m € M; ad,, is called an inner derivation (or sometimes a
principal crossed homomorphism). Therefore

H'(A, M) = Der(A, M)/{inner derivations} .

It is sometimes called the group of outer derivations. In the particular case
M = A the module H*(A, A) is in fact a Lie algebra with Lie bracket given
by [D,D'| = Do D' — D' o D. Indeed it is immediate to check that [D, D'] is
a derivation and that, if D' = ad,, for some u € A, then [D,ad,] = adp(y)-.

1.5.3 Abelian Extensions of Algebras and H?. An abelian extension
of Aby M

(E) 0-M->E—>A-0

is an extension of associative k-algebras such that the sequence is split over
k (ie. E 2 M & A) and M? = 0. Then M inherits the structure of an A-
bimodule. In fact, if we denote by s : A — E the section corresponding to
the k-splitting of E, then a- m - a’ = s(a)ms(a’) (product in E).
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Two such extensions (E) and (E’) with A and M fixed are said to be
equivalent if there exists an algebra morphism ¢ : E — E’ which commutes
with idps and id4,

0O - M - E - A = 0

| i I
0 - M - E =5 A 5 0

For a fixed A-bimodule M one considers the set of equivalence classes of ex-
tensions of A by M for which the A-bimodule structure of M is the prescribed
one.

Any 2-cocycle f : A®2 — M gives rise to such an extension (E) by the
following procedure. As a k-module £ = M & A. The product law is given
by (my,a1)(mz,az) = (miag + ayma + f(a1,az),a1az2). It is a straightfor-
ward computation to check that the cocycle condition for f is equivalent to
associativity of the product law. The induced A-bimodule structure of M is
obviously the former one.

1.5.4 Theorem. Let A be a unital k-algebra and M be an A-bimodule. The
construction described above yields a canonical bijection

H?(A, M) = Ext(A, M) .

Proof. We only sketch the proof since it is to be found in many textbooks
(cf. [CE], [ML], Bourbaki [1980], Brown [1982]).

The trivial 2-cocycle gives rise to the semi-direct product M x A (i.e.
(mq,a1)(ma,az) = (miay + aymy,ajasz)). Suppose that the 2-cocycle f is
modified by a boundary: f' = f—8(g) where g is a 1-chain. Then it can easily
be shown that the two extensions (E) and (E'), corresponding respectively
fo f and f', are equivalent. The equivalence is given by E — E’, (m,a)
(m + g(a),a). This shows that the map from H? to £xt is well-defined.

To prove the bijection one constructs a map the other way as follows.

Starting with a k-split extension (E) one computes the product (0,a;)
(0,a2) which is of the form (f(a1,a2),a1az). Associativity in E shows that f
is a 2-cocycle. Two equivalent extensions are related by a map M®A — MPA

of the form
d _ ZdM g
T 0 ddy |

where g : A = M is a 1-chain. One checks that the difference of the two
cocycles is precisely 8(g), so the map which associates [f] to the class of (E)
is well-defined. O

An interpretation of H3(A, M) is given in Exercise E.1.5.1.
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1.5.5 The Particular Case M = A*. Notation. For M = A the groups
H™(A, A) have been extensively studied in the literature because they are
related to deformation theory. But one should note that they are not functors
of A. However if M = A* = Homg(A, k), then the groups H"(A, A*) are
indeed functors of A. This case is particularly important for our purpose since
it will give rise to cyclic cohomology. The A-bimodule structure of A* is given
by (afa’)(c) = f(d'ca), a,a’,c € A. The cochains can be described as follows.
Any cochain f € C™(A, A*) is equivalent to a k-linear map F : A®"*! — k,
F(ag,a1,...,an) = f(ai,...,an)(ao). With this notation the coboundary of
F is precisely 3(F) = Fob (up to sign), where here b is the classical Hochschild
boundary. So finally C*(A, A*) = Hom(C(A), k).

When no confusion can arise we write C™(A) instead of C™(A, A*) and
HH™(A) instead of H"(A, A*).

When A = k one has HH(k) = k and HH™(k) = 0 for n > 0.

It will prove useful later to consider more general A-bimodules of the form
A* ® L where L is simply a k-module. Any cochain with values in A* ® L is
then equivalent to a map A®"*! — L.

1.5.6 Cotrace Map and Morita Invariance. The functors H*(—, —) are
Morita invariant in the sense of Sect. 1.2. Let us make this explicit in the case
of matrices (with notations of Sect.1.2). The inclusion maps A — M, (A)
and M — M, (M) induce a natural map

inc” : H (M (4), M,(M)) — H™(A, M)
as follows. For F : M, (A)®" — M, (M) we define inc*(F) : A®™ — M by
inc*(F) (a1,...,an) = F(E},...,E{T)) €M,

(i.e. the (1, 1)-entry of the image in M, (M)).

There is defined an explicit map the other way round, called the cotrace
map, as follows. Let f € C"(A, M) and let ay,...,an be in M, (A). Then
F(ay,...,a,) is a matrix in M,.(M) whose (3, j)-entry is

> F(01)iizs (@2)iig 5+ (@n)ins)

where the sum is extended over all possible sets of indices (72,13, ... ,in). The
map of complexes C*(A, M) — C*(M,(A), M.(M)), f — F induces the
cotrace map

cotr: H*(A,M) — H* (M,(A),M.(M)) .

The cotrace map and inc* are isomorphisms and inverse to each other.

1.5.7 Normalized Complex. Suppose that A is unital. Then the reduced
complex —C-*(A, M) is the subcomplex of C*(A, M) made up of the maps f
which vanish on elements (ag, ..., a,) such that one of the a;’s (i # 0) is 1.

. . i . .. .
The inclusion C < C* is a quasi-isomorphism.
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1.5.8 Ext-interpretation. If A is unital and projective over k, then Hoch-
schild cohomology can be interpreted in terms of derived functors (cf. [CE]),

H™(A, M) = Ext". (A, M) .

1.5.9 Duality. Let M and M’ be two A-bimodules. The evaluation of
cochains on chains is the map

C™(A, M) x Cp(A,M') = M ® 4eM’,
given by
(f;(m'ya1,...,a.)) = f(a1,...a,)®@m'.
Since we tensored over A° in the module range, it is immediate to check that

(B(f),x) = (f,b(x)), fEC™AM), z€Cnpi(AM).

Therefore, restricted to {cocycles} x {cycles}, the evaluation map induces a
pairing (called sometimes the Kronecker product)

(1.5.9.1) (=, =) H" (A M) Hy(AM) 5 M® g M.
Remark that the tensor product on the left can be taken over the center Z(A).
For n = 0 this pairing is the surjection map M ® Z(A)M' S M® M.
For n = 1 and A commutative, let D be a derivation of A in M and let
(D) be its class in H'(A, M). Then, for M’ = A, the pairing
(= =) : H'(A, M) ® a2y, = M4 = Ho(A, M) is given by
(D)®adbw— aDb .

In the particular case M = Hom(P, P), where P is a finitely generated
projective k-module, the composite

(=, =) : H"(A,Hom(P, P)) ® z(a) HH,(A) = (Hom(P, P)) , — k

is called the residue homomorphism. Suppose further that A is commutative
and that P = A/I for some ideal I. Setting [(I/I?)] = Homp(I/I?, P) one
sees that there is a natural map

n@()[(]/lz)]@" — H*(A,Hom(P, P)) .

Combining this map with the residue homomorphism and the antisym-
metrization map &, (cf. 1.3.4) one gets the residue symbol:

@ [(1/1%)1°" © 2y — k.

The next two results concern the behavior of the Kronecker product under
change of algebras. Let g : A’ — A be a map of unital k-algebras. It induces
g« in homology and g* in cohomology. For any f € H"(A, M), g*(f) lies in
H™(A', M) and for any 2’ € HH,,(4’), g«(z') lies in HH,(A).
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1.5.10 Proposition. For any g, f and z’ as above there is an adjunction
formula

(9°(f),2") = (f.9:(c")) € My = My .
Proof. Applying the definition of the Kronecker product one gets

(g"(£),2') = f 0 g®" (@) = f(g:(z)) = (f,9:(z)) - 0

This adjunction formula admits the following variation which allows us to
extend the previous proposition to the category (k-ALG) described in 1.2.9.

1.5.11 Proposition. (Trace-cotrace adjunction formula). Let A be a unital
k-algebra and M an A-bimodule. The trace and cotrace maps are related by
the following adjunction formula:

(cote(f),2') = (f, ta")) € Mo
for fe H*(A,M) and z'e€ HH,(M.(A4)).

Proof. One first remarks that, a priori, the left-hand side of the formula takes
values in M, (M) 4, (a)- But this last module is isomorphic to M4 via the
(ordinary) trace map.

Let (g, ..., 0n) € M (M)®"*! and let F = cotr(f) (cf. 1.5.6). By defi-
nition one gets

cotr(f) (ao,-..,an) = tr(aoF (ay,...,an))
= Z (ao)ioil f ((al)iliz RERE (a")inio)
= f(tr(ao,...,on)) . a

1.5.12 Hochschild Cohomology of Topological Algebras. Suppose
that k is a topological ring (the main examples for applications are ¥ = R and
C) and let A be a topological k-algebra (for example: a C*-algebra). Then we
restrict ourselves to continuous multilinear maps f: Ax ... x A= A™ — k,
that we call continuous (or topological) cochains: f € Cf,,(A). The cobound-

ary map b is as in (1.5.1.1), and obviously b(f) € C[st'(A). Therefore we
get a new complex C}, (A) and a family of cohomological groups denoted
HHY,,(A). When it is obvious from the context that one is working with
the topological algebras and continuous maps, the subscript ‘top’ is very of-
ten removed. More information and applications will be treated in Sect. 6 of
Chap. 5.

Remark that it is more difficult to define continuous Hochschild homology

as this requires to use a topological version of the tensor product.
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Exercises

E.1.5.1 Interpretation of H3(A, M). A crossed bimodule is an exact se-
quence of k-algebras

0oM—oaC-5BosA50

together with a B-bimodule structure on C such that

— the sequence of k-algebras is split as a sequence of k-modules,
— B and A are unital and the surjection preserves the unit,
—¢(b-c-b)=bo(c)V/, ce C, bV € B,

-d(c)-d =cd =c-¢()Ve,d €C.

(a) Show that MC = CM = 0 (in particular M2 = 0) and that there is a
well-defined A-bimodule structure on M.
Fix A and the A-bimodule M. A morphism of crossed bimodules is a
commutative diagram

0 5 M 5 C % B 5 4 5 0

| vl Bl |
0> M > ¢ 5 B 5 4 5 0

such that v and § are compatible with the B-module structure of C and
the B’-module structure of C’. On the set of crossed bimodules with fixed
A and M one puts the equivalence relation generated by the existence of
a morphism. The set of equivalence classes is denoted Xmod(A4, M).

(b) Prove that there is a canonical bijection H3(A, M) = Xmod(4, M).
(To construct the map in direction —, take B = T'(A), the tensor algebra
over A. In the other direction, express the associativity in B to construct
a 3-cocycle. Compare with Kassel-Loday [1982] in the framework of Lie
algebras.)

E.1.5.2. Lie-bracket on H*(A, A). For f € C™(A, A) and g € C™(A, A)
one defines “composition at the ith place” to be fo,g € C™+"~1(A4, A):

faig (ala .. ‘aam+n—1)

= f (a17 ceey@i-1,9 (aia v aai+n—1) y Bigny - -aa'rn+n—l) .
Define

fog:=> (-1 V5.9 and [f,g] = fog — (-1)m"V-Dgsf
i=1

(a) Show that 8(f) = —[f, u], where p: A® A = A is the product map
and B as in 1.5.1.

(b) Show that the bracket [—, —] induces on H*(A, A)[1] a structure of
graded Lie algebra. Check that on H!(A, A) = Der(A) it coincides with the
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Lie algebra structure of derivations [see M. Gerstenhaber, The cohomology
structure of an associative ring, Ann. Math. 78 (1963) 267-288].

E.1.5.3. Let A be a k-algebra which is projective as a k-module. Show that
there is a split exact sequence

0 — Ext(HH,_,(A), k) » HH"(A) - Hom(HH,(A),k) > 0.

E.1.5.4. Let A be a commutative k-algebra, and M an A-algebra. Show
that there exists a graded product on H*(A,M). Let D;, 1 < ¢ < n, be
derivations of A with values in M, and let (D1Ds...D,) be the product of
their homology classes (this is an element of H"(A, M)). Show that

<(D1D2 .. Dn) y€n (d(l?l .. d.’L‘n)) = det ([D, (.Z‘])]) , T; €A,

where det is the determinant function (cf. Lipman [1987, Cor.1.10.3]).

1.6 Simplicial Modules

When A has a unit element, the family of modules C,,(A, M), n > 0, is an
example of what is called a simplicial module. A large part of what has been
done in the previous sections works out perfectly well for simplicial modules.
We give other examples and introduce the notion of shuffles. It is used in
the computation of the homology of the product of two simplicial modules.
This is the Eilenberg-Zilber theorem. More on simplicial theory is done in
Appendix B.

1.6.1 Definition. A simplicial module M. (or simply M) is a family of k-
modules M,,, n > 0, together with k-homomorphisms

di M, > M,_1, 1=0,...,n, called face maps and
$i: My, —> My, 1=0,...,n, called degeneracy maps,

satisfying the following identities:

didj=dj_1di for 1<7,
8;8; =sjp18; for 1<,
(1.6.1.1) sj_1d; fori <y
diS]‘Z ZdM fori:j, Z=]+1,
S]‘di_l fOI‘i>j+1.

A morphism of simplicial modules f : M — M’ is a family of k-linear maps
fn @ M, = M] which commute with faces and degeneracies: fr,_1d; = d; fr
and fn418; = s; f, for all ¢ and all n.



1.6 Simplicial Modules 45

A paradigm for simplicial modules is given by M,, = L ® A®™ where L
is an A-bimodule (the particular case L = A gives M,, = A®"*!) and the
formulas:

d; (agy ... an) = (ap,...,QiGi41,...,a,) for 1=0,...,n—1,
(1.6.1.2) dy (ao,.--,an) = (@nGo,a1,--.,8n-1) ,

s;(ao,...,an) = (ao,...,aj,1,a541,...a,) for j=0,...,n,
where ag € L and a; € A for 1 = 1,...,n. This simplicial module is denoted

C(A, L) or simply C(A) when L = A.

One observes that 1 € A is used only in the definition of the degeneracy
maps. If we ignore the degeneracies, then M is called a presimplicial module
(cf. 1.0.6).

From the relations d;d; = d;_1d; it is immediate (cf. 1.0.7) that the
simplicial module M gives rise to a chain complex (M,,d) where

d= i(—l)idi .

1

It will be referred to as the canonical chain complez associated to the simpli-
cial module.

1.6.2 Definition. The homology of the simplicial module M is
H,(M):= H,(M,,d)

1.6.3 Examples. (a) Let X be a set and put M,, = X™*! (cartesian product
of n + 1 copies of X) where X is a set. The formulas

di (zo,. .-, Zn) = (To,- .-, &4y 1 Zn), 1=0,...,n,
where &; means z; deleted, and
5i (Toy- -, @) = (T0s -+ - j—1, T}, T, Tjq1,. -4 Tn) , J=0,...,m;

put on M the structure of a simplicial set (cf. Appendix B).
Let k[X"*!] be the free k-module over X™*!. Then n — k[X"*!] is a
simplicial module (extend d; and s; linearly).
(b) Let G be a group and put Z, = G™*!. There is another simplicial struc-
ture on Z which takes care of the group law. It is given by

di(907"'agn): (907~'-agigi+1a°--,gn) i=0""?n_17
dn (907"'7gn) = (gngovglv"'vgn—l) )
S; (g07"'7gn) = (QOa"'agj,]-agj-i-la'--ygn) y J=O,,n

The associated simplicial module [n] — k[G"1!] is obviously [n] — A®"T!
where A is the group algebra k[G].
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(c) Let Y, = {(g0,---,9n) € G"go...gn = 1}. It is immediate to verify
that Y is a subsimplicial set of Z defined above. In fact Y is the nerve of
the discrete group G (cf. Appendix B.12).

1.6.4 Normalization. Let M be a simplicial module and let D, be the
submodule of M,, spanned by the degenerate elements, i.e. D,, = soM,_1 +
...+ 8n—1Mp,_1. The relations between faces and degeneracies (1.6.1.1) show
that D, is a subcomplex of M,. We will show that this subcomplex does
not contribute to the homology of M,, in other words M, and its normalized
complex M, /D, have the same homology.

1.6.5 Proposition. The canonical projection map M, — M, /D, onto the
normalized complez is a quasi-isomorphism.

Proof. It suffices to prove that D, is acyclic. Consider the following filtration
of D,:
F,D,, = {linear span of sq,...,sp: My_y = Dy} .

This filtration satisfies F,,_1D,, = F,,D,, = ... = D,. It determines a spectral
sequence whose El-term is the homology of Gr,D,. Since the abutment of
this spectral sequence is the homology of D,, by appendix D.8 the proposition
is an immediate consequence of the following

1.6.6 Lemma. For any p the complex GrpD, is acyclic.

Proof. For n < p, Grp,D,, = 0. So it suffices to prove that, for n > p, (=1)Ps,
induces a chain homotopy from id to 0, that is

(dsp + spd) = (—1)Psp mod Fp_1 .

If i < p, then d;sp = sp_1d; which is 0 mod Fj,_;. The middle terms d,s,
and dp415p cancel with each other. If ¢ > p+1, then d;sp, = s,d;_1, so d;sps,
cancels with spd;_1s, for p+2 < i < n + 1. Hence the only term which is
left over in (dsp + spd)s, is (—1)P+2dpi95,8, = (—1)Pspdpy15p = (—1)Psp. O

There is a simple way to construct a new simplicial module out of a
simplicial module: shifting dimensions by one (N, = M,4;) and ignoring
part of the structure (that is s, and d,). However in a certain sense this
new simplicial module is not too interesting because its homology is zero. In
fact we will use this fact the other way round, that is to prove that some
complexes are acyclic.

1.6.7 Proposition. Let N be a simplicial module which has an extra degen-
eracy, that is a map sny1 : N, = Npi1 which satisfies formulas (1.6.1.1).
Then the complex N, is endowed with a contracting homotopy, therefore it is
acyclic.



1.6 Simplicial Modules 47

Proof. Formulas (1.6.1.1) for the extra degeneracy are d;isp4+1 = spd; if i <n
and dp418np4+1 = id. Therefore we have ds,y; — s,d = (—1)"*lid. Hence
(—=1)"s, is a contracting homotopy from d to 0. O

1.6.8 Product of Simplicial Modules. Let M and N be two simplicial
modules with associated complexes M, and N, respectively. The product
(in the category of simplicial modules) of M and N is M x N, such that
(M x N), = M, ® Ny, di(m ® n) = di(m) ® di(n) and s;j(m @ n) =
s;j(m) ® sj(n). The Eilenberg-Zilberg theorem (see 1.6.12 below) is a com-
parison between the complex (M x N), and the tensor product of complexes
M, ® N,. In one direction the morphism is given by the Alexander-Whitney
map and in the other direction by the shuffle-product map. The particular
case of algebras, i.e. M,, = A®"*! is emphasized in Sect. 4.2.

The following notation will be useful. For z € My, (or Ny) d(z) = du(z).
So d is the “last” face operator. By (d)* we mean d iterated 7 times. So, for

x in M,, we have (d)"(z) = dp_it1...dn_1dn(z) for i > 0 and (d)°(z) = .

1.6.9 Lemma-Definition. The map AW : (M X N), - M, ® N,, given by

AW(a®b) = ([@)""a®(do)'b, a€M,, beEN,,

=0

s a natural map of complexes called the Alexander-Whitney map.
Proof. Cf. MacLane [ML, Chap. 8, Thm.8.5]. O

1.6.10 Shuffles. Let p and ¢ be two non-negative integers. A (p, q)-shuffle
(p,v) is a partition of the set of integers {0,...,p + ¢ — 1} into two disjoint
subsets such that p; < ... < ppand vy <...<wvg. So {u1,...,tp,v1,...,Vq}
determines a permutation of {0,...,p+q— 1}. By convention sgn(u, ) is the
sign of this permutation.

1.6.11 Lemma-Definition. The map sh: M, ® N, — (M x N), given by
sh(a®b) = Z sgn(i,v) (sy, .. 51,(a) ® Sy, ... 84, (D))
(1)

fora € My and b € My, where (u,v) runs over all (p, q)-shuffles, is a natural
map of complezes, called the shuffle map. This map is associative and graded
commutative.

Proof. Cf. MacLane [ML, Chap. 8, Thm. 8.8]. a

In this setting graded commutativity means the following. Let T :
M®N = N ®M be the twisting map T(m,n) = (n,m). Then one has
T(sh(a,b)) = (—1)lel'blsh(T(a, b)).
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1.6.12 Eilenberg-Zilber Theorem. The shuffle map and the Alezander-
Whitney map are quasi-isomorphisms, which are inverse to each other on
homology.

Proof. Cf. MacLane [ML, Chap. 8, Thm. 8.1] or Cartan-Eilenberg [CE, p. 218,
219]. O

Exercises

E.1.6.1. Show that on the normalized complexes AW o sh = id (cf. MacLane
[ML, p.244]).

E162. Let T - MQN=ZNQ®Mandt: M x NN x M be the twisting
maps. Show that AW ot and T'o AW (resp. sho T and t o sh) are chain
homotopic.

Bibliographical Comments on Chapter 1

Much of the content of this chapter (except Sect.1.4) is more than thirty years
old and can be found in several textbooks, for instance Cartan-Eilenberg [CE],
MacLane [ML], Bourbaki [1980]. Originally Hochschild cohomology appeared in
Hochschild [1945]. Later on it was recognized that, in the projective case, it is
a particular case of the general theory of derived functors. In fact one can also
handle the non-projective case through the theory of relative derived functors as in
Hochschild [1956]. We do not touch this relative theory in this book.

Morita invariance of Hochschild homology seems to be more or less folklore
in the matrix case. Proofs under various hypotheses can be found in Connes [C],
Lipman [1987], Dennis-Igusa [1982]. The proof of the general case given here, with
explicit isomorphisms, is due to McCarthy [1988]. The localization theorem in the
non-commutative framework follows from Brylinski [1989]. For the non-flat case,
see Geller-Weibel [1991].

Computation of Hochschild homology of triangular matrices (1.2.15) appeared
in Kadison [1989] and in Wodzicki [1989]. A particular case was done in Calvo
[1988]. See Cibils [1990] for a nice generalization.

The homotopy for an inner derivation (1.3.3) is already in [CE] but has been
rediscovered by many people. The comparison of the Chevalley-Eilenberg complex
with the Hochschild complex via the antisymmetrization map is due to J.-L. Koszul
[1950] (see also [CE]).

The comparison of Hochschild homology with differential forms is studied ex-
plicitly in Hochschild-Kostant-Rosenberg [1962]. The use of Hochschild homology
as a substitute for differential forms in residue formulas is worked out in detail in
Lipman [1987].

Section 4 is entirely due to Wodzicki [1989], who discovered the importance of
the notion of H-unitality.

Section 5 is important because several papers in the literature, including
Connes’ work, are written in this framework. The classification of extensions by
H? is classical, cf. Hochschild [1945], [CE]. Exercise E.1.5.1 is the analogue of sim-
ilar results for groups and for Lie algebras, cf. Kassel-Loday [1982]. Hochschild
cohomology is an important tool in “Deformation theory”, see Gerstenhaber and
Schack [1988b)].
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Simplicial sets were first introduced (under the name semi-simplicial sets) by
D.M. Kan. There exist several books or foundational articles on the subject, for
instance Gabriel-Zisman [1967], May [1967], Bousfield-Kan [1972]. Shuffles and
their fundamental homological properties were introduced by S. Eilenberg and S.
MacLane.

Many papers have been devoted to computations of Hochschild homology and
cohomology, and only a few of them are listed in the references.
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There are at least three ways to construct cyclic homology from Hochschild
homology. First, in his search for a non-commutative analogue of de Rham
homology theory, A. Connes discovered in 1981 the following striking phe-
nomenon:

— the Hochschild boundary map b is still well-defined when one factors out the
module A® A®" = A®"+! by the action of the (signed) cyclic permutation
of order n + 1.

Hence a new complex was born, whose homology is now called (at least in
characteristic zero) cyclic homology. As will be seen later (cf. Chap. 10) this
is exactly the complex which appears in the computation of the homology of
the Lie algebra of matrices (Loday-Quillen and Tsygan).

Second, a slightly different way of looking for a generalization of the de
Rham cohomology in the non-commutative framework is to look for a lifting
of the differential map d on forms to Hochschild homology. This lifting even
exists at the chain level, it is Connes boundary map B : A®" — A®n+1
whose construction involves the cyclic operator ¢. From the properties relat-
ing b and B one can construct a bicomplex B(A) whose homology is cyclic
homology HC,(A) (the notation HC stands for “Homologie Cyclique” or for
“Homologie de Connes” in French). One should note that the discovery of
the lifting B of d was already in a paper by G. Rinehart published in 1963,
but apparently forgotten.

It is not at all obvious to relate these two definitions of cyclic homology.
The best way to do it is to introduce a third definition which takes advantage
of the existence of a periodic resolution of period 2 for the Z/{n+1)Z-modules.
This gives rise to the so-called cyclic bicomplex CC(A), which
~ permits to prove the equivalence, in characteristic zero, of the two previous

definitions,

~ gives the correct definition of cyclic homology in the characteristic free
framework and for not necessarily unital algebras,

~ permits us to prove easily the exactness of Connes periodicity exact se-
quence which relates HH and HC.

In his seminal paper [C] A. Connes was working in the cohomological
framework and over the complex number field. In this book we chose to work

J.-L. Loday, Cyclic Homology
© Springer-Verlag Berlin Heidelberg 1998
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instead in the homological framework (under the influence of algebraic K-
theory) and over an arbitrary ring .

Section 2.1 begins with the construction of the cyclic bicomplex CC(A),
suggested by the work of B. Tsygan, as done in [LQ]. It takes advantage of
the relationship between the simplicial structure of [n] — A®"*1 and the
action of the cyclic group. It is proven that HC,, coincides, in characteristic
zero, with the original definition of A. Connes denoted H, as in [C]. In the
unital case a suitable modification of CC(A) leads to B(A) in which, aside
from the Hochschild boundary map b, appears the degree +1 differential map
B.

Section 2.2 contains the description of the relationship between Hochschild
homology and cyclic homology. It takes the form of a long exact sequence
(Connes’ periodicity exact sequence) :

.= HH,(A) 5 HC(A) 25 HC,_o(A) 25 HH,,_,(A) 55 ...

This shows that, though cyclic homology is not always periodic of period 2, it
is endowed with a periodicity map S which plays, in cyclic homology, the role
of the Bott periodicity map in topological K-theory. This exact sequence is
one of the main tools in the computation of cyclic homology. It is illustrated
by the proof of the Morita invariance and the excision property for cyclic
homology.

In Sect.2.3 we compare cyclic homology of a commutative algebra with
differential forms and with de Rham cohomology. The correspondence be-
tween Connes’ boundary map B and the exterior differential operator on
forms is the main result of this section.

Section 2.4 is essentially the translation of all the preceding results in the
cohomological framework, together with the study of a pairing between cyclic
homology and cyclic cohomology.

So far we have concentrated on the case of algebras. However it is easily
seen that one can axiomatize the properties of this case to elaborate the
notion of a cyclic module (and more generally the notion of a cyclic object
in any category). This generalization will prove to be useful later on, even
in the understanding of the algebra case. This is done in Sect. 2.5 and more
generally in Chap. 6.

The theory just described is not the only way to extend the notion of
differential forms to non-commutative algebras. Section 2.6 describes a dif-
ferent philosophy which is closer to the classical differential calculus (with
its notions of connections, curvature and characteristic classes). It consists
in working with “non-commutative differential forms” and then abelianizing
the corresponding complex before taking the homology. It turns out that the
homology groups so obtained are very closely related to cyclic homology.

This chapter follows essentially Loday-Quillen [LQ).

Standing Assumptions. Throughout this chapter k denotes the commu-
tative ground ring and A is an associative algebra over k. The notations
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A®™ b b, etc. are like those in Chap. 1. Note that, when A has no unit, the
definition of HH,(A) involves the b-complex and the b’-complex (cf. 1.4.1
and 1.4.5).

2.1 Definition of Cyclic Homology

First we construct the cyclic bicomplex CC(A) which intertwines the Hoch-
schild complex with the classical 2-periodic resolution coming from the action
of the cyclic group Z/(n + 1)Z on A®™*!. Its total homology defines cyclic
homology. It is immediate to relate it to the original definition of A. Connes,
which is in terms of the quotient of A®"+! by the cyclic group action (The-
orem 2.1.5).

A modification of CC(A) gives rise to a new first quadrant bicomplex B(A)
whose vertical differential is b and whose horizontal differential is Connes’
boundary map B (cf. 2.1.7). This bicomplex will prove helpful in the com-
parison with differential forms in Chap. 3.

2.1.0 Cyclic Group Action. The cyclic group Z/(n + 1)Z action on the
module A®™*! is given by letting its generator t = t,, act by

tn (a07 .- -7an) = (_l)n (ana ag, - .. aan—l)

on the generators of A®"+1, It is then extended to A®"*! by linearity; it
is called the cyclic operator. Remark that (—1)" is the sign of the cyclic
permutation on (n+1) letters. Let N = 14+¢+...+t" denote the corresponding
norm operator on A®"+1,

2.1.1 Lemma. The operators t, N,b and b’ satisfy the following identities
(1-t)b' =b(1—-t), HN=Nb.

Proof. 1t is immediate to check that
(2111) dit, = —t,_1d;_1 for 0<i<n and dyt, = (—l)ndn .

The first equality can be rewritten ((—1)*d;)t = t((—=1)*"'d;_;), from which
(b — do)t = tb' follows immediately. Then bt = tb’ + (—1)"d, and therefore
(1-t) =b(1 —t).
The relations (2.1.1.1) imply that
dit) = (-1)7t'd,_; when i>j, and

dit! = (-1)" 74, 4 when i< .

Then one can write
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b’N:(Til(—l)"di) i)tj = Y (-)Tdiy
=

i=0 0<j<i<n~1

1imji—1
+ Z (1)
0<i<j<n

In this summation the coefficient of (—1)%d, (for 0 < ¢ < n) is
oo+ Y #=N.
0<j<n-1-¢ n—g<j—1<n-1

Therefore we have proved the formula 5 N = Nb. O

Remark. Note that this lemma is a consequence of the relations (2.1.1.1)
alone. In particular the relation (¢,)"*! = id is not used in the proof.

2.1.2 The Cyclic Bicomplex. As an immediate consequence of Lemma

2.1.1, the following is a first quadrant bicomplex denoted CC(A), and called
the cyclic bicomplez:

A® =t ges N ges =t g8 N

b - b —b’
1-t N 1-t N
A®2 T A®? o A®2 T AR
b "y b Y
1-t N 1-t N

A — A +— A +— A

By convention the module A, which is in the left-hand corner, is of bide-
gree (0,0), so CCpq(A) = Cy(A) = A®TH!,

2.1.3 Definition. The cyclic homology groups HC,(A), n > 0, of the asso-
ciative (not necessarily unital) k-algebra A are the homology groups of the
total complex Tot CC(A):

HC,(A) = H,(Tot CC(A)) .

Note that we did not assume that A is unital in this definition. A thorough
discussion about unitality will be carried out in 2.2.14. As usual

HC,(A):= & HC,(A).

n>0

We suggest the notation HC,(A|k) if mentioning k is necessary.
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Let f : A — A’ be a morphism of k-algebras (which need not preserve the
unit if any). It induces a morphism of bicomplexes CC(A4) — CC(A') and
therefore a functorial map HC,(A) - HC,(4').

So HC, is a functor from the category of associative k-algebras to the
category of k-modules. If £ = K — A is a sequence of ring morphisms, there
is defined a natural map of k-modules HC,,(Alk) - HC,(A|K).

2.1.4 Connes’ Complex. The cokernel A®"+1/(1—t) of the endomorphism
(1 —t) of A®™*! is the coinvariant space of A®"*! for the action of the
cyclic group Z/(n + 1)Z. Following A. Connes we denote it by C,(A) :=
A®"t1/(1 — t). By Lemma 2.1.1 the following is a well-defined complex

cMA): ..o B (A e

called Connes compler, and whose nth homology group is denoted H)(A).
The natural surjection p : Tot CC(A) — C*(A) is the quotient map A®"+1 —
A®"+1 /(1 —t) on the first column and 0 on the others.

2.1.5 Theorem. For any algebra A over a ring k which contains Q the
natural map p. : HC.(A) — H)}(A) is an isomorphism.

Proof. Consider row number n in the bicomplex CC(A). When k contains Q
there is defined a homotopy from id to 0 as follows (cf. Appendix C.4). Let

(2.1.5.1) R :=1/(n+1).id, h:=—-(1/(n+ 1))iiti

i=1
be maps from C,(A) to itself. One verifies that
(2.1.5.2) RN+ (1 —-t)h=id, Nh +h(l1-t)=1id.

Therefore this row is an acyclic augmented complex with Hy = C}(A).
As a consequence (cf. 1.0.12) the homology of the bicomplex CC(A) is
canonically isomorphic to the homology of Connes’ complex C(A). O

An analogous statement for the reduced Connes’ complex 62(A) will be
proved in 2.2.13.

Remark. By Appendix C.4 the homology of any row in CC(A) is
H, (Z/(n +1)Z, A1),

i.e. the homology of the discrete group Z/(n + 1)Z with coefficients in the

module A®"*1. So the bicomplex CC(A) gives rise to the spectral sequence
(cf. Appendix D)

E,, =H,(Z/(q+1)Z,A%*") = HC,(A) .

Pq
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It shows in particular that the map HC;(A) — H}(A) is an isomorphism for
t < n provided that n! is invertible in k.

In the proof of 1.1.12 we proved that the b’-complex is contractible when
A is unital. So one can expect to simplify the double chain complex CC(A)
by getting rid of the contractible complexes (odd degree columns). To do this
we use the following easy result.

2.1.6 Lemma (Killing Contractible Complexes). Let

31
vy
D ADA, A DAL ..

be a complex of k-modules such that (Al ) is a complex and is contractible
with contracting homotopy h : A, — AJ,,,. Then the following inclusion of
complezxes is a quasi-isomorphism:

(id, —h7) : (A, — Bhy) = (A. ® AL, d) .

Proof. Let us prove that the inclusion (id, —hv) : A, = A, ® A}, induces a
map of complexes (A.,a — Bhy) = (A« ® AL, d).
One one hand we have

a B id | | o—Bhy
v 8] ~hv]| T [v-hv ]

and on the other hand

id _ a — Bhy
[—h'y] oo~ fho] = [—h7a+h7ﬂh'y} ’

From the relations d? = 6% = 0 one deduces that ya + §y = 0 and v8 = 0.
Hence we only need to show that v — §hy = —hya or equivalently v =
8hy —hvyo. Since yo = —8v we have hy—hya = Shy+héy = (6h+hé)y =~
because h is a homotopy for § and we are done.

Since the cokernel of (id, —h+) is isomorphic to (4,d), which is acyclic,
the inclusion (id, —h7) is a quasi-isomorphism. g

Remark. The case v = 0 (resp. 8 = 0) is well-known and does not change
the differential in A..

2.1.7 Connes’ Boundary Map B and the Bicomplex B(A). Now we
suppose that A is unital. The first ¥’-column of CC(A) can be considered as
a quotient of Tot CC(A). Since it is endowed with a contracting homotopy
one can apply the ‘Killing contractible complexes’ lemma. The kernel of this
quotient map is deduced from CC(A) as follows: delete the first b'-column
and add a map B : CCyy(A) = A®Itl — CCye(A) = A®I*? described as
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follows. Sticking to the notation of Lemma 2.1.6 one gets « = b, 3 = (1 —t),
v= N, §=-b and h = —s (extra degeneracy). Therefore

(2.1.7.1) B=(1-1t)sN.

By Proposition 1.1.12 the extra degeneracy is a homotopy for &', so one can
apply Lemma 2.1.6 successively to the odd degree columns of CC(A) to end
up with the following diagram

A®3 A®3 A®3
b B b B b

A®2 A®2 A®2
b B b B b
A A A

It is customary to rearrange the columns in this diagram (changing the in-
dexing) to get the bicomplex B(A), where B(A)y, = A®4"P*1 if ¢ > p and 0
otherwise:

\J 1 A

AB3 = A% — A

Remark that, as an immediate consequence, we have the formula
(2.1.7.2) Bb+bB=0.

Explicitly B : A®™t! — A®"+2 i5 given by

(2.1.7.3) Bfag,...,an) = Z(—l)m (1,aiy...,an,00,...,8i—1)
1=0

- (—l)m (ai, 1,a,-+1, ey Qpy Aoy ...y ai_l) .
In low dimensions we have
B (ao) = (1,(10) + (ao, 1) for n=0,

B (ag,a1) = ((1,a0,a1) — (1,a1,a0)) + ((@ao, 1,a1) — (a1,1,a0)) forn=1.

Formula (2.1.7.2) implies that B induces on Hochschild homology a homo-
morphism denoted
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(2.1.7.4) B, : HH,(A) — HHpyr(A) .

The injective map of complexes Tot (B(A)) — Tot (CC(A)) sends an
element x € B(A)pq = Cq—p to the element
z®sN(z) € Cgp & Cq_py1
= CCpg—p ® CC2p-1,9—p+1 C (Tot CC(A))p4q -

By Lemma 2.1.6 this map is a quasi-isomorphism and we have proved the
following

2.1.8 Theorem ((b, B)-Definition of Cyclic Homology). For any asso-
ciative and unital k-algebra A the inclusion map Tot B(A) — Tot CC(A) is
a quasi-isomorphism and therefore H,(Tot B(A)) = HC,(A). O

Note that the hypothesis, A is unital, is necessary in this statement.
2.1.9 The Bicomplex B(A). The (b, B)-bicomplex B(A) can be simplified

further by replacing the Hochschild complexes by their normalizations (cf.
1.1.15). Let A = A/k and consider the new bicomplex B(A):

il { i
A4 B 47 & a4
| |
ARAd & a4
g
A

where B=sN: AQ® ANy ® A% s given by the formula

n

(2.1.9.1) B(ag,...,an) = Z(—l)"i (1,ai,...,an,00,...,8i—1) -
1=0

(Remark that the sign (—1)" is exactly the sign of the involved cyclic per-
mutation). In particular

B(a) = (1,a), B(a,d')=1,a,d)~-(1,d,a).

If the context is clear we will often write simply B instead of B.

By Proposition 1.1.15 the normalization process does not change the ho-
mology of the columns. Therefore, by a standard spectral sequence argu-
ment (cf. 1.0.12) the surjective map of complexes B(A4) — B(A) is a quasi-
isomorphism. Thus we have proved the following:
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2.1.10 Corollary. For any unital k-algebra A there is a canonical isomor-
phism _
H, (Tot B(A)) = HC.(A) . O

2.1.11 Summary. Finally we have shown that for any k-algebra A there are
defined canonical morphisms of complexes

Tot B(A) « TotB(A) < Tot CC(A) — C*(A),

the first two being quasi-isomorphisms. The last one is also a quasi-isomor-
phism when the ground ring k contains Q.

2.1.12 Elementary Computations. First, if A = k, thex_l_ it is obvious from
the B-complex that HCy, (k) = k with generator 1 € k = B(k)nn(n > 0) and
H02n+1(k) =0.

In the cyclic bicomplex CC(k) the generator of HCs, (k) is the cycle

um = ((=D)"(2(n = 1)),...,~6,2,—1,1) € (Tot CC(k))zn ,

where k®" is identified with k.

For H3, (k) the class of (1,...,1) is a generator. The natural map p sends
u™ to (—1)*(2(n — 1))!I(1,...,1) for n > 0.

So cyclic homology of the ground ring is periodic of period two. This is not
true for all k-algebras and the obstruction to being periodic will be analyzed
in the next section.

It is also immediate that HCo(A) = HHy(A) = A/[A, A]. So, if A is
commutative, then HCy(A) = HHy(A4) = A.

2.1.13 Remark. Though Hochschild homology groups of A are modules
over the center of A, this is not at all true for cyclic homology groups, as it
becomes obvious below by looking at HC;(A).

2.1.14 Proposition. For any commutative and unital k-algebra A one has

Proof. From the complex B(A) we deduce that the group HC;(A) is the
quotient of A ® A by the relations

ab®c—a®bc+ca®b=0, a,b,ce A (imageofd),
and 1®a—-a®1=0, a€A (imageof B).
Let us show that the map which sends the class of a ® b to adb € Qi” o/dA

is well-defined. The first relation is a defining relation of Qiﬂ %+ The second

relation is also fulfilled in Qi] ./ dA because adl = 0 in Qi\l  and lda € dA.
It is an isomorphism because it has an inverse map given by adb+— a ® b. O
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2.1.15 Relative Cyclic Homology. Let I be a two-sided ideal of A with
quotient algebra A/I. Since the map of complexes CC(A) — CC(A/I) is
surjective one can define CC(A, I) as the kernel. Then HC, (A, I) is by def-
inition the homology of the complex Tot CC(A4,I). It fits into a long exact
sequence
(2.1.15.1)

... HCL(A,I) » HC,(A) = HC,(A/I) - HC,_1(A,I) — ...

2.1.16 Change of Ground Ring and Localization. As in Hochschild
homology, cyclic homology depends drastically on the ground ring k. If we
want to emphasize the choice of k, we write HC, (A|k) or HC¥(A). Let k — K
be a ring homomorphism (always preserving the unit). Any K-algebra is also
a k-algebra. It is immediate that there is defined a canonical map of k-modules

HC,(Alk) — HC,(A|K) .

Let S be a multiplicative subset of k and put K = kg (that is k localized at
S) then the above morphism is in fact an isomorphism. In particular if A is
a Q-algebra, then HC,(A|Z) ® Q = HC.(A|Q). These results can be proved
either by direct inspection or by using the analogous results for Hochschild
homology (cf. 1.1.19) and Connes exact sequence from the next section.

Exercises

E.2.1.1. Let f; : A; & A;y1, 1 € N be an infinite family of k-algebra ho-
momorphisms, whose inductive limit is denoted lim; A;. Show that cyclic
homology commutes with inductive limits:

lim HCA(4;) % HC, (“%n Ai) .

E.2.1.2. Let I and J be two 2-sided ideals of the unital k-algebra A. Define
birelative cyclic homology HC,(A; I, J) so that there is a long exact sequence
... > HCh(A,I) » HC,(A/J,(I+ J)/J) - HCr_1(4;1,J)
— HC,_1(A 1) — ...

Suppose that INJ = 0. Show that HCy(A;I,J) = 0 and that HC,(4;1,J) =
I® ped.

E.2.1.3. Check directly that HC;(A) = H}(A) (without any characteristic
hypothesis). Compute the kernel and the cokernel of the map HC»(A) —
H2(A). Find examples for which they are not trivial.

E.2.1.4. Let A°P be the opposite algebra of A. Show that there are canon-
ical isomorphisms HH,(A) = HH,(A°?) and HC,(A) & HC,(A°P). [Use
wn(aOa ce. 7an) = (a07 Qp,Ap-1,..-,02, al)']
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2.2 Connes’ Exact Sequence,
Morita Invariance and Excision

The comparison of cyclic homology with Hochschild homology takes the form
of a long exact sequence (2.2.1) involving a “periodicity operator” S. This is
Connes’ exact sequence which was first discovered by him in the character-
istic zero framework. It is an efficient tool to compute cyclic homology from
Hochschild homology. It is analogous to the so-called Gysin sequence for the
homology of an S'-space X (see Appendix D.6), where H,(X) plays the role
of Hochschild homology and H,.(X/S!) plays the role of cyclic homology.
In fact there is more than an analogy and the relationship will be studied
extensively in Chap.7. We study in details the periodicity map S. The fol-
lowing applications are treated: Morita invariance in cyclic homology (2.2.9),
computations for triangular matrices (2.2.11), excision properties (2.2.16).

2.2.1 Theorem (Connes’ Periodicity Exact Sequence). For any asso-
ciative and not necessarily unital k-algebra A there is a natural long exact
sequence

.= HH,(A) -5 HC,(A) -2 HCp_o(A) 2 HH, 1 (A) 5 ..

Proof. Let CC(A){?} be the bicomplex consisting of the first two columns of
CC(A). It is clear that the following sequence of bicomplexes is exact

0= cc(A)? 5 ce(a) —» CC(A)[2,00 - 0.

The notation [2,0] indicates that degrees are shifted, (C[2,0])pq = Cp—2,4-
The expected long exact sequence is the homology sequence associated to
the bicomplex sequence. Indeed for unital algebras the b’-complex is acyclic
(cf. 1.1.12) and CC(A){?} is quasi-isomorphic to the Hochschild complex.
But more generally the definition of the Hochschild homology of non-unital
algebras (cf. 1.4.1) is precisely the homology of CC(A){?} (cf. 1.4.5). a

The map S is called the periodicity map.

2.2.2 Remark. When A is unital Theorem 2.2.1 can be deduced more simply
from the bicomplex B(A) (or equivalently from B(A)), by considering the
exact sequence of complexes

0 — C(A) — Tot (B(A)) = Tot (B(A))[2] - 0,

where the first map is the identification of C(A) with the first column of
B(A). Then the periodicity operator S is obtained by factoring out by this
first column.

When A = k the map S is an isomorphism which sends the canonical
generator u” € HCy,(k) to u"~2 € HCy,_o(k), cf. (2.1.12).
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In many instances Connes’ exact sequence permits us to deduce HC from
HH by induction.

2.2.3 Corollary. Let f : A — A’ be a k-algebra map (which need not preserve
the unit if any). If f induces an isomorphism in Hochschild homology (i.e.
for HH, ), then it induces an isomorphism in cyclic homology and conversely.

Proof. In low dimension Connes’ exact sequence takes the form

...~ HCy, - HH, - HCy - HCy - HH, - HC; - 0— HH,

— HCy— 0,
hence HHy = HC, (which we already knew) and therefore HCp(A4) =
HCy(A’). The k-algebra map f induces a map of bicomplexes CC(A) —
CC(A') and therefore a commutative diagram
(2.2.3.1)

.= HH.(A) 5 HC.(4) 3 HC._»(4) B HH,_,(4) 5...

1) \: ) {
.o HH,(A) 5 HC,(A) 3 HCW (A B HH,_,(4) ...
The isomorphisms for HHy, HH; and HCj imply (by the five lemma) an iso-

morphism for HC;. By induction the same procedure yields an isomorphism
for HC,, for any n > 0. The proof in the other direction is similar. ]

2.2.4 Corollary. For any algebra A over the ring k which contains Q, there
is a natural long exact sequence

.o HH(A) D BN A) S B ,(A) D HH,_(A) D ...

Proof. 1t is a consequence of 2.1.5 and 2.2.1. d

2.2.5 The Periodicity Map S. It is interesting to make the maps I, S and
B explicit in the characteristic zero context. The map I is simply induced
by the natural projection p : A®™+! — A®"+1/(1 —t) = C)(A). The map
B: C}A) = A®™*!is as in (2.1.7.3). As for the periodicity map S the com-
putation is a little more elaborate but gives rise to very interesting operators.
First some notation is in order:

(2.2.5.1) Bi= Y (-1)%id;:Cp— Cpa,
0<i<n
(2.2.5.2) = Y (-1)"did;: Cp > Crsg.

0<i<j<n
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2.2.6 Lemma. One has bl = [b, 8] = b3 + Bb and [b,bl%] = 0.
Proof. Using the relations d;d; = d;d;4; for i > j, one shows that

b= > (-1)'Y(j—i)did; and

0<i<j<n
Bo= > (~1)H(i—j+1)did;

0<i<j<n

from which the first relation follows immediately. The last equality is a con-
sequence of b? = 0 since

[b, bm] — bb3 + b3b — bBb — (bb . 0

The relationship between the periodicity map S and b?]

following

is given by the

2.2.7 Theorem. Let A be a unital k-algebra, where k contains Q. Let x €
Cn(A) be such that p(z) = T € C)(A) is a cycle. Then the image of its
homology class [F] under S : H)A) — H)_,(A) is the homology class of

(1/n(n - 1))bEl(z) € C3_5(4).

Proof. Since T is a cycle there exists an element a = (z,y, 2,...) € C,®Cpr_1®
Ch—2 ® ... which is a cycle in Tot CC(A). By construction S(a) = (z,...),
and its image in H2_,(A) is the homology class of Z € C}_,.

x

[

—b(2) = (1 -t)(y) «—y

l

b(y) = N(z) «— z.

The homotopy (h,h') defined in (2.1.5.1) permits us to choose y = —hb(z)
and z = h'(b/'(y)) = —h'b'hb(z).

We are interested in the computation of [Z], hence we can add to z either
a boundary (image of b) or any element of the form (1 —¢)(u), u € Cy,_5. For
instance one can replace b’ = b — (—=1)""1d,_; by (~=1)"d,_;. Moreover the
composite map

(—D)"dnrh = (~1)"(=1/n)dn_y Y it

0<i<n~1

can be simplified further by using the relations (2.1.1.1):
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n—1
Iy — 1 S 1\n—1—1 )
hbh_————n(n_l);z( 1) A1
1 = 1
=— Y (-1)jd; = ——— —1,b).
n(n-—l)]z:(:)( 1y jd; n(n—l)ﬁ mod (1 — ¢, b)

Again, using the fact that one can modify a cycle by adding any boundary,
we see that Z is homologous to (8b+ b3)(z) = n(nl—l) bA(z)inC)_,. O

We now deal with the Morita invariance of cyclic homology.

2.2.8 Lemma. The generalized trace map tr : M, (A)®"+1 — A®"+L (cf
1.2.1) is compatible with the cyclic action.

Proof. It suffices to check that totr = trot on elements of the form upa¢®...®
Upan With u; € M, (k) and a; € A for all i. By Lemma 1.2.2 this amounts
to verify that tr(u,uo...un—1) = tr(up...u,) which is true because k is
commutative. O

2.2.9 Theorem (Morita Invariance for Cyclic Homology). For any
r > 1 (including r = oo) and any H-unital (e.g. unital) k-algebra A the
map tr, : HC,(M,(A4)) = HC,(A) is an isomorphism, with inverse induced
by the inclusion inc : A = M;(A) = M,(A). More generally, if A and
A’ are Morita equivalent k-algebras, then there is a canonical isomorphism
HC,(A) = HC,(4').

Proof. We only give the explicit proof for the case of matrices. The general
proof is along the same lines (verifying that the maps ¢ and ¢ of Theorem
1.2.7 are compatible with the cyclic operator).

By Corollary 1.2.3 and Lemma 2.2.8 the generalized trace map extends
to a map of bicomplexes CC(M,(A)) — CC(A). This map is a quasi-
isomorphism on the b-columns (Theorem 1.2.4 for A unital and more generally
Theorem 1.4.14 for A H-unital). Let us show that it is also an isomorphism
on the b’-columns. It is obvious when A is unital since both complexes are
acyclic. When A is H-unital, then M,(A) is also H-unital (Theorem 1.4.14)
and we are still facing acyclic complexes.

So we have proved that the map of bicomplexes is a quasi-isomorphism,
whence the result. a

2.2.10 Corollary. For any r > 1 (including r = 00), the trace map induces
an isomorphism tr, : H)(M,(A)) — H)(A) for any unital k-algebra A (Q C

n

k). O

2.2.11 Functoriality of Cyclic Homology. Let (k-ALG) be the category
whose objects are unital k-algebras A and whose morphisms have been de-
fined in 1.2.9. Theorem 2.2.9 implies that HC,, is a functor from (k-ALG)
to {k-Mod).
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Let A and A’ be two k-algebras and let M = 4 M4 be an A-A’-bimodule
which is projective and finite dimensional as A’-module. Denote by MHH
(resp. MHC) the morphism induced by M in Hochschild homology (resp.
cyclic homology). Since the maps in Connes’ exact sequence are functorial
there is a commutative diagram (2.2.3.1) where the vertical maps are either
MHH or MEC The five lemma applied inductively yields a generalization
of Corollary 2.2.3: MFH is an isomorphism implies M is also an isomor-
phism.

2.2.12 Cyclic Homology of Triangular Matrices. Let A and A’ be
two k-algebras and M be an A-A’-bimodule. The set of triangular matri-

ces T = [’3 g’{ ] is naturally equipped with a k-algebra structure. Then the

two canonical projections from T to A and A’ induce an isomorphism in
Hochschild homology (cf. 1.2.15), therefore by 2.2.3 they also induce an iso-
morphism in cyclic homology: HC,(T) = HC,(A) & HC.(A').

Before discussing excision in cyclic homology it is necessary to introduce
reduced cyclic homology and to clarify some properties of cyclic homology of
non-unital algebras.

2.2.13 Reduced Cyclic Homology. Suppose that A is unital and that the
homomorphism k — A given by the identity is injective. Then reduced cyclic
homology HC,(A) is defined as the homology of the bicomplex B(A)eq given
by the exact sequence

0 — B(k) — B(A) = B(A)reqa — 0.
It follows immediately that the following sequence is exact
(2.2.13.1) ... — HC,(k) = HC,(A) - HC,(A) - HC,_1(k) — ...

From the definition of reduced Hochschild homology it is also immediate that
there is a reduced Connes exact sequence

...~ HH,(A) » HC,(A) —» HC,_2(A) > HH,_1(A) > ...
If A is augmented: A = k @ I, then the exact sequence (2.2.13.1) splits and
HC,(A)= HC,(k)® HC,(A) .

In order to extend Theorem 2.1.5 to reduced cyclic homology one de-

fines EQ(A) as the quotient of C)(A) by the sub-k-module generated by
(ao,--.,an) such that a; = 1 for at least one index i, 0 < ¢ < n. This gives a

complex with boundary b, whose homology is denoted F;\(A)

2.2.14 Proposition. Assume that k is a direct summand of A as a k-module
and that k contains Q. Then there is a canonical isomorphism
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Proof. Put B = B(A);eq and consider the following filtration of B:

BPQ’ q_PSn»
F.B = k®A®n+1’ g-p=n+l,
07 q-—p>n+1.

(Recall that A =k & A as a k-module.)
Put C = GA(A) and consider the following filtration of C:

(FE) — 61)1 p<n,
"p 10, p>n.

The surjection ¢ : Tot B — C is compatible with the filtration. So, in order
to prove that it is a quasi-isomorphism, it is sufficient to show that it induces

an isomorphism on the associated graded modules.

By construction F,,B/F,,_;B is the bicomplex A

—Qn+1 N —Qn+1
AT AT

o

—®n+1 N  —Q®n+l
AT & At

|

Z®n+1

whose total complex is a resolution of C, = Fn—C—/F _1C (recall that k
contains Q). This shows that ¢ induces an isomorphism at the graded level.
O

2.2.15 Cyclic Homology of Non-unital Algebras Revisited. Cyclic
homology was defined in 2.1.2 without any hypothesis on the existence of
a unit. On the other hand the general procedure described in 1.4.1 gives a
definition for non-unital algebras from the definition for unital algebras. The
following shows that these two definitions agree:

2.2.16 Proposition. For any non-unital k-algebra I, the complezes CC(I)
and B(1 )red are canonically isomorphic, hence HC,(I) = HC,(I4).

Proof. This assertion follows almost immediately from the computation made
in the proof of Proposition 1.4.5. The only point to check is the compatibility
of the decomposition I®"+1 @ [®" 2 |, ® I®" with N and B, which follows
from:

B(l,ul,. ..,’U.n) =0 y
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Bug,...,up) = Z(—l)i"(l,ui, ey Uy UQy e ey U1 )
=0
=1® N(ug,y...,un) . a

Remark that there is no difference between “naive” cyclic homology and
cyclic homology.

The general problem of excision was posed in 1.4.9. Its solution for cylic
homology is given by the following

2.2.17 Theorem (Excision in Cyclic Homology). Let 0 - I - A —
A/I — 0 be an extension of k-algebras with A and A/I unital. If I is H-
unttal, then there is a long exact sequence

... = HC(I) = HCW(A) = HCh(A/T) = HCp_y(I) > . ..

Proof. As for Hochschild homology there is a well-defined functorial map
HC,(I) » HC,(A,I) .

On the other hand, from the construction of HC,(I) it is immediate that
there is a long Connes exact sequence in the framework of non-unital algebras.

Considering the commutative diagram of exact rows (using 2.2.1 and its
immediate relative version):

...~ HH,(I) -» HC,(I) » HC,—2(I) - HH,_;(I) — ...

\J 2 \J \J
. HHo (A ) = HCo(A, I) > HCp_o(A, I) > HH,_1 (A T) > ...

the five lemma and Theorem 1.4.10. (i.e. HH,(I) - HH,(A,I) is an isomor-
phism when I is H-unital) imply that HC,(I) = HC,(A,I) is an isomor-
phism for all n. The theorem now follows from the exact sequence (2.1.15.1).

O

Exercises

E.2.2.1. Let A and A’ be two unital k-algebras. Show that there is a canonical
isomorphism
HC,(Ax A)2 HC,(A)® HC.(4A) .

E.2.2.2. Show that the following are equivalent (A is unital):
(a) k= A/[A, A] is injective,

(b) HC.(k) = HC.(A) is injective.

[Use functoriality of the periodicity map S.]
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E.2.2.3. Dual Numbers. Suppose that A = k£ & [ is a ring of dual
numbers, that is uv = 0 for u,v € I. Show that HC,(A4) = HC,(I) =
®p—o Hn—p(Z/(p +1)Z, I®*1), where the generator of the cyclic group acts
by t on I®?+1, Deduce that, if k contains Q, then HC,(I) = I®"*+1/(1 - t).
(cf. Loday-Quillen [LQ, 4.3]).

E.2.2.4. Let I be a two-sided ideal of A. Show that there is a long exact
sequence

oo = HH,(A,I) > HCo(A,I) = HCp_5(A,T) = HH,_1(A 1) > ... .

Show the existence of a similar exact sequence in the birelative framework.

E.2.2.5. Show that if I is excisive for cyclic homology, then I is H-unital (cf.
Wodzicki {1989]).

E.2.2.6. Let §' = Y c;cp_1(—1)'idi and b1 = 35, . (-1)Hd;d;.
Show that b1l = [, '] and that

b1 —t) = (1 —t)p — 200 .

Deduce from this formula that b : H)A) —» H)_,(A) is well-defined with-
out any hypothesis on the characteristic. Show that H3,(Z) = Z and that
b[zﬂ is multiplication by —n.

E.2.2.7. Hyper-Boundaries. The hyperboundary bl"l is a degree r map
defined by the formula

= N (—y)ptetied Ldy, i Cp o Cny
0<i; <...<i,<n

In particular bl = b. Show that (b12)? = (p — 1)!61?? and that bl2P+1 =
bl27lp. Deduce from these equalities that b(?Pt1l is a boundary map (i.e.
bl2p+11p2P+1] = (). [Use Lemma 2.2.6.]

2.3 Differential Forms, de Rham Cohomology

The comparison of Hochschild homology with differential forms done in
Sect.1.3 gave rise to a natural map e, : 23, — HH,(A). For differen-
tial forms there is defined a differential operator d : QXI P QZ?}: and so it

is natural to ask for the existence of a map (dotted arrow) which would make
the following diagram commutative:

d
n N n+1
'QA|k “QA|k

l l
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It turns out that this map exists and is precisely B,, that is the map induced
on Hochschild homology by Connes boundary map B (in fact this lifting was
already discovered by Rinehart in 1963). Hence it is not surprising that cyclic
homology is strongly related to de Rham cohomology.

In characteristic zero this relationship takes the form of the existence of
a natural map:

HCp(A) = 24, /d2 © HpR (A) © Hpp'(A)® ...,
which turns out to be an isomorphism when A is smooth (cf. Sect. 3.4).

Standing Assumption. In this section A is a unital commutative k-algebra.

2.3.1 De Rham Cohomology. Let 27 Alk be the A-module of diﬁ”erential

n-forms (cf. 1.3.11). The exterior differential operator d : 27 Ak ot Al k is
defined by
d(aoda; ...day) = daoda; ...da, .

Since d1 = 0 it is immediate that d o d = 0, and the following sequence
d
A= QA|1¢ ——>Qi”,c = _>'QA|k -

is a complex called the de Rham complex of A over k. Remark that (‘erl o d)
is a DG-algebra (cf. Appendix A.8) for the product

aoday ...dan Aagdd) .. .da,, = agagday . ..dandd) .. .dal, .

The homology groups of the de Rham complex are denoted Hpz(A) and
are called the de Rham cohomology groups of A over k. These groups should
really be thought of as cohomology groups of the spectrum Spec A. If we
wanted to be coherent with our previous notation we should denote them
by HPR(A) or H}, (Spec A) since these functors are covariant in A and
contravariant in Spec A. We adopt the latter notation, but delete Spec for
the sake of simplicity.

2.3.2 Differential Forms and Cyclic Homology. Recall from Sect.1.3
that for any commutative k-algebra A there exists a functorial map =, :
Cn(A) — 123, inducing 7, : HH,(A) — 25, and there exists the antisym-
metrisation map e, : 2%, — HH, (A), which satisfy 7, o &, = nlid. The
following propositions show that Connes boundary map B and the classical
differential operator d on forms are compatible.

2.3.3 Proposition. For any unital and commutative k-algebra A the follow-
ing diagram is commutative
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d

n n+1

Kk — Qarw

Enl lfn-}-l
B

HH,(A) 25 HH,.1(4)

Proof. The commutativity of the diagram

AR AM(4) % A®AMI(A)

(2.3.3.1) en Len

Ca(d) = Capa(4)

follows from the formula e, (agda; ... dasn) = Y, s sgn(o)o. (ag,...,a,) and
from the fact that B consists in summing over the cyclic group Z/(n + 1)Z.
The bijection S,41 = (Z/(n + 1)Z) x S, implies that

Boey(apda; ...day) = €ny1(l,a0,...,an) = ent1 0 d(apda, .. .da,) .

The diagram of 2.3.3 is obtained by taking the homology groups. O

2.3.4 Proposition. For any unital and commutative k-algebra A the fol-
lowing diagram is commutative

B,
HH,(4A) ——— HH,i(A)

”nJV l”n-f-l

(n+1)d

n n+1
e — 24

Proof. The commutativity of the diagram
B
Cn(A) —— Cpry1(4)

(2.3.4.1) - [

n (n+1)d ntl
‘QAlk ‘QA|k

is a consequence of the formula

n n
mn+1B(ao, ..., a,) = Z(—l)i"dai ...dagpdag ...da;—1 = Zdao ...dag,
=0 i=0
= (n+ 1)dag...dan, = (n+ 1)dmn(ao,...,an) .
Since 7 is a morphism of complexes (differential b for C(A) and 0 for 24 %)

the commutativity of the diagram follows by taking the homology groups in
(2.3.4.1). 0
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2.3.5 Corollary. For any unital and commutative k-algebra A there is a
functorial map

which is split injective when k contains Q and which makes the following
diagram commutative:

oo rdonr L on o orjdont S or2/dand
+ + + l

... HC,., ZHH, L HC, = HC._, 2.

Proof. The map B, : HH,,_, — HH,, factors through HC,,_; and the com-
posite T o B : HC,,_; — HC, is zero. Then Proposition 2.3.3 shows that
coker(d) maps canonically to HC,,.

When k contains Q the projection map m, is a splitting on HH (cf.
1.3.16). Hence by Proposition 2.3.3 it induces a splitting on HC. The rest of
the proposition follows by inspection of the diagram

ot — @ = Qrjdont
+ + +
HH,., —HC,.,~ HH, —  HC,. 0

2.3.6 The Characteristic Zero Case. Under the hypothesis k contains
Q, the analysis of the situation is far easier. Indeed (1/n!)m, induces a map
of bicomplexes from B(A) (cf. 2.1.7) to the bicomplez of truncated de Rham
complexes

04 o4 0l
2 d 1 d 0
Qo — P — 4
oy o)

D) 2y, &
Alk Alk
o)
0
ak

[this follows from 1.3.14 and (2.3.4.1)]. The complex TotD(A) is sometimes
called the reduced Deligne complez. In other words (1/n!)m, induces a map
of mixed complexes (c.f. 2.5.13): :

(C(A),b, B) = (244, 0,d) .

Since in D(A) the vertical differential is zero, the homology groups of the
total complex are easy to compute. This gives the following

2.3.7 Proposition. When k contains Q and A is unital and commutative
the projection map 7 induces a canonical map
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HC,(A) — 24, /d2y0 © HpRH(A) @ HpR(A) & ...
The last summand is H® or H' depending on n being even or odd.

Proof. The spectral sequence associated to the bicomplex D(A) degenerates
at the E'-level since the vertical differential is trivial. Hence E}, = H} 7 (A)
for p # 0 and E}, = 2"/d2"~!, whence the result. O

Remark. We will show in 4.6.10 that this map is in fact a direct sum of
maps, one for each component of the right-hand side.

2.4 Cyclic Cohomology

This section is mainly a translation of the preceding sections into the co-
homological framework. We only give the definitions, the notation and the
statements. Proofs are omitted when they are immediate translation of their
homological analogues.

The reasons for adding such a section are the following: firstly, several pa-
pers are written in this framework, including the seminal paper by A. Connes;
secondly, there is an interesting pairing between cyclic homology and cyclic
cohomology (2.4.8); finally topological algebras are easier to handle in the
cohomological framework, but this will be dealt with in Sect. 5.6.

Hochschild cohomology was treated in Sect. 1.5, from which we adopt the
notation.

2.4.1 Definition. Let A be an associative and unital k-algebra. The dual
A* = Hom(A, k) of A is also denoted C°(A). More generally we put C™(A) =
Hom(A®™*1 k).

Dualizing the bicomplex CC.(A) gives a bicomplex of cochains CC**(A)
such that CCP4(A) = CI9(A). It has vertical differential maps b* or b™* :
CCP? — CCPI*! and horizontal differential maps (1 —¢)* or N* : CCP? —
ccrtlg,

By definition cyclic cohomology of A is the homology of the cochain com-
plex Tot CC**(A):

HC™(A) := H"(Tot CC**(A)) .

2.4.2 Connes’ Definition. A cochain f in C™(A) is said to be cyclic if it
satisfies the relation

(2.4.2.1) flagy...,an) =(-1)"f(an,a0,...,8n-1), a; €EA.

These cyclic cochains form a sub-k-module of C™(A) denoted C}(A). The
important discovery of A. Connes is that the image under b* (also denoted
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B in Sect.1.5) of cyclic cochains is still a cyclic cochain. This is the coho-
mological analogue of statement 2.1.1. Hence (C}(A),b*) is a well-defined
sub-complex of (C*(A),b*) whose homology is denoted H}(A).

If k& contains Q, then the inclusion map C3(A) — C*(A) induces an
isomorphism
HT(A) » HC™(A), n>0.

2.4.3 The B*(A)-Complex. In the bicomplex of cochains CC**(A) one can
get rid of the acyclic b'*-columns. As a result it becomes quasi-isomorphic to
the following bicomplex of cochains

B(4): ! ! 1

cl(4) — C°%aA4A)
o]

co(4)

The normalized version of B*(A) is a subcomplex B (A) made of C" (A). This
latter group consists of cochains f : A®"*! — k which vanish on elements
(@g, . ..,an) for which at least one entry a;, > 1, is equal to 1.

In conclusion, there are quasi-isomorphisms of complexes of cochains

Tot B (A) = Tot B**(A) + Tot CC**(A),
and therefore canonical isomorphisms of k-modules
H,(TotB"(A)) = H,(Tot B*(A)) = HC,(A) .

We leave to the reader the task of defining cyclic cohomology of non-unital
algebras.

2.4.4 Connes Periodicity Exact Sequence (Cohomological Form).
Any associative k-algebra A gives rise to a long exact sequence

... = HH™(A) 2 HO™ 1 (A) =5 HC" L (4) D HHM (4) 25
As a corollary, if k contains Q, then there is a long exact sequence
o= HH™M(A) 25 HP7Y(4) =5 HP P (4) D HH™ (4) S ..
which is the original exact sequence discovered by A. Connes.

2.4.5 Elementary Computations. For any unital k-algebra A, one has
HC°(A) = HHY(A) = H°(A,A*) = (A)A = {f : A = k|f(ad’) = f(d'a)

for any a,a’ € A}. Such an element is called a trace on A.
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For A =k, it is immediate from the (B*, b*)-complex that
HC™(k)=k and HC™(k)=0, n>0.

It will be shown later that HC*(A) can be equipped with a graded commu-
tative algebra structure when A is unital and commutative (cf. Sect. 4.2). In
particular for A = k, if we denote by u the canonical generator of HC?(k),
then HC*(k) can be identified with the polynomial algebra k[u] with u in
degree 2.

2.4.6 Morita Invariance. Let M,.(A) be the associative k-algebra of r X r-
matrices with entries in the unital k-algebra A. The cotrace map induces an
isomorphism

cotr* : HC*(A) & HC*(M,(4)) .

This is an immediate translation of the homological statement.

2.4.7 Cycles Over an Algebra. By definition an abstract cycle of degree
n is a DG-algebra 2 = 2°@ 21 @ ... ® 2" with a differential d of degree +1
and a closed graded trace [ : 2" — k. In other words the data (£2,d, [) is
supposed to verify

(a) d(ww') = (dw)w’ + (-1)lwdo’
(b) d*=0,

(C) /wzwl = (__1)|w1||w2| /wlwz 3
(d) /dw:O for we ",

Let A be a k-algebra. By definition a cycle over A is an abstract cycle (£2,d, [)
and a morphism p : A — £2°. This cycle is said to be reduced if

(1) 12 is generated by p(A) as a DG-algebra,
(2) ifweR and [ww' =0 foranyw' €2, then w=0.

From any reduced cycle over A one can construct its character, which is the
mutilinear functional 7 : A®"+! — k given by

7(ag,...,an) = /g(ao)dg(al) ...do(ay) .

One can show that 7 is a cyclic cocycle and that any cyclic cocycle is the
character of some reduced cycle. This gives rise to numerous examples of non-
trivial cyclic cohomology classes (cf. Connes [C, p. 114] and [1990, p.88]).

2.4.8 Pairing, Duality. In 1.5.9 we defined a Kronecker product pairing
Hochschild homology with Hochschild cohomology. In the particular case
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M = A* and M’ = A one can compose the Kronecker product with the
evaluation map to get

(2.4.8.1) (.,.): HH"(A) x HH,(A) = A* ® 4 A5k,

where ev(f,a) = f(a). This product is obviously extendable to the cyclic
theory (and still called the Kronecker product)

(2.4.8.2) (. Vo =1{.,.): HC™(A) x HCy(A) - k ,

since at the chain level one can verify that (B*(f),z) = (f, B(z)) for any
feC™A)and z € Cpr_q(A).

The resulting map HC™(A) — Hom(HC,(A), k) is sometimes an isomor-
phism, for instance if A =k or, if k is a field.

It is clear that the Kronecker product also exists for the H*- Hy-theories:

(2.4.8.3) (,.): HY(A) x H)XA) = k.

The comparison of the trace and the cotrace morphisms with the Kro-
necker product gives rise to an adjunction formula

(2.4.8.4) (cotr(f),z') = (f,tr(z")) for f € HC™(A) and 2’ € HC,(M,.(4)).

Exercises

E.2.4.1. Extend cyclic cohomology to the non-unital case.

E.2.4.2. Let k be a field. Assume that the k-algebra A is finite-dimensional
as a k-vector space. Show that the map HC*(A4) — Hom(HC.(A),k) is an
isomorphism.

E.2.4.3. Let k = Z and A = Q. Show that HC,(QZ) = Q, HC2n41(Q[Z) =
0, but that HC™(Q|Z) =0 for all n > 0.

2.5 Cyclic Modules

In this section we axiomatize the properties of the simplicial module C(A)
(defined by [n] — A®"*1) with respect to the action of the cyclic group
Z/(n + 1)Z on A®™t1 It gives rise to the notion of cyclic module, first de-
scribed by A. Connes in [1983]. Almost all the constructions and theorems
of the previous sections can be carried over to this context. In fact most of
them do not even require to start with a cyclic module, but only with an
intermediate structure called a mized complex that we introduce in (2.5.13).
Several useful mixed complexes do not come from cyclic modules.
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More generally there is defined a notion of cyclic object in a category.
This aspect will be treated in full generality in Sect.6.1. When the category
is abelian all the constructions done in the k-module case can be carried over.

Notation. The standard generator of Z/(n+1)Z is denoted by ¢,, or simply
t (image of 1 € Z).

2.5.1 Definition. A cyclic module C is a simplicial k-module endowed for
all n > 0 with an action of the cyclic group Z/(n + 1)Z on C,, subject to the
following relations

thtl = 4d
n )

(2.5.1.1) ditn, = —tp_1d;—1 and sit, = —tp418i-1 for 1 <i<n,
dotn, = (—1)"d, and sot, = (—1)"2, 5,

ford;: Cp, > Cp—q1 and s; : Cp, = Cpryg.

A morphism of cyclic modules f : C — C' is a morphism of simplicial
modules which commutes with the cyclic structure, i.e. fut, = t, fn for all n.

The product of two cyclic modules C and C' is the cyclic module C x C'
such that

(2.5.1.2) (CxC)p=Cr®Cy,
di=di®d;, 5,=5Q8;, tp= (1), @ty .

2.5.2 Notation. Since there will be several types of homology associated
with a cyclic module C we will often write H H,.(C) for the homology H.(C,b)
of the underlying simplicial module. This is consistent with our convention
of replacing C by A when C = C(A).

2.5.3 Cyclic Objects in Abelian Categories. In this section we concen-
trate on the category of k-modules, but it is clear how to define a cyclic
object in any abelian category &: it is a simplicial object (Ep)n>0 in & (cf.
Appendix B) together with a morphism t, : E,, — E, for all n > 0 satisfy-
ing formulas (2.5.1.1) (see Sect.6.1 for a definition in terms of functors). In
particular one can work out cyclic homology of cyclic chain complexes as fol-
lows. Any simplicial chain complex (C, d) determines a bicomplex (Ci., d, b),
with homology HH,(C,d) := H.(Tot C..) (sometimes called hyperhomol-
ogy). If this is a cyclic chain complex, then the cyclic operators permit us
to construct a B-map, whence a tri-complex (Cy4x, d, b, B), whose homology
HC.(C,d) := H.(Tot C..) is, by definition, cyclic homology of the cyclic
chain complez.

We put signs depending on n in formulas (2.5.1.1) only because then they
disappear in the computations (cf. 2.1.1). It is also possible to give definitions
of abelian cyclic objects without signs so that then we can define cyclic sets,
cyclic spaces, etc. This will be done in Chap. 6.
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2.5.4 Proposition. Let A be an associative and unital k-algebra. The sim-
plicial module [n] — A®"*! equipped with the action of the cyclic group
Z/(n + 1)Z given by

tn(ag,...,an) = (=1)"(an,a0,...,an-1)

is a cyclic module that we denoted by C(A).

Proof. The formulas were checked in 2.1.1. a

Most of the results concerning the cyclic module C(A) and proved in the
previous sections are valid for any cyclic module. The proofs are all strictly
the same because we only used the simplicial structure and formulas (2.5.1.1).

2.5.5 The Cyclic Bicomplex. To any cyclic module C there is associated
the cyclic bicomplex CC:

|

c, & o & oo & o &

bl b b b’

C, — C; +— (C & C: +—

bl -b b b

Co

Co & ¢ & o &
where b= Y"1 ((=1)id;, b = S0 (~1)'d;, and N = 37 ¢

The commutation relations (1 — t) = (1 — ¢)b/, ¥ N = Nb follow from
(2.5.1.1) as in the proof of Lemma 2.1.1.

2.5.6 Definition. Cyclic homology of the cyclic module C is the homology
of the total complex Tot CC:

HC,(C) := H,(Tot CC) .

It is immediate to check that HC, (resp. HC,) is a functor from the
category of cyclic modules to the category of k-modules (resp. graded k-
modules).

Remark that the definition of CC, and so the definition of cyclic homology,
does not require the existence of the degeneracy operators. Therefore we call
precyclic module a presimplicial module with cyclic operators satisfying the
relations involving only ¢, and d; in (2.5.1.1). Then HC, is well-defined on
the category of precyclic modules. The main example of such a precyclic
module is C,(A4) = A®™*! where A is a (non-unital) k-algebra.

A morphism of (pre)cyclic modules f : C — C’ induces a morphism of
graded modules f, : HC,(C) — HC.(C").
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2.5.7 The Extra Degeneracy. The operator s = sp4; = (=1)"T1t,415, :
Cn — C,41 satisfies all the relations of the degeneracy operators except
that dgsp+1 is in general different from s,dg. It is a good reason to call
it the extra degeneracy. Its properties make it into a homotopy in the b'-
complex: sb’ +b's = id. In the particular case of C = C(A) it takes the form
s(ag,...,an) = (1,a0,...,an) (cf. 1.1.12).

2.5.8 Theorem (Connes’ Periodicity Exact Sequence). For any cyclic
module C there is a long exact sequence

.= HH,(C) -5 HC,(C) 25 HC,_5(C) 25 HH,_,(C) L5 ... .

Proof. Cf. 2.2.1. O

2.5.9 Connes’ Complex. The formula b(1 —t,) = (1 —t,_1)b’ proves that
b is still well-defined on C}(C) = C,,/(1 — t,) and we denote by H)}(C) the
homology of Connes’ complex

() oL SN, S )

If k contains Q, then the natural map p : HC,(C) — H)(C) is an iso-
morphism (same proof as in 2.1.5). More generally there is a first-quadrant
spectral sequence E}, = Hy(Z/(q + 1)Z,C;) = HCpyq(C). Remark that
formulas of 2.2.6 and 2.2.7 are still valid in this general framework.

2.5.10 The Bicomplexes BC and BC. From the acyclicity of the b'-
complex, Lemma 2.1.6 permits us to get rid of the b’-columns in CC. What
is left is the bicomplex

" Lol

Co

where B = (—1)"*}(1 — tp41)sN : Cp, = Cpry is called Connes’ boundary
map. The relations

b =B?*=bB+Bb=0
are proved as in Sect.2.1. Each column can be replaced by its normalized
version (cf. 2.1.9) and we get a new bicomplex BC with C, in place of C,.

The horizontal differential has the form B = sN. The bicomplex BC (and
similarly BC) gives rise to an exact sequence of complexes
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0 = C — Tot BC - Tot BC[2] — 0

from which one can also deduce Connes’ exact sequence.

2.5.11 Theorem. For any cyclic complex C the maps of complexes
Tot CC « Tot BC — Tot BC
are quasi-isomorphisms and therefore

HC,(C) = H,(Tot CC) 2 H,(Tot BC) = H,(Tot BC) . O

2.5.12 Definition-proposition. An equivalence of cyclic modules is a mor-
phism of cylic modules f : C — C’ which induces an isomorphism on the
homology of the underlying simplicial modules HH,(C) = HH,(C'). An
equivalence of cyclic modules induces an isomorphism in cyclic homology
f« t HC.(C) =2 HC,(C’) and conversely.

Proof. Cf. 2.2.3. a

2.5.13 Mixed Complexes. These latter results show that some basic prop-
erties of cyclic homology can be derived from the bicomplex BC alone. Hence
it is helpful to introduce the following notion. By definition a mized complez
(C,b,B) is a family of modules Cp,,n > 0, equipped with a chain map of
degree —1,b: C,, = Cp,_1, and a chain map of degree +1,B : C,, = Cy 41,
satisfying

(2.5.13.1) b¥»=B*=bB+Bb=0.

Of course any cyclic module gives rise to a mixed complex, but there are
other examples.

Any mixed complex determines a first-quadrant bicomplex BC (cf. 2.5.10).
The ordinary homology of the mized complez (C,b, B) is the homology of the
first column of BC, that is the homology of the complex (C,b) : HH,(C) =
H,(C,b). By definition cyclic homology of the mized complex (C,b, B) is the
homology of the bicomplex BC, that is HC,(C) := H,{Tot BC). As already
seen in 2.5.10, there is an exact sequence of complexes

0 = (C,b) = Tot BC -2 Tot BC[2] — 0

where S is factoring out by the first column. This short exact sequence gives
rise to a long (periodicity) exact sequence

.= HCp_(C) -2 HH,(C) -5 HC,(C) -5 HC,_5(C)
= HH, 1(C)—>....
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Of course there is an immediate notion of morphism of mized complexes:
it is a sequence of maps f, : C, = CJ,, n > 0, such that f,, commutes with b
and B. However there is a larger class of morphisms defined as follows.

2.5.14 Definition. An S-morphism of mixed complexes f : (C,b,B) —
(C’, b, B) is a morphism of complexes f : Tot BC — Tot BC' which commutes
with S.

Explicitly, (Tot BC),, = C,®Crp_2®Cpr_4®. .. and therefore a morphism
from Tot BC to Tot BC' can be represented as a matrix of morphisms (from
Cn—2i to C,,_,,). The condition of commutation with S implies that this
matrix is of the form

fo @
fEO @ g
fO = ... e O g

with f() : C,_y — C’. The condition “f is a morphism of complexes” is
equivalent to

(2.5.14.1) [B,f(“] + [b,f(“l)] -0.

Conversely a sequence of complex maps f(*) (of degree 2i), 1 € Z, satisfying
(2.5.14.1) determines an S-morphism (a morphism of mixed complexes is a
particular case with f( = 0 for i # 0).

An S-morphism induces a map f. : HC.(C) — HC,(C"). The commuta-
tion condition with S implies the commutativity of the diagram

0 - C — TotBC -2 TotBC[2] — 0
L@ L 1f12)
0 » C = TotBC' -2 TotBC'2] — 0.

Taking the homology and applying the five lemma inductively proves the
following generalization of proposition 2.5.12:

2.5.15 Proposition. Let f : (C,b,B) — (C’,b, B) be an S-morphism of
mized complezes. Then f{) : HH,(C) — HH.(C") is an isomorphism if and
only if f. : HC,(C) —» HC,.(C') is an isomorphism. O

2.5.16 Remark. In most cases the S-morphisms that we will have to deal
with are such that f() = 0if i # 0 and 1. Hence conditions (2.5.14.1) reduce
to

(2.5.16.1) [b,f(o)] -0.
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(2.5.16.2) [B,f(O)] + [b,fu)] —0.

(2.5.16.3) [B,fm} —0.

2.5.17 Extreme Cases of Comodule Structure. For any cyclic module
C the graded group HC,.(C) is a k[u]-comodule:

HC,(C) = k[u]® HC,(C) ,z — Zui ® S'(z) .
i>0

There are two extreme cases: the free case and the trivial case.

a) Free Comodule Case. When HC,(C) is free as a k[u]-comodule, there are
isomorphisms of graded modules

HC,(C)® HC,(k)® HH,(C) = klu] ® HH.(C) ,

where |u| = 2. Under this hypothesis the map B is 0 and Connes exact
sequence splits into short exact sequences

0— HH,(C) - HC,(C) = HC,_2(C) = 0.

This happens when the mixed complex (C, b, B) is quasi-isomorphic to some
mixed complex (C’,9,0) for instance. An example is given by the cyclic mod-
ule associated to the nerve of a discrete group (cf. 7.3.9).

b) Trivial Comodule Case. The forgetful functor from cyclic modules to sim-
plicial modules admits a left adjoint F (see 7.1.5 for more details). Suppose
that C & F(D) for some simplicial module D. Then one can show that the
S-map is trivial and so the k[u]-comodule structure is trivial. Then Connes
exact sequence splits into short exact sequences:

0— HCp_1(C) » HH,(C) —» HC,(C) = 0.
In fact there are isomorphisms HC,(C) = HH,(D) and HH,(C) =
HH,(D)® HH,-1(D).

Topologically these two cases correspond to trivial S'-spaces and S'-
spaces of the form S! x Y with S!-action only on the S! component, respec-
tively (cf. also 4.4.7).
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Exercises

E.2.5.1. Show that an exact sequence of cyclic modules
05C'5C—>C">0
induces a long exact sequence in homology

... > HC,(C') » HC,(C) = HC,(C") - HC,_1(C') = ... .

E.2.5.2. Cyclic Homology of Small Categories. Let .4 be a small cate-
gory such that for any objects A and A’ the set Hom (4, A) is endowed with
a k-module structure and composition of morphisms is a k-bilinear map. Let
Cn(A) = ®[Hom (A4,, Ag) ® Hom (Ap, A1) ®...® Hom (An—1, A,)] where the
direct sum is over all sequences (Ag,. .., An) of objects of A. Show that there
is defined a cyclic k-module structure on the simplicial module [n] — C,(A).
Denote its cyclic homology by HC,(A). Check that the particular case where
A has only one object *, with morphisms Hom (*, *) = A (composition being
multiplication in A) is our classical example. Let P(A) be the category of
finitely generated projective modules over A (made small). Show that there
is a canonical isomorphism HC,(A) = HC,(P(A)). Deduce a new proof of
Morita invariance (cf. McCarthy [1992al]).

E.2.5.3. Let (C,b,B) and (C’,b, B) be two mixed complexes and let f :

(C,b) = (C',b) be a map of complexes. Show that for any map h: C — C’

of degree one (i.e. h: C, = C,, ;) the following are equivalent:

(a) f+[h,b] is a map of mixed complexes,

(b) f = f9 and f® = [k, B] form an S-morphism (in the sense of 2.5.16,
i.e. f( =0 otherwise).

E.2.5.4. Poisson Algebras. By definition a Poisson algebra is a commuta-
tive k-algebra S equipped with a bilinear map {—,—}: S® S — S (Poisson
bracket) satisfying:

(i) {—,—} is a Lie bracket,

(i) {—,—} is a derivation in each variable.

(a) Let g be a Lie algebra (cf. Sect.10.1). Show that the symmetric algebra
S(g) is a Poisson algebra with Poisson bracket {g,h} = [g,h] for g,h €
S'(a).

(b) Let S = S(g) and let 125, be the module of n-forms on the Poisson
algebra S and let d denote, as usual, the exterior differentiation operator.
Define 6 : le E = Qg‘_kl by the formula

8 (sodsy ...dsp) := Z (=1)" {s0,si}ds1 .. .ds; ...dsy
1<ikn
+ Z (—-1)i+j_180d{5i,5j}d81...C’lTSi...CiSj...dSn .

1<i<j<n

Show that (£25,,6,d) is a mixed complex (cf. Koszul [1985], Brylinski [1988],
Kassel [1988]).
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2.6 Non-commutative Differential Forms

For a commutative algebra A the module of n-differential forms is defined as
the nth exterior power of the module of 1-forms. This construction gives a
symmetric A-bimodule and works only when A is commutative. For a non-
commutative algebra A, A. Connes [C] and M. Karoubi [1987] define the mod-
ule of n-forms by taking the iterated tensor product of the (non-symmetric)
bimodule of 1-forms. This, together with b, gives a differential graded algebra
whose abelianization yields a complex. Non-commutative de Rham homology
is defined as the homology of this complex.

It turns out that this new module of n-forms is nothing but the module
C,.(A) of the normalized Hochschild complex. This permits them to relate
non-commutative de Rham homology to cyclic homology (Theorem 2.6.7).

This point of view has the advantage of yielding almost the same for-
malism as for ordinary forms, and so it permits them to extend the classical
differential calculus (connections, curvature, characteristic classes, etc.) to
non-commutative algebras.

Our exposition follows essentially Karoubi [1987].

2.6.1 Non-commutative 1-Forms. Let 1 : A® A — A be the product
map of the k-algebra A. In the commutative case it was shown (cf. 1.3.9)
that the derivation functor is representable by I/I? where I = Ker . In the
non-commutative case the derivation functor Derg(A, M) where M is an A-
bimodule is also representable: Dery(A, M) = Hom 4(I,M),D — (1Q = —
z®1— Dz)since 1Qab—ab®1=(1Qa—-a®1)b+a(l®b->b®1). So it
is natural to take I as the bimodule of 1-forms.

In fact we have already met this bimodule under a different guise in 1.1.14.

2.6.2 Lemma. The map (z,y) = z® y — xy ® 1 is an isomorphism of
A-bimodules . _
Ci(A)=AQA~]T.

Proof. One first remarks that £ ® y — ry ® 1 depends only on the class of y in
A, so the map is well-defined and obviously its image is in I. The quotient of
A ® A by the relations t® y — xy ® 1 = 0 for z,y € A maps isomorphically
to A (with inverse map given by = — class of  ® 1). Therefore the kernel of
this factor map is isomorphic to the kernel of . a

2.6.3 Bimodule Structure of C;(A) and Notation. The kernel [ is a
sub-A-bimodule of A ® A. So, by the isomorphism of Lemma 2.6.2, C;(A)
becomes an A-bimodule. In order to write down this structure in a more
familiar way, let us introduce the following notation: an element (z,y) €
C1(A) (or equivalently z ® y — zy ® 1 in I) is written zdy. The left module
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structure is simply a(zdy) = (az)dy. However the right module structure is
more subtle. The equalities

(zQy—zy®lla=rQya—ryQa
=zQya—rya®1l—(zyQa—zya®1)

in A® A, written with the new notation, give (zdy)a = zd(ya) — zyda. So
we have the classical formula

d(w) = udv + (du)v, forany u,ve€ A,

which describes the right A-module structure of I.

2.6.4 Differential Algebra of Non-commutative Forms (C(A),d). In
the commutative case the space of n-forms was defined by taking the exterior
power on 1-forms. In the non-commutative case we simply take the tensor
power of non-commutative 1-forms, that is C1(A) ®4 ... ®4 C1(A). It turns
out that this module is simply C,(A) with the identification agda; . ..da, =
(ao, ..., an). So, from now on, C(A) = @,>0 Cn(A) (with Co(4) = A) is
considered as a graded algebra and the element (ao,...,a,) of Cp(A) will
be written agda; . ..da,. The product in this algebra is performed by using
the rules of d, for instance (dz)(ydz) = (d(zy) — zdy)dz = d(zy)dz — zdydz.
There is obviously defined a differential map

d:Cph(A) = Cry1(A),aoda; . .. da, — dagda, ... day,

which makes (C(A),d) into a differentiable graded algebra (DG-algebra for
short). Commutators in this DG-algebra and the map b are related by the
following formula.

2.6.5 Lemma. For any w € C,(A) and any a € Cy(A) = A one has
bwda) = (~1)lw, a] = (~1)**}(wa — aw)

where b is the Hochschild boundary.

Proof. Let w = agda; ...da,_; and a = a,. One first checks that
dn(aoda; ...dan) = anaoda; ...da,_1 = aw .

So it suffices to check that b'(wda) = (—1)lwa. This is a consequence of the
rule (dz)y = d(zy) — zdy applied several times. O

2.6.6 Non-commutative de Rham Homology. Recall that in a graded
algebra the (graded) commutator is given by [w,w'] = ww' — (=1)1“I¥'lw/w.
The abelianization of C(A) is C(A)ab = C(4)/[C(A4),C(A)]. The differential
d is well-defined on the abelianization and so (C(A)ap,d) is a complex.
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By definition the non-commutative de Rham homology of A is HDR.(A)
:= H,(C(A)ap, d). This theory is closely related to cyclic homology as will be
seen below.

Suppose that (§2,0) is a DG-algebra over k and let o : A — 2° be
a k-algebra map. As (C(A),d) is universal among DG-algebras whose Oth
term is A, there is a unique extension of g to a DG-map: apda; ...da, —

o(ao)8o(ai) ...00(ay). So for any such data there is defined a map
H*(C_(A)ab’d) - H*(Qabad) .

An interesting example is, when A is commutative, {2 = 27, , with ¢ = id4.
It gives a map from non-commutative de Rham homology to ordinary de
Rham homology (compare with 2.3.7).

It will be shown later that for smooth algebras there is an isomorphism
HDR,(A) = ®ocicn/z Hpp(A) for n > 0.

There is defined a reduced non-commutative de Rham homology by

HDR,(4) := Hn (C(A)/(k +[C(4),C(A4)]),d) .
As usual this reduced theory fits into an exact sequence
(2.6.6.1)

...— HDR,(k) - HDR,(A) - HDR,(A) - HDR,_,(k) — ...

Since HDR,(k) = 0 for n > 0, there is an isomorphism HDR,(A) =
HDR,(A) forn > 1.

2.6.7 Theorem. Assume that k contains Q and let A be a unital k-algebra.
Then non-commutative de Rham homology and cyclic homology are related
by the exact sequence

0 — HDR,(A) —» HC,(A) 2> HH,11(A), n>0.

In other words, non-commutative de Rham homology is the kernel of
Connes map B or equivalently the image of the periodicity map S. Note that
this can be taken as a definition of HDR if one does not want to introduce
non-commutative differential forms but wishes to work with cyclic homology
instead.

We begin the proof of the theorem with two lemmas explaining the behav-
ior of b and B under abelianization. Recall that the component of degree n in
C(A),p is the quotient of C(A) by the submodule generated by the commu-
tators [w,w'] with w € C;(A), w' € C;(A), i+j = n. We denote this quotient
by Cpn(A)ab for n > 0. For n = 0 we define Co(A)ap := A/(k + [4, 4]) in
order to work with HDR.

2.6.8 Lemma. For any unital k-algebra A there is a commutative diagram
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Cn(A)ab — Cr1(Aab

and the induced map HH,(A) — Cr(A)ap is injective when k contains Q.

Proof. The first assertion is a direct consequence of Lemma 2.6.5.

In order to prove the second assertion, we introduce the endomorphism
o of Cp,(A) given by o(wda) := (-=1)ldaw for n > 1 and by o(ag) = ag for
n = 0. From the definition of b and d it comes immediately

(2.6.8.1) 1-o=bd+db.

Though o is not of finite order, it is of order n modulo b Crt1(A). Indeed
the following formula holds on C,(A):

(2.6.8.2) o" =1+bo"d.
The proof of this formula is as follows:

o"(apday ...day) =day ...danag
= aoda; ...da, + [da; ...dan, ao)
= apda; ...da, + (—1)"b(da; ...da,dag)
= agday . ..da, +bo™d(aeda; ...da,) .

By (2.6.8.1) 0 commutes with b and therefore HH,(A) is a submodule of
the module of invariants (C,(A)/Imb)°. By (2.6.8.2) o is of order n on
C,(A)/Imb, so, since k contains Q, the module of invariants coincides with
the module of coinvariants C,,(A)/Im b+Im (1—0). Let us show that this is in
fact C,,(A)ap for n > 1. The submodule of commutators in C,,(A) is linearly
generated by the commutators [w, a] and [w/,dz], w € Cp(A), W' € Cpr_1(A),
a and ¢ € A. By Lemma 2.6.5 the first type corresponds to Imb. The second
type corresponds to factoring out by the action of o.

Summarizing: HH,(A) is a submodule of (C,,(A)/Imb)’ = C,,(A)/Imb+
Im(1 — o) = Cr(A)ap. For n = 0 HHy(A) is precisely equal to A/(k +
[A4, A]) = Co(A)ab. O

2.6.9 Lemma. For any unital k-algebra A there is a commutative diagram

Cu(d) ——  Tumi(4)
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Proof. It suffices to check that in C,1(A)ab the equality dandag ... day_; —
dag...da, = 0 holds. This is immediate since the right-hand part of this
equality is the commutator [da,,dag . ..dan—1]. ]

2.6.10 End of the Proof of Theorem 2.6.7. Let 62(A) be the module
CX(A) (cf. 2.1.4) quotiented by the submodule generated by ' the elements
(ao, . ..,an) such that at least one of the entries a; is 1. Then C,,(A)b/Imd

is isomorphic to 52(A) /Imb as they are equal to C,,(A) quotiented by the
same set of relations (cf. 2.6.5 and the last sentence in the proof of 2.6.8).

Consider now the following diagram
Cn(A)ab/Imd = Co(A)/Imb ——— Cpyi(A)/Imb
bl lb
—\ B —
Ch_1(A) — C,(4).

By Lemma 2.6.8 H—Hn+1(A) can be considered as a submodule of

Cr1(A)as -
Then, for w € Cp,(A)ap/Imd, one has
(n+1)d(w) € HHny1(4) & B(w) € HH 11 (A)
& bB(w) =0 4 Bb(w) =04 db(w) =0.
Consequently the nth homology group of the complex
Co(A)ab — .. = Cu(A)ab ~ Cny1(A)/HHp1(A)

is Hn(ai‘(A),b). The equality Hn(_C—;\(A),b) = HC,(A) (cf. 2.2.15) permits
us to finish the proof. a

Finally the comparison with de Rham homology in the commutative case
is given by the following

2.6.11 Proposition. Let A be a unital commutative k-algebra (and k D Q).
Then the following diagram is commutative forn > 1,

HDR,(A) —  HC,(A)

e- | |

Hpp(A) < Qzlk/dQZﬁ:, O

Exercises

IR

E.2.6.1. Show that HDR is a homotopy invariant functor: HDR, (A[t])
HDR,(A) [cf. Sect.4.1].
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E.2.6.2. Let A x A be the coproduct of two copies of A in the category
of unital associative k-algebras. Show that there is an algebra isomorphism
A+ A = C(A) provided that C(A) is equipped with the Fedosov product o
given by

wouw' =ww + (-1)“ldwdu’ .

[For z in the first copy of A (resp. y in the second), send = to z + dz (resp.
y to y — dy) cf. Cuntz-Quillen [1992]]

Bibliographical Comments on Chapter 2

Historically, the lifting of the differential operator d on forms as the operator B on
Hochschild chains was first discovered by G. Rinehart (a student of G. Hochschild)
and published in the second part of his paper {1963, §9 and 10]. His notation for
B is simply d (see loc.cit. p. 221). Moreover he discovered most of the properties of
this operator: relationship with b, with the derivation operators, with the product
structure. There is no mention of the (b, B)-bicomplex, nor cyclic homology though
everything is at hand. It seems that this part of the paper was not very well under-
stood and forgotten. C. Kassel drew it to my attention. The cyclic complex C for a
tensor algebra is hinted in a paper by Hsiang and Staffeldt [1982], see Chap. 10.BC
for more.

The cyclic complex C} was invented (in the cohomological framework) by
A. Connes [C] and appeared independently in B. Tsygan’s work on homology of
Lie algebras [1983]. A. Connes rediscovered the operator B. The relationship be-
tween the (b, B)-bicomplex and the C?-complex was made clear in Loday-Quillen
[LQ] through the construction of the cyclic bicomplex (inspired by Tsygan’s work).
In Kassel [1989a] it is proved that the complexes B(A) and C*(A) are retract by
deformation of CC(A).

Connes periodicity exact sequence was first proved by him in characteristic zero
(cf. Connes [C]), but also appeared in Tsygan’s announcement [1983]. The char-
acteristic free proof appeared in Loday-Quillen [LQ] and independently in Connes
[1983]. The Morita invariance can be found in several places: Connes [C, Cor. 24],
Loday-Quillen [LQ, Cor. 1.7], of the general case the proof is in McCarthy [1988]
and in Kassel [1989a]. The explicit formula for S (Theorem 2.2.7) can be found in
Connes [C, p. 323] and Karoubi [1987, p. 27].

The abstract notion of cyclic modules and cyclic objects appeared first in
Connes [1983]. The notion of a mixed complex is probably present in many places in
the literature before cyclic homology was discovered (see for instance André g1974]).
It was introduced by D. Burghelea [1986, p. 93] under the name algebraic §*-chain
complex and studied systematically by Kassel [1987]. The present terminology was
coined by C. Kassel [1987] who introduced also the notion of S-morphism.

The framework of non-commutative differential forms is present in A. Connes
[C], and also in early work of M. Karoubi [1983, 1987] on the subject. The idea of
taking the kernel of u as a substitute for the module of 1-forms is already in Quillen
[1970, p. 70]. For a recent development see Cuntz-Quillen [1992].

Most of the results of this chapter are also dealt with in Feigin-Tsygan [FT].
This (sort of) monograph contains a definition of cyclic homology (called additive
K-theory) by means of derived functors on a non-abelian category (see also Feigin-
Tsygan [1985]). This tool gives different proofs of many results in the cyclic theory.
In Quillen [1988] a different approach to the cyclic bicomplex is treated by means
of the DG-coalgebra structure of the bar construction.



Chapter 3. Smooth Algebras
and Other Examples

This chapter is devoted to the computation of Hochschild and cyclic homolo-
gies of some particular types of algebras: tensor algebras, symmetric algebras,
universal enveloping algebras of Lie algebras and, finally, smooth algebras, on
which we put some emphasis. One more important example, the case of group
algebras, will be treated later, in Sect.7.4. It is also shown in this chapter
that Hochschild and cyclic homology are related to many other theories such
as the homology of Lie algebras, André-Quillen homology of commutative
algebras, and Deligne cohomology.

Most of the time the computation of the Hochschild homology of a specific
algebra consists in constructing an ad hoc resolution. In order to compute
the cyclic homology the game consists in figuring out what plays the role of
Connes boundary map B. This gives rise to a smaller complex from which
it is easier to compute the cyclic homology (for a systematic treatment, see
Exercise E.3.1.3).

In Sect. 3.1 we consider tensor algebras. The result for Hochschild is well-
known, but the proof given here, which is slightly different from the classical
one, works without the hypothesis of a projective property.

In Sect.3.2 we deal with polynomial algebras. This is the first step of
many computations. It will be generalized (with a slightly different proof)
to smooth algebras in Sect. 3.4. We show that the case of polynomial (versus
smooth) algebras has some particular features (see Remark 3.2.3).

Section 3.3 contains an application of the preceding section to the com-
putation of HH and HC of filtered algebras whose associated graded algebra
is polynomial. The main example is the universal enveloping algebra of a Lie
algebra. In this case Hochschild homology is precisely the homology of the
Lie algebra. The computation of cyclic homology gives rise to a simple mixed
complex.

In Sect. 3.4 the important case of smooth algebras is dealt with. The main
point is the Hochschild-Kostant-Rosenberg (HKR) theorem which asserts
that for smooth algebras, Hochschild homology coincides with differential
forms:

HH,(A) = Q% -
In fact this result was (and is) used quite often the other way round: in order
to generalize some results on forms to non-smooth algebras, or even to non-
commutative algebras, one can substitute Hochschild homology groups for the

J.-L. Loday, Cyclic Homology
© Springer-Verlag Berlin Heidelberg 1998
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module of forms. The next important point is that, in Hochschild homology,
Connes boundary map B plays the role of the exterior differential operator
d (cf. 2.3). Then cyclic homology can be compared with de Rham homology.
For a smooth algebra A, in characteristic zero, one has an isomorphism

HC,\(A) = 2%, /d257) & Hiz2(A) © Hig'(A) @ ... .

There are several ways of defining a smooth algebra. Our choice is based on
the notion of regular sequence so that the proof given here is close to the
original proof of HKR. In the next section another proof is sketched starting
with a different definition of smoothness (equivalent with the first one in the
noetherian case). Appendix E is devoted to a comprehensive comparison of
the different definitions of smoothness.

Section 3.5 is devoted to André-Quillen homology theory of commutative
algebras. We introduce the important notion of a cotangent complex, which
gives rise to this homology theory. This is the right framework in which to
deal with smooth algebras.

In Sect. 3.6 we give a short account of Deligne cohomology theory in the
affine case. This theory is important because of its modified version called
Deligne-Beilinson cohomology theory. It is closely related to cyclic homology
in the smooth case and this comparison is interesting because of the product
structures (see 3.6.6).

The case of a group algebra k[G] of a group G is very similar to the
universal enveloping algebra case and would perfectly fit in this chapter.
However, because of its importance in the relationship of cyclic homology
with Sl-spaces and with algebraic K-theory (Chern character), its treatment
is postponed to Sect.7.4.

For the notation and terminology of tensor, symmetric and exterior alge-
bras, see Appendix A.

3.1 Tensor Algebra

In this section we compute the Hochschild homology and cyclic homology of a
tensor algebra. For the former, one can introduce a particular resolution to get
a small complex. In fact one can show that this complex is quasi-isomorphic
to the Hochschild complex by providing explicit homotopies. This permits us
to get rid of the flatness hypothesis used in Loday-Quillen [LQ, p.582].

3.1.1 The Small Complex of a Tensor Algebra. Let V be any k-
module and let A = T(V) = k®V & V®2 @ ... be its tensor algebra.
The element (vy,...,v,) € V®" is denoted by v;...v, and is said to be
of length n. The product in T(V) is concatenation: (vi...v,)(vy...v)) =
vi...0p0} ... v),. We denote by 7 : V®* — V®™ the cyclic permutation,

(V1 ... Un) = (UnV1 ... Un—1).
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Let C*™3(T(V')) be the complex
o 0— AQV — A

where the module A is in degree 0 and where the non-trivial map is given by
(a,v) = av — va.

3.1.2 Proposition. Let ¢ : AQA— ARV be defined by

dla,vy...vp) = EWH .Vpavy ... Vi1 Qu; forn > 1, and ¢(a,1) =0.
i=1

The map @ : C(A) = C™(A), which is the identity in degree 0 and ¢ in

degree 1, is a quasi-isomorphism of complezes.

Proof. There is an obvious inclusion of complexes « : C5™2!(4) — C(A) such
that @ o = id. Let us prove that « o  is homotopic to idc(4).

Let h, : Cp(A) = Cry1(A) be defined inductively (according to the
length of the last entry) by

h0=0,
hn{ao,...,an—1,v) =0 and
hn(ag,...,an_1,anv) = hp(vag,...,a,) + (=1)"(ao,...,an,v) forn > 1.

A straightforward computation shows that

bhy + hn-1b=1idc, 4y when n>2,

bhi + hob = idc, 4y —top for n=1.
Hence h is a homotopy from idc(4) to ¢ o® and the complexes C(T(V)) and
Csm2l(T(V)) are quasi-isomorphic. O

3.1.3 Remarks. Suppose that V is free of rank 1 over k with generator z.
Then T'(V') is the polynomial algebra k[z]. The composite A® A 2o AQV =
A is given by p(z) ® q(z) — p(z)¢'(z) where ¢'(x) denotes the deriva-
tive of the polynomial g(z). Note that C5™2(T(V)) can be thought of as
T(V) @rvyer(v)er C™(T(V)) where C*™(T(V)) is the resolution

im0 0 T(V)RVT(V) = T(V)®T(V) — T(V) = 0 .

3.1.4 Theorem. For any k-module V' Hochschild homology of A =T (V) is

HHy(A) = mego Ve /(1—1) (V®™), (coinvariants) ,

= &

m>0

HH,(A)= & (V®™)" (invariants) ,
m2>1

HH,(A)=0 for n>2.
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Proof. One checks that b restricted to V®™~1®V is precisely (1-7) : V&™ —
VO™ for m > 1:

b(v1 ... Ume1 @ Um) =V1...Um — U¥1 -« U1 = (1= 7)(v1 ... 0p) . O
Note that sgn(r) is not involved here.

In order to compute cyclic homology of A = T(V'), we replace, in the
bicomplex B(A), every vertical Hochschild complex by a copy of the length-
one complex C*™2( 4). We need to know what plays the role of Connes’ map
B. The answer is given by the following

3.1.5 Proposition. Let v :A— AQ® V be defined by

Y(v1...vp) =Zvi+1...vnv1...vi_1®vi .

i=1

The cyclic homology of the tensor algebra A = T(V') is the homology of the
(periodic) complex

LAV Al aev S al

Proof. Remark that v(a) = ¢(1, a). The following diagram

!
ARV & A
b
ARV & A
bl
A

can be considered as a bicomplex since by = vb = 0 by the following ar-
gument: by(a) = b@(l,a) = b(l,a) = 0 and vb(a,v) = v(av — va) =
#(1, av) — ¢(1,va) = ¢(a,v) + ¢(v,a) — ¢(a,v) — ¢(v,a) =0.

Its total complex is the complex described in the statement. The mor-
phism of complexes & extends to a morphism from B(A) to this new complex
since v 0 id = ¢ o B. By 3.1.2 this is a quasi-isomorphism of bicomplexes,
whence the assertion. O

3.1.6 Theorem. Cyclic homology of a tensor algebra is given by
HC,(T(V)) = HC,(k) ® @OHH(Z/mZ,V@"") :
m>

where the generator of Z/mZ acts by T on V™ (so for n > 1 it is periodic
of period 2). In particular, if k contains Q, then HC,(T(V)) = HCy,(k) for
n >0 and HCy(T(V)) = S(V) (symmetric algebra).
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Proof. Since T(V) = ®m>o V®™ the complex of Proposition 3.1.5 can be
identified with the direct sum of C(k) with the complexes which compute
the homology of Z/mZ with coefficients in V®™ (cf. Appendix C.4). Since
Z/mZ is a finite group, these homology groups are trivial in positive degree
when k contains Q. O

3.1.7 Example A = k[z]. If V is of dimension 1 and k = Z, then T(V) =
Zlz]. So HCy(Z[z]) = Z[z] and for n > 0, HC2,(Z[z|) = Z, HCyn41(Z[x]) =
®m>0Z/mZ (the torsion group Z/mZ comes from the fact that the derivative
of 2™ is mz™~!). On the other hand if k contains Q, then HC,(k[z]) =
HC.(k) & zk[z], where zk[z] is concentrated in degree 0.

3.1.8 Remark. In the decomposition of HC, (T'(V)) given by Theorem 3.1.6
the periodicity map S corresponds to the periodicity isomorphisms for the
homology of cyclic groups (cf. Appendix C.4).

Exercises

E.3.1.1. Let F : (k-Alg) — (k-Mod) be the forgetful functor. Show that
the tensor algebra functor T is left adjoint to F'.

E.3.1.2. Suppose that V is projective over k. Give a non-computational proof
of Proposition 3.1.2.

(Show that there is a projective resolution of A of length one which yields
Ccs™2ll( 4), cf. Loday-Quillen [LQ, p.582].)

E.3.1.3. Perturbation Lemma. A perturbation of the complex (A4,d4) is a
graded homomorphism g :A— A of degree —1 such that (d4 + 0)? = 0 (Show
that, for a mixed complex (C,b, B), B can be considered as a perturbation).

Let (A,da) %(B,dB) be complexes and maps of complexes such that
fg = idp. In this situation, a reduction is a graded homomorphism h : A — A
of degree +1 such that fh =0, hg =0, hds +dah = id4 — gf and hh = 0.

Suppose that hg is locally nilpotent (i.e. Ya € A, In > 0 such that
(ho)™(a) = 0) and define T, := Y ;0 ((—1)*(ho)’. Show that hoo := Zoh is
a reduction for

(A,dA+e)j—°>°(B,doo>, where do = dp + foZneg ,

fo i = f(l - onoh) v oo = Yoog .

Apply this result to give (different) proofs of some of the computations of
this chapter (cf. Brown [1967], Kassel [1990]).

E.3.1.4. Weyl Algebra. The Weyl algebra A, is the associative k-algebra
generated by pi1,...,Pn,q1,...,gn subject to the relations
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[pi,pj] = lgi,q;) =0 forall 4,5,
[piygj] =6;; forall 4,5.

(Note that the endomorphisms of k[zi,...,z,] given by p; = multiplication
by z; and ¢; = 8/0x; satisfy these relations.) Show that if k contains Q, then

HH(A,) = {k for 1 = 2n,

0 otherwise,

‘ _Jk fori=2j, j>n,
HC;i(An) = {0 otherwise.

[Do n =1 first.)

3.2 Symmetric Algebras

The example of polynomial algebras is of course fundamental in the com-
putation of HH and HC of commutative algebras. It will be exploited in
Sect. 5.4 where we use differential graded models over polynomial algebras to
perform computations.

Hochschild homology of a polynomial algebra is simply the module of
differential forms of this algebra (Theorem 3.2.2). This result will be general-
ized in Sect. 3.4 to smooth algebras. However symmetric algebras are peculiar
among smooth algebras since the isomorphism 25y, = HH.(S(V)) is in-
duced by a chain map.

Cyclic homology is then computable in terms of de Rham homology (The-
orem 3.2.5).

3.2.1 Symmetric and Polynomial Algebras. Let V' be a module over
k and let S(V) be the symmetric algebra over V. Explicitly S°(V) =
k, S{V) = V, (V) = V®"/x~, where the equivalence relation ~ is
(v1,..+,) R (Vo(1),Yo(2), - - Yo(n)) for any permutation o € S,. We will
simply write v1v ... v, in place of (vy,vs,...,vn). The product is given by
concatenation. If V' is free of dimension one generated by z, then S(V) is the
polynomial algebra k[z]. More generally if V is free of dimension n generated
by z1,...,Z, then S(V) is the polynomial algebra k(z1, ..., z,].

3.2.2 Theorem. Let V be a flat k-module. Then there are isomorphisms
en: Doy =S(V) @A™V = HH,(5(V)).

Proof. The first isomorphism was already proved in 1.3.10 for n = 1 and
1.3.11 for all n. For the second isomorphism the proof is divided into two
parts.
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a) Let us prove the second isomorphism in the particular case of a finite-
dimensional free k-module V. For this we introduce the following commuta-
tive differential graded algebra C5™(S(V)) = (S(V) ® A*V ® S(V), §), where

(z®@vy)=zvQy—zQuy, zyeSV), veV,
and where the product is given (for u,u’ € A*V') by
(zRu®y) (' ®u ®@y) = (' @uad @yy).

Let W be another k-module. Then there is an obvious isomorphism of
CDG-algebras C5™(S(V)) ® CS™(S(W)) = C™(S(V & W)). Since V is a
finite-dimensional free k-module one can write V =V, @ ... ® V, where each
Vi is free of dimension 1. It is immediately seen that the complex C$™(S(V;))
is a resolution of S(V;), that is the following sequence is exact:

0= S(Vi) @V, ® S(Vi) - S(Vi) ® S(V;) 2 S(V;) = 0

(Since V; is 1-dimensional S(V;) = T(V;) and this is the resolution described
in Remark 3.1.3.) Therefore C5™(S(V)) = ®,C5™(S(V;)) is a resolution of
®:S(Vi) = S(V). As a consequence HH,(S(V)) is the homology of the com-
plex C:m(S(V)) Bs(V)®s(V) S(V) which is

(3.2.2.1) LSV AMV L S(V) @AMV S 5 S(V).

This ends the proof of the case V free and finite-dimensional.
b) If V is flat over k, then there exists a filtered ordered set J and an
inductive system of free and finite-dimensional k-modules L; such that
V 2 lim Lj
Jj€

(cf. Bourbaki [1980]). Since HH, and S commute with inductive limits over
a filtered ordered set, the flat case follows from the finite-dimensional case.
a

3.2.3 Remark. The composite
Qg(V)|k =+ S(VY® A"V — HH,(S(V))

is easily seen to be the antisymmetrisation map e, (cf. 1.3.4). Indeed the
composite of complex maps

(S(V) ® A"V, 0) = (25(vyx, 0) —(Ci(S(V)), )

induces on homology the isomorphism given by the proof of Theorem 3.2.2.
In other words the map ¢, is induced by a chain map. Note that this is not
true in general since €, is not a well-defined map from 2, to C,(4).
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3.2.4 Remark. No particular assumption has been made on k in Theorem
3.2.2. For instance k may be equal to Z. For V finite-dimensional of dimension
n, Theorem 3.2.2 gives a computation of HH,(k[zy,...,z,]). A generalization
of Theorem 3.2.2 to smooth algebras will be treated in the next section.

The following result computes cyclic homology of a polynomial algebra.
It is a consequence of Theorem 3.2.2 and of Sect. 2.3.
3.2.5 Theorem. For any flat module V over k there is a canonical isomor-
phism

HCL(S(V) = 251/ dS25(yy, © HER(S(V)) @ Hpg (S(V)) & .

Consequently if k contains Q, then HC,(S(V)) = HCn(k)GBQg(V)Ik/dQ;’(_VI)'k
forn > 0.

Proof. The commutativity of the square 2.3.3.1 for A = S(V) implies that
there is a mixed complex map (cf. 2.5.13) (Qg(v)lk,O, d) = (C.(S(V)),b,B)
which is an isomorphism on HH. So, by 2.2.3, it is an isomorphism on HC.
The bicomplex deduced from the mixed complex (Qg(v)l e 0,d) is

D(S(V)) :

QO
Since the vertical differential is trivial it is immediate that the homology of
the total complex is the right-hand term of Theorem 3.2.5.
When k contains Q and V is finite-dimensional, then H3y(S(V)) = 0 for
n > 0 (homotopy invariance of de Rham homology). O

Remark. A computation for k = Z is indicated in Exercise E.3.2.3

Exercises

E.3.2.1. Give an elementary proof of

Zlz] forn =0and1,

HH,(Z[z]) = {0 forn > 1,

and deduce the computation of HCy(Z[z]) (cf. 3.1.7) by using Connes’ exact
sequence.
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E.3.2.2. Compute HC.(k[z1,...,z,]) when k contains Q. [Use Theorem
3.2.5, see also Sect.4.4.]

E.3.2.3. Let P(n) = Z[z1,...,zs] be the polynomial algebra over Z in n
variables. Let T (for torsion) be the abelian group T' = ®m>2Z/mZ. Show
that

HYp(P(n))=Z&nT &2 [Z] T®g...@2! [:] T &...
o2 1] 7%,

and that
Hin(Po) =@ [7] ;2| 7o for k21,

Deduce from this a computation of HC,(P(n)). Compare with the result
obtained in Exercise E.3.2.2. (Use Theorem 3.2.5, cf. Lodder [1991].)

E.3.2.4. Give a different proof of HH,(S(V)) = 23wk by showing that
the cokernel of S(V) ® A*V — C.(S(V)) is acyclic.

[First show that the cokernel splits according to the length. Then filter
each piece by the length of the first entry (i.e. ag in ap ® ... ® a,). The
associated graded complex is

0— A"V S5 V8n @ SV ®.. .88V ... 5 SV 50
ki+...+ki=n

which is acyclic when V is flat over k.]

E.3.2.5. Let L be a flat A-module and S4(L) the corresponding symmetric

algebra (viewed as a k-algebra). Show that there is an isomorphism of graded
k-modules,
H.(Sa(L),A) =2 HH.(A) ®4 A*L .

3.3 Universal Enveloping Algebras of Lie Algebras

Though the universal enveloping algebra U(g) of a Lie algebra g is not com-
mutative in general, it is close to being so since it is endowed with a filtration
whose associated graded algebra is commutative. But more than that, this
graded algebra is in fact a symmetric algebra. This will permit us to relate
Hochschild homology of U(g) to the homology of g and then, thanks to the
previous section, to derive a “small” complex to compute its cyclic homology.
The proof proposed in this section works for any algebra endowed with such
a filtration.
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3.3.1 Universal Enveloping Algebra of a Lie Algebra. Let g be a Lie
algebra over k (always assumed to be free as a k-module) and let U(g) be
its universal enveloping algebra (cf. Sect. 10.1). For any U(g)-bimodule M we
denote by M2 the k-module M equipped with the following structure as a
right g-module:

(m.g)=mg—gm, meM, geg.

For any g-module V' the Chevalley-Eilenberg complex is denoted Ci(g,V)
with boundary map d (cf. 1.3.4.2). See also Sect. 10.1 in which § is denoted
by d. By definition the homology of g with coefficients in V is

H*(ga V) = H*(C*(Q, V)aa) :

3.3.2 Theorem. Let g be a Lie k-algebra which is free as a k-module and let
M be a U(g)-bimodule. Then there is a canonical isomorphism

H*(U(g)aM) = H*(g’Mad) .

This is a classical result which can be found for instance in Cartan-
Eilenberg [CE, Chap. XIII Theorem 7.1]. The proof given here is slightly
modified in order to be easily generalizable to certain filtered algebras whose
associated graded algebras are symmetric. Moreover this pattern of proof
simplifies the computation of cyclic homology. Before starting the proof of
the theorem we recall the following result.

3.3.3 Lemma. The following diagram s commutative

U™ ®4A"g —— Cn(U(g))

g g

Ug)d®@ A"~y - Cno1(U(g))

Proof. The map ¢ is the composition
U(g)* ® A"g - U(g)* ® A"U(g) = U(g)®"*"

where the first map is induced by the inclusion of g in U(g) and the second one
is the antisymmetrization map (cf. 1.3.4). The commutativity of this diagram
follows from Proposition 1.3.5 applied to A = U(g) and M = U(g)>. O

Proof of Theorem 3.3.2. In order to simplify the notation in the proof we
treat only the case M = U(g), denoted U hereafter. The canonical filtration

on U (coming from the filtration of the tensor algebra) induces a filtration
on Cn(U(g))
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FCu(U@)= Y, FoU®...9F,U.
k0+---+kn=P

Similarly F,,(U® A™g) = F,_,U ® A"g is a filtration of U ® A™g and the map
of complexes ¢ respects the filtration.

We are now ready to compare the spectral sequences associated to these
two filtered complexes (cf. Appendix D). On the left-hand side the El-term
is SP~"(g) ® A™g since the differential § maps F,_,U ® A"g into F,_,U ®
A" lg=F, ;(U® A" 1g). On the right-hand side the E'-term is HH.(S(g))
since gr .C,(U) = C.(grU) = Cu(S(g).

By Theorem 3.2.2 the induced map S(g) ® A"g — HH,(S(g)) is an iso-
morphism. By the comparison theorem of spectral sequences, an isomorphism
at the E'-level implies an isomorphism on the abutment, that is

H.(3,U(9)*") = HH.(U(g)) - 0

3.3.4 The Poincaré-Birkhoff-Witt Theorem and the Poisson Bracket.
From now on, and till the end of the section, we assume that k& contains Q and
that the Lie algebra g is a free k-module. In order to compute the cyclic ho-
mology of U(g) we need to make explicit the Poincaré-Birkhoff-Witt (PBW)
theorem as follows. The map

n:S(g) = Ulg),

n(xl...a:n)=(1/n!) Z ZTo(1)-+-To(n), Ti€H,
Uesn

is an isomorphism of k-modules.
The Poisson bracket in S(g) is a bilinear map

{—>—}:5(g) x S(g) = S(g)

completely determined by the following two properties:

a‘) {xyy} = [Ivy], for T,y €9,

b) {—,—} is a derivation in each variable.

It is easily verified that {—, —} is antisymmetric and verifies the Jacobi
identity. Hence it is a Lie bracket. One can use this bracket to define a right
g-module structure on S(g) as follows:

a.g={a,g}, a€S(g), geg.

This module structure is compatible with the PBW isomorphism, as shown
by the following

3.3.5 Lemma. The PBW isomorphism is g-equivariant, that is

n({a7g}) = [n(a)’g] .
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Proof. It is a purely combinatorial statement. Put a = x1...2,, z; €
g, then the expansion of n!n({a,g}) is a sum of monomials of the form
+Y1...Yig¥Yit+1 . .- Yn Where y1,...,yn is a permutation of z; ... x,. The signs
are such that after simplification, only the monomials with g at the very be-
ginning or at the very end remain alive. And this is precisely n![n(a),g]. O

3.3.6 The Mixed Complex (Q§(9)|k’ 8,d). As a consequence of the pre-

ceding lemma (U(g)¢ ® A*g, 6) is canonically isomorphic to (S(g) ® A*g, ),
which is isomorphic to (Qg(g)l %> 0). So Theorem 3.3.2 can be rewritten (when
k contains Q) as

H*(U(g)v U(g)) = H*(Q;(g)lk’a) .

One shouid remark that this new differential map § on Qg( ok is of degree
—1 and is given by

n

8(aoday . ..day) = Z(—l)i{ao,ai} ® da; &E, ...da,
i=1
+ Z H”aod{a,, aJ}da1 2(;1‘ e .azj' e dan .
1<i<j<n

On the other hand, there is a differential operator of degree +1 on §2% S(a)lk?

the classical differential operator d. Since dé + dd = 0 (as is easily checked)
there is defined a mixed complex (!2_*9( )|k’ 4,d) whose homology is denoted
HC. (12 (o)1k» 0 ) (cf. 2.5.13).

3.3.7 Theorem. Suppose that k contains Q and let g be a Lie k-algebra
which is free as a k-module. Then there is a canonical isomorphism

HC,(U(g)) = HC, (23,6, d) -

Sketch of the proof. A complete proof of this theorem along the following lines
can be found in Kassel [1988b)].
The point is to compare the following two mixed complexes :

(ng(g)lk’é’ d) and (C(U(g)aba B)

By a method similar to the acyclic model method, one constructs degree 2
maps ¢ such that ¢(¥) = en and

bp®) — p(d = ¢C-Dd - By~ for > 1.

Then, one can show that this data induces an isomorphism on cyclic homology
of the mixed complexes. d
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3.3.8 Almost Symmetric Algebras. Let A be a non-negatively filtered k-
algebra. By definition A is almost symmetric if its associated graded algebra
gr (A) is isomorphic to the symmetric algebra S(V'), where V = Fy(A)/Fo(A).
So in particular one asks that Fyp(A) = k. Then S(V) becomes a Poisson
algebra (cf. Exercise E.2.5.4), and there is a well-defined mixed complex

(Qg(v)“c’ 5v d)

3.3.9 Theorem. If k contains Q and A is an almost symmetric algebra, then
there are isomorphisms

HH*(A) = H*(QE(V)VC’(S) and
HC.(A) = HC.(25 4 6, d) -

IR

Proof. A result of Sridharan shows that an almost symmetric algebra is close
to a universal enveloping algebra of a Lie algebra. In fact, it is close enough
so that the proof for U(g) extends to almost symmetric algebras (cf. Kassel
[1988b]). i

Remark. One could wonder rather Theorem 3.3.9 is extendable to smooth
algebras since, as will be shown in the next section, {23, = H H,(A) when
A is smooth. The proof given here does not extend as such because we used
the fact (not true for smooth algebras in general) that this isomorphism is
induced by a chain map (cf. 3.2.3).

Exercise

E.3.3.1. Give a proof of Theorems 3.3.7 and 3.3.9 by using the Perturbation
Lemma {Exercise E.3.1.3).

3.4 Smooth Algebras

In this section we introduce the notions of étale algebras and of smooth
algebras. Then we prove the Hochschild-Kostant-Rosenberg (HKR) theorem
which asserts that in the smooth case Hochschild homology coincides with
differential forms:

In particular Hochschild homology of an étale algebra is trivial.
We apply this result to the computation of cyclic homology to get the
isomorphism (at least when k contains Q)

HCn(A) = 025,,/d2,5} © Hpp?(A) © Hpp'(A) @ ... .
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Since HC,,(A) is defined even when A is non-commutative, one may think
of cyclic homology as a generalization of de Rham cohomology to the non-
commutative setting. In cyclic homology a similar computation for the alge-
bra of C*°-functions was first carried out by A. Connes in [C]. This algebraic
version is taken out of Loday-Quillen [LQ)].

3.4.1 Smooth and Etale Algebras. Let S be a commutative k-algebra
with unit element. A sequence (z1,...,Zm) of elements of S is called regular
if multiplication by z; in S/(z,S + ...+ z,-15) is injective (i.e. z; is regular
in the quotient) for i = 1,...,m.

The commutative and unital algebra A is smooth over k if it is flat over
k and if, for any maximal ideal M of A, the kernel J of the localized map

pa s (A®k A)u-1(m) = Apm

is generated by a regular sequence in (A ® A),-1(am)-

If in the definition of smooth it turns out that the kernel J is 0, then A
is said to be étale over k.

The following proposition relates these definitions of smooth and étale to

other ones used in literature. It will be proved in Appendix E (Proposition
2).

3.4.2 Proposition. Let k be a Noetherian ring and A a commutative k-

algebra which is essentially of finite type. If moreover Torf(A, A) = 0 for

n >0 (e.g. A flat over k), then the following assertions are equivalent and A

is said to be ‘smooth’ over k:

(a) The kernel of the map p: AQr A — A is a locally complete intersection.

(b) The canonical homomorphism M ®4 03, — Tory®4(A, M) is a sur-
jection for any A-module M and .Q}M x 18 a projective A-module.

(c) “Jacobian criterion”: let P = k[Xi,...,Xn]m be a polynomial algebra
over k localized at some ideal m, and ¢ : P — A a surjective k-algebra
map. Let p be a prime ideal in A and q its inverse image in P. Then there
exist p1,...,pr € P which generate I; = Ker(f) such that dpy,...,dp,
are linearly independent in “Qll’ql x ®p, Ap (by linearly independent we
understand that the image of this matriz in Ay /pA, has rank r).

(d) “Factorization via an étale map”: for any prime ideal p of A there is an
element f ¢ p such that there exists a factorization

ko kX1, ..., Xm] - Ay
with ¢ étale.

(e) For any pair (C,I), where C is a k-algebra and I an ideal of C such that
I? = 0, the map Homy(A, C) — Homg (A, C/I) is surjective (here Homy
means k-algebra homomorphisms). O
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3.4.3 Examples. If k is a perfect field (e.g. a field of characteristic zero) any
finite extension is smooth over k.

The ring of algebraic functions on a non-singular variety over an alge-
braically closed field k is smooth, e.g. k[z], k[z1,. .., zn], k[z,z71], k[z,y, 2, ]/
(zt — yz = 1) are smooth. However k[z,y]/(z? = y*) is not smooth.

3.4.4 Theorem (Hochschild-Kostant-Rosenberg). For any smooth al-
gebra A over k, the antisymmetrisation map (cf. 1.8.4 and 1.3.12):

Ex : .Q:”k — HH,(A)
15 an isomorphism of graded algebras.

Remark that since A is flat over k, then HH,(A) = Tor2®4(A, A)

(cf. 1.1.13) and this result can be expressed as an isomorphism “Q:xjk

Tor®4(4, A).

The pattern of the proof is first to use the local to global principle to
reduce the proof to local rings. Then a specific resolution is constructed out
of a Koszul complex. The computation using this resolution gives the answer.

Remark that we already proved a particular case of HKR-theorem. Indeed
if V is flat over k, then the symmetric algebra S(V) is smooth and the
isomorphism {25, = HH,(S(V)) was proved in 3.2.2.

3.4.5 Local to Global Principle. In order to check that an A-module
homomorphism « :M— N is an isomorphism, it suffices to check that, for
all maximal ideals M of A, the localized map apy : My — Npq is an
isomorphism. In fact, for z € Ker a (or Coker «), let Ann z be the annihilator
of z in A and let M be a maximal ideal containing Ann z. If = # 0, then its
image in (Ker @) is also different from 0, but this is in contradiction with
the hypothesis.

3.4.6 Koszul Complex. Let R be a commutative ring, V an R-module and
z:V — R alinear form on V. Then there is a unique differential map d, on
the exterior algebra A}V which extends = and which makes (A}V, d;) into
a DG-algebra. Explicitly d, : A’;{HV — ARV is given by

n
de(vo A ... Avy) =Z(—1)im(vi)vo/\.../\I'J}A.../\vn ,
=0

so that for n = 0, d, = x. The associated complex K(z) is called a Koszul
complez.

Koszul complexes will enable us to construct free resolutions in a context
slightly more general than needed to prove HKR-theorem.

3.4.7 Proposition. Let R be a commutative ring and let I be an ideal of
R which is generated by a regular sequence in R. Then the morphism e, :
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Ay (I/1?) = Tor(R/I, R/I) deduced from e, : I/1? = Tor{(R/I, R/I) is

an isomorphism of graded algebras.

Proof. Let z = (z1,...,&m) be the regular sequence of elements of R which
generate I. The linear form z : R™ — R given by z(r1,...,rm) = Zz;r;
gives rise to the Koszul complex K(z), which is a resolution by the following

3.4.8 Lemma. H,(K(z)) =0 if n > 0 and Ho(K(z)) = R/I.
Proof. By induction on m. For m = 1, K(z) = K(z,) is the complex

...50—RLHR.

Since by hypothesis the element x, generates I, one has Ho(K(z1)) = R/I.
Since (z;) is assumed to be a regular sequence, it means that multiplication
by z, is injective and so H;(K(z;)) = 0, whence H,,(K(z;)) =0 for n > 0.

Suppose now that the lemma is true for m — 1 and let us prove it for
m. The length-one complex K(z,,) can be considered as an extension of
complexes

0Ky = K(zm) 2K 20

where K is concentrated in degree 0 (and this module is R) and K; is concen-
trated in degree 1 (and again is R). The tensor product of this exact sequence
of complexes by the Koszul complex £ = K(zy,...,Zm-1) is still an exact
sequence of complexes. Moreover the middle term is £ ® K(z,) = K(z). The
associated long exact sequence in homology reads as follows

K1 ®p Ho(L) - Ko ®p Ha(L) = Ho(K(z))
— K, ®r Hn_l(ﬁ) —-6—-)K0 ®r H. _.l(ﬁ) .

Since Ky = K; = R, it is easy to check that § is simply multiplication by
Zm. In other words the following sequence is exact:

0 — Coker(H, (L) == H, (L)) — H,(K(z))
— Ker (H,_1(£) 2 H,_1(£)) > 0.

The inductive hypothesis is H,(£) =0 for n > 0 and Ho(L) = R/(z1 R+
..+ zm_1R), therefore we have H,(K(z)) =0 for n > 1.

For n = 1, H,(K(z)) is the kernel of the multiplication by z,, in R/(z, R+
...+zm_1R). As, by hypothesis, z, is regular in this ring, we get H; (K(z)) =
0.

For n = 0, Ho(K(z)) is the cokernel of the multiplication by z,, in
R/(ziR+ ...+ Zm-1R), that is R/I. O

End of the Proof of Proposition 3.4.7. Lemma 3.4.8 shows that the Koszul
complex K(z) = (AR(R™),d;) is a free resolution of the R-module R/I.
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Upon tensoring by R/I over R, the homology of (AL(R™)®r R/I, d, ®1) is
Tor®(R/I, R/I). Since the image of « is (by definition) in I, it is immediate
that d; ® 1 = 0. Therefore these homology groups are A% (Rm) rR/I =

A%((R/D)™). So we have proved that Tor®(R/I, R/I) is an exterior R/I-
algebra over Tor®(R/I,R/I) = (R/I)™ = I/I2

It remains to check that the canonical product on the Tor-groups is iden-
tical to the exterior algebra product. Indeed this follows from the fact that
the exterior algebra product K(z) ® rK(z) — K(z) is a homomorphism of
complexes lifting idg,;. g

3.4.9 End of the Proof of HKR-Theorem. Since A is flat over k£ we can
work with the Tor-definition of Hochschild homology (cf. 1.1.13): H,(A, M) =
Torf}®A(A, M). By applying the local to global principle to the A-module
map &, HKR-theorem reduces to proving that the map

(3.4.9.1) (2% ) m = (Torp®4 (A, M)) pm

is an isomorphism.
First one notes that (“QZUc)M & (24 |- Second, the map

O : (Tor2®A(A, M))aq — TorA®4u=1000 (A g, May)

is a natural map relating two homological functors in M. For n = 0, 6y
is an isomorphism (both modules are Ma4), so by a classical homological
argument, 6, is an isomorphism for all n.

Hence, (3.4.9.1) being an isomorphism is equivalent to

(A®A),

(3.4.9.2) (25p)m —= Torn 7Y (Apg, M)

being an isomorphism.
This latter result is Proposition 3.4.7 applied to the case

R=(A®A)“—1(M) and R/I = Am

since A is smooth over k. O

3.4.10 Cyclic Homology of Smooth and Etale Algebras. We are
now in position to compute cyclic homology of smooth algebras in terms
of differential forms and de Rham homology. Remark that for étale algebras
HH,.(A) = HH,(k) = 0 and therefore HC,(A) = HC.(k) ®x A by Corollary
2.2.3.

3.4.11 Theorem. If A is smooth over k, then there is a spectral sequence
abutting to cyclic homology:

E2 _{ A[k/d‘QA[kv p =0,

= HC A).
Pq HDR( )’ p>0.} p+q( )
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Proof. Consider the spectral sequence associated to the bicomplex B(A) (cf.
2.1.7). Since A is smooth, by the HKR-theorem Ej, = HHy_p(A) = 23F
if g > p > 0 and 0 otherwise. Moreover by Proposition 2.3.3 the d* map,
which is induced by B, is the exterior differential operator d (or 0), whence
the computation of the E2-term. a

3.4.12 Theorem. If A is smooth over k and if k contains Q, then there is
a canonical isomorphism

HC,(A) = 24, /d24,} & Hpg?(A) @ Hig*(A) e ... .
The last summand is H® or H' depending on n being even or odd.

Proof. The spectral sequence of Theorem 3.4.11 degenerates at E? since there
is a splitting. In fact, without spectral sequences, one simply compares the
bicomplex B(A) with the bicomplex D(A) (cf. 2.3.6) of truncated de Rham
complexes via the maps ,. Since rationally =, induces an inverse of e,
in homology, this map of bicomplexes is an isomorphism in homology of
the columns (thanks to smoothness of A and HKR-theorem). Hence it is an
isomorphism for the homology of the total complex (cf. 1.0.12).

The homology of Tot B(A) is HC.(A) (cf. 2.1.8) and the homology of
Tot D(A) is precisely the right-hand part of the isomorphism in 3.4.12. O

3.4.13 Remark. It is easy to see how Connes’ periodicity exact sequence
decomposes in the smooth case:

...—> HH, ~% HC, =% HC,, £ HH,, -

[ [ | |

R T LA S A0 [ 0
®
0 —  HER? - oridend 5 ot o
® @
Heg' = Hpg'
® ®

This decomposition will be generalized later to any commutative algebra (cf.
Sect. 4.6).

3.4.14 Remark. Recall that Theorem 3.4.12 is also true for A = S(V),
where V is flat over k, without any characteristic hypothesis on & (cf. 3.2.5).

3.4.15 Corollary. Let HDR, be the non-commutative de Rham homology
as defined in 2.6.6. If A is smooth over k, then
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HDR,(A)Y & H'Z*(A
(4) o<l /DR (4)

with HYg replaced by HYy/k) . O
DR R

Exercise

E.3.4.1. Let k be a field and let R = k[X,Y, Z] be a polynomial algebra in
three variables. Show that the sequence (aj,az,a3) = (X(Y -1),Y,Z(Y —1))
is regular, though (a;,as, az) is not (cf. Matsumura [1986]).

3.5 André-Quillen Homology

Still another homology theory for commutative algebras! There are two rea-
sons for giving an account of this theory here. First it is the right tool to
analyze the notion of smoothness of an algebra (and more generally of an al-
gebraic variety). Second it is intimately related to Hochschild homology and,
in characteristic zero, it permits us to give a splitting of the latter.

We first introduce simplicial resolutions and the cotangent complex which
lead to the definition of André-Quillen (AQ-) homology and cohomology the-
ory (together with the higher versions). Then we state their principal proper-
ties: Jacobi-Zariski exact sequence, flat base change, localization. The second
definition of smooth (and étale) algebras gives rise to an HKR-type theorem.
These results are used in appendix E on smooth algebras. Finally the relation-
ship of AQ-theory and H H-theory is exploited to describe a decomposition
(in the rational framework) of Hochschild homology of a commutative algebra
(Theorem 3.5.9, see Sects. 4.5 and 4.6 for more).

3.5.1 Simplicial Resolutions of Commutative Algebras. By definition
a simplicial resolution of the commutative k-algebra A is an A-augmented
simplicial commutative k-algebra P, which is acyclic. It is called a free res-
olution if P, is a free commutative algebra, i.e. a symmetric algebra over
some free k-module. Any commutative k-algebra A possesses a free resolu-
tion which can be constructed as follows.

Let k[i] = k[z1,...,z;] denote the polynomial k-algebra in i variables. Let
P(A) denote the (small) category of polynomial k-algebras over A. An object
of P(A) is an algebra k[i] together with a k-algebra map o : k[i] - A. A
morphism in P(A) from a to o’ : k[i'] = A is a k-algebra map f : k[i] = k[t']
such that o/ = a o f. Consider the forgetful functor U(A) : P(A4) — (k-
Alg) which sends a to its source k[i]. The idea is to apply the Bousfield-
Kan construction (cf. Appendix B.13) to the forgetful functor U(A) to get a
simplicial k-algebra.

So let Cyy(4) be the category associated to U(A) as follows: an object is a
pair (a,z) where a : k[i] & A is an object of P(A) and z is an element of
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U(A)(a) = kl[i]. A morphism (a,z) = (/,z') in Cy(4) is simply a morphism
f in P(A) such that f(z) =z’

Let P, be the algebra generated by the nerve of Cy( 4. It is a free resolution
of A. Explicitly, its nth term can be described as follows:

(fO)»--;fn)

where the tensor product is over all strings of maps
. fO . fn—l . fn
klio) — k[i1] = ... == k[in] =5 A .

The Oth face sends the factor k[ig] corresponding to (fo,. .., fa) to the factor
k[i1] corresponding to (fi,..., fn) by fo and the ith face (i > 0) sends the
factor k[ip] corresponding to (fo,. .., fn) to the factor k[i] corresponding to
(f1,---, fifi—=1,-- -, fn) by the identity. Obviously the augmentation to A is
simply the composite fn, fn-1 ... fo.

3.5.2 Lemma. Any k-algebra A admits a free resolution and any two such
resolutions are homotopy equivalent.

Proof. The existence of a free resolution follows from 3.5.1.

Let P, and Q. be two such resolutions. One constructs a map f, : P, —
Q. by induction on the degree. It suffices to define f, on the generators
z € P,. Since Q. is an acyclic simplicial module, it is a Kan complex (cf.
Appendix B.9) with trivial homotopy. So there exists y € @, whose faces are
fa-1(diz), t =0,...,n. Then one puts fn(z) = y. A similar argument shows
that any other choice f. is homotopic to fi. O

3.5.3 The Cotangent Complex. Let P, be a free resolution of A. By
definition the cotangent complex of A is the complex L, (A) deduced from P,
by

La(Alk) = 25,1, ®p, A.

(In fact it is the class of L, in the derived category of complexes which should
be called the cotangent complex. Hence the choice of a free resolution does
not matter).

3.5.4 André-Quillen Homology of a Commutative Algebra. By defi-
nition André-Quillen homology of the commutative k-algebra A with coeffi-
cients in the A-module M is

Do (Alk, M) := Ho (L, (Alk) ®4 M), n>0.

Other notations in the literature are D,(A/k,M) in Quillen [1970],
H,(k,A, M) in André [1974]. If M = A one simply writes D, (Alk) instead
of Dp(Alk, A).
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One can also define higher André-Quillen homology D@ for ¢ > 1 by
putting
DD (Alk, M) := H, (L (Alk) ®4 M) ,
where L{? (Alk) = 2%, x ®p, A. So for ¢ =1 one has D, = DM,
André-Quillen cohomology is defined by

D™(Alk, M) := H_,(Hom(L, (Alk), M)) .

It is immediate from Lemma 3.5.2 that any free resolution L, can be used to
compute all these theories. Note that for n = 0, Do(A|k, M) = .Q}Mk ®a M

and D°(Alk, M) = Dery(A, M).

3.5.5 Properties of AQ-Homology Theory. We will only state these
properties and refer to Quillen [1970] or André [1974] for the proofs.

3.5.5.0 Homological Functors. Let 0 - M’ — M — M" — 0 be an exact

sequence of A-modules. Then there is a long exact sequence of homology
groups
.. = Dpy1(Alk, M") — D,(Alk, M') = D,(Alk, M)
— Dp(Alk,M") — ...

3.5.5.1 Jacobi-Zariski Ezact Sequence. Let k - K — A be rings and homo-
morphisms of rings. Then there is a long exact sequence

... > Dpy1(A|K) — D, (Klk) ®x A — D,(Alk) =& D, (AK) — ...
= Qg Ok A= Q. = 2y — 0.
3.5.5.2 Flat Base Change. Let A and B be two k-algebras. If B is flat over

k, then
D.(A® B|B,-) = D.(Alk,—) .

3.5.5.3 Localization. Let S be a multiplicative system in the ring A. Then
D.(As|A) =0.

We stated these results in terms of D,, however as usual they are just conse-
quences of statements about the cotangent complex. For instance the local-
ization property reads: L(Ag|A) is acyclic.

3.5.6 Theorem. Suppose that A is smooth over k in the sense of hypothesis
d) in 3.4.2. Then

Do(Alk,M) =M ®4 Q}”k and D,(Alk,M)=0 for n>0.

More generally
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D{?(Alk) =M ®4 2%, and DP(Alk)=0 for p>0.

Proof. This is an immediate consequence of the results of Sect.2 (see also
Appendix E). O

3.5.7 Comparison of AQ-Homology Theory with Hochschild Ho-
mology Theory. This relationship is given by the next theorem which is
sometimes called the fundamental spectral sequence for André-Quillen ho-
mology. It leads to a decomposition of Hochschild homology in the rational
case and to an HKR-type theorem under the smoothness assumption (d) of
3.4.2.

3.5.8 Theorem. For any commutative and flat k-algebra A there is a canon-
ical spectral sequence abutting to Hochschild homology:

E2, = D\O(Alk) = HHpyq(A) .

If k contains Q this spectral sequence is degenerate and there is a canonical
decomposition

HH,(A)= & DW(Alk).

pHg=n

Proof. Consider the following bicomplex L, :
1 { {

L « L « L§P «

Joa

LY « L¥?* «+ L§* «+

I

Lo « L «~ L, —

where the bottom line is a simplicial resolution of A by free k-algebras. For ¢
fixed the (horizontal) homology is H,(L®9) = 0if n > 0 and Ho(L3?) = A®9.
Therefore H,(L..) = HH,(A). On the other hand for p fixed the (vertical)
homology is Hn(L$*) = HHn(Lp) = 027 |k since Ly is a symmetric algebra
(cf. 3.2.2).

A consequence of these computations is the existence of a convergent
spectral sequence

Ep, = ngq)(mk) = Hy(2],) = HHp1q(Alk) = HHpyq(A) .

If k contains Q, then there is a canonical projection from L., to the bicomplex
27
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{ { {
2« 2« 2] ...
I B
R« 2« 2 ...
of ol
Ly + L1 « L, — ...

inducing an isomorphism in homology. Since these complexes have isomorphic
vertical homology groups, they have the same total homology. |

3.5.9 Corollary. Suppose that A is smooth over k in the sense of d) in 3.4.2.
Then the antisymmetrization map € is an isomorphism of algebras

Q= HH.(A) .

Proof. It is now an immediate consequence of Theorems 3.5.6 and 3.5.8. O

3.5.10 Comparison with Harrison Homology in Characteristic 0.
See Sect. 4.5.

Exercises

E.3.5.1. Let I be a commutative and not necessarily unital algebra over a
field k of characteristic zero. Show that I is H-unital iff D.(k|I}) = 0. [Cf.
Wodzicki [1989, Sect. 3.8].]

E.3.5.2. Let ¥ -+ K — A be rings and maps of rings such that A is flat
over K. Show that the Jacobi-Zariski exact sequence for D, = DV can be
generalized to spectral sequences (one for each m):

i ] )
B, =@ DKk DY (AK)) = DJT)(Alk)

for higher André-Quillen theories. [If L, = k[I,], n > 0, is a resolution
of K over k, then choose a resolution of A over k of the form k[L,][J,].
Communicated by M. Ronco (unpublished).]
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3.6 Deligne Cohomology

Deligne cohomology was constructed to understand a certain product on
differential forms related to the Hodge filtration. This theory was later gen-
eralized into Deligne-Beilinson cohomology theory which is an efficient tool
in the study of higher regulators. The reason for giving here a short account
of Deligne cohomology is its close link with cyclic homology in the smooth
case, and in particular in the comparison of the products. The main feature is
that in Deligne cohomology the product on chains is commutative only up to
homotopy, though in Connes’ framework this product is strictly commutative
on chains.

Standing Assumption. In this section the ground ring is the field C of
complex numbers.

3.6.1 Definition. We adopt the following notation: Z(1) := 2miZ C C and
Z(p) := Z(1)®P for any p > 0. Let A be a commutative C-algebra. The
Deligne complez is by definition
Z(p)p(A)* : Z(p) —->A—d—>!2}”(c = ... Qﬁfcl —20-...,
where Z(p) is in degree 0 (and so .Qf{l'é is in degree p). The inclusion of Z(p)
in A is via C.
By definition the Deligne cohomology groups of A are

Hp(A,Z(p)) := H™(Z(p)p(A)") , Hp(A):= 8, Hp(4,2(p)) -

As in the case of de Rham homology, we should rather write H3 (X, Z(p))
with X = SpecA, the spectrum of A. In fact the definition of these groups can
be extended to any algebraic variety X over C by taking the hyperhomology
of the complex of sheaves Z(p)p(Ox). But we will only deal with the affine
case in this book.

3.6.2 Product Structure on HJ(A,Z(-)). There is a product map of
complexes

U:Z(p)p ® Z{g)p = Zlp + 9)p
defined as follows. Let w € Z(p)} and v’ € Z(q)%, then

ww' if n = 0,Vm (then w is a scalar),
;_ JwAdy ifn=pm=gq, ntm
wUw =149 otherwise (i.e. 0 < p<n, Vm, €Zp+ep "

orp=mnand m < q).

Remark that for the middle case, i.e. n = p and m = q, the result is also in

the top dimension that is in Z(p + ¢)%7.
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3.6.3 Proposition. This product is associative and homotopy (graded) com-
mutative. So 1t induces on Deligne cohomology a product

U HY(~,Z(q)) ® HY (-, Z(¢)) = H5'P (-, Z(q +¢))

which is associative and (graded) commutative.

Proof. Associativity is strict and immediate to check.
Commutativity is not strict on cochains but only valid up to homotopy.
The homotopy is explicitly given by

0 if n =0 and m =0,
(-1)"w AW’ otherwise.

h(w®w') = {
We leave to the reader the straightforward task of checking that
(hd+ dh)(w® W) =wUuuw — (-1)" ' Uw. a

3.6.4 Reduced Deligne Cohomology. We call reduced Deligne complex
the kernel of Z(p) + Z(p)p(A)*. It is simply the truncated de Rham com-
plex shifted by one. It is immediate to check that it is endowed with a product
structure as well. Its cohomology groups are denoted by I:I%(A,Z(q)) (and
more generally by fI% (X,Z(q)) for the hyperhomology of an algebraic vari-
ety). Obviously there is an exact sequence

... = HP(X,Z(q)) - Hp(X, Z(q)) — Hp" (X, Z(q)) — H"* (X, Z(q)) — ...

In the affine smooth case an immediate translation of Theorem 3.4.12 yields
the following

3.6.5 Proposition. If A is smooth over C, then there is an isomorphism

HC._i(A)= @ Hy %(A,Z(* —1)). O
i>0

3.6.6 Compatibility of Product Structures. In Sect.4.4 we will show
that for a commutative algebra A, HC,(A)[1] is endowed with a product
structure, which is graded commutative. The point about the map of 3.6.5
is that it is an isomorphism of graded algebras. In fact it will be shown that
“Sullivan’s commutative cochain problem” for the reduced Deligne complex
is solved by Connes’ complex. Explicitly, the two quasi-isomorphisms of com-
plexes
C*A) «— Tot B(A) — Tot D(A)

(cf. 2.3.6) are compatible with the product structures on the three complexes.
This product is commutative up to homotopy on the middle and right chain

complexes, but is strictly commutative on the left chain complex, i.e. on
C*(A) (cf. 4.4.5).
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Bibliographical Comments on Chapter 3

Most of the computations of Hochschild homology {or cohomology) groups given in
this chapter have been known for a long time and can even be found in textbooks
like Mac Lane [ML] and Cartan-Eilenberg [CE].

For cyclic homology, the case of a tensor algebra, done explicitly in Loday-
Quillen [LQ], was hinted at in Hsiang-Staffeldt [1982] for the H*-theory. For almost
symmetric algebras the proof is due to Kassel [1988b]. The case of universal en-
veloping algebras of Lie algebras has been done also by Feigin and Tsygan [1987b]
by using Koszul duality of associative algebras. For smooth algebras the case of
C®-functions of manifolds was done by Connes [C], the algebraic case appeared
in Loday-Quillen [LQ). A generalization, with relationship to Grothendieck crys-
talline cohomology, is carried out in Feigin-Tsygan [1985]; this is strongly related
with Sect. 6. André-Quillen cohomology was constructed and studied both in André
[1974] and in Quillen [1970], generalizing work of Harrison [1962]. There are sev-
eral papers devoted to this theory, see for instance Avramov-Halperin [1987]. For
DG-algebras see Sect. 5.3, 5.4 and 5.BC. For group algebras see Sect.7.4.

Many papers have been devoted to the computation of cyclic homology groups
of specific algebras, especially in characteristic zero. See the list of references, which
is close to completeness at the date of 1.1.1992.

Few computations have been done in positive characteristic apart from Gros
[1987], and Wodzicki [1988c].



Chapter 4. Operations on Hochschild
and Cyclic Homology

How does Hochschild and cyclic homology behave with respect to tensor prod-
ucts and with respect to operations performed on the defining complexes?
This is the subject of the present chapter.

There are two types of operations which are taken up: those which come
from A itself (conjugation and derivation) and those which come from the
action of the symmetric group on the module of chains. It turns out that these
latter operations are intimately related to the computation of cyclic homology
of a tensor product of algebras. Some of them give rise to a splitting of HH
and HC in the rational case.

In Sect.4.1 we first analyze the action of conjugation by an invertible
element. Then we turn to derivations. Any derivation D of the k-algebra A
induces a map Lp on cyclic homology and the main theorem is the vanishing
of the composite map LpoS where S is Connes periodicity map. This result is
analogous to the homotopy invariance of the de Rham theory. An application
to the computation of cyclic homology of nilpotent ideals is given.

In Sect. 4.2 we examine Hochschild homology of a tensor product of alge-
bras. The Kiinneth theorem HH,(A)® HH,(A') = HH,(A® A’) is induced
by the shuffle product, which is studied in detail.

In Sect. 4.3 this result is extended to cyclic homology. Here the Kiinneth
theorem is replaced by the Kiinneth exact sequence

... HC,(A® A') - HC.(A)® HC.(A")
— HC,(A) ® HC,(A")[2] » HCo_1(A® A") — ... .

Meanwhile a new product is constructed: the cyclic shuffle product. It
permits us to construct in Sect. 4.4 a product on cyclic homology:

HCy(A) x HCy(A') = HCprq41(A® A)

which corresponds to the product (w,w’) = w A dw' on forms (as in Deligne
cohomology). There also exists a coproduct, which, once translated into the
cohomological framework, gives rise to a product

HCP(A) x HCU(A') —» HCP*9(A® A') .

Sections 4.5 and 4.6 are devoted to the A-decomposition of Hochschild
and cyclic homology respectively:

J.-L. Loday, Cyclic Homology
© Springer-Verlag Berlin Heidelberg 1998
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HH,=HHY ®...0 HH™, and HC,=HCV@&...® HC\"

These splittings are consequences of the existence of the Eulerian idempo-
tents ey(f ) € Q[S.], 1 < i < n, which behave fantastically well with respect to
the Hochschild and Connes boundary maps. These idempotents are related to
interesting combinatorial formulas involving the classical Eulerian numbers.
The pieces H Hy(zl) and H C,(ll) of the decomposition are shown to be related
to Harrison-André-Quillen theory and the pieces H H,(ln) and HC™ to dif-
ferential forms. As for the intermediate pieces, they coincide with de Rham
cohomology in the smooth case. Work remains to be done to understand them
in the general case.

4.1 Conjugation and Derivation

In this section we show how conjugation and derivation act on Hochschild and
cyclic homology. Conjugation by an invertible element acts as the identity.
Similarly an inner derivation induces 0. For an arbitrary derivation D the
action Lp on cyclic homology is such that Lp o S = 0. These results were
essentially known by G. Rinehart and rediscovered later by several people
including A. Connes and T. Goodwillie.

4.1.1 Conjugation. Let A* be the group of invertible elements of the unital
k-algebra A. Any g € AX induces an action on M ® A®" called conjugation
and defined by

g. (maal’ v ,an) = (gmg—l,galg_la oo vgang_l) .

This map obviously commutes with the Hochschild boundary and, when M
= A, with the cyclic operator (it is even an endomorphism of cyclic module).
Therefore it induces an endomorphism, denoted g., of Hochschild and cyclic
homology.

4.1.2 Proposition. The endomorphism g, of Hp(A, M) is the identity.
Proof. The maps h; : M @ A®™ - M ® A®"*! §=0,...,n, where

hi(maala e 'aan) = (mg—lagalg—la v agaig_laga Qg 1y aan)

define a simplicial homotopy h since the formulas of 1.0.8 are fulfilled with
doho = id and d,+1h, = g.(—). Hence the proposition is a consequence of
1.0.9.

A slightly different proof is given in the proof of the next proposition. O

4.1.3 Proposition. The endomorphism g. of HC.(A) (resp. HCY™(A),
resp. HC (A)) is the identity.
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Proof. Consider the following commutative diagram, where inc; (resp. incy)

sends the element a to [2 0] (resp. [J°]):

A D M) &=

|+ L[5

A

Js
A D M4 &2 g
Let F be one of the following functors: HH,, HC,, HCY*, HC (see Sect.5.1
for these last two functors). By Morita invariance the maps F(inc;) and
F(inc,) are isomorphisms. Since the trace map tr induces an inverse to inc;
on homology (cf. 1.2.4 and 2.2.9) and since tr o incy = id, one has

F(inc;) ™! o F(incy) = F(troincy) = id .

Therefore F(g.) = (F(inc;) ~'oF(incy)) 1o F(id)o(F(inc; ) o F(incy)) = ité

4.1.4 Action of Derivations on HH and HC. Recall that a derivation of
A (into itself) is a k-linear map D : A — A such that D(ab) = (Da)b+ a(Db)
(cf. 1.3.1 and 1.5.2). For any u € A the map ad(u) : A = A, ad(u)(a) = [u, q]
is a derivation called an inner derivation. Any derivation D can be extended
to C,,(A) = A®™*! by the formula

LD(aO’ v 7an) = Z(ao,' .o 7ai—-1aDai7ai+l" e 7an) .
20

The relation satisfied by D implies immediately that Lp : C,,(A) = C,(A)
commutes with the operators d;, s; and t (for instance Lpdy(ag,a1) =
LD(aoal) = D(aoal) = (Dao)a1 + aD(Dal) = do((Dao,CLl) + (ao,Dal)) =
doLp(ag,a1)). In other words Lp is a morphism of cyclic modules. Therefore
Lp commutes with b and B. So there are induced maps on the Hochschild
complex and on the bicomplex B(A), which induce

Lp:HH,(A) —» HH,(A) and Lp:HC,(A) = HCh(A), n>0.

4.1.5 Proposition. If D = ad(u) is an inner derivation, then Lp is 0 on
Hochschild and on cyclic homology.

Proof. It was proved in 1.3.3 that any u € A determines a map h(u) : C,, —
Chry1 such that bA(u) + A(u)b = —ad(u). It is immediate to check that, in
the normalized framework, Bh(u) + h(u)B = 0 since [u,1] = 0. Hence, by
putting h(u) on each column of B(A), we define a homotopy from ad(u) to 0
on Tot B(A), whence the result. 0
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4.1.6 Corollary. There are well-defined homomorphisms of Lie algebras
[D] — Lp:

HY(A, A) = Endy(HH,(A)) and H'(A,A) - Endy(HC,(A)) .

Proof. Since H'(A, A) = Der(A)/{inner derivations}, (cf. 1.5.2), Proposition
4.1.5 implies that both maps are well-defined.

The Lie algebra structure of Endy(—) is given by [f, f'] = fo f' — f' o f.
The Lie algebra structure of H'(A, A) is similar and described in 1.5.2. The
fact that [D] — Lp is a Lie algebra homomorphism follows from Lp o Lp: —

LproLp = Lip,py, which is a straightforward check at the chain level (i.e.
on Cy(A4)). O

4.1.7 Lifting of the Interior Product: the Operators ep and Ep. In
the framework of differential forms, any vector field X determines a derivation
Odx and an interior product ix satisfying the formula

Ox =dix +ixd.

Our aim is to show that for any derivation D there is an operator ep of
degree —1 which plays the role of the interior product (cf. 4.1.9). To com-
pare its behavior with respect to Connes’ boundary map it is necessary to
introduce an operator Ep of degree +1 as follows.

Let D be a derivation of A. By definition

1 n+1

eD:A®Z®n-—>A®Z®n- and ED:A®Z®n-—>A®Z

are given by the following formulas:

eD(GOa cee ’an) = (*1)n+1(D(an)a0’ala tey an-—l) )
Ep(ag,...,an) =
Z (_1)in+l(1aaiaai+la cee aaj—l,Dajaaj-f-l, ceeyQn,y Ao,y ... aai—l) .
1<i<)<n

Remark that both maps are linear in D.

4.1.8 Proposition. The following formulas are valid on the normalized com-
plex C,(A):

(4.1.8.1) [en,b] =0,

(4.1.8.2) lep, B+ [Ep,b] = Lp ,

(4.1.8.3) [Ep,B|=0.
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Proof. Here, the commutators are understood as graded commutators, so
[ep,b] = epb+ bep and similarly for the other ones.

The third formula is immediate since we are working in the normalized
framework.

The first formula is proved as follows. From the definition of ep and b it
is easy to check that

(epb+bep)(ao,...,an) = (an—1Danao,ai,...,an—2)

_(D(an—lan)aﬂa ayy- .- 7an—2) + (Dan—lanao, ay,.. ‘,an—2) .

Hence the equality follows from the fact that D is a derivation.

The second formula is a little work. To ease the proof we write 1 instead
of a; and therefore Di instead of Da;. To avoid confusion we write * instead
of 1.

Applied to (0,...,n) the operator epB + Bep + Epb + bEp is a sum
of elements of two different kinds: those with a * as the first entry, and the
others. First we take care of the second kind.

They come from ep B and bEp:

epB(0,...,n) =ep Z(—l)""(*,i,...,i -1)

= MZ D)™DG - 1),i,...,i—2).

=0
The elements of the second kind in b(*,0,...,n) are

0,...,n) + (=1)"**(n,0,...,n—1).

So, after simplification, the elements of the second kind in bEp(0,...,n),
which contain Dj for some fixed j (1 < j < n), are (0,...,Dj,...,n) +
(=1)9"*Y(Dj,...,j —1). Summing over j all the elements coming from ep B

and bEp give 3 7_(0,...,Dj...,n) which is precisely Lp(0,...,n).

It is sufficient now to prove that the elements of the first kind amount
to zero. They appear in Bep, Epb and bEp (“interior” part). We will
prove that the elements coming from Bep + Epb cancel with those com-
ing from bEp. First, the elements of bEp(0,...,n) which have (Dn)0 as

entry cancel with the elements of Bep(0,...,n). Secondly, an element like
(*,%,...,k(k +1),...,Dj,...) coming from b(x,%,...,Dj,...) cancels with
one in Epb(0,...,n) coming from Epdk(0,...,n). Finally, elements of the

form (*,i,...,(j —1)Dj,...) and (*,1,...,(Dj)(j — 1),...) come from (,1,
., D(j(5-1)),...) in Epb(0,...,n). So we have proved that the sum of the
elements of the first kind is 0 and this finishes the proof. O

4.1.9 Corollary. For any derivation D the map ep is well-defined on
HH.(A) and satisfies [ep, B«] = Lp.
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4.1.10 Theorem. Lp oS =0: HC,(A) - HC._3(A).
Proof. The map S : B.(A) — B.(A)[2] sends the first column to 0 and is

an isomorphism on the others (cf. 2.2.2). Formulas of Proposition 4.1.8 show
that the matrix

e F 0
e E O
e FE
is a homotopy from Tot (Lp o S) to 0. O

4.1.11 Corollary. Lp = 0 on periodic cyclic homology HCE® (cf. Sect. 5.1
for the definition of periodic cyclic homology).

Proof. In periodic cyclic homology the boundary is b + B, so the equality
ep + Ep,B +b] = Lp means that ep + Ep is a homotopy from Lp to 0.
Therefore Lp = 0 on HCEP® . O

4.1.12 Application to Cyclic Homology of Graded Algebras. In this
subsection k& is supposed to contain Q. Suppose that A is a unital non-
negatively graded algebra, that is A = Ao ® A; @ A; & ... where the product
sends A; ® A; into A;1; (and 1 € Ag). Let us call n = |a| the weight of
a € A,. Since the weight X|a;| of (ao,...,a,) € A®"*! is unchanged by b
and B, the groups HC, (A) split naturally according to the weight.

There is a natural derivation on A given by Da = |a|a on homogeneous
elements. It is clear that Lp is multiplication by w on the piece of weight w.

So, by Theorem 4.1.10, S is 0 on HC,,(A)/HC,,(Ay). Finally we have proved
the following

4.1.13 Theorem. Let A be a unital graded algebra over k containing Q.
Define HCy(A) := HCo(A)/HCp(Ao) and HH (A) := HH,(A)/HH,(Ao).
Connes’ ezact sequence for HC reduces to the short ezact sequences:

0— HCn_y » HH, = HC, - 0.

Another useful application of the vanishing of LpS on relative cyclic homol-
ogy is the following result due to T. Goodwillie.

4.1.14 Theorem. Let A be a unital k-algebra and I a two-sided nilpotent
ideal of A (I™*! = 0). Then the map p!SP : HCpy25(A,I) = HCR(A,I) on
relative cyclic homology is trivial for p > m(n + 1).

Proof. Filter A by the powers of I:

A=I">1'>P>...Im">Im™tl=0.
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There is defined a decreasing filtration on C(A) as follows:

FP = Z ... .@I Cc A2 =C,(4).
pot...+pn2p

Note that F? = C,,(A) and that Fm D+ — o Remark that FP is a cyclic
module for all p > 0 and that HC,(A,I) = HC.(F").

First Step. Let us prove that the map S is 0 on HC,(F?P/FP*') for p > 0. As
a cyclic module >0 F?/FP*! is isomorphic to C(gr(A)), where gr(A) is the
graded algebra of A associated to the filtration by the powers of I. On gr(A)
there is defined a derivation D given by Da = pa for a € gr,(A) = IP/IP*1,
By Theorem 4.1.10 pS is 0 on HC.(gr,(A)).

As a consequence p!SP is 0 on HC,(F!/FPt') (cf. Exercise E.1.0.1).

Second Step. The nilpotency of I implies that F? = 0 for p > m(n + 1).
Therefore HC,,(FP) = 0 and HC,(F') = HCy,(F'/FP*!) is injective in the
same range.

Combining the results of the two steps, it comes out that

PSP : HCpyop(F) = HCH(F')
is 0 provided that p > m(n +1). 0O
4.1.15 Corollary. Suppose that k contains Q and let I be a mlpotent tdeal

of A. Then HC?™(A,I) = 0 and therefore the maps B : HC._1(A,I) =
HC;(A,I) and HCE®'(A) — HCY*'(A/I) are isomorphisms. O

(For the definition of periodic cyclic homology see Sect. 5.1)

Exercises

E.4.1.1.Let D : A — A be a k-linear map. Show that the map Lp : Cn(A) —
Cn(A) of 4.1.4 is simplicial if and only if D is a derivation.

E.4.1.2. Let D : A = A be a derivation. Show that there is one and only
one map C(A) — C(A) compatible with the coalgebra structure of C (A) and
which coincides with D in degree 0.

E.4.1.3. Let D and D' be two derivations of A. Show that [Lp,ep'] = ¢[p,p/]
(cf. Rinehart {1963, p. 219]).

E.4.1.4. Show that the product H(A,A) x HH,(A) - HH,(A) of 4.1.6
can be extended to a product

H™A, A) x HH,(A) = HHp_ny1(A)

so that HH,(A) becomes a graded Lie module over the graded Lie algebra
H*(A, A)[1] (cf. Exercise E.1.5.2).
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E.4.1.5. Let I be a sub-algebra of A which is H-unital. Let g € A* be such
that g C I and Ig=* C I. Show that g. is well-defined on HH,(I) and
HC,(I), and is equal to the identity (cf. Wodzicki [1989]).

E.4.1.6. Suppose that & contains Q. Let A and B be unital algebras and M
an A-B-bimodule. Let
T [A M]

0 B
be the triangular matrix algebra. Show that HH.(T) = HH.(A) ® HH.(B)

by using derivations. [Use ad(u) for v = [} 0]

E.4.1.7. Show that Lp acts trivially on non-commutative de Rham homology
(see 2.6.6).

E.4.1.8. Truncated Polynomial Rings. Let A = k[z]/z"*! be a truncated
polynomial ring over k. We denote by ,k and k/nk the kernel and cokernel
of the multiplication by n respectively. Show that

HHy(A) = A=k
HHzn 1 (A) = k" ®k/(r+ 1)k,
HHyn(A) = K @41k, n>0.
If k£ contains Q show that
HCy(A) = Ak
HCyn_1(A) =0,
HCon(A) =k, n>0.
[For the computation of HH use the resolution

P(y,z) y—z P(y,z) y—2
> Q - Q > ... »Q — A,

where Q = k[y,z]/y"*! = 2"*! = 0 and P(y,2)(y — z) = y" ! — 2", For
the computation of HC apply Theorem 4.1.13. See also the end of Sect.5.4.]
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4.2 Shuffle Product in Hochschild Homology

The notion of shuffle comes naturally when one tries to decompose a product
of geometric simplices into a union of other simplices. In algebra the shuffle
product was introduced by Eilenberg and Mac Lane. It induces a product on
Hochschild homology and yields the Eilenberg-Zilber theorem which shows
that Hochschild homology commutes with tensor product. On differential
forms the shuffle product induces the exterior product of forms.

4.2.1 The Shuffle Product. Let S, be the symmetric group acting on the
set {1,...,n}. A (p,q)-shuffle is a permutation o in Sy, such that

o(l)<o(2)<...<o(p) and o(p+1)<o(p+2)<...<o(p+q).
For any k-algebra A we let S,, act on the left on C,, = C,,(A) = A® A®™ by:

(4.2.1.1) ag. (ao, Aly.- ., an) = (ao, A-1(1), Qg-1(2)5- - - aa-l(n)) .

In other words, if ¢ is a (p, ¢)-shuffle the elements {a1,as,...,a,} appear
in the same order in the sequence o.(ao,...,a,) and so do the elements

{aP+17 Ap+25 - -+ >ap+q}'
Let A’ be another k-algebra. The shuffle product

— X — = shpq : Cp(A) ® Cg(A") = Cpig(A® A')

is defined by the following formula:

(ag,a1,...,a,) X (ag,ay, ..., ap)
(4.2.1.2)= ngn(o)o.(a0®a6,a1 ®1,...,,01,1®4j,...,1Qa,),

a

where the sum is extended over all (p, ¢)-shuffles. This is in fact the formula of
Lemma 1.6.11 made explicit in this particular case. Remark that this formula
is well-defined in the normalized setting since if a; = 1 for some ¢ > 1 (resp.
a; =1 for some i > 1) then a; ® 1 (resp. 1® a}) = 1® 1 is the identity of
A® A’. We think of sh, 4 =) sgn(o)o either as an element in Z[S,] or as a
map (see above) depending on the context.

Note that the same formula defines more generally a shuffle product from

Cp(A, M) ® Co(A',M") to Cpyg(A® A, M & M').

4.2.2 Proposition. The Hochschild boundary is a graded derivation for the
shuffle product:

bz x y) =b(z) xy+ (-1)*lz xb(y), z€C, and yeC,.
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Proof. Let z = (ag,a1,...,ap) and y = (ap,a},...,ay), and write z x y =
Y- *(co,c1,- .., Cptq). The element cq is ag®ay and for ¢ > 0 the element ¢; is
either in the first set {a,®1,...,a,®1} or in the second set {1®a1, ..., 1®a}.
Fix 4, 0 < ¢ < n, and consider the element d;(co,c1,...,cptq) appearing in
the expansion of b(z x y). If ¢; and c¢;+1 are in the first (resp. second) set,
or if i = 0 and ¢; is in the first (resp. second) set, or if : = n and ¢, is
in the first (resp. second) set, then d;(co,c1,...,Ccptq) appears also in the
expansion of b(z) X y (resp. z x b(y)) and conversely. If ¢; and ¢4, belong to
two different sets, then (co, c1,...¢i—1,Cit1,Ci,Cit2, ..., Cptq) is also a shuffle
and so appears in the expansion of z X y. As its sign is the opposite of the
sign (in front) of (co,c1,...,Cpiq), these two elements cancel after applying
d; (because ¢;cit1 = Ci41¢i)-

By the end we have proved that

b(z x y) = b(z) x y+ (—=1)Pz X b(y)

(checking that the signs are correct is left to the reader).
This is an elementary and combinatorial proof. For a more conceptual
proof (proving associativity as well) see Mac Lane [ML, p. 312]. O

4.2.3 The Shuffle Product Map. Let
sh: (Cu(A) @ Cu(A))n = €D Cp(4) ® Co(A) = Co(AB® A')
pt+g=n

be the sum of the shuffle product maps shp, for p + ¢ = n. This is the
map described in 1.6.11 for the simplicial modules C(A) and C(A’) once
C(A)xC(A') is identified with C(A® A’). See 4.2.8 for an explicit description
in the commutative case.

4.2.4 Proposition. The map sh : C,(A) ® C,(A') = C,(A® A') is a map
of complezes of degree 0, that is [b, sh] = 0.

Proof. This follows readily from Proposition 4.2.2. |

4.2.5 Theorem. (Kiinneth formula for Hochschild Homology). Sup-
pose that A" and HH,(A') are flat over k (e.g. k is a field). Then the shuffle
map induces an isomorphism

sh, : HH,(A) @ HH,(A') = HH,(A® A') .

Proof. Cf. Mac Lane [ML, Chap.8, Theorem 8.1] or Cartan-Eilenberg [CE,
p. 218-219). o

4.2.6 The Case of a Commutative Algebra. Suppose that A is commu-
tative. Then the product map p: A® A — A is a k-algebra homomorphism.
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Composing the shuffle product with the map induced by p gives an inner
shuffle product map:

— X — = shyg : Cp(A) ® Cy(A) = Cpig(A)

(@0, a1,---,ap) X (@G, Gpt1,---,0ptq)

= Z sgn(0)o. (a0ag, ai, - - -, Aptq) -
o=(p,q)—shuffle

Remark that this map is well-defined even if A has no unit. So, equipped with
the shuffle product, C(A) becomes a graded algebra. In fact Proposition 4.2.2
implies that it is a DG-algebra.

4.2.7 Corollary. When A is commutative the shuffle product
X : HHp(A)® HHy(A) - HHpi4(A)

induces on HH,(A) a structure of graded commutative algebra. O

4.2.8 The sh Map. The multiplication on the first variable makes C,(A) =
A® A®P into an A-module and it is immediate to check that x passes to the
tensor product over A:

X : Cp(A) @4 Cq(A) = Cpyq(4) .
Identify Cp(A) ®4 Cq(A) with Cpiq(A) by

(ao,...,ap) ®a (ag,--.,a,) = (a0ag, a1, . ..,ap, a1, ..., a,)
and still denote by sh, , the resulting endomorphism of Cpy4(A). By defini-
tion
sh=Y_ shpg:Cn(A) = Cn(A).

ptg=n
p21,g21

This map sh is in fact the action of the element sh = Y sgn(o)o € k[S,],
where the sum is extended over all (p, g)-shuffles, p+g=nandp > 1,9 > 1.
Proposition 4.2.3 implies that, in this setting, we have the formula

(4.2.8.1) [b,sh] =0.

In other words sh is a morphism of complexes.

4.2.9 Shuffle Product and Differential Forms. For p = ¢ = 0 the shuffle
product reduces to the product map p : A® A — A. For p = 0 it gives
the A-module structure on Hochschild homology (cf. 1.1.5). For p = ¢ =
1 the map 2}, ® §2}, — HHz(A) factors through 24 (cf- 1.3.12), via
(adb) ® (a’db') — aa’dbdb’. More generally the iteration of the product map
defines a map
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Qa = Na2y = AQ(HH\(A)) » HH,(4),

which is precisely the antisymmetrization map €,, described in 1.3.4, since in
terms of permutations it is given by

en(aoday ...day) = E sgn(o)o. (ag,a1,...,a,) .
ocES,
As a consequence there is a commutative diagram

epXeq

P x M — HH,x HH,

orte X HHL

where A is the exterior product of forms. In other words §2},, — HH.(A) is
an algebra homomorphism (even an iso when A is smooth, cf. Sect. 3.4).

4.2.10 Harrison Homology. The Hochschild complex C(A) of the commu-
tative k-algebra A is a C DG-algebra which is augmented over A. Its product
is the shuffle product. Let I = @®,50Cn(A) be the augmentation ideal. For
any A-module M, C(A, M) is a C(A)-module. It follows from Proposition
4.2.2 that the quotient C(A,M)/I.C(A,M) is a well-defined complex. By
definition its homology is Harrison homology and is denoted

Harr,, (A, M) := H,(C(A,M)/I.C(A,M)).

4.2.11 Proposition. If A is flat over k containing Q, then Harrison homol-
ogy is canonically isomorphic to André-Quillen homology (cf. Sect. 3.5):

Harr, (A, M) = D,,_1(Alk, M) .

Proof. Let L, be a free simplicial resolution of the k-algebra A. For ¢ fixed,
the quasi-isomorphism C(L;) — 2}, sends the shuffle product into the
exterior product. The proof of Theorem 3.5.8 implies that the complex
C(L;)/IL;. C(L;) (with I; = augmentation ideal of C(L;)) is quasi-isomorphic
to the short complex

...—>O—+O—>Qz',|k—°—>Li.

By the same argument as in 3.5.8 we conclude that Harr,, (A, M) is isomorphic
to D,—1(Alk, M) for n > 1. O

Exercises

E.4.2.1. Let A be a commutative k-algebra and D a derivation of A. Show
that Lp is a (graded) derivation of the graded algebra H H.(A).
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E.4.2.2. Show that on the bar resolution C?*" the product

(wo, cee ,Ip+1) ® (yo, e )yq-l-l) = Z i(woyo, Zyeny Zp+qa$p+1yq+1)

where the sum is extended over all (p, q)-shuffles (21, ..., 2p44) of (z1,...,zp,
Y1,---,Yq), induces the structure of a graded commutative algebra (here A is
commutative). Show that it induces the standard shuffle product on HH,(A)
and a coproduct on H*(4, A).

E.4.2.3. Let Ale] be the algebra of dual numbers (¢2 = 0) over A. Show
that D : A — A is a derivation if and only if D : A — Ale] given by
D(a) = a + eD(a) is a k- algebra map. Use the computation of HH,(A[e])
to give an alternative definition of Lp on HH and to show that this map
commutes with the shuffle product.

E.4.2.4. Show there is a product on the complex (C.(A), V') such that (1—t) :
(C«(A),b) = (C.(A),b") becomes a derivation. Extend the existence of a
product to Hochschild homology of non-unital algebras (cf. 1.4.5).

Take ((a1,..-,ap), (@ps1s---,0piq))

— Z (ag—l(l),aa—l(z),...,aa-—l(p+q)).
o=(p,q)—shuffle

4.3 Cyclic Shuffles and Kiinneth Sequence for HC

In this section we show how to compute the cyclic homology of a tensor prod-
uct of algebras. Unlike what happens for Hochschild homology, it does not
yield an isomorphism but rather a long exact sequence, called the Kiinneth
sequence, similar to Connes’ exact sequence:

. = HC.(A® A') - HC,(A) @ HC,(A)
— HC,(A)® HC,(A[2] » HC,_1(A® A) — ... .

This similarity can be explained by thinking of the topological analogue
(cf. introduction of Sect.2.2). Let X and X’ be two S!-spaces and consider
X x X' as an S'-space by the diagonal action. Then H,.(X x X’'/S!) plays
the role of HC,(A ® A'). Since there are two S'-actions on X x X', the
quotient X x X'/S! is itself an S'-space (difference of the two actions) and
(X x X'/S')/S* is in fact (X/S?) x (X'/S'). Therefore the Gysin sequence
of the S'-fibration X x X'/S? — (X/S!) x (X'/S1) is

o Ho (X x X'/SY) = H,(X/S") @ H.(X'/SY)
- H(X/SY)® H,(X'/SY)[2] » HC._1 (X x X'/SY) — ... .
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The proof given here is inspired by this analogy.

The construction of the Kiinneth sequence for cyclic homology requires
the definition of new operators, the cyclic shuffles, which will prove useful in
handling product structures in cyclic homology. Consequences and applica-
tions to

4.3.1 Tensor Product of Cyclic Modules and Mixed Complexes. Let
A and A’ be two unital k-algebras. The cyclic module C(4 ® A’) is canon-
ically isomorphic to the product of the cyclic modules C(A) and C(A’) (cf.
2.5.1.2) since (A® A")®™ = (A®") ® (A’®™). Once this identification is made,
the Kiinneth theorem for cyclic homology is really a result of computing
HC,(C x C') for two cyclic modules C and C’. The proof of this theorem is
divided into two parts as follows.

First, one compares the mixed complex C xC’' = (CxC’,b, B) (cf. 2.5.1.2)
with the mixed complex C®C' = (C®C',b®1+1Q®b,B®1+1® B) which
is the tensor product of the two mixed complexes (C,b, B) and (C’, b, B). It
turns out that their Hochschild and cyclic homologies are isomorphic. The
difficulty of the proof is that there is no mixed complex morphism to compare
them. Instead there is an S-morphism (cf. 2.5.14). Its explicit construction
requires the cyclic shuffles.

Second, the complex Tot B(C' ® C') which computes HC,(C ® C') (and
hence HC,(C x C')) is endowed with a mixed complex structure. The asso-
ciated Connes exact sequence is the desired Kiinneth sequence.

4.3.2 Cyclic Shuffles. By definition a (p, g)-cyclic shuffle is a permutation
{o(1),...,0(p + q)} of {1,...,p + ¢} obtained as follows. Perform a cyclic
permutation of any order on the set {1,...,p} and a cyclic permutation of
any order on the set {p+1,...,p+¢q}. Then shuffle the two results to obtain
{o(1),...,0(p+ ¢)}. This is a cyclic shuffle if 1 appears before p + 1 in this
sequence. For instance let p = 2 and ¢ = 1, then the (2, 1)-cyclic shuffles are
{1,2,3}, {1,3,2} and {2,1,3}. Remark that {2,3,1}, {3,1,2} and {3,2,1}
are not cyclic shuffles since 3 = p + 1 appears before 1.
There is defined a map L: Cp(A) ® Cq(A’) = Cpyq(A® A') given by

(ao, a1,...,a,) L (ag,a},...,a;)

=ngn(a)a. (a0®ap,a1®1,...,0,®1,1®4d},...,1®a]) ,
o

where the sum is extended over all (p, g)-cyclic shuffles. More generally if C
and C' are simplicial modules there is a similar operation 1: C, ® C; —
Cn®Cl,n=p+q.

Using L we define a map of degree 2, called the cyclic shuffle map,

—x—=shy, :C,®Cy = Cprg12®0Cpgys
by zx'y=sh'(z,y) =s(z)Ls(y),
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where s : C, — Cp4; is the extra degeneracy of the cyclic module C (cf.
2.5.7). Recall that when C = C(A) the map s is given by s(ao,...,an) =
(1,aq,...,as), therefore sh’(z,y) is of the form Z(1® 1,20, ..., 2ptq+1)- An
immediate consequence is:

(4.3.2.1) forany z and y, Bz x'y=0 and zx'By=0.

This follows from Bz x’ y = sBz L y and sB = 0 in the normalized setting.

The following result shows that the obstruction to B being a derivation
for the shuffle is equal (up to sign) to the obstruction of b being a derivation
for the cyclic shuffle.

4.3.3 Proposition. For any z € Cp(A) and any y € Cy(A’) the following
equality holds in Cpiq11(A® A'):

Bz xy) - (B(z) x y + (-1)*lz x B(y))
= —b(z x" y) + b(z) x"y + (=1)=lz x" b(y) .
Proof. Remember that we are working in the normalized framework so that

C, is in fact C,, in the sequel. We have to prove that the sum (with appro-
priate signs) of the following six maps is zero:

7 sh/ b 3\
rq
? (C x C)ptq+2 R
b®1 , shp_1q
— 5 G ®C, =
1®b , shpq-1
c,oC, { —— G®C, b (CXCpren
P q sh B P+q+
prq
M (CX g s
B®1 , shpiig
— i ®C, —,
L 1®B . shpg+1
—  C,®Cl,, )

Let z = (ao,...,ap) € Cp and y = (ag,...,a;) € Cg. The image of z® y
under any of these composites is the sum of elements of two different types:
either it is a permutation of (ao®1,...,8,®1,1®ag,...,1®ay), or it is an
element of the form (1 ® 1,...) where one of the other entries is of the form
a; ® a;. So the proof can be divided into two parts: the sum of the elements
of the first type is O (this proof will be carried out in detail), the sum of the
elements of the second type is 0 (the proof will be left to the reader).
Elements of the first type arise only from bosh;q (which also gives elements
of the second type), shpi140 (B ®1) and shpgiy 0 (1® B). Let us work with
the permutations of {1,...,p + ¢}. Let a = (a1,...,a,) and 7 the cyclic
permutation so that b(1,a) = a + sgn(7)7(a) modulo the elements of the
form (1, ). So the permutations coming from bo shy,, are of the form (cyclic
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shuffle) or 7o (cyclic shuffle). The cyclic shuffles which have 1 in the first
position cancel with the permutations coming from shyiiq 0 (B ® 1). For
such a o, consider 7o ¢. If p+ 1 is in first position then 7 o o cancels with

a permutation coming from shyy14 0 (B ® 1), if not then it is a cyclic shuffle

o' (and it cancels with it). So we are led to examine 7 0 ¢’ for which we play

the same game. By the end all the elements have disappeared. a

4.3.4 Corollary. The homomorphism B, induced by B on Hochschild ho-
mology is a derivation for the shuffle product:

B.(z x y) = B.(z) x y + (-1)1*'z x B.(y),
for € HH,(A), ye HH,(A). O

4.3.5 Corollary. In the normalized setting the following formula holds on
chains (and therefore on homology),

B(z x By) = Bz x By .

Proof. It is a consequence of 4.3.3 and of the following properties: sB = 0
and bB = —Bb (cf. 2.1.7). O

4.3.6 Cyclic Shuffie Product. We denote by

sh': (CO®CYn= P Cp®Cq— (CxCnya
ptg=n

the sum of all the (p, g)-cyclic shuffie maps shy,, for p + ¢ = n and call it the
cyclic shuffle product.

4.3.7 Proposition. The maps b, B, sh, and sh’ satisfy the following formulas
in the normalized setting

(4.3.7.1) [b,sh] =0,
(4.3.7.2) [B, sh] + [b,sh'] =0,
(4.3.7.3) [B,sh'] =0.

Proof. More explicitly the first formula reads bo sh —sho (b®1+1®b) =0
and similarly for the two other formulas.

Formula (4.3.7.1) is an immediate consequence of 4.2.4 and (4.3.7.2) is an
immediate consequence of 4.3.3.

Formula (4.3.2.1) implies that all the terms in (4.3.7.3) are 0, whence the
equality. ]
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4.3.8 Theorem (Eilenberg-Zilber Theorem for Cyclic Homology).
Let C and C' be two cyclic modules and let C ® C' be the tensor product of
their associated mized complezes. Then there is a canonical isomorphism

Sh:HC,(C®C') = HC,(C x C')

induced by the shuffle product and the cyclic shuffle product. It commutes
with the morphisms B, I and S of Connes’ exact sequence.

Proof. The shuffle map sh : C ® C' — C x C’ is a map of b-complexes
by (4.3.7.1); however it is not a map of mixed complexes since B does not
commute with sh.

By the classical Eilenberg-Zilber theorem (cf. 4.2.5) sh is a quasi-isomor-
phism on Hochschild homology. So, to prove the announced isomorphism, it
is sufficient to provide a degree 0 map Sh : Tot B(C ® C') — Tot B(C x C’)
such that the following diagram commutes

0 CQC' — TotB(C®C') — TotB(C®C')2] —0

lsh 15;1 JSh[Z]

0 CxC' — TotB(CxC') — TotB(CxC)2 —0

Recollect that (Tot B(C®C")), = (CRC"), ®(CR®C')p—_2@®. .., and similarly
for Tot B(C x C”). So Sh can be viewed as a matrix (S-morphism in the sense
of 2.5.14). Our choice for Sh is

sh sh' 0
Sh = sh sh' 0

sh sh’'

where sh and sh’ are as defined in 4.2.8 and 4.3.6 respectively. By Proposition
4.3.7 Sh is a morphism of complexes. The commutativity of the right-hand
square comes from the form of the matrix Sh (same elements on the diago-
nals). The commutativity of the left hand square is immediate. This finishes
the proof of the theorem. O

Now we compare HC(C ® C’) with HC(C) ® HC(C").

4.3.9 Lemma. For any mized complezes C and C' there is a short ezact
sequence of chain complezes

0 - Tot B(C® C') 2>

Tot B(C) ® Tot B(C") —2%, (Tot B(C) @ Tot B(C"))[2] = 0 .

Proof. It is immediate that S® 1 —1® S is surjective. To compute the kernel
let us identify Tot B(C) with k[u] ® C where |u| = 2 (resp. Tot B(C') with
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k[u'] ® C’ where |u/| = 2, resp. Tot B(C ® C’) with k[v] ® C ® C’ where
|v| = 2). Since S : k[u] ® C — k[u] ® C is given by S(u" ®z) = u"~! @ = one
sees that the kernel of S® 1 — 1 ® S is made of the elements generated by

Z uPu'lzz’
ptg=n
Hence A : k[v] @ (CQ C') — k[u] ® C ® k[u'] @ C' = k[u,v'| ® (C® ') is
induced by
" Z uPu'9.
ptg=n

It is straightforward to check that the boundary of Tot B(C) ® Tot B(C')
restricted to the image of A coincides with the boundary of Tot B(C' ® C').00

4.3.10 Proposition. Suppose that the k-modules C., and HC,(C') are pro-
jective (e.g. k 1s a field). Then there is a long ezact sequence

S®1-1QS
= HC,(C®C') 5 @ HC,(C)® HC,(C') ———
r+s=n
@ HC,(C)® HC,(C') - HC,_1(CRC') =
p+g=n—2

Proof. The hypothesis about projectiveness implies that the homology of
Tot B(C)®Tot B(C") is precisely HC.(C)®HC.(C’) by the Kiinneth theorem
(cf. 1.0.16). Hence the exact sequence is the homology exact sequence of
Lemma 4.3.9. O

Finally we can state our main theorem comparing HC,(A ® A’) with
HC,(A) and HC,(A").

4.3.11 Theorem (Kiinneth Exact Sequence of Cyclic Homology). Let
C and C' be two cyclic modules. Suppose that C' and H,(C') are projective
over the ground ring k. Then there is a canonical exact sequence

S®1-1QS
> HC,(C x C') 5 @ HC,(C)® HC,(C') ———

r+s=n

Bprgnz HCH(C) ® HCY(C') 23 HC,oi(C X C') —

Proof. This is an immediate consequence of Theorem 4.3.8 and Proposition
4.3.10. d

4.3.12 Corollary. Let A and A’ be two unital k-algebras such that A’ and
HH,(A') are projective over k. Then there is a canonical ezact sequence
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S®1-1®S
o HCa(A® A) 2 @) HC,(A) @ HOy(4) 22,
r+s=n
P HGC,(A)@HC(A) > HC, (AR A) — ... O

ptg=n-2
Exercises

E.4.3.1. Find a conceptual proof of Proposition 4.3.3. [See the last sentence
of the proof of Proposition 4.2.2.]

E.4.3.2. Show that the complex Tot B(C ® C’) is equipped with a degree
+1 map which makes it into a mixed complex quasi-isomorphic to the tensor
product of the mixed complexes Tot B(C) and Tot B(C”). (This fits with the
philosophy described in the introduction of this section.)

E.4.3.3. Let k be a field and A, A’ be unital k-algebras. Show that there is
an exact sequence
0 = (HC\(A) ®kju] HCL(A))n1 = HCR(A® A
— (Torypy)(HC«(A), HCL(A'))n—2 = 0.

(This is another way of interpreting Corollary 4.3.12, cf. Hood-Jones [1987,
Theorem 3.2].)

E.4.3.4. Show that the Kiinneth exact sequence is valid for non-unital alge-
bras.

4.4 Product, Coproduct in Cyclic Homology

In this section we show that cyclic homology is endowed with a product
HC,(A) x HCy(A') & HCprq11(A® A') .

It may seem strange to have p + ¢ + 1 instead of p + ¢. In fact we will see
later that cyclic homology is an additive analogue of algebraic K-theory and
so is sometimes called ‘additive K-theory’ and denoted HC, = K\, ,. The
shift of degree in this notation is due to the fact that K (and so HC,,_1)
is related to H, of Lie algebras of matrices, like K,, is related to H,, of the
general linear group. We want to show that, as in algebraic K-theory, there
is a product K;‘ x K ;’ — K;' +¢> Which, in our standard notation, gives

HCp_l X ch—l e HCp+q_1 .

We also show that cyclic homology is equipped with a coproduct
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HC,(A® A) —» €D HC,(A)® HC,(4').
n=p+q

Translated into cohomology the product becomes a coproduct and vice versa.
Then the periodicity map S can be interpreted as the product by the canon-
ical generator of HC? (k).

4.4.1 Product Structure in Cyclic Homology. Let A and A’ be two
unital k-algebras. Recall that Tot B(C), = Cp@®Cp_2@®. .. where C, = Cp(A).
Define a product on chains

% : Tot B(C), ® Tot B(C')q = Tot B(C x C')ptqt1
by the formula
z*y = (Bzp X yq, Bxp X yg-2,...),
for 2= (zp,Tp-2,...) and Y= (ygYg-2,---) -

Let us show that this is a map of chain complexes. It amounts to proving
that

b(Bzp X yq) + B(Bzp X yg-2)
= B(bzp + Bzp_2) X yg + (=1)PBzp x (byg + Byg—2)

and similarly for the other entries. This formula is an immediate consequence
of the fact that b is a derivation for x (cf. 4.2.2) and that B is almost a
derivation for x (cf. 4.3.5). So we have proved the first part of the following

4.4.2 Theorem. The map * induces a product
* 1 HCp(A) x HCy(A') = HCpygr1(A® A')

in cyclic homology. It is associative and graded commutative provided that,
for all n, HC,, is considered having degree n + 1:

zxy=(—1)POEIT (yxz), for z € HCp(A) and y € HC,(A'),
where T: AQ A =2 A’ ® A is the twisting map.
Proof. We just proved that this map is well-defined. Associativity follows

from Corollary 4.3.5. To prove graded commutativity it suffices to compute
(by using the formulas of 4.3.7) the boundary of

z2=(zp X' Yg,Tp X Yg + Tp X' Yg—2 + Tp—2 X' yg,...) .
Indeed

(b+ B)(z) = (b(zp X" yq) + B(xp X yg),-.-)
= (b(zp) X" yq + (=1)Pzp X" b(yg) + B(xp) X yq + (=1)Pzp X B(yy), - . .).
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Suppose that x and y are cycles. Then bz + Bzp_o = 0, etc. So b(xz,) X yq =
~B(zp—2) X' y; = 0 by (4.3.2.1), etc. Finally (b+ B)(z) = (B(zp) X yq +
(—=1)Pz, x B(yg), . ..). Since Ti(B(y,) X z,) = (=1)9P+1)z, x B(y,) we have
proved that 8(z) = (B(zp) X yg,...) — (=1)PHVE+DT(B(y,) x zp,...) =
z*y— (—1)PTVEHOT, (y x ) is a boundary. Passing to homology gives the
desired result. O

4.4.3 Proposition. The boundary map O in the exact sequence of Corollary
4.3.12 is the product * in cyclic homology,

(z®y)=xx*y.

Proof. This formula is a consequence of the following diagram chasing in the
exact sequence of Lemma 4.3.9. Let ¢ and y be cycles. Their tensor product
is the image by S® 1 —1® S of

(0,25, Tp—2,...) ® (YgsYg—21-+-) + (0,0, Zp, Tp_2,) ® (Yg—2,Yg—ay---) + .+ .
The boundary in Tot B(C) ® Tot B(C’) of this lifting is
(Bzp,0,...) ® (yq,Yq—2,---) + (0, Bxp,0,...) ® (Yg—2,Yg=t,---) + .-+ ,
which is the image of the cycle
(Bzp, Yq) + (Bxp,yg—2) + ... € (Tot B(C ® C'))pigs1 -
The image of this cycle under Sh is
(Bzp X yq + Bxp X' yg—2, Bxp X yg—2 + Bxp X' yga,...) .

By (4.3.2.1) we can get rid of all the terms containing x’. Hence we have
proved that

O(r ®y) = (Bry X yg, Bxp X yg_2,...) =T *y. O

4.4.4 Internal Product on Cyclic Homology. If A’ = A and A is com-
mutative, then we can compose with the map induced by the algebra map
H:A®A—= A a®b— ab, to get an internal product on cyclic homology:

%1 HCp(A) ® HCy(A) = HCppgs1(A) .

Obviously it makes HC,(A)[1] into a graded algebra over k. For p = q = 0 this
product AQ A — “Q}il /dA is given by a xb = (a db). Graded commutativity
can be checked directly: a * b+ b* a = adb + bda = d(ab) = 0 mod dA.

This internal product behaves as follows with respect to Connes’ exact
sequence:
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— Connes’ map B : HC,_1(A) - HH.(A) is a graded algebra map. This
follows immediately from the explicit construction of * (cf. 4.4.2) and from
Corollary 4.3.5.

— via B and the shuffle product, H H, becomes an HC\,-module. The map I
is an HC,-module map. In other words there is a ‘projection formula’:

(4.4.4.1) I(B(z) xy) =z *I(y) andalso I(zx B(y)) =I(z)*y

(this follows immediately from the definition of x),
— finally, S(z * y) = z * S(y). An interesting consequence of this formula is

z*S(y) = (-1)PHEIS(2) vy .
In other words the map # factors through HC.(A4) ®pc, (k) HC.(A).

The comparison with the exterior product of differential forms is as
follows. First one remarks that [ o e, : 2"/d2""' —» HC, (cf. 2.3.5)
sends the class of agda; ...da, to the iterated product ag * ... * a,,. Indeed
the commutativity of the diagram 2.3.3 and formula (4.4.4.1) imply that
Toey(aoda; ...day) = I(ag X B(ay) X ... x Bayp)) = ap * ... * ap. As a
consequence one has

(4.4.4.2)
Eptgr1(W A dw') = gp(w) * g4(w') , forw € 2P/d2P~! and ' € 29/d2971 .

When the algebra is smooth we showed in 3.4.12 that there is a splitting
HC, = 2" /dQ" ' @ HER? ... . Let us write z = (7, ...) accordingly; then

(4.4.4.3) zxy=(TAdY,0,0,...).

4.4.5 Product in Connes’ Setting. From the definition of the product in
HC it is immediate that

x: HC) x HC; - HCp, 11,

is simply given by z * y = Bz X y. The interesting point in this frame-

work is that graded commutativity is strict on chains (C,). Indeed the
first component of z in the Proof of 4.4.2 is z, X’ yg, which is trivial in
6:+q+2(A ® A’) since it is of the form (1®1,...) gcf. 4.3.2). Therefore one
has zxy — (—1)(p+1)(q+1;T*(y xz) =08(2) =0in Cpypyy-

As a consequence (C,,b) is a solution of Sullivan’s commutative cochain
problem for the reduced Deligne complex of an affine smooth algebra over Q
(or any characteristic zero field).

4.4.6 Coproduct Structure on HC. The map

A:HC,(A® A)—» @ HC.(A)® HC,(A)

r4s=n
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appearing in the exact sequence of Corollary 4.3.12 defines a coproduct map,
which is co-associative.

Let u denote the canonical generator of HC(k). Then HC, (k) becomes
a graded coalgebra isomorphic to k[u] = k @ ku @ ku? & ... with coproduct
structure given by

Alu™) = Z uP @ul.
pt+g=n

This follows from the description of the inclusion map of complexes A given
in the proof of Lemma 4.3.9.

The graded module HC,(A) becomes a k[u]-comodule:

HC.(A) > HC.(A)®k[u], z— ) Sz@u’
i>0

where S' is the periodicity map S iterated i times.
When A is commutative this coproduct endows A with a structure of
graded commutative coalgebra structure (cf. Appendix A).

4.4.7 Trivial and Free Comodule Structures on HC,(A). The kful-

comodule structure of the graded module M, is completely determined by

the graded k-linear map S : M, — M,_2. As mentioned in 2.5.17 there are
two extreme cases of comodule structures:

(a) free comodule structure: let U, be a graded k-module and define S on
k{u] ® U, (recall that u is of degree 2) by S(u" ®z) =u"" '@z ifn > 1
and S(1® z) = 0.

(b) trivial comodule structure: V is a graded k-module and § =0,

Topologically these two cases correspond respectively to an S!-space X
such that

(a) the action of S! is trivial, hence ES! x g1 X = BS! x X. So the homology
group H,(ES! xg1 X) = H,(BS! x X) = k[u] ® H,(X) is a free k[u]-
comodule.

(b) X is of the form S* x Y with S acting trivially on Y, then ES! xg1 X =
ES!' xY ~ Y. So the homology group H.(ES! xs1 X) = H,(Y) is a
trivial H,(BS!) = k[u]-comodule.

4.4.8 Proposition. Let A and A’ be two unital k-algebras. Suppose that A’
is flat over k and that HC,(A") = k[u|®@U.®V, where U, and V, are (graded)
trivial k[u]-comodules which are flat over k. Then

HC.(A® A')=HC.(A)®U,® HH,(A)®V,.

Proof. It suffices to treat the cases HC,(A') = k[u]| ® U, and HC.(4') =V,
separately. Since the k[u}-comodule structure is induced by S, each of these
cases is a consequence of Corollary 4.3.12. d
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4.4.9 Application to Computations. For A’ = k[z| one has HC,(k[z]) =
klu] ® (k ® T) @ zk|z], where in k & T the component k is in dimension 0
and T = @p>2Z/mZ is in dimension 1, and where zk[z] is concentrated in
degree 0 (cf. 3.1.6). It follows that

(44.9.1) HC,(Alz]) = HC,(A)® HC,_1(A)® T ® HH,(A) ® zk[z] .
In particular if & contains Q one has
(4.4.9.1)¢ HC,(Alz])) = HC,(A)® HH,(A) ® zk[z] .

Similarly if A’ is the Laurent polynomial algebra k[x,z~!] (which is smooth),
then rationally HC,(k[z,z7!]) = klu] ® (k.1 ® k.dz) & (1 — z)k[z,z~!]. It
follows that if k contains QQ then

(4.4.92)g HC,(Alz,z™1))
= HCn(A)® HCr—1(A) ® HH,(A) ® (1 — z)k[z,z7}] .

In fact this last case is a particular example of a smooth algebra A’. So if &
contains QQ one can rewrite Theorem 3.4.12 as

HC.(A") = k[u] ® Hjr(A") & 24 /Kerd
since S is trivial on this last component. Consequently one has

(44.93)¢ HC.(A® A') = HC.(A)® Hpr(A") ® HH.(A) ® (2}, /Kerd .

4.4.10 Product and Coproduct in Cyclic Cohomology. All previous
results can be translated in the cohomological framework. The coproduct
becomes a product (called the cup-product)

U: HCP(A)® HCY(A') - HCPTI(A® A')
and the product becomes a coproduct

V:HC"(A®A)—»  HC(A)@HC*(A).

r+s=n-—1

(Note the shift of degree.) They fit into a long exact sequence

S®1-1QS
> HCM(A®A)— P HC(A)®HC*(A) ——
r+s=n-—1
@ HCP(A)® HCIA) = HC™ (AR A) »
ptg=n+1

When A is commutative HC*(A) inherits a structure of graded commutative
algebra. For A = k, HC*(k) is isomorphic to the polynomial algebra kv],
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with |v| = 2. Then HC*(A) is a HC*(k) = k[v]-module and the action of v
is simply the periodicity map S:

(4.4.10.1) S(z)=vUz forany ze€ HC,(A).

Exercises

E.4.4.1 Show graded commutativity for the product * on cyclic homology
by using the proof of Proposition 4.4.3 (i.e. (z ® y) = = * y). [Find another
lifting of z ® y.]

E.4.4.2 Let CA and SA be the cone and the suspension of the k-algebra
A as defined in Exercise E 1.4.4. Show that HC,(CA) = 0 and HC.(SA) =
HC._,(A). (Prove the case A = k first. Compare with K-theory, cf. Loday
[1976].)

E.4.4.3. Let A’ be a separable flat algebra over k. Show that
HC,(A® A')=HC,(A)® A'/[4", 4] .
(Cf. for instance Kassel [1987, p.210].)

4.5 A-Decomposition for Hochschild Homology

If the ground ring & contains Q and if the k-algebra A is commutative, then
the Hochschild homology groups split functorially into smaller pieces when
n>1:

HH,(A) = HHY(A)&...0 HHM(A) .

This is called the A-decomposition of Hochschild homology. The part H HY
can be identified with Harrison- André-Quillen homology and the part H H, m
is simply £2". Such a decomposition was already obtained in 3.5.8, but here
we look at this theorem from a completely different point of view, we analyze
the action of the symmetric group S, on M ® A®™,

In the first part we describe some families of elements Id**, e(*) in the gen-
eral setting of Hopf algebras. Applied to the particular case of the cotensor
algebra they give elements of Q[S, ], denoted X: and e (Eulerian idempo-
tents). Each family spans the same commutative sub-algebra of Q[S,]. These
elements are related to the Eulerian numbers and to several interesting com-
binatorial identities. For instance the family el , n > 0, plays a striking role
in the Campbell-Hausdorff formula (cf. Exercise E.4.5.5).

For us the main property of interest of the Eulerian idempotents is their
commutation with the Hochschild boundary:

bel)) = es)_lb .
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The splitting of Hochschild homology mentioned above follows from this prop-
erty. The same idempotents will enable us to give a similar decomposition
for cyclic homology in the next section. If the hypothesis k£ contains Q is not
fulfilled, then the A-decomposition has to be replaced by a filtration, which
exists because X: € Z[S,).

Though the hypothesis ‘A commutative’ is crucial for the existence of the
decomposition, something remains for a general algebra A (cf. 4.5.17).

The relationship between the simplicial structure of A®™ and the action
of S,, will be axiomatized in Sect. 6.4. It brings to light the category of finite
sets.

The results of this section are essentially taken out of Gerstenhaber and
Schack [1987] and Loday [1989)].

4.5.1 Convolution in a Commutative Hopf Algebra.
Let H = (M, u, A, u,c) be a commutative Hopf algebra over k (cf. Appendix
A). By definition the convolution of two k-linear maps f and g from H to
itself is

frg=no(f®g)oA.

(So now * has a different meaning as in the previous section).
It is easy to check that, if f is an algebra morphism, then for any k-linear
maps ¢ and h one has

(4.5.1.1) fo(gxh)=(fog)x(foh).

It is also immediate to check that, if # is commutative and if f and g are
algebra morphisms, then

(4.5.1.2) f*g is an algebra morphism .

From (4.5.1.2) one deduces that Id** := Id ... Id (k times) is an algebra
morphism and by (4.5.1.1) that

(4.5.1.3) Id* o Id** = 1d*(F*)

These constructions and properties are easily generalized to graded commu-
tative Hopf algebras.

4.5.2 Eulerian Idempotents in a CGH-Algebra. It is immediate to
check that the convolution is an associative operation whose neutral element
is the map uc. Hence (EndxH, +, %) becomes a k-algebra. Suppose now that
H is graded with Ho = k and consider only the k-linear maps of degree 0 (the
convolution of maps of degree 0 is still of degree 0). Suppose moreover that
f:H — H is such that f(1) = 0 (where 1 € k = Hp). Then, by induction,
the map f** = f ... * f (k times) is O when restricted to H, for n < k.
Consequently the series
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", o f

1

(4.5.2.1) eV (f) :=logluc+ f) = f —

+ ... 4+ (=1) +...

has a meaning, since restricted to H,, it is a polynomial. Similarly the product

) (1) *i
(4.5.2.2) €D (f) = (e ;f))
is well-defined and determines a k-linear endomorphism of H,, denoted by

eg)(f). It is clear that e(()l)(f) = 0 and, by the same argument as above, we

get
(4.5.2.3) e(f)=0 for i>n.

The formal series exp(X) = 14,5, X*/i! and log(1+X) = 3,5, (—-1)**"
X' /i are related by the identity (1+ X)* = exp(klog(1 + X)). Applying this
identity to the element f of the ring (EndxH, +, %) yields the formula

(4.5.2.4); (uct+ )™ =uc+ ) kel
21

The meaning of the left-hand side is clear. For the right-hand side we remark
that log(uc + f) = e(V(f) by definition. Therefore

e(l) *1 .
exp (ke(l)(f)) = uc + Z gg_{ffl = uc+ Z kze(z)(f)

i>1 ’ i>1
Our main interest is to apply this formula to f = Id — uc (which readily
satisfies f(1) = 0) and we put
(45.25) eV :=eW(Id—wuc), eV :=e(Id—uc), i>1,n>1.

n

(Note that extending formula (4.5.2.2) to i = 0 gives e{®) = uc, so eé ) =1

(0)

and ey’ = O otherwise). Making (4.5.2.4); explicit in this particular case
gives
(4.5.2.6) (Id*™*) |3 Zk’ e n>1.

4.5.3 Proposition. For any CGH-algebra ‘H the elements e e Endy(Hn)
verify forn > 1:

(a) Id:egll) +otel,
(b) eDel) =0 if i#£j and Vel =,

Proof. Formula a) is simply (4.5.2.6);.
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Fix n > 1 and consider the n equations (4.5.2.6), k = 1,...,n. Since
the Vandermonde matrix (with (k,7)-entry equal to (k%)) is invertible in Q,
the elements eg),i =1,...,n are completely determined by the restrictions
(1d**)|4,. Therefore formu]as (4. 5 L. 3) imply that there is a unique formula

of the form (el = P a”men Applylng again formulas (4.5.1.3), we

get
Y kkajjm = (kK)™, m=1,...,n,

1<ikn
15;%n

for any positive integers k and k’. The only solution is given by b). a

4.5.4 A-Operations and Eulerian Idempotents in Q[Sy,]. Let A be a
k = Q-module (we do not use the algebra structure of A for the time being)
and let % = T'(A) be the graded cotensor Hopf algebra (cf. Appendix A).
Explicitly Ho = k, #, = A, and more generally H,, = A®". The comultipli-
cation is given by “deconcatenation” (also called cut-product),

n

Aar,...,a,) = Z(al,...,ai) ® (@it1y---,an) -
i=0

The multiplication is given by the “signed shuffle”:

(4.5.4.1) p((ar,..-,0n) @ (@pt1,- -y 8ptq))

- Z sgn(o)o. (a1, ...,ap1q) -

o=(p,q)—shuffle

This is a commutative graded Hopf algebra to which one can apply the con-

—k
structions of 4.5.1. and 4.5.2. We denote by A™ : T'(A) — T"(A) the operator
Id** in this setting. Obviously it is a degree zero operator and its restriction

<k ‘

to A®", which takes values in A®", is denoted A, and called a A-operation.
By homogeneity the image of a generic element (ai,...,a,) € A®™ = H, is
of the form ), ¢ a(0)o.(a1,...,a,) with a(o) € Z uniquely determined.

The element Y .5 a(o)o € Z[S,] is still denoted by Xﬁ (note that _)\_,11 =
the neutral element of Z[S,]). We will sometimes use A := (—1)'6-1Xﬁ (the

true A\-operations) and also ¥f = k_)\_fl (Adams operations). See 4.5.16 for
more comments. Since the composition of endomorphisms of ‘H,, corresponds
to the product in the group algebra Z[S,], formula (4.5.1.3) becomes

(4.5.4.2) =X e Z18,].

n’'n n

Similarly there are defined elements

e eQ[S,), n>1,
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called the Fulerian idempotents, which satisfy the formulas of Proposition
4.5.3. Therefore they are indeed idempotents, in fact orthogonal idempotents.
An explicit description is given below. Then formula (4.5.2.6); becomes the
following formula in Q[S,|:

(4.5.4.3) o= ke k™, n>1.

4.5.5 The Eulerian Decomposition of the Symmetric Group. Let
o € S, be a permutation acting on the set {1,2,...,n}. If 0(¢) > (¢ + 1),
then o is said to have a descent at i (1 < ¢ < n). For instance the permutation

(1234
“\3 1 4 2

has 2 descents, at 1 and at 3.

Let Sy % := {0 € Sp | o has (k — 1) descents}. The partition S, = S, 1 U
... U8, p is called the Eulerian partition of S,. Remark that S, ; = {id,}
and S, , = {wn}, where w, = (1 n)(2n —1)... as a product of cycles. More
generally one checks easily that S, kwn = Sp n—k41-

The number a, i of elements of S, ; is classically called an FEulerian
number whence the name of the partition. Eulerian numbers are different
from the classical Euler numbers.

By definition the FEulerian element lfl is defined for 1 < k < n by the
formula

k.= Z sgn(o)o € Z[S,] .
oESnk
(This definition differs from Loday [1989] by the sign (—1)*~1). In fact we
extend the definition of I¥ to all integer values of n and k by putting I3 =
1 € Z[So] = Z, and ¥ = 0 in all other cases. Remark that I} = id and
12 = (1),

4.5.6 Proposition. The relationship between the \-operations, the Fulerian
idempotents and the Eulerian elements is given by the following formulas:

e E i k n+1 k
= i, =3 (1) An in Z[S,
" ;( n )" SRR P (n+1—i> n i
87(:) = Z a:{]l% in Q[Sn] fOT 1 S 7' S n,
j=1

where the Stirling numbers a4 are defined by the identity 3 . abi X' =
X—-j+n

().

Proof. Let A% : H — H®* be the iterated comultiplication and p* : H®* — H

be the iterated multiplication. By definition we have N = Id* = pk o Ak,
From the definition of A (cf. 4.5.4) we have
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k
A¥(ag,...,an) = Z(al,...,am)t@ (@py41s--+r8pytpy) & o
éa(apl+'n+Pk—1+17"‘,ap1+.”+pk)
where the sum is extended over all k-tuples of non-negative integers (py,...,
pi) such that p; +. ..+ pr = n. From the definition of u (in terms of shuffles)

. . . ~k
we deduce that the coeflicient of o € S, in the expression of A, as an element
of Z[S,] depends only on the number of descents of o (a (p, g)-shuffle is either
the identity or a permutation with one descent). By direct inspection we see

. . Tk .
that the coefficient of I¥~% in X, does not depend on k. We compute it for
k =i+ 1:since If~*Y = I} = id, this coefficient is the number of elements

in the sum describing A*(ay,...,a,) (see above). This number is precisely
the binomial coefficient ("+7l:"1) that is (":i).
The other formulas follow from classical combinatorial formulas. O

4.5.7 Corollary.
el™ = (1/n!) Z sgn(o)o = (1/nl)e,

c€S,

Proof. From the definition of the Stirling numbers we get a™* = 1/n! for all
i, whence the result. O

In low dimensions the explicit form of eSf ) is:

n=2, eV =1(id+(12), e =le=1(d—(12)),
(12) - (2

n=3, ef! =lid—§((123)+(132) - (12) - (23)) - §(13) ,
2

(¢d + w3) , egs) = %53 .

4.5.8 Hochschild Complex and Eulerian Idempotents. From now on
we suppose that A is a commutative unital algebra and M a symmetric
bimodule. The aim of the following proposition is to compare the action of
the Hochschild boundary map b on C(A, M) = M ®T'(A) and the operations

introduced above. The A-operations Xi are extended to C,, (4, M) = MQA®"
by idy ® N but still denoted simply by A- : Cn(4, M) = Cn(A, M), and
similarly for the operators eslk) and Ik,

4.5.9 Proposition. Under the above hypothesis the following commutation
properties hold for all n > 1:

(4.5.9.1) bAE = X

n n—

lb’
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(45.9.2) be®) = *) b

(4.5.9.3) blE = (1k_, —1521)b.

Proof. It is sufficient to prove these formulas for M = A. Since o= uk o A¥
on T'(A) it suffices to show that the map b on C(A) = A ® T'(A) and
b® 1p(a) + 17v(a) ® bon A®T'(A) ® T'(A) commute with 14 ® A and
14 ® p. For A it is immediate by direct inspection. For p this is precisely
Proposition 4.2.2. This shows that Xkb = ka.

For (4.5.9.2) one can either use the same method or deduce it from
(4.5.9.1) by the same argument as in the proof of 4.5.3. Note that the par-
ticular case

bel™ =™ b=0

(n
n
was already proved in 1.3.5 since e = (1/n!)e, by 4.5.7.

Formula (4.5.9.3) is a consequence of (4.5.9.1) and Proposition 4.5.6. O

4.5.10 Theorem (A-Decomposition for Hochschild Homology). Sup-
pose that k contains Q, that the k-algebra A is commutative and that the
A-bimodule M is symmetric. Then the idempotents eld naturally split the
Hochschild complex C,(A, M) into a sum of sub-complezes C,Ei), 1 > 0, whose
homology are denoted by Hy(li)(A,M) (and HH,(P(A) when M = A). There-
fore

Ho(A4, M) = H{" (4, M),
Ho(AM)=HYAM)®...0 HY(A, M), when n>1.

Proof. For n > 0 we put C,(f) = eﬁf)C (image in C, of the projector el )).
We remark that under the symmetry hypothesis the map b : C; — Cy,
(m,a) — (am — ma) is trivial. Since e(()o) = id this gives the formula for
n =0.

Then for n > 1 we get C,, = C,(Ll) b...0 C,(ln) as a consequence of

formulas 4.5.3. By formula (4.5.9.2) each C’,Ei) is a subcomplex, and in fact

a direct summand of C,. Hence C, = 65,~200£i). Taking the homology gives
the announced decomposition. O

4.5.12 Theorem. Under the above hypothesis there is a canonical isomor-
phism

en M ®a 24, = H{(A,M) and in particular QL = HH™(A).
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Proof. We prove the case M = A in order to simplify the notation. We
use freely the notation and results of Sect.1.3. By Corollary 4.5.7, C,(Ln) =
Im eszn) = Ime, 2 A® A™A, and since efl"_)l = 0 one has C,(ln_)l = 0. Hence
H H,(l") is a quotient of Ime,, (image of €, in C,). Therefore the map &, :
Qe H H,(,")(A) is surjective. Since it is also injective (split by =, cf.
Proposition 1.3.16) it is an isomorphism. O

4.5.13 Proposition. If k contains Q and A is flat over k, then the piece
H H,(ll) coincides with Harrison-André-Quillen homology:

HHM(A) = D,_,(A) = Harr,(A) ,
and more generally (with the notation of Sect. 3.5):

HHY (4) = DY (4) = H,(I'[T') .

Proof. Let L. be a simplicial resolution of A as a k-algebra. Then HH,(A) is
the homology of the bicomplex L., where Lyq = L?'I‘H (cf. proof of 3.5.8).
Since for any 7 the algebra L; is free over k, the ith column is quasi-isomorphic
to the ith column of the complex (2} , which has trivial vertical differential.

The idempotents eii), which split the complex C, (4), split also the bicom-

plex L.. accordingly. Since Qi”k is mapped into ey)L;@i"'l (cf. 4.5.12), it is
clear that finally C{* (A) is quasi-isomorphic to the complex 2} ik []]: Whence
the isomorphism between HH. @) and D,(:L-. The second one follows from the

first and from the relationship between shuffles and Eulerian idempotents (cf.
below and Ronco [1992a] for details). O

4.5.14 Proposition. The A-decomposition of Hochschild homology is com-
patible with the shuffle product:

i j (i+7)
HHY) x HH{) — HH) .

Proof. From the description of y in terms of shuffes (cf. 4.5.4.1), it is clear

that Xk = p¥ o A¥ commutes with the shuffle product. Then, by (4.5.4.3)
the shuffie product is compatible with the Eulerian idempotents, hence with
the A-decomposition (cf. Ronco [1992a] for details). a

4.5.15 A-Filtration in Characteristic Free Context. If the ground ring &
does not contain Q (for instance in positive characteristic) one cannot use the
Eulerian idempotents anymore. However since the A-operations are elements
of Z[S,] one can still define a filtration F, C, (called the ~-filtration) on

Hochschild homology, such that 2 acts by multiplication by k* on the graded
associated module F}' C, /F], | C, (more details can be found in Loday [1989]).
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4.5.16 \-Ring Theory. These A-operations, more precisely \*¥ = (—1)’“*1Xf
pertain to the theory of A-rings (cf. for instance Atiyah-Tall [1969]) which has
its roots in the properties of the exterior power functor. Here the involved ring
structure on H,(A, M) is trivial (the product of any two elements is 0). As
a consequence the Adams operations are given by ¥F = (~=1)F~1kAF = K
However it can be shown that in a certain context (see Sect.10.6) they

are actually restrictions of A-operations on a non-trivial A-ring (actually
HL,(gl(A)), see Exercise E.10.6.4).

4.5.17 The Non-Commutative Case. Suppose that the ground ring k
contains Q but that the k-algebra A is not necessarily commutative. Then
the chain module C,, = M ® A®" can still be decomposed into the direct
sum of n pieces C,(f) and the map b becomes an (n — 1,n)-matrix. If A were
commutative and M symmetric, then this matrix would be diagonal (only
one non-zero term in each row). This is formula (4.5.9.2). It is not true in

general. However in characteristic zero the last piece C,(zn) can be identified
with M ® A™A. Proposition 1.3.5 implies that the image of C,(,") by b is

contained in C,(z"__ll) and that the restriction of b to M ® A™A is simply
the boundary map of the Chevalley-Eilenberg complex (hence only the Lie
algebra structure of A is in effect).

Exercises

E.4.5.1. Let sgn : Q[S,] — Q be the k-linear map which extends the sign
map. Show that

sgn (X:) =k, sgn (eﬁ?) =0 if i#n and sgn (eﬁl")) =1.

Deduce from this some combinatorial properties of the Eulerian numbers.
[Apply 4.5.1 and 4.5.2 to H = T'(Z) viewed as a non-graded commutative
Hopf algebra. The restriction of Id** to H,, = Z in this framework is simply

the multiplication by a scalar which is precisely sgn(_)::). Any linear map
f:T(Z) - T'(Z) is given by a family of scalars f,, n > 0. Since the number
of (i,n — i)-shuffles is the binomial coefficient () one gets

(120 =3 (") figncs

1=0

E.4.5.2. Show that

n

1 n-1\"" 1
1 - = z —1)k-1k (n-1) — = E +1—2k)Ik
en nk=1(k_1) ()", e 2(n—1)! (1= 2k) .

Show that



148 Chapter 4. Operations on Hochschild and Cyclic Homology

n

Z(_l)k—legc) = (—1)=D=2D/2,,

k=1

E.4.5.3. Show that the dimension of the representation eg) of S, is the

coefficient of 1 = [} in the expression of nlel?) in terms of the I¥s, that is

Z(dimeﬁf’)qi=q(q+ 1)...(g+n—-1)

(cf. Reutenauer [1986], Hanlon [1990]).

E.4.5.4. With the hypothesis of 4.5.8 let f,, € Q[S,],n > 1 be a family of
elements which commute with b, i.e. bf,, = f,_1b. Show that

fo=sgn(fi)el + ... +sgn(fi)el) + ... +sgn(fa)el” .

(Show first that bf, = 0 implies f,, = sgn( fn)eg"). Cf. Gerstenhaber-Schack
(1987].)

E.4.5.5. Let exp(X) = 3,5, X*/k! be the exponential power series. Let
X1,...,X, be non commuting variables. Then

exp(X;) exp(Xz)...exp(X,) =exp | Y B(X1,.. ., Xn)
k>0

where @, is a non-commutative polynomial of total degree k. Let ¢, be the
multilinear part of ¢,. Show that

Bn(X1yoy Xn) = () (KiK. Xn)

with o. (Xle . Xn) = sgn(a)(X,(l)X,(z) . Xo(n)).
Show that for two variables

1
O (X,Y)= > Tﬂ%(x,...,x,y,...,y).

i+j=n

(This result gives a new Campbell-Hausdorff formula which was found inde-
pendently by Reutenauer [1986] and Strichartz [1987], see also Hain [1986].)

E.4.5.6. Eulerian Polynomials. The functions A,(t) = ZZ=1an,ktk—1,
where ay, i, is the Eulerian number, are called the Eulerian polynomials. Show

that
1-—14

—t +exp(u(l —t))

un
1+ —An(t) =

n>1
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4.6 A-Decomposition for Cyclic Homology

In the previous section we introduced idempotents eff ) which commute with
the Hochschild boundary. The miracle is that these idempotents behave well
with Connes’ boundary operator B, that is

BelV) = e,(fill)B .

This property allows us to show that cyclic homology splits naturally as a
sum of smaller pieces in the commutative case:

HCn(A)= HCY(A) ®...9 HCIM(A).

First we show how the Eulerian idempotents behave with respect to the norm
operator N,. This result permits us to prove the formula above and the
decomposition of cyclic homology. Then we compare this decomposition with
Harrison- André-Quillen homology, differential forms and de Rham homology.
It turns out that the decomposition obtained in the computation of cyclic
homology of a smooth algebra coincides with the A-decomposition.

In the characteristic free context the decomposition has to be replaced by
a filtration.

Concerning the symmetric group the notation is as in Sect. 4.5. Concern-
ing cyclic homology the notation is as in Chap. 2. The main reference for this
section is Loday [1989].

4.6.1 Eulerian Decomposition of S, and Cyclic Descents. The aim
of the first paragraphs of this section is to prove Theorem 4.6.6 about the be-
havior of the A-operations and the Euler idempotents with respect to Connes’
boundary map.

Let desc(o) be the number of descents of o plus 1, so that desc(c) =
k < o € S, (cf. 4.5.5). By definition the cyclic descent number cdesc (o) of
0 € S, piskifo(l) > o(n) and k+1if o(n) > o(1). The important property
about this invariant is that it depends only on the cycle ((¢(1)o(2)...0(n)).
In other words cdesc(o) = cdesc (7o7?) for any 7 and j.

Let us denote by S? , (resp. S} ;) the subset of Sy, x made of elements for
which cdesc = desc (resp. cdesc = desc + 1):

k 1 k n
cdesc = desc 2] ... Sok o {wn}
cdesc = desc + 1 {id} ... Sk e @

In accordance with this splitting of S, ; one introduces the following elements
of Z[Sy,],
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0= ) sgn(0)o and Ip':= ) sen(o)o,

o€S) . aesrll,k
so that (£ = (%0 4 [k1,
4.6.2 Lemma. 150w, = (—1)"(n=1/2[n—k+1,1

Proof. We already know that Sy, ywn = Spn—k+1 (cf. 4.5.5). If o(1) > o(n),
then own(1) = 0(n) < (1) = own(n) and so SY ywn = S}, _, ;. Then the
formula follows from sgn(w,) = (=1)*("=1)/2, O

4.6.3 Notation. Let us change slightly our way of looking at S,, by letting
it act on {0,1,...,n—1}. Then S,_; is viewed as a subgroup of S, by letting
it act on {1,...,n—1}. If & € S,,_, then its image in S, is denoted by &,
so 6(0) = 0. Accordingly any element in Q[S,_1] gives rise to an element of
Q[S»] which is denoted by the same symbol with a ~ (tilde) on top. Recall
that in Chap. 2 we introduced the norm operator

n—1
N, = ngn(r")Ti € Z|S,] where 7=(01...n-1).
i=0

4.6.4 Lemma. (5N, = N,ki*_,.

Proof. The idea of the proof is simply to establish a bijection between the
terms appearing on the left and those appearing on the right of the formula.

First we prove that for any pair (i,0), 0 € S}, and 0 <4 < n -1,
there exist a unique integer j, 0 < j < n — 1, and a unique permutation
w € Sp—1,k such that 07" = 770, Indeed there exists a unique integer j such
that 779o74(1) = (1). Put & = 77707¢, then @(1) = 1 and w is well-defined.
By hypothesis o € S}, so cdesc(s) = desc(c) + 1 = k + 1. We deduce
desc(w) = desc(@) = cdesc(@) — 1 = cdesc(T 7o7t) — 1 = cdesc(o) — 1 = k.
So w € Sp_1,x as expected.

In the other direction, fix the pair (j,w), 0 < j < n—1, w € Sp_1 k.
Then cdesc(r7&) = k and there are k different values (and only k) of i,
0<i<mn-1,suchthat ¢ = 797 " is in S}l‘k (These i’s correspond to the
positions of the cyclic descents). This gives a bijection between S}Lk and k
copies of Sp,_1 k-

In conclusion, formula 4.6.4 holds since the signs involved are the signs of
the permutations. ]

4.6.5 Lemma. [*ON,, = N, (n — k + 1)I*~1,

Proof. This formula is a consequence of Lemmas 4.6.2 and 4.6.4. Indeed one
has
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FON, = sgn(wn)wnlP ¥ LN, = sgn(wp)wn Np(n — k + 1) 251
= Np(n =k +1)sgn(wn_1)on 1M 5 = Ny(n—k+1)F1. O

We are now in position to prove the following

3:6.6 Theorem. Let A be a commutative k-algebra and B : an_l(A) —
Cr(A) Connes’ boundary map (in the normalized setting). Then

/\B Bkt

n—1"

If moreover k contains Q, then egl B = Be (k 1 .

Proof. Putting Lemmas 4.6.4 and 4.6.5 together gives
(4.6.6.1) [*N, = N, (kln L+ (n—k+ D) 1) .

From the definition of X in terms of [ (cf. 4.5.6) it follows that

~k
(4.6.6.2) NNy = Nuk X,

In the normalized setting one has B = sN,, where s(ag,...,ap_1) =
(1,a0,...,an_1) (cf. 2.1.9). Remark that the action of S, on C,_1(A)
A® A%~ = A®" which is involved here, is given by

ag. (ao,al, e .,an_l) = (aa—l(o),aa—l(l), .. .,aa-1(n_1)) i

The first formula of Theorem 4.6.6 follows from (4.6.6.2).
The second formula is a consequence of the first by the same argument as in
the proof of 4.5.3. a

4.6.7 Theorem (A-Decomposition for Cyclic Homology). If k& con-
tains Q and if the unital k-algebra A is commutative, then the bicomplex
B(A) breaks up naturally into a sum of subcomplezes B(A)®, i > 0, whose

homology are denoted by HC£ )(A).
Therefore

HCo(A) = HCS"(A) and
HC,(A) = HCY(A) @ ... HC/(A), when n>1.

Proof. Let C, denote the normalized Hochschild complex. Let B be the
bicomplex which has Y = ¢, in the first column (numbered 0), oY
in the second, etc. By Theorem 4.6.6 we can put the restriction of B as
horizontal differential:
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B(4)® |
141 Cl(j_l — Ci(i“n - « cV o~ 9
l
AT SPIE CRPRI
l
1—1 0 « 0 ~ «~ 0 « 0
:

It is immediate that B(A) = @izog(i)(A). For i = 0, E(O)(A) is concen-
trated in bidegree (0,0), whence HCy(A) = HC((,D)(A) = A. For n > 1, there
are only n pieces: H C,(ll)(A), o H C,(l")(A), since C{" is non-zero only for
1 <7 < n (cf. the shape of E(z)(A) above). O
4.6.8 Theorem. Under the above hypothesis there are canonical isomor-
phisms
HCM(A) = 5%/ A2y llc for n>0,

HC(V(A) = Harr,(A) for n>3.

For n =2, there is a short exact sequence

and

0 — Harrp(A) — HCV(A) — HYR(A) - 0.

Proof. Consider the bicomplex E(i)(A) for i = n. By definition HC{" (A)
is the quotient of C () by the image of b and of B. By 4.5.12 the cokernel
of b : C(")1 - oM s {24, and by 2.3.4 the map B induces d (up to an
invertible scalar) on these cokernels. Hence H C,(zn)( A) = Alk n o A A|k

For i = 1, B(A)(" has the following shape

|
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So it is immediate that HCT(zl)(A) = HH,(zl)(A) = Harr,(A) for n > 3 (cf.
4.5.13). The presence of Céo) in this bicomplex implies a modification for n <
3. The expected exact sequence follows from the exact sequence of complexes

0 C,/C 5 Tot B(A)M - C¥[2] - 0
and the fact that B induces d: A — Qi\[k on Céo). O

4.6.9 Theorem. Under the above hypothesis Connes’ exact sequence splits
into the sum over i of the following exzact sequences:

> HHO(4) -5 HCO(4) 2 B =D (4) Z HED (4) > ..
. HC(+1(A) Qi\ui/dQAm = 2y 'QA|Ic/d‘QA|k

Proof. The bicomplex E(i)(A) gives rise to an exact sequence of bicomplexes
0 ¢ 5BYa) - B V()2 o,

where C,Ei) is considered as a bicomplex concentrated in the first column.
Then it suffices to take the homology. The identification of the last part of
the exact sequence with the forms is deduced from 4.5.12, 4.6.8 and 2.3.4.00

4.6.10 Theorem. When A is smooth the A-decomposition coincides with the
decomposition in terms of de Rham cohomology (cf. 2.3.7 and 3.4.12):

HCM(A) = @3, /d2y}

HCW(A) = HEZ™(A), for [n/2]<i<n,
HCY(A)=0, for i<[n/2].
In particular, for A=k, HCq, (k) = HCéZ)(k) > HYR(k) = k.
Proof. The map 7 (cf. 2.3.6) from the bicomplex B(A) to the bicomplex of

truncated de Rham complexes sends the component B(A)( to the bicomplex
consisting of row number ¢ solely (cf. 4.5.12). Whence the result. O

4.6.11 Remark. For any commutative algebra A there is a sequence of maps
n S n n
.= HOUE(A) 2 HOURIZ)(4) = .. = HOUS (4) » Him(4)

which happen to be isomorphisms when A is smooth. Each group H CnT;; (A)

is, in a certain sense, a generalization of de Rham homology. Little is known
about these groups in the non-smooth case.
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4.6.12 )-Filtration in the Characteristic Free Context. As in Hoch-
schild homology, when k does not contain @, one can replace the graduation
of B(A) by a filtration. This is a consequence of the first formula of Theo-
rem 4.6.6. Thus HC,(A) inherits a filtration and Connes’ exact sequence is
consistent with this filtration (see details in Loday [1989]).

Exercises

E.4.6.1. Show that the A-operations and the splittings extend to HC~, HCP®*
(cf. 5.1), HD, HQ (cf. 5.2), even in the case of a non-unital algebra.

E.4.6.2. Show that the product * on cyclic homology sends H C,(,i) x H Céj )
into H CI()’:;J _:'11) (cf. Ronco [1992a]).
E.4.6.3. Signed Eulerian Numbers. Let

Bnk = Z sgn(o) .

0ESn,k

Use 4.5.9.3 and then 4.6.5 to prove the equalities

Bank = Bon-1k — Bon-1,k-1,

Bont1k = kfank + (20 — k + 2)B2n k-1 -
Deduce from these formulas that the signed Fulerian polynomial B,(t) =
> i<ken Bn it satisfles By, (t) = (1 — t)"A,(t) and Bapi(t) =
(1 —¢)"Ap+1(t) where A,(t) was defined in Exercise E.4.5.6. (Compare with
Désarménien-Foata [1992].)

E.4.6.4.Letn=1n, =}, g 0. Show that Moy = (=1)k= 1kl 1)/ 2 | De-

duce that 7, € Im e/, (Use the preceding exercise, cf. Loday [1989].)

E.4.6.5. Let k be a characteristic zero field and A = k[z,y, 2]/{degree 2
polynomials}. Show that (z ® y® z) defines a non-trivial element < z,y,z >
in HCy(A). Show that < z,y,2z >=< y, z,z > and that the two elements
< z,y,2 > and < x, z,y > are linearly independent. Show that HC’z(l)(A)

and H Céz) (A) are both of dimension 1 over k. Find explicit generators. (They
are %(<< z,y,z2 > + K z,2,y >>). Compare with similar symbols in algebraic
K-theory, cf. Loday [1981].)

E.4.6.6. Kiinneth Sequence and A-Decomposition. Show that the
Kiinneth sequence 4.3.12 for commutative rings (or the Kiinneth sequence
4.3.11 for functors from the category Fin, cf. Sect.6.4) over a characteristic
zero ring k is compatible with the A-decomposition. [Since the Kiinneth se-
quence is Connes periodicity exact sequence of some cyclic module, it suffices
by 4.6.9 to check that this is in fact a Fin-module.]
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Bibliographical Comments on Chapter 4

§1. All the basic formulas for the action of a derivation are already in Rinehart
[1963, section 9 and 10]. Some of them have been rediscovered independently by
Connes [C] and Goodwillie [1985a] (via the acyclic model method technique). For
instance the fundamental formula (4.1.8.2) is in p. 220 in Rinehart {1963] and p. 124
in Connes [C]. The application to nilpotent ideals is in Goodwillie [1985a).

§2. The shuffle product is a classical matter and can be found in any textbook
on homological algebra or algebraic topology.

§3—4. The product in cyclic homology appeared first in Loday-Quillen [LQ)J.
Then I discovered the cyclic shuffles (and so did Getzler-Jones [1990]), while trying
to make it more explicit. But then I found out that it was already in Rinehart
[1963]. The product is also studied in Hood-Jones {1987] by means of the acyclic
model method, and there extended to negative and periodic cyclic homology. The
Kiinneth exact sequence appeared simultaneously in Burghelea-Ogle [1986], Feigin-
Tsygan [FT], Hood-Jones [1987], Karoubi [1986¢], Kassel [1986]. The product in
cyclic cohomology is in Connes {C]. An interesting relationship with Chen iterated
integrals appeared in Getzler-Jones-Petrack [1991].

§5-6. The decomposition in Hochschild homology follows from a spectral se-
quence in Quillen [1970]. This paper also contains the relation with André-Quillen
homology and differential forms but in the cohomological framework. The point is
that Quillen does not use the bar resolution. The first appearance of the idempotent
¢ in connection with Hochschild homology seems to be in Hain [1986]. The Eule-
rian idempotents and the splitting of HH are in Gerstenhaber-Schack [1987]. They
also appear in Loday [1989] where several of their properties are shown, namely
the integrality of the A-operations and the splitting of cyclic homology (see also
Natsume-Schack [1989]). The relationship with the exterior power operations of
H.(g!) follows from Loday-Procesi {1989]. Slightly different formulas can be found
in Feigin-Tsygan [FT]. The relationship with DG A-algebras (which also implies
the decomposition of HC) is in Burghelea-Vigué [1988] (method close to that of
Quillen).

Subsequent work can be found in Ronco [1992] (where it is shown that all
the decompositions are the same), in Burghelea-Fiedorowicz-Gajda [1991, 1992],
Gerstenhaber-Schack [1991] (Hopf algebra point of view, also communicated by
Cartier [unpublished]), Hanlon [1990], Vigué-Poirrier [1991a], Nuss [1991].



Chapter 5. Variations
on Cyclic Homology

There are several ways of modifying cyclic homology: by altering the cyclic
bicomplex, by putting up other groups than the cyclic groups or by enlarging
the category of algebras.

By taking advantage of the horizontal periodicity of the cyclic bicomplex,
it is immediate to see how to extend it on the left. This gives rise to a
new theory which is called periodic cyclic homology and denoted HCPe'.
This theory is really the analog in the non-commutative framework of the
de Rham cohomology theory. Between HCP®" and HC fits another theory:
negative cyclic homology, denoted HC ™, which is dual to cyclic homology if
considered as a module over the polynomial algebra k[u] rather than just k.
Moreover the negative cyclic homology is the right receptacle for the Chern
character (generalization of the Dennis trace map) as will be seen later. The
study of HCP®" and HC™ is done in Sect.5.1.

It is tempting to look for other families of groups playing the same
role as the family of cyclic groups with respect to the Hochschild complex.
Though the general case will be treated in Sect.6.3 entitled “Crossed sim-
plicial groups”, we study here the case of dihedral groups and quaternionic
groups. They give rise to dihedral homology and quaternionic homology de-
noted HD and HQ respectively. The importance of these theories is their
relationship with the homology of the orthogonal and symplectic Lie algebras
as will be seen later in Sect. 10.5. They are a natural receptacle for invariants
of quadratic forms (generalization of the Arf invariant). Their study, though
similar to that of HC, is slightly more complicated since the periodicity phe-
nomenon is of period 4 instead of 2. This is the content of Sect. 5.2.

Enlarging the category of k-algebras on which HC is defined can be done
in many different ways: graded algebras, simplicial algebras, etc. We choose
to work out the differential graded algebra case since it arises naturally in
different sorts of problems. As already seen earlier, the computation of HH
and HC of tensor algebras and symmetric algebras is well-known. The point
here is that any k-algebra is equivalent to a DG-algebra whose underlying
algebra is a (graded) tensor algebra or a (graded) symmetric algebra in the
commutative case. What really happens is that all the complications of the
ring structure have been transferred to the differential of the DG-algebra.
Since equivalent algebras have same H H and HC homology, this gives a way

J.-L. Loday, Cyclic Homology
© Springer-Verlag Berlin Heidelberg 1998
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of computing many examples. The general case is handled in Sect.5.3 and
the commutative case in Sect. 5.4.

For any homology-cohomology theories there is a way of treating them
together by defining a bivariant theory. This is also the case for HH and HC.
Section 5.5 is devoted to bivariant cyclic cohomology.

For many applications, in particular in the study of the Novikov conjec-
ture, the relevant k-algebra is in fact a Banach algebra (with k¥ = C) and it
is important to keep track of the topology. So the definitions of HH and HC
need to be slightly modified to achieve this goal. Moreover one can use the
topology to construct sharper invariants, in fact a new theory called: entire
cyclic homology. Section 5.6 gives a brief account of it.

5.1 The Periodic and Negative Theories

The dual over k of cyclic cohomology is cyclic homology. However if one con-
siders cyclic cohomology as a graded k[v]-module (where k[v] = HC*(k)),
then its dual is a new theory called negative cyclic homology which is de-
noted HC . This theory is easily constructed from the cyclic bicomplex by
using the periodicity structure. The “difference” between HC, and HC, is a
theory which is periodic of period 2, denoted HCY*" and called periodic cyclic
homology. 1t is a generalization of the de Rham cohomology theory to non-
commutative algebras, since it coincides precisely with de Rham cohomology
for smooth algebras.

Most of the results of this section are taken out of Hood-Jones [1987],
Jones [1987] and Goodwillie {1985]. In the first mentioned paper the authors
point out wisely that there is a nice analogy which helps to understand the
relationship between these variations of cyclic homology. It is given by the
following tableau:

H*(-,Z) HC* coeff = k[v]

H.(-,Z) HCP coeff = kfu] ,u=v"",
H.(-,Q HCL coeff = k[u,u™'],
H.(-,Q/Z) HC, coeft = kfu,u™"]/ukly] .

In this section C = (Cy,)n>0 is a cyclic module (cf. 2.5.1) with face maps
d;, degeneracy maps s;, and cyclic operator ¢ (including sign). As usual we put
b=Y" o(=1)idi, b = Y0 (~1)'di, N = 1+t+...+t" and B= (1—¢t)sN
where s = (—1)"ts, is the extra degeneracy.

5.1.1 Periodic and Negative Cyclic Bicomplexes. The following double
complex, indexed by Z x N, is called the periodic cyclic bicomplex:
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CCP* .=
- b —b
- ¢ & oo & oo &L
—b bL —b
«c g & o & ¢ &
—b b —b
- C & o & o &
column# -1 0 1

The horizontal differentials are alternatively (1 — t) and N and the vertical
complexes are either the b-complex or the b’-complex. By deleting all the
negatively numbered columns one gets the usual bicomplex CC. By deleting
all the columns whose number is > 2 one gets the negative cyclic bicomplex
that we denote by CC~.

4 corer

(Note that this is not an exact sequence since all these bicomplexes have
columns number 0 and 1 in common). These two maps induce [ : HC,, —
HCP and p: HC2®" — HC), respectively.

5.1.2 The Total Complexes. There was no problem to form the total
complex of CC since for fixed n there is only a finite number of non-zero
modules CCpq with p+q = n. However for CC™ and CCP*" it is not the case
anymore and we have the choice between taking the sum or the product of
all these modules. If we take the sum, then the homology of CCP®" is trivial
rationally since all the horizontal lines have zero homology (cf. remark after
2.1.5). So we take the product.

Let us denote by ToT CCP® the complex whose term of degree n is
[1,44=n CCE;" and whose differential is the total differential induced by (1 —
t, —b?) and (N b). (Remark that deleting the letter o in ToT gives T'T which
is almost IT). This is a periodic complex of period 2, equal to [];5,C; in
degree n.

Similarly the complex ToT CC~ is such that its term of degree n is

1--[p+q —n CCpy, that is 1—.[1>n 1€
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5.1.3 Definition of HC~ and HCP*". Let C be a (pre-)cyclic module.
Then periodic cyclic homology and negative cyclic homology of C are respec-
tively

HCP*(C) := H,(ToT CCP*") and HC,, (C) := H,(ToT CC™), nelZ.

As usual, when C = C(A), where 4 is a k-algebra, we write HCY*'(A4) =
@®n>0HCE"(A) and HC; (A) = ®,>0HC; (A) instead of HCY® (C(A)) and
HC; (C(A)) respectively. In some papers HCP®" is denoted HP or HCP. The
maps I and p of 5.1.1 induce the natural transformations I : HC,, — HCE*"
and p: HCP®* — HC,.

5.1.4 First Properties. For A = k we get HCY. (k) = k and HCS,,- (k) =
0 for any n, and

HC;(k)=0 ifn>0,

HC;,_,(k)=0 ifn<o0,

HC.(k)=k ifn<o0.
In the following we abbreviate HC(C) into HC if no confusion can arise and
similarly for the other theories (one can also think of HC as a functor from
cyclic modules to graded modules). Recall that the generator of HCz(k) is
denoted by u. The generator of HCZ,(k) is denoted by v, so HC (k) is
isomorphic to the graded algebra k[v] (the product structure will be dealt

with in 5.1.13). If one still denotes by u and v the corresponding elements in
HCY® (k) and HCP (k) respectively, then uv =1 € k = HCY* (k).

(5.1.4.1) Let h : HC,; — HH,, be the map induced by the projection of CC~
onto CC1?} (last two columns, cf. proof of 2.2.1).

For HCP®' the long periodicity exact sequence is an actual periodicity:
HCY™ = HCE" , and for HC™ it takes the form of an exact sequence

(5.1.4.2) o> HCL,y = HCy 25 HH, - HC, — ... .

Note also that for n < 0 one has HCE®" = HC . More generally the exact
sequence of bicomplexes

0—~ CC™ —» CCP*" - CC[0,2] - 0

gives the upper exact sequence of the following

5.1.5 Proposition. For any (pre-)cyclic module C there is a canonical com-
mutative diagram of long exact sequences:

.> HC._, 2 HCc; 5 Here 25 HC,, 2 ...,

P

...—™ HC,.; — HH, — HC, — HC,_, — ....
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Remark. We put pre-cyclic (cf. 2.5.6) in the hypotheses since CC~, CCP**
and CC do not need the degeneracies to be defined. So, for instance, HC~(A)
and HCP®'(A) are well-defined even if the k-algebra A has no unit. Note that
if A has a unit (i.e. if C is a cyclic module), then one can define CC~ by
taking only the non-positively numbered columns.

5.1.6 Proposition. Let C — C' be a map of cyclic modules which induces
an isomorphism on HH. Then it also induces an isomorphism on HC™ and
on HCP®" (and of course on HC as already shown).

Proof. Consider the map of bicomplexes CCP®* — CC'?P*". Restricted to any
column this map is a quasi-isomorphism. Since these bicomplexes are trivial
for ¢ < 0 one can apply the classical staircase argument (cf. 1.0.12). The
same is true for CC™. O

5.1.7 The Bicomplexes BC~ and BCP®". It is sometimes easier to work
with the (b, B)-bicomplex BC associated to C which exists as soon as C has
degeneracies (i.e. A is unital if C = C(A)), cf. 2.5.10. So let

BCPe :

o

o = Cp +— Gy
I
. = O« Gy
Il
Ci « Gy
be the bicomplex constructed from B (horizontal differential) and b (vertical

differential). By deleting the positively (resp. negatively) numbered columns
one gets BC,. (resp. a new bicomplex denoted BCL,):

a0 avd

BCPer

Applying the “killing contractible complexes Lemma” 2.1.6, it is immediate
to check that

HCR®¥(C) = Ho(ToT BCP) and  HC; (C) = Hy(ToT BC™), ne€Z,
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and of course HC,(C) = H,(Tot BC). It it sometimes useful to rewrite these
complexes as follows. Let ® = ®; be the completed tensor product, that is
(CO®C)n =[], 4 4=n Cp ® Cy. Consider C as a graded kfv]-module, where v
(which is of degree —2) acts on C by S. Then one has the following identifi-
cations:

ToT BC™ = k[v]@C ,
ToT BCP® = k[v,v"1|@C,
Tot BC = ToT BCP®" /vToT BC™ = k[v,v™!]/vk[v] ® C .

Remark. In fact negative cyclic homology and periodic cyclic homology can
be defined by starting from any mixed complex (cf. 2.5.13), since the only
properties that we have used to define the bicomplexes BC~ and BCP*" are
b = B2 =bB + Bb=0.

5.1.8 From HC~ to HCP®" and then to HC. Let us summarize the
relations between all these theories by a diagram. By working with the bi-
complex BCP®" these theories differ by the columns which are taken into
account:

column# ...-3-2-1 0 1 2 3
HH X
HC~ Lo X XXX
HCPe* ..o X X X X X X X
HC[-2] X X X X X
HC X X X X

Consequently there are natural maps between all these theories as follows:
HC; L HCP™ 5 lim HCpygr — . ..
T
S
.. HCphyor — HCpt2p o — ... > HC,

and h:HC, — HH, .

Remark that if we go on, then the map HC,, — HC,,_» that we get is trivial.
Both theories HCP*" and lim, HC), 12, are periodic of period 2. Though
they are isomorphic in many cases, there is in general an extra term:

5.1.9 Proposition. For any cyclic module C there is an exact sequence
0 = lim' HCp 43,41 = HCE® — im HC), 45, — 0.
T T
Proof. Consider the complex ToT BCP*" as a projective limit of the complexes

K., = (Tot BC[-2r]),. Then by the universal coefficient theorem for the
category of indices {Z}, it comes out that the following sequence is exact:



5.1 The Periodic and Negative Theories 163

0 — Ext(zy(k,r = Hpy1(Kir)) = Hy(lim K, ;)
— Hom{Z}(k,r — Hn+1(K*‘,~)) — 0.

Since Homz; = lim® = lim and Ext{zy = lim" (cf. appendix C.10) the
proposition is proved. O

5.1.10 Vanishing of the lim'-Term. When a projective system satisfies
the Mittag-Leffler condition, then the lim'-term is trivial (cf. appendix C.11).
In particular this is the case when all the involved maps are surjective. For in-
stance, when A is smooth then the periodicity map S : HC,(A) = HC,,_3(A)
is surjective and therefore HCE®" = lim HC),12,(A). More generally suppose
that HC,(A) is either a trivial k[u]-comodule U or an extended k[u]-comodule
of the form k[u]® V' (cf. 2.5.17 and 4.4.7). Then the Mittag-Leffler condition
is fulfilled and HCE®" = lim HC\13,. See Exercise E.5.1.5 for an example
where HCP®" # lim HC, 42,

5.1.11 Tensor Algebras. It is immediate from the computation of Sect. 3.1
that periodic cyclic homology of A = T(V'), where V is a free module over k
is the homology of the periodic complex

A A ARV A ARV — .
It follows that
HCE™(T(V)) = HCy(T(V)) and HCP™(T(V)) = HO\(T(V))

Remark that it can be expressed in terms of Tate homology (cf. Appendix
C.4):
HCE(T(V)) = HCE* (k) © ®msoHn(Z/mZ , V™).

5.1.12 Smooth Algebras. We follow the same argument as in the com-
putation of cyclic homology of smooth algebras. Replacing the Hochschild
complex by the module of forms and B by d gives immediately the following
computation for A smooth over k containing Q:

HCE™ (A) = ) =[] H&=
120
and ]
HC{)el (A) — H]o)dd H H2z+1 ,
>0

(cf. Sect.3.4). So, periodic cyclic homology is a generalization of de Rham
cohomology. Remark that HC5®" comes equipped with a filtration by images
of the operators S* which corresponds to the natural splitting of HE%y (and
similarly for HCT®"). For negative cyclic homology we get

HC; (A) HH"”’ ,

>0
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where Z"(A) = Ker (d : e — .Q;ml). The exact sequence of Proposition
5.1.5 decomposes as a product of short exact sequences:

... HC! —» HC,.;, —HC;—-5HCE*— HCn,., —...
| I I I I

Hpe® = Hpg® — 0 —Hpp'=  Hp' -
X &) X 5]

Hi® = HR? = 0 — HRR? =07 %/don—3
X D X

HER' <> 0n~t/don—2— Z" — HBp — 0
X X X

H — 0 — Hp? = HIM? - 0

5.1.13 Operations on HC~ and HCP®". Product and coproduct can be
defined on HC~ and HCP®" by using all the tools devised in Sects. 4.2 and
4.3. The proofs are similar to the HC case and are left to the diligent reader.
Let C and C' be two cyclic modules. Both mixed complexes C ® C' and
CxC’ giverise to a “negative” bicomplex B(C®C’)~, respectively B(C'xC’)~
(cf. remark after 5.1.7).
An n-chain in ToT BC~ is of the form

T = (.’I)n,.’ltn+2,$n+4, .. ) € C, x Cn+2 X...= HC"+2i = (TOT BC_)n .

i>0

One defines a product x : (ToT BC~), ® (ToT BC~); = (ToT B(C ®
C')” )p+q by the formula

TXyYy= (xp ® Yqr Tp B Yg+2 + Tp+2 D Yq,
Tp ® Ygt+a + Tpr2 ® Ygr2 + Tpra O Ygs - --) -
Summing over p and g such that p + ¢ = n for fixed n gives a chain map
x : ToT BC~™ ® ToT BC'™ — ToT B(C® C')~ .

The map Sh™ = sh+ sh’ (in fact an infinite dimensional matrix with non-
zero elements on two diagonals, cf. 2.5.14) defines a chain map from
ToT B(C ® C')~ to ToT B(C x C')~.

5.1.14 Proposition. The composite Sh™ o X defines a natural product on
negative cyclic homology

x : HC; (C)® HC; (C') = HCy, (C x C')
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which is associative and graded commutative. Moreover it is compatible with
the shuffle product in Hochschild homology:

h(z x y) = h(z) x h(y) for h:HC; — HH,
and with the product structure in cyclic homology:

B(z xy)=B(z) x B(y) for B:HC._y - HC, . O

For C = C' = C(k) the product structure inherated by HC; (k) makes
it into an algebra isomorphic to k[v], where v is the canonical generator of
HCZ,(k) = k (dual to the Bott generator in HC?(k), cf. below). Obviously
the map (— x v) : HC;; — HC,,_, is the periodicity operator S.

5.1.15 Other Products. Formal manipulations permit us to construct from
the preceding construction k[v]-bilinear graded products

x : HCP*'(C) ® HCP*"(C') — HCP*(C x C'),
x : HCZ(C) ® HC,(C') —» HC,(C x C') .

Under this product HCE® (k) is isomorphic to the Laurent polynomial algebra
klu,u™!] where u € HC}* (k) and u™! = v € HC?5 (k). Again for this last
product the map HC,, = HC,,_5 induced by v x — is the periodicity operator
S.

5.1.16 Proposition. For any cyclic modules C and C', there is defined a
coproduct map

HC;(C xC") = HC;(C) &y HCS (C")
compatible with the coproduct in cyclic homology. O
Remark that on the right-hand side the tensor product is taken over the
graded algebra k[v] = HC (k).

5.1.17 Duality of HC* and HC; over k[v]. The functors HC* and
HC, are dual as k-modules. However when one looks at HC* as a k[v]-
module, then the following results show that the dual theory is HC . As
a consequence it will be shown in Chap.8 that the right receptacle for the
Chern character coming from algebraic K-theory is HC .

5.1.18 Lemma. The chain complex map
Tot BC*(C) — Homy, (ToT BC (C), k[v])

1S an isomorphism.
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Proof. By definition a cochain in C™"~? is a k-linear homomorphism f; :
Cpn—2i = k. A cochain in Tot BC*(C) is a family (f;)i>o. It gives rise to a
k{v]-map ToT BC (C) — k[v] by v’ ®e; — X f(e;)vt?. On the other hand
a straightforward computation shows that any k[v]-map from ToT BC; (C)
to k[v] is precisely equivalent to this data. Whence the lemma. d

5.1.19 Theorem. Let C be a cyclic module over k. If C and HC; (C) are
free over k (for instance if k is a field), then there is a natural short ezact
sequence

0 = Extypy (HCS (C), k[t])ns1 = HC™(C)
— Homy,)(HC; (C), k[v])n — 0.

Proof. This is a consequence of Lemma 5.1.18 and a standard homological
argument. a

5.1.20 A-Decomposition of HCP®" and HC ™. Suppose that k contains
Q and that A is commutative. Since the Hochschild complex splits according
to the A-operations and this splitting is compatible with the B map (cf.
Sects.4.5 and 4.6), it is immediate that both complexes BC~ and BCP**
split. This gives a splitting for HC~ and HCP® which is compatible with
the computation performed for smooth algebras (cf. 5.1.12).

Exercises

E.5.1.1. Show that for any exact sequence of cyclic modules
0C'2C—=C">0
there is an exact sequence for periodic cyclic homology
...—> HCR'(C') —» HCE*(C) = HCE*(C") = HC?*,(C') — ...
and similarly for negative cyclic homology.

E.5.1.2. Show that when A is smooth over k, then the identification of HC ™
with Hpg transforms the product on HC~ into the natural product of forms
on Hpgr (cf. Hood-Jones [1987, ex. 2.10]).

E.5.1.3. Let k£ be a field and A, A’ be unital k-algebras. Assume that the
Mittag—Leffler condition is fullfilled for HC,(A’) (cf. 5.1.10). Show that there
is an isomorphism

HCP*" (A) @) HCP (A') = HCP* (A® A)

and an exact sequence
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0 = (HC, (A) Oy HOT (A))n — HC, (A® A))
~ Torgp,) (HCT (A), HCS (A'))n—1 = 0.

(Cf. Hood-Jones {1987, Thm 3.1} and Kassel (1987, Thm 3.10].)
E.5.1.4. Suppose that k contains Q. Show that HCY®" is homotopy invariant:

HCY* (Alz]) = HCY'(4),

and that
HCP* (Alz,z™ 1)) & HCP*(A) @ HC? | (A)

HCY™ (Afz]/P(z)) = HCY*(A)",

where P{z) is a polynomial with coefficients in k with r distinct roots in an
extension of k (cf. Kassel {1987, §3]).

E.5.1.5. Show that for k = Z and A = Z|[Z/pZ], where p is a prime number,
HCEF®'(A) does not coincide with lim, HC,,(A). More precisely show that
lim' HCx,(Z|Z/pZ)) is isomorphic to the sum of (p— 1) copies of Z, /Z where
Zy, is the ring of p-adic integers. (Use Sect. 7.4, see Kassel [1989b].)

5.2 Dihedral and Quaternionic Homology

If the algebra A is equipped with an involution, then the Hochschild complex
and the cyclic bicomplex split into two parts (provided that 2 is invertible
in k) and so do HH, and HC,. A nice way of reinterpreting this result
is to introduce the dihedral group D, and its two actions on the module
A®" whence two theories: dihedral homology denoted HD, and skew-dihedral
homology denoted HD),. They are such that HC = HD & HD'. One of the
main reason for studying dihedral homology is its close relationship with
the homology of the orthogonal matrix algebras and the symplectic matrix
algebras (cf. Sect. 10.5).

The hypothesis 1/2 € k makes the treatment of dihedral homology anal-
ogous to that of cyclic homology since there exists a periodic resolution (of
period 4) for D,. If one wants to get rid of this hypothesis, then it is still
possible to define dihedral and skew-dihedral homology but the method is
more complicated. One clever way, due to J. Lodder, is sketched in Exercise
E.5.2.4. Another way, more geometric in nature and giving the same result,
will be treated in Chap. 6.

In fact there is still another possibility which gives even finer invariants:
use the quaternion groups @, instead of D,,. Then one can define quaternionic
homology without having to assume that 2 is invertible since there exists a
periodic resolution (of period 4) for @,,. This quaternionic theory plays an
important role in constructing invariants for quadratic forms.

Almost all that was done for cyclic homology in the previous chapters
can be carried out for dihedral homology and quaternionic homology as
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well: Morita invariance, generalization to non-unital algebras, mixed com-
plex interpretation, cohomological versions, dihedral and quaternionic mod-
ules, computation for tensor algebras, smooth algebras, universal enveloping
algebras, existence of operations, Kiinneth formulas, A-decomposition, peri-
odic and negative theories, relation with O(2)-spaces and Pin(2)-spaces (cf.
Chap. 7), etc. (Some of these topics have been treated in the literature, some
not). In general the proofs are of the same flavour as their counterpart in
cyclic homology, however passing from cyclic theory to quaternionic theory
is not completely formal. For instance in Connes’ periodicity exact sequence
Hochschild homology has to be replaced by a new theory denoted HT,. An-
other example showing the kind of complications which comes in is the case of
group algebras: the involved geometric realizations are far more complicated
in the dihedral case (cf. Sect.7.3).
This section is taken out from Loday [1987a).

Standing Assumptions. Throughout this section the k-algebra A is equip-
ped with an involution a — @. This means that ab = b@ and @ = a. We always
assume that this involution is trivial on k, in particular T = 1. The element
@ is called the conjugate of a. Such an algebra will be called involutive.

The most common examples of involutive k-algebras are

(a) A is commutative and @ = a,

(b) A = k[G], where G is a group, and g = g~ ! for g € G,

(c) for any involutive k-algebra R the algebra A = M(R) (matrices over R)
is involutive: @ is the conjugate transposed matrix of o,

(d) A=U(g), where g is a Lie algebra, and g = —gforg € g,

(e) A= R x R°P, where R is a k-algebra, and (r,s) = (s,7).

5.2.1 Involution on the Hochschild Complex. Let M be an A-bimodule
equipped with a map m — m such that @ma’ = @’ ma for any m € M and
any a,a’ € A (e.g. M = A). Then M is said to be an involutive A-bimodule.
There is defined on C, (A, M) = M ® A®™ an involution w, by the following
formula

wn(m7a1, A aan) = (m—aan’a‘n—l’ v aal) .

So this involution consists in applying a permutation and replacing each
entry by its conjugate. Note that the sign of the involved permutation is
(=1)™"+1)/2 1t will prove helpful to introduce the notation

Yn = (_l)n(n+1)/2wn

5.2.2 Lemma. For any ¢, 0 < i < n, one has the equality d;w, = wp_1dp_;
and therefore
bwn = (—l)nwn_lb .
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Proof. Both operators d;w, and wy—1d,—_; applied to (aq,...,an) give

(@o,@ny- -y Gn—iGn-i-1,.-.,a1). As a consequence
n n
bun = Y (~1)'dion = (~1)" w1 Y_(~1)" i = (=1)"wnmib. O
i=0 i=0

5.2.3 Proposition. If the k-algebra A and the A-bimodule M are involutive
and 1f 1/2 € k, then Hochschild homology splits up into a direct sum

H.(A,M)=H(A,M)® H, (A, M),
and when M = A, HH,.(A) = HH}(A) ® HH (A).

Proof. Let y, = (=1)"*t1/24, act on C, = C,(A, M). Since (y,)? = id
and 1/2 € k, C, splits into C;' & C,; where CZ is the eigenspace of the
eigenvalue 1 (i.e. the image of the projector 1/2(1 F y,)). By Lemma 5.2.2
we get byn, = yn—1b and the complex (C,, b) splits into the direct sum of two
complexes (CF,b) @ (C7,b). Then it suffices to put HX(A4, M) = H,(CE,b).

a

5.2.4 Example. Suppose that A is commutative with trivial involution and
that M is symmetric, i.e. am = ma for all a € A and all m € M. Then
H{ (A,M) =M, Hy (A, M) = 0and H{ (A, M) = 0, H{ (A, M) = MR}, ;.

More generally if k£ contains Q we know (cf. Sect.4.5) that H H,, splits up

as HH @ ... ® HH™. An immediate consequence of the last formula of
Exercise E.4.5.3 are the following equalities:

5.2.4.1 HHY =HH9 @ HH® @ ... and
( n n n
HH; =HHV o HH® & ... .

In particular Qf{.‘k C HH,(A) and Qi’llk_l C HH,;,_,(A). Therefore if A is
smooth, then

{ HH,(A) = 2%, HHf, ,(4)=0,

HH;, (A)=0,  HHy, ,(A)=05".

5.2.5 The Dihedral Group. The comparison of the action of 7, =
(-1)"t, and w, on C, shows that w,mw ! = 7, !. The group presented
by {Tn,wn | T2 = w2 =1 and wyTow; ! = 7,71} is the dihedral group Dy 1y
of order 2(n + 1). Note that it contains two elements of order 2: w,, and w,7,.
The latter one acts on C,, by

wWnTn(a0, ..., an) = (@n,8n-1,...,00) -
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5.2.6 Lemma. Let t, = (—1)"7y, yn = (—1)""*V/20, and
Zn = (=1)Mn=1/2, 7. then

byn = yn-1b, bzn=2z,_1b' and
yn(l - tn) = (1 - tn)zn y 2N =-Ny, .

Proof. The first equality was already proved in Lemma 5.2.2. The second one
is a consequence of Lemma 5.2.2 and 2.5.1.1. For the last formula recall that
N =1+1t,+...+t?" 1. These formulas are immediate to check. m]

Consider the cyclic bicomplex CC = CC(A) described in 2.1.2. Let us
define an involution on this bicomplex by letting (—1)'y operate on column
number 2i (more precisely (—1)'y, operates on Cy,(A)) and (—1)’z operate
on column number 2i + 1. By Lemma 5.2.6 this is a well-defined involution
which splits up CC into CC* @ CC~ (remember that 1/2 € k)

cct: l l l l
ol

g & o &g & o &
Remark that for CC* column number 0 is (C,b) and, similarly, for CC~
column number 0 is (C;},b) (the bicomplex CC~ described here is not the

bicomplex CC~ used to define negative cyclic homology and I apologize for
this contradiction of notation).

5.2.7 Definition. Let A be an involutive algebra over k (which is supposed
to contain 1/2). Then dihedral homology of A (resp. skew-dihedral homology
of A) is

HD,(A) := H,(Tot CC*(A)) (resp. HD,, (A) := H,(Tot CC™(A))) .

The choice for HD and HD' is different from the one made in Loday [1987a).
The motivation for this new choice is, first, that the product HC, x HCy —
HCpyqy1 sends HD, x HDy to HDpygqy1, HDy x HDy to HD,, .., and
finally HD, x HDj to HDpiqy1. Second, it will be shown later that the
computation of the homology of the Lie algebra of orthogonal matrices (and
also symplectic matrices) is related to HD (and not to HD').

It follows immediately from the above definition that there is a canonical
splitting of cyclic homology

(5.2.7.1) HC,(A) = HD,(A)® HD,(A) forall n.
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Connes’ periodicity exact sequence also splits up naturally into the direct
sum of the following two exact sequences:

(5.2.7.2) ...—-» HH, - HD,— HD!_, — HH,J{~1 - HD!, _,
- HD, 3 HH, _,— ...

(5.2.73) ...» HH} - HD,, > HD,_o— HH, , > HD,_;
—HD,_5— HH! ,—....

As for Hochschild homology, when k contains @, this splitting is coherent
with the A-decomposition studied in Sect. 4.6:

HD,=HCM oHC® ®..., and HD,=HCO@oHC? @... .

In the bicomplex CC™(A) the cokernel of the map of complexes CC; —
CCy is a complex whose nth term is a quotient of A®"*! by the action of
the dihedral group D,,4; acting by ¢t and y (for CC~ replace y by —y). So
we get the following

5.2.8 Theorem. Suppose that k contains Q and let A be an invo-
lutive k-algebra. Then dihedral homology HD,(A) (resp. skew-dihedral
homology HD',(A)) 1s canonically isomorphic to the homology of the complex
(C(A)/(1 —¢,1 —y),b) (resp. (C(A)/(1 —¢,1+ y),b) obtained by factoring
out the Hochschild complex by the action of the dihedral group.

Proof. By Lemma 5.2.6 Connes’ complex C2(A) (cf. 2.1.4) is split by y into
the sum of the two complexes referred to above. This splitting is obviously
compatible, via the projection map from Tot CC(A) to C*(A), with the split-
ting of CC(A); whence the result. a

Remark that in the bicomplex CC*(A) the homology of row number n is
the group H,(Dy 41, A®?"*1) (cf. Appendix C), where the dihedral group acts
on A®"*! by ¢ and y. Since D, is finite, rationally these homology groups
are 0 except for * = 0 for which it is precisely A®™*+!/(1—¢,1+y). This gives
a slightly different proof of Theorem 5.2.8.

We now deal with quaternionic homology. We do not assume that 2 is
invertible anymore. First some information on quaternion groups and their
resolutions is in order.

5.2.9 Quaternion Group. Let Q,, = {r,w|w? = 7", wrw™! = 771} be the
quaternion group of order 4n. Remark that the two relations imply wr™w™! =
777", that is ww?w™! = w™?, i.e. 72" = w* = 1. The main advantage of Q,
over D, is that, as a trivial module, k possesses a periodic resolution (of
period 4). These two groups are related via a central extension

1-2Z/2Z - Qn,— D, > 1.
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5.2.10 Proposition. The following is a 4-periodic resolution of the trivial
Q. -module k:
=2 BQu] 5 K[Qn] > K[Qul? 25 KQu]® -2 K[Qu] <k — 0,
where € = augmentation, a = [1 — 7,1 — w},
8= L 1+ 7w | 1-7
T l-Q4w) T-1]" T lwr—1]

L=1474+...4+m™! N= Z g=(1+w+w2+w3)L.
’ 9€Qn

Proof (Sketch). A presentation of a group by generators and relations gives
rise to the beginning of a resolution (cf. appendix C, Exercise E.C.1). In the
particular case of Q,, it gives the exact sequence

(5.2.10.1) k[Qu]? 25 K[Qn]? 5 k[Qn] —2k — 0,

By applying the functor Homyq, j(—, k[@n]) to this sequence and modify-
ing the @Q,-module structure of these modules by using the isomorphism
#,0(1) = 771, ¢(w) = (7w)!, one gets (after rearranging the signs) an
exact sequence

(5.2.10.2) k[Qu]? - K[Qu]? ¢ k[Qn] €=k 0,

It turns out that the composition ** o € is precisely N, so the expected
resolution consists in splicing copies of (5.2.10.1) and (5.2.10.2). O

When A is involutive then A®" is a @,-module since there is a canonical
surjection from @, to D,. This is an example of a quaternionic module whose
general definition is the following:

5.2.11 Quaternionic Modules. A quaternionic (resp. dihedral) module is
a simplicial module equipped for all n with an action of Q41 (resp. Dpt1)
on C, satisfying the following formulas

diTn = Tn—1di—1,  8iTn = Tpy18i41 for 1<i<n,
diwp = wWp_1dn_; y  SiWn = Wn418n—i for 0<i<n ’

with d; : C,, & Cp,_; and s; : C,, = Cpy1, Tn € Qniy and w, € Qpiq (resp.
Dpi1).

As in the cyclic case these formulas imply that
dotp, =d, and 8o, = T,f_,_lsn .

Here we did not include the signs in the definition. The definition with signs
is obtained by the formulas



5.2 Dihedral and Quaternionic Homology 173

Ty = (—1)"7’n and Yn = (_1)n(n+1)/2wTL .

Any involutive k-algebra A gives rise to a quaternionic module (resp.
dihedral module) C(A) through the following formulas

Tn(aOa e 7an) = (anaa()a .. '7an—l)

wn(a'Oa"'aan) = (EOaana---aal) .

It is easy to check that what we have done for the particular dihedral mod-
ule C = C(A) in the first part of this section can be performed for any
quaternionic (resp. dihedral) module. Remark also that HD’(A) is just di-
hedral homology of the dihedral module C’(A) which is like C(A4) but with
the action of w changed into —w. In the sequel we just sketch quaternionic
homology, leaving the details to the reader (with the aid of the literature).

5.2.12 Propeosition. Let C, be a quaternionic module and let { be a 4th
power root of unity in k. The following is a well-defined bicomplex, periodic
of period 4 horizontally, and denoted QCE* (or simply QC¢)

c, <& c.ec, &£ cec, & o, &

b —(b'pb) b@b’l -b’

Cn—l & Cn—leecn—l <‘B— Cn—lEBC'n—l (L Cn-l &

!

with
_ _ L 1—zy 11—z
a-—[l $,1+y], ,8—|:__1+y 17—1], 7—|: ]a
L=1+4z+...4z"', N=(14+y+v>+4*)L and

Tp = (=1)"Tn,  yo = (=1)""FD/ 200, .

Proof. Tt is a consequence of the following relations whose proofs are left to
the reader

a) bl-z)=(1-2z),

b) by =yb,

c) bzy = zyb ,

d) WL =Lb,

e) N =Nb. O

o~~~ o~ o~
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5.2.13 Quaternionic Homology. Let C be a quaternionic module and ¢
be a 4th root of unity in k. By definition quaternionic homology of C is

HQS(C) = Ho(Tot QCY,) .

When C =C(A), where A is an involutive k-algebra, we denote HQ¢(C(A))
by HQ(A). If ¢ = 1 we simply write HQ(A), and if ¢ = —1 we simply write
HQ' (A).

5.2.14 Connes Exact Sequence for Quaternionic Homology. Let us
denote by TCS, the double complex formed by the first four columns of QC**
By H T¢ we denote the homology of the associated total complex.

These groups fit into a long exact sequence:

.= HTS - HQS, — HQS,_, » HTS_, - HQS_, —

and they are related to Hochschild homology (when ¢ =1 and 1/2 € k) by
the following exact sequence

.~ HH; - HT, » HH! ,—» HT,_, - HH, | —

When A = k, then HTS(k) = 0 for n > 3 and so HQS(k) is periodic of
period 4. For any n > 0 one has
HTo(k)=HQ4n(k)—k/2k HTo(k) = HQyn (k) =k ,
HTi(k) = HQun11(k) = HTi(k) = HQ4n+1(k) =k/2k ,
HTy(k) = HQan+2(k HT,(k) = HQ4n+2(k) = 2k,
HT3(k) = HQ4n+3(k HT3(k) = HQ:m-rs(k) =0,

where 2k is the 2-torsion of k.

)
)
)
f

5.2.15 Proposition. If 2 is invertible in k and A is an involutive k-algebra,
then there are canonical isomorphisms HQ,(A) = HD,(A) and HQ!, (A) =
HD, (A). O

Remark that when 1/2 € k the periodicity operator HQ,, = HQ,_4 can be
identified with the composite HD,, - HD!,_, - HD,,_,.

Exercises

E.5.2.1. Universal Exercise. Take any result in this book about cyclic
homology and try to find and prove an analog for quaternionic or dihedral
homology.

E.5.2.2. Prove that HH,(A) & HH,(A°), where A°P is the opposite algebra
(and similarly for HC). (Mimick Lemma 5.2.6.)
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E.5.2.3. Show that for any 4th root of unity ¢ one has the following compu-
tations:

E.5.2.4. Dihedral Homology Without the Assumption 2 Invertible.
Show that the total complex associated to the following bicomplex is a reso-
lution of the trivial D,,-module k.

|
kD, & kD] <~ k[D,] & kD,
147 wr—1 1—7 _WT—ll
kD, = kD, &~ kD) & k[D,]
1—-71 —wT~—1 1+ w'r—l‘[
k[D,] < kD, & kD) & kD,

Use this bicomplex and Hochschild complex to define a tricomplex whose
homology is a definition for HD(A) which is valid without supposing that 2
is invertible, and which coincides with our definition when 2 is invertible (cf.
Lodder [1990]).

E.5.2.5. Define cohomological functors HD* and HQ* by mimicking Sect. 2.4.

E.5.2.6. Equip A ® A°P with the involution (a,b) ——— (b,a). Compute
HD.(A® AP).

5.3 Differential Graded Algebras

All the theories considered so far can be extended to the category of graded
algebras and more generally to the category of differential graded algebras.
The differential of the algebra brings in some complication, but it gives some
more freedom since one can replace a DG-algebra by an equivalent one in
order to compute its homology. In particular one can replace any algebra
by a DG-algebra whose underlying algebra is a tensor algebra. In a certain
sense this procedure is equivalent to choosing another resolution to compute
Hochschild homology. It has the advantage of working as well in cyclic ho-
mology. This generalization has been done by Burghelea-Vigué [1988] and
Goodwillie [1985a] independently.
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5.3.1 Definitions. A Differential Graded k-Algebra, DG-algebra for short
(also called chain algebra), is a non-negatively graded associative algebra
A = @p>0A, (that is Ap. Ay C Apyq) with unit 1 € Ay, endowed with a
degree —1 differential § : A, — A,_; (that is 62 = 0) which is a graded
derivation for the product in A

8(ab) = ba.b+ (—1)!%a.8b .

An element a € A; is said to be homogeneous of degree 1 = |a|. An ordinary
algebra is considered as a particular case of a DG-algebra concentrated in
degree 0 (A = Ag, § =0).

If A =T(V), the tensor algebra of a positively graded free k-module V,
then (T'(V),9) is called a tensor DG-algebra.

Any DG-algebra (A, ) gives rise to a complex

)
e A — A1 — ... Ag

still denoted (A4, §), whose homology is denoted H, (A, §) and is simply called
the homology of the DG-algebra (A, §).

The iterated tensor product of complexes (4,8)®"+! is a complex whose
underlying module is the graded module A®"*! and whose differential is still
denoted ¢ (cf. 1.0.14). It is useful to introduce the following notions for a
homogeneous element = = (ag, ..., a,) of A"+
(a) the length of z is I(z) = n,

(b) the weight (or degree if no confusion can arise) of z is w(z) = |ao|+|a;]+
oo an),
(c) the total degree of z is |z| = I(z) + w(x).

5.3.2 Hochschild Homology of DG-Algebras. For any DG-algebra
(A,8) the functor [n] — (A,8)®"*+! defines a cyclic chain complex, ie. a
cyclic object C(A, §) in the (abelian) category of complexes over k (cf. 2.5.3).

Explicitly the faces, the degeneracies and the cyclic operator are described
as follows (the elements a; are all supposed to be homogeneous):

di(ao,...,an)=(a0,...,a,-ai+1,...,an), 0<i<n,

dn(ao,...,a,) = £(anao,ai,...,an-1)
[here we use the Koszul-Quillen sign convention, cf. 1.0.15, more precisely the
sign is (—1) to the power |a,|(lao| + |ai| + ... + |an—1])].
Si(aO"“’an) = (a0a'- g Qg ]-)a'i-i-la- . aa‘n) )
tn(ag,...,an) = £(-1)"(an,ag,...,an-1) (same sign + as before) .

The Hochschild complex associated to C(A,6) is a complex of com-
plexes (since A®"*! is replaced by (4,8)®"*!) with boundary map b =
S o(—1)id; : C(A,8)®"* — C(A,8)®". A straightforward checking shows
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that b commutes with the boundary map § : A"+ — A®"*1 of the complex
C(A,§)®™*1. In order to make it into a bicomplex we multiply this boundary
map by (—1)". Explicitly this bicomplex is

l l l

(483), < (49%), - (4%%), &

(5.3.2.1) bl bl bl

(49%), L (4®2), &L (487, &

| d dl
Ag (—5—- Ay (L Ao 4—6—-
where (A®"*1),, denotes the (weight p)-part of the tensor product, that is

(A%, = @ A ®...®4,.
10+...+in=p

Note that the horizontal map & (of weight —1) is given by the formula
5(ag, - .-, an) Zi A0y -+ -y Bim1,004, G341, .-+, 0n) -

By definition the Hochschild complez Cy(A, 8) (or simply C(A, 9)) of the DG-
algebra (A, §) is the total complex (with boundary b+ §) of the bicomplex
(5.3.2.1). Its homology is denoted by HH.(A,6) [not to be confused with
H,(A,6) defined in 5.3.1, see 5.4.8.1).

The reduced Hochschild complex C(A,§) is defined analogously by replac-

ing A®"*t! by A® 2% throughout, A = A/k.

5.3.3 Cyclic Homology of DG-Algebras. Since C(4, ) is a cyclic com-
plex, there is defined a boundary map B = (1 —t)sN : A®™ — A®"*1, where
the cyclic operator ¢ is as defined in 5.3.2. Therefore there is a tri- complex
BC(A, ) such that (BC(A,8))pqr = (A®I77*1),, with differentials +6,b and
B.

By definition cyclic homology of the DG-algebra (A, ) is
HC,(A,$) := H.(Tot (BC(A,96)) .

[For a tricomplex C, one has (Tot C)p = @p4g+r=nCpqr]. There is of course a

normalized version B(C(A, §)) which consists in replacing A%™*! by ARAS"
As in the non-graded case there is a natural isomorphism

HC,(A,8) = H.(Tot BC(A,9)) .
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Most of the results of Chaps. 1 to 4 can be extended to DG-algebras (since
it consists essentially in applying them to cyclic objects in an abelian cate-
gory), namely Connes periodicity exact sequence, Morita invariance, opera-
tions, existence of the other theories HC (4, 8), HCY*" (A, 6) and HD.(A,$).
The details are left to the reader.

5.3.4 Filtration and Spectral Sequences. Since HH, (A, §) is the homol-
ogy of a bicomplex (cf. 5.3.2.1), it is the abutment of two spectral sequences
which can be used for computation. In particular there is a natural filtration
which is induced by the weight. The same comment is valid for HC,(A4,9).
However, most of the time it is more efficient to work directly with the tri-
complex by replacing the columns by quasi-isomorphic complexes, the re-
sulting tri-complex being (for good choices) easier to compute. This is the
method we are going to use in the sequel.

Note that if § = 0, then HH and HC of (A,0) are not equal a priori to
HH and HC of A since the last face d, is not the same in the two cases.
However if A is concentrated in degree 0, then both theories agree.

When a map of DG-algebras f : (A,6) — (A’, ) induces an isomorphism
in homology it is called an equivalence of DG-algebras. The importance of
this notion is clearly seen in the next result.

5.3.5 Theorem. Let f : (A,6) — (A',d) be an equivalence of DG-algebras.
If A and A’ are flat over k, then f induces an isomorphism on HH,, HC,,
HC?® and HC; .

Proof. Let us prove the Hochschild case first. The flatness hypothesis implies
that f : (4,8)®" — (A’,8)®" is a quasi-isomorphism (Kiinneth formula). The
comparison theorem for the associated bicomplexes C(A4,d) and C(A4’',8) (cf.
1.0.12) shows that HH,(A,8) = HH,(A',6).

A similar argument (cf. 2.2.3) permits us to extend this isomorphism to
HC, and also to HC?®" and HC; (cf. 5.1.6). O

The interest of this generalization to DG-algebras lies in the following
result.

5.3.6 Proposition-Definition. For any unital DG-algebra (A,5) over k
there exists a graded free module V' and a tensor DG-algebra (T'(V'),8) which
is equivalent to (A, §). This is called a “free model” of the DG-algebra (A, ).

Proof. By induction on n one constructs a family of free k-modules V,, and a
family of DG-algebra maps &, : (T'(V,,),8) — (A,d) which are n-connected,
that is, which induce an isomorphism on H; for i < n and a surjection on
H,.

For n = —1 one takes V_; =0 and § = 0 on T(0) = k. So {_; is the unit
map k — A. Given (T(V,-1), 8) one constructs (T'(V;,), 8) as follows. For each
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pair (w,a), w € T(V,-1), a € A, such that &,_1(w) = da and dw = 0, one
adjoins an element denoted (w, a) to V,,_; in order to get V,,. Extend &,_; to
a graded algebra map &, by setting &,(w,a) = a and extend the differential
by setting §(w, a) = w and requiring that § is a graded derivation.

By construction the map &, is n-connected. Put V = U,,>_1V},, then there
is defined a map & : (T(V),8) — (A, d) which is a quasi-isomorphism, i.e. an
equivalence of DG-algebras. O

5.3.7 HH and HC of Free Models. By using the small complex devised
in Sect. 3.1 to compute HH and HC of a tensor algebra, one can construct
new complexes to compute HH and HC of a free model.

Let V =Vo@®Vid®... be a graded free k-module and let (4,6) = (T(V), )
be a tensor DG-algebra. One denotes by (A ® V),, the subspace of elements
of weight n in A ® V. There is defined amap ¢: AQ A —+ A®V by

n
da®uy...vy) = Ziviﬂ‘..vnavl...vi_l Qv
i=1

and amapb: A®V — A by b(a®v) = [a,v].
Asusual weput V. =k V.

5.3.8 Proposition.Hochschild homology of the DG-algebra (A,8)=(T(V), )
1s the homology of the complex

(AQVi,B): .= Ay ® (AR V)t~ Ap 1 B (A® V)ng = ... = Ag
where b = [g g] 1s given by

ba®v) =[a,v] and §(a®@v)=8a®v+(-1)a®bv.

Proof. Consider the following bicomplex with only two rows (in degree 0 and
1)

(A®V) < (AQV) ...

(5.3.8.1) bl bl

AO <—£— A1 — ...

There is a map of bicomplexes ¢ from C(T(V),8) to the small bicomplex
(5.3.8.1) which is the identity on the first row, which is ¢ on the next row and
which is zero on the others (no choice!). The verifications are straightforward.
By the same argument as in Sect. 3.1, it can be proved that this map is a
quasi-isomorphism on columns and so is a quasi-isomorphism of bicomplexes.
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Then it suffices to remark that the complex (A ® V., b) is the total complex
of (5.3.8.1). O

In order to get a new complex for computing cyclic homology it is sufficient
to construct the analog of Connes boundary map B on the complex (A ®
V4, b). It is easier to state this result in terms of mixed complexes (cf. 2.5.12).

5.3.9 Proposition. Let (A,6) = (T(V),0) be a tensor DG-algebra with V
free over k. Then the map

~ 0 0
B= |:7 0] AR (AR V)1 > A1 B (AQ V),

where v(a) = ¢(1,a), that is

n
Y(vy...vp) = E U1 - Uy Vo QY
i=1

endows (A® V., b) with a structure of mized complez. Cyclic homology of the
mized complez (A ® V,,b, B) is canonically isomorphic to HC.(T(V),6).

Proof. First, one needs to verify that bB + Bb = 0, which is equivalent to

{ by=9=0 (cf. 3.1.5),
by +~6=0.

The last equality follows from the equalities ¢(a,v) = (a,v) and é(a,zy) =
¢laz,y) + ¢(ya,z),a,z,y € A =T(V) and v € V, which determine ¢ com-
pletely. 3 3

Secondly, one needs to verify that ¢B= Bé, that is ¢ o B = . This is
immediate from the definition of ~. O

These complexes permit us to compute H H, and HC, of (T(V),0), gener-
alizing the non-graded case (cf. Sect. 3.1). Recall that (V®™), = V®™ /(1-7)
denotes the space of coinvariants for the action of the cyclic operator 7, and
(V®™)™ = Ker (1 — ) denotes the space of invariants for the action of 7.

5.3.10 Proposition. Let V be a free non-negatively graded module over k.
There are isomorphisms of graded modules:

HH*(T(V),O) = @mZO(V®m)T ® @m>0(V®m)T[1] )

HCo(T(V),0) = HCy(k) ® ®m>0 (Bp+q=nHp(Z/mZ, (VO™)y)) .

The map S on HC,, is, when restricted to H,(Z/mZ,(V®™),), the peri-
odicity isomorphism H, = Hy,_5 for p > 2, an inclusion Hy — Hy forp =2,
and 0 for p=1 and 0.
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Proof. The hypothesis § = 0 implies 6 = 0andso by Proposition 5.3.8 we have
HH,(T(V),0) = Coker (b: (A®QV), = A,)®Ker(b: (AQV)p_1 = An_1).
On V®™~1®V = V®™ the map b is just 1 — 7 whose cokernel is (V®™), and
whose kernel is (V®™)". This gives the computation of Hochschild homology.

For cyclic homology it is clear that HC,(T(V'),0) splits as a sum over
m 2> 0 of some graded modules. By Proposition 5.3.9 this graded module is,
for fixed m, the homology of the complex

Lo Vemmlgy biyem-l Y yem-l gy

The piece which lies in HC, is of total degree n = p + q, where p is the
length and ¢ the weight. The result follows then from b = 1 -7 and v =
47472+ +7m L O

5.3.11 Derivations on DG-Algebras. A derivation D on (A4, §) is a degree
0 derivation of A which commutes with §. It is straightforward to extend D to
the Hochschild complex C(A4,§) and to the complex BC(A,§) as in Sect. 4.1
since the relation [D, 8] = 0 on A is also valid on A®". So there are well-
defined maps Lp on HH,(A,$) and HC,(A4,$).

The proof of Theorem 4.1.10 can be carried out in the DG-case mutatis
mutandis to give the following

5.3.12 Proposition. Let A be a graded algebra over k containing Q and let
HH,.(A,0)= HH,(A,0)/HH,(A) ,

resp. HC,(A,0) = HC.(A,0)/HC.(Ao). Then Connes’ ezact sequence for
HC splits into short exact sequences

0— HC,_(A)— HH,(A) » HC,(A) = 0.

Proof. Define D(a) = pa for a € Ap. This is a derivation of degree 0 of the
DG-algebra (A,0). Let F? = FPHC,(A,0) be the filtration of HC,(A, 0) by
the weight. The operator Lp is acting on FP/FP~! by multiplication by p and
so is an isomorphism provided p # 0. From the graded version of Theorem
4.1.10 it follows that S = 0 on HC,(A). O

5.3.13 Theorem. Let (A,8) be a DG-algebra which 1s (r + 1)-connected
(that is Ho(A,8) = k, H(A, 8) =0 for 1 < i < r+1). Then the map
p!SP : HCpy2p(A,8) — HC (A, ) is 0 for n < rp.

Proof. By refining Proposition 5.3.6 one can check that, when (4, 5) (
connected, one can choose a model (T'(V),8) such that Vo =V, =... =
0. One uses this model to compute p!SP.

+1)-
V:
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Let BC(T(V),8) = F® > F! > ... D FP D> FP*l O ... be the filtra-
tion of BC(T'(V),4) by the weight. The generalization of Theorem 4.1.10
to the graded case shows that pS is 0 on HC.(FP/FP*!) and then p!SP
is 0 on HC,(F'/FP*!). The hypothesis on V implies that HC,(F') —
HC,(F!/FPt1) is injective for * sufficiently small, whence the result. a

5.3.14 Corollary (cf. Goodwillie [1985a]). Let (A,d) be a DG-algebra over
a field k of characteristic 0. For any chain ideal I (i.e. 61 C I) of A such
that I = 0 the quotient map A — A/I induces an isomorphism

HCP"(A,6) = HCP*(A/I,6) . O
Exercises

E.5.3.1. Let (A,d) be a non-unital DG-algebra. Show that there exists a
tricomplex CC(A,d) similar to the cyclic bicomplex, which permits us to
define HC, (A, ).

E.5.3.2. Extend the definition of HH, HC, etc, to the category of simplicial
algebras (cf. Goodwillie [1985a, 1985b]).

5.4 Commutative Differential Graded Algebras

In the previous section we have seen how the generalization to DG-algebras
can help to find new complexes to simplify the computation of Hochschild
and cyclic homology. In the commutative case this can be further simpli-
fied since in characteristic zero any commutative algebra is equivalent to a
C DG-algebra whose underlying CG-algebra is a graded symmetric algebra
(essentially polynomial). This permits us for instance to give another inter-
pretation of the A-decomposition of both HH and HC. We finish this section
by working out explicitly the computation of HH and HC of the truncated
polynomial algebra k[z]/z"*! with its A\-decomposition and its weight de-
composition. The study of HC of commutative C DG-algebra was performed
in Burghelea-Vigué [1988] and in Goodwillie [1985a]. The computation of
HC, (k[z]/z"*!) appeared in Bach [1992].

5.4.1 Commutative DG-Algebras. If ab = (—1)®!*lba for any homoge-
neous elements a and b of the DG-algebra (A, d), then (A4,4) is said to be
commutative (C DG-algebra). For instance let V = ®,>0V, be a graded k-
module and let A = AV be the graded symmetric algebra over V. Explicitly
AV = S(®n>0Van) ® E(Pn>0Van+1) Where S is for symmetric algebra functor
and E for exterior algebra functor (cf. Appendix A). A CDG-algebra of the
form (AV,$) is called a free CDG-algebra (though it is not a free object in
the category of C DG-algebras).
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Mimicking the proof of 5.3.6 one can show that in characteristic zero any
C DG-algebra (A, §) is equivalent to a free C DG-algebra (AV, §). This is called
a free model of (A, §). Moreover, one can take § such that §V C ATV. ATV,
where A1V is the ideal of AV generated by the elements of V. Such an
equivalence (AV, §) — (A, §) is called a minimal model for (A, §).

5.4.2 The Graded Module Q}” k- When A is non-negatively graded (ac-
cording to 5.3.1 we should say weighted) and graded commutative, one can
still define a graded A-module Q}ﬂk as follows. The graded A-bimodule A® A
is also a graded algebra for the product (a ® b)(x ® y) = (—1)!*ll"laz @ by for
homogeneous elements a, b, z,y € A. Then I is a graded A-bimodule and I/I?
is a graded symmetric A-bimodule. By definition we put .(2}” =1/1 2 Asin
the non-graded case Qk‘k is generated as a graded A-module by the elements
da, a € A (with |da| = |a] for a homogeneous) subject to the relations

(5.4.2.1) d(ab) = adb + (da)b = adb + (—1)!*!Plpda .

(This means that d has weight 0.) The element adb corresponds to a(1 ® b —
b®1)=a®b—ab®1in I/I? Its weight is |a| + |b].

5.4.3 Graded Exterior Differential Module for C DG-Algebras. For
a graded A-module M the graded exterior product of M with itself over A is
M RAaM = M ®4 M/ ~ where the equivalence relation ~ is generated by

(5.4.3.0) m@n~—(-1)""n@m, nm homogeneous .

More generally Ay M = M®4"/ ~, where the equivalence relation is gener-
ated by (5.4.3.0). Remark that the sign coming in a reordering of miA... A m,,
is the sign of the permutation times the Koszul sign (cf. 1.0.15). If M is
concentrated in degree 0 (resp. 1) it coincides with the usual exterior prod-
uct (resp. symmetric product). In other words there is an isomorphism of
k-modules, MA M = M[1] A M[1].

By definition the graded ezterior differential module of the CG-algebra A
is

Qe = KZQ}WC :

For z € ‘QXI x> the integer n is the length of z. Remark that

(5.4.3.1) dedy = (1) dydy .

There is an obvious extension of the differential map ¢ to QZI » Which de-
creases the weight by 1. It is given by

(5.4.3.2) 4(aoday ...day)
= (-—1)" (Saodal e dan + (—1)l“°Ia0d(6a1)da2 SN dan + ...

o4 (=1)lacltHen—lgdg, .d(éan)) .
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The resulting complex is denoted ((QZI %)+ 0) in which the degree x is the
weight. It will prove necessary to look at the direct sum of complexes

o q
2046y = qGZBO (‘QAlk)[q], 5)
where the module of (total) degree n is
n —— q
Pas) =9 ('QAM:)p :

The complex .(2(* 4.6) 18 the total complex of the bicomplex

! l |

§ 8 5
(quk)o — (-Qilk)l — (0124“0)2 —

(5.4.3.3) o| ! o]

-5 -5
(Qi”k)o — (Q}qjk)l — (‘Q}l]k)2 —

o] g o]

) ) é
Ap — Ay — Ay —

5.4.4 Proposition. Let (A, ) be a CDG-algebra. There are defined canonical
maps 7, : HH,(A,0) = H.(£2}, 5)) and e, : Hi(127, 5)) = HH.(A,6) such
that the composite 7, o €, is multiplication by ¢! on H*(.QgA 6))'

Proof. The map 7, is well-defined on chains and is given by m, : C(4,4) —
.Q(*A’s), mn(ag,...,an) = agda; ...da, as in the non-graded case. It can be
viewed as a map from the bicomplex (5.3.2.1) to the bicomplex (5.4.3.3). On
the other hand the map ¢, is given by

en(apda;y .. .day)

= class on +sgn(o) (ao,a,q(l),ad—l(z), e ,aa-l(n)) € HH,(A,§),
gES,

where +1 is the Koszul sign. For instance
ea(wdydz) = (z,y,2) = (~1)"1*(z, 2,9)

The check is as in the non-graded case (cf. Theorem 1.3.16). O

5.4.5 Smooth Graded Algebras. The definition of smoothness in the
graded case consists in taking one of the equivalent definitions of smooth-
ness given in Proposition 2 of Appendix E and translating it into the graded
context. For instance for any graded free k-module V the graded symmetric
algebra AV is smooth. This is the main example we are going to use since in
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characteristic zero any C DG-algebra is equivalent to some free C DG-algebra
(AV,8). Note that as an ordinary algebra AV is not smooth in general. For
instance if V = V; = k then AV = k[z|/z%.

The main point about graded smooth algebras is the generalization of the
Hochschild-Kostant-Rosenberg theorem:

(5.4.5.1) for any graded smooth algebra A there is an isomorphism
HH,.(A,0) = ‘QZA,O) .

As in the non-graded case, the free case and the characteristic zero case are
easier to handle since then the HKR-isomorphism is induced by a chain map
(cf. 3.2.3).

5.4.6 Proposition. Let (A, ) be a CDG-algebra such that either A = AV, or
k contains Q and A is smooth. Then the complex C(A,$) is quasi-isomorphic
to 'QZAJ) and so

HH,(A,6) = H. (24 5) -
In particular there is a natural splitting HH,(A,8) = ®;>0H._, (( i‘lk)*’a)'

Proof. In both cases the map ¢ is a chain map from C(4,§) to 046 which
is, by HKR-theorem, an isomorphism when restricted to the columns. So, by
the standard argument, it is an isomorphism on the total complexes. O

To compute cyclic homology of (A4,d) when A is smooth it suffices to
know what the Connes boundary map B induces on QZ‘ A.6) The answer is
the differential of forms d (not to be confused with §) as it was proved in 2.3.3
for the non-graded case. The proof of the graded case is the same mutatis
mutandis. Since this differential anti-commutes with 4 it endows QZ‘ A.6) with
a structure of mixed complex (cf. Sect. 2.5) denoted (QZI 0> d). Since 24s)
is the direct sum of its rows (suitably shifted) the bicomplex associated to
(!Zj” 50, d) is the sum over i of the following bicomplexes, where (27 stands
for (QZ\ )

(£2.25,6,d) :
Qb = 27— 27— =
QF « 71— 25— o«
0 0 0 0

in which 2} is in bidegree (0,1).
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5.4.7 Theorem. Let (A, ) be a C DG-algebra such that either A = AV, or k
contains Q and A is smooth. Then HC,(A,§) is canonically isomorphic to the
cyclic homology of the mized complex (.Q:iﬂk,é, d), denoted HC*(QZW‘S’ d).
More precisely

HC,(A,8) = ®;>0H, (Tot (2:23,6,d)) . 0

*—1

5.4.8 A-Decomposition for HH and HC of a CDG-Algebra. In this
subsection we use freely the notation of Sect. 4.5, namely the Eulerian idem-

potents e of k[S,]. Let (A, ) be a CDG-algebra. Any permutation o € Sy,
acts on A®™ by

U(ao, .. .,an) =+ (a,-l(l), cee ,a,,_l(n)) )

Hence k{S,] acts on the nth row of the bicomplex (5.3.2.1) (whose total

complex is C(A4,d)). When k contains Q the idempotents e permit us to
split this bicomplex into a sum of bicomplexes C)(4, §) and so

HH.(A,0) = & HHY(4,6) .
i>0

In particular we get
(5.4.8.1) HH(A,8) = H,(A,6).

It almost behaves as in the non-graded case. However one should remark
that in the graded case there is no reason for HHY' (A,d) to be 0 when i > n.
Similarly there is a A-decomposition of cyclic homology for any CDG-
algebra (A, §),
HC.(4,6) = & HCY(A,6) .

Suppose now that A is smooth, for instance A = AV. We already noted
in 5.4.6 and 5.4.7 that HH,.(A,6) and HC,.(A,§) are naturally split. This
splitting corresponds in fact to the A-decomposition as shown by the following

5.4.9 Proposition. If k contains Q and (A,d) is a smooth CDG-algebra,
then the A-decomposition and the decomposition coming from the graded
structure agree both in Hochschild and in cyclic homology.

Proof. The map C(4,4) — {2, restricted to A®"*! is the composite of

the projection onto the image of el (which is A® ZnA) and the map ap ®
(ar A ... Aay) — agda; ...day,. Therefore the ith piece of C(4,4) is quasi-
isomorphic to (Qixl %>0). Whence the result. O
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5.4.10 Remark. Any C DG-algebra (A4, 4§) has a free (hence smooth) model
(AV,4). In particular, if A is an ordinary algebra, then (A,0) has a free
model from which one can define a decomposition of H H,(A) and of HC,(A).
Proposition 5.4.9 shows that this decomposition does not depend on the
model.

5.4.11 The Free CDG-Algebra Case. Let A = AV, where V is a graded
free module over k. A generalization of the non-graded case (cf. 1.3.6) shows
that Q}M ;. is canonically isomorphic as a graded AV-module to AV ® V' and
more generally §2, is canonically isomorphic to AVRA"V = AVRA™(V]1]).
Note that the total degree of a ® (v1,...,v,) is || + |vi]| + ... + |vn| + 7.

The complex which computes HC(4, §) can be simplified accordingly be-
cause the de Rham complex of AV is acyclic. So, if we factor out the bicomplex
(£2:7%,8,d) by £29 = k, then it is quasi-isomorphic to a bicomplex with one
non-trivial column. This column, which is in degree p = 0, consists of the
modules (2} _,/ d.(? ~! (in bidegree (0,q)). So we have proved the following
5.4.12 Theorem. Suppose that k contains Q and let (AV,§) be a free CDG-
algebra. Then there is a canonical isomorphism

HC,(A,8) 2 HC, (k) ® 430 Ha- (( AV|k/d'QAV]k) 5). 0

5.4.13 Remark. In this setting the map S can be described as follows. An
element = € (2 defines an element [z] in H Cc(;i-p
€ 297} such that d(z) = d(y). Then S[z] = [y].

p~1

if and only if there exists

5.4.14 Application: HC of Truncated Polynomial Algebras. Let r be
a positive integer and let k[z]/z"! be the truncated polynomial algebra. One
can put a new weight, called the xz-weight, on this algebra by decreeing that
the z-weight of z' is i. Then the Hochschild and cyclic homology groups of
k[z]/x"+! split into a direct sum of subgroups according to the z-weight. Our
aim is to compute HH,, (k[z]/z"*') and HC, (k[z]/z"*') and to determine
their z-weight decomposition and their A-decomposition.

The truncated polynomial algebra k[z]/z"*! admits the free model (4, §)
over V = kz @ ky (free k-module of rank 2 generated by = and y), A = A(V),
8(z) =0, 8(y) = =", weight (z) = |z| = 0 and weight (y) = |y| = 1.

If we assign to y the z-weight r + 1, then the map (AV,§) — (k[z]/z"*1,0),
z — x, y — 0, is compatible with the z-weight. Note that, as an algebra
A = klz,y]/(y*).

The AV-module .Q;‘” . is generated over A by dz and dy subject to the
following relations (cf. 5.4.3.1): (dz)? = 0, dedy = —dydx. Thus 24 = 0,
except for p =g — 1, g and g + 1. As a free k-module
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~ 2%_, is generated by zidz(dy)it, i >0,
— 2 is generated by z*(dy)? and z*ydx(dy)?™", i > 0,
~ {23, is generated by z*y(dy)?, i > 0.
Let us put a(i):= z*dz(dy)?=} 4 > 0, b(i):= z*(dy)? —q(r + 1)z ~Lydz(dy)?~}
i > 0, and b(0):= (dy)?.
Then
~ £20_, is generated by a(i), i > 0,
— {21 is generated by b(i) and ya(i), ¢ > 0,
- £21,, is generated by yb(i), i > 0.

An easy computation shows that

§(yb(3)) =bi+r+1), 6(b()=0 if >0,
5(6(0)) = (-1)¥(r+1)a(r), b(ya(z)) =ali+r+1),

and of course §(a(i)) = 0. By Proposition 5.4.6 this proves the following

5.4.15 Proposition. For any commutative ring k and any integer r > 1,
one has, for ¢ > 0,

HHy, (klz]/z"t) 2 k" @,k

where the generators of the free part have x-weight q(r + 1)+i fori =1,...,r
and the torsion part has r-weight q(r + 1),

HHygy (k[z]/z™ ) 2 k" @ k/(r + 1)k ,

where the generators of the free part have z-weight (¢ — 1)(r + 1) + i+ 1 for
i =1,...,r and the quotient part has r-weight q(r + 1).
Moreover, when k contains Q, one has HHaq = HHéZ) and HHyq_; =

HH{ .

Proof. (Compare with the method suggested in Exercise E.4.1.8). Indeed the
free generators for HHy, are b(i) for ¢ = 1,...,7 and b(i) is of z-weight
i + g(r +1). The free generators of HHyq_; are a(i) for i = 1,...,r and
a(i) is of z-weight i + 1 + (¢ — 1)(r + 1). The other components come from
5(b(0)) = (=1)%(r + 1)a(r). The assertion about the A-degree comes from the
fact that all these generators are in 29 (cf. 5.4.9). a

A priori one could compute HC,(A) for A = k[z]/z"*! by working with
the bicomplex (§2},4,d). However there is a simpler way to work it out, by
using the comparison of (2},8) with a small complex. Explicitly let C*™ =

(C®*™(A), d) be the periodic complex
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whose homology is HH,(A) (cf. Exercise E.4.1.8). It is helpful to look at C®™
as a sum of smaller complexes C™9:

20200 203 90— ... 0.

The quasi-isomorphism Q:ﬂ x = C°™(A) is the direct sum of the maps

é )
B, —— B —

q+1
Sm (T‘+1)$r sm

which send yb(i) to 0 (of course), b(3) to b(i) = z* € A, ya(s) to 0 and a(i)
toa(i) =zt € A.

In order to compute HC, (A) it suffices to understand the analogue d of d
on the complex C*™. This will give rise to a new mixed complex (C*™, 3, d).
Since obviously d(£2_,) = 0, it suffices to compute d(b(7)). It comes

d(b(i)) = iz~ de(dy)? + q(r + 1)o'~ da(dy)? .

We are not only working with 29 but also with 291 so it is necessary
to refine our notation and write b(i), for b(i) € £2¢ and similarly a(i), for
a(i) € £27_,. Hence

d(b(i)g) = (i +q(r+1))a(i —1)g41 and d(b(0),) =0.
This determines d completely
d(a(i)y) =0 and d(b(i)y) = (i +q(r +1))a(i)ge1 for 0<i<r.

It shows that (£2*,6,d) — (C*™,§,d) is a map of mixed complexes. Restricted
to (§2*,6) it is a quasi-isomorphism, so we have proved the following

5.4.16 Proposition. Let a(p) : k" — k" be the diagonal matriz
a(p) =diag(1 +p(r +1),...,i+p(r+1),...,7+p(r+1)) .
The mized complex (C(A),b, B) is equivalent to the sum of the two mized

b
complezes (with the notation = ):
B

0 0 0 r+1 0 r+l 0
L2k 222K and .2 kEk 2 k2k
0 a(l) O a0 o 0 0 o0

Proof. From the following equivalences of mixed complexes (cf. Theorem
5.4.7)
(C(4),b,B) = (2°,6,d) — (C°™,3,d)
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it suffices to make the last one explicit. Indeed C%™ is isomorphic to A =
k1®kz®...® kz" in all dimensions. We write it k£ & k" when # is even and

k™ & k when * is odd. By the above computation § is alternatively 0 or the
matrix (8 ’31) and d is alternatively the matrix (g agq)) : Caq = Cogt1
or 0. It is immediate to see that this mixed complex splits as announced. O

5.4.17 Corollary. For any commutative ring k, one has
HCyq (klz}/z™) 2k ® (r11k)T ® k" ® Kera(0) & ... @ Kera(g—1),

HCyq_y (klz]/z™t") = (k/(r + 1)k)? ® Cokera(0) @ ... Cokera(g—1),
where

Kera(p) = 1<Ei9<r((i+p(r+l))k)

Coker a(p) = 8 k/(i+p(r+1))k). ]

and

5.4.18 Weights. Note that the description of the generators of these groups
in terms of z and dz (see 5.4.15) indicates immediately what their z-weight
and their A-weight is. Remark also that this computation is consistent with
the result given in Exercise E.4.1.8 in the characteristic 0 framework:

HCyq(A) = HOD(A) 2 k™ and HCyq_1(A)=0.

Exercises

E.5.4.1. Use Theorem 5.4.12 to give a different proof of the computation of
HC,(k[z]/z"*") in the characteristic 0 framework.

E.5.4.2. Use Proposition 5.4.16 to make explicit B, I and S for A =
k[z]/z"*!, and compute HC (A) and HC?*(A).

E.5.4.3. Use the method of this section to compute HC, (k(z,y]/zy). [There
is a model with Vo = kz @ ky, V; = kz and 6(z) = zy.]

5.5 Bivariant Cyclic Cohomology

A priori the natural definition for bivariant cyclic cohomology is to take
Extcoo (E, E'), where E and E’are cyclic modules. The derived functor Ext
is computed in the abelian category of cyclic modules, which is in fact the
category of contravariant functors from the cyclic category to the category
of k-modules (see the next chapter). This version has not been studied in
details so far, however a slightly different version with interesting properties
has been developed by J.D.S. Jones and C. Kassel [1989]. The following is a
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short account of this theory in the framework of k-algebras. Details are to be
found in loc. cit.

Bivariant cyclic cohomology is a functor HC™(A, B), depending on two
k-algebras A and B, which is contravariant in A and covariant in B. It has
the same kind of properties as cyclic homology and cohomology: periodicity
exact sequence, existence of products and coproducts, A-decomposition, etc.
It permits us to interpret some results in cyclic homology elegantly and it
seems to be the right receptacle for characteristic classes coming from bivari-
ant K-theory (Kasparov K K-theory).

Unless otherwise explicitly stated A and B are unital k-algebras.

5.5.1 Bivariant Hochschild Cohomology. Let C(A) (resp. C(B)) be the
Hochschild complex of A (resp. B). The graded module of graded maps
Hom(C(A),C(B)) is in fact a complex with differential 8 given by

a(f) =bf — (-)HIfb.

Recall that f € Hom(C(A),C(B)) is homogeneous of degree n if it sends
Cp(A) into Cpyn(B) for all p.

5.5.5.1 By definition bivariant Hochschild cohomology of (A, B) is
HH"(A,B):= H_,(Hom(C(A),C(B)),0), n€Z.

Note that the index n varies in Z.

Obviously the functor HH™(—,—) is contravariant in the first variable
and covariant in the second one. Since the normalized Hochschild complex
C(A) is a deformation retract of C(A), one can as well replace C by C in the
definition of HH™(—, —).

The comparison with Hochschild homology and cohomology is given by
the following identification:

HH"(k,A) = HH_,(A) = H_,(A, A)
HH™(A,k) = HH™(A) = H*(A, A*) .

5.5.2 Definition of Bivariant Cyclic Cohomology. Since A and B are
supposed to be unital one can work with the bicomplex B(—) or even the
reduced version B(—) (cf. Sect. 2.2). To simplify the notation we simply write
B(A) in place of TotB(A). Recall that this complex comes equipped with a de-
gree —2 endomorphism S : B(A) — B(A), which is obtained by factoring out
by the first column (at the bicomplex level). In particular this endomorphism
is surjective and its kernel is C(A).

By Hom® (B(A), B(B)) we denote the submodule of Hom(B(A), B(B)) of
elements which commute with S. Remark that a homogeneous map F of
degree n which commutes with S is completely determined by its value on
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the first component C.(A) of B,(A) = C.(A) ® Cu—z ® Cu_y(A) ® ..., and
conversely.

5.5.2.1 By definition bivariant cyclic cohomology of (A, B) is
HC"™(A,B) := H_,(Hom®(B(A), B(B)),d) .

This definition makes sense since 8(f) commutes with S as soon as f does.
Again the functor HC™(—, —) is contravariant in the first variable and co-
variant in the second.

5.5.2.2 Remark that a map F € Hom®(B(4), B(B)) is a cocycle if and only
if it is a map of complexes.

5.5.2.3 For any other k-algebra R there is a convenient map HC™(A, B) —
HC™"(A®R, B® R) (and similarly with R® — in place of — ® R) obtained as
follows. Upon tensoring with the identity any F' € Hom®(B(A), B(B)) gives
rise to F®31 € Hom® (B(A)®B(R), B(B)® B(R)), which makes the following

diagram commutative
0— B(C(A)®C(R)) — B(A)®B(R) - (B(A)®B(R))[2] —O0.
F®51l F®ll F®ll
0— B(C(B)®C(R)) — B(B)®B(R) - (B(B)®B(R))[2] —0.

(cf. Lemma 4.3.9 and remember that we write B in place of Tot B).
Since Sh : B(C(A) ® C(R)) —» B(C(A® R)) = B(A® R) is a quasi-
isomorphism (cf. 4.3.8), it follows that F' ®° 1 determines a well-defined
element in Hom® (B(A ® R), B(B ® R)), whence the desired map.

5.5.3 Comparison with HC*(—,~) and HC_ . By replacing B(B) by
B(B) in the definition and taking B = k, one sees immediately that
HC"(A,k) = HC™(A).

On the other hand if the second variable is taken to be the ground ring, then
(cf. 5.1.7)
HC™(k,A) = HCZ,(A) .

5.5.4 Theorem. For any unital k-algebras A and B there is a long exact

sequence

...— HH™(A,B) -5 HC™(A, B) 2 HC™%(A, B)
B, HH"*(A4,B) ... .

Proof. Consider a homogeneous map F' of degree n. It is completely deter-
mined by its restriction to Ci(A) lying in C\,(A)® Cu—z ®Cry(A) D ..., (cf.
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5.5.2). The first component of this map is a homogeneous map of degree n
which lies in Hom(C(A), C(B)) and it is clear that there is an exact sequence
of complexes

0 — Hom®(B(A), B(B))[2] = Hom®(B(A), B(B))
— Hom(C(A),C(B)) = 0.

Taking the homology gives the expected exact sequence. O

5.5.5 Composition Product. Since elements in bivariant Hochschild and
cyclic homology are represented by maps of modules, one can compose them.
It is a formality to show that this composition behaves well with the complex
structure and passes to the homology. So, for three unital k-algebras A, A,
A", composition of maps gives rise to functorial products, called composition
products,

HHP(A,A')@ HHY(A', A") - HHP*9(A, A",

HCP(A,AY® HCY(A', A") — HCPTI(A,A"),

which satisfy the obvious associativity condition.

One can even generalize slightly these products by the following formal
manipulation (we write this in the setting of cyclic cohomology but everything
is valid for Hochschild cohomology as well). Let A;, Ay, A, A}, A5 be five
unital k-algebras. There are natural maps

HCP (A, A} ® A) > HCP (A, ® Ay, A, ® A® A;) and
HC1 (A &® Az,A’z) — HC? (Al ®A ®A2,A1 ® AIQ) (Cf 5522) s

that we can pair with the composition product to give a generalized compo-
sition product

HCP(A;,A] ® A) @ HCY (A ® Az, Ay) — HCPH (A; ® Az, A] ® A)) .

The example A] =A= A}, = k gives the product in cyclic homology described
in 4.4.10. The example A; =A= Ay = k gives the product for negative cyclic
homology described in 5.1.13. The example 4; = A} = A, = A}, = k gives
the duality pairing between HC* and HCZ, (cf. 5.1.17).

5.5.6 Examples of Bivariant Cocycles. Several constructions and prop-
erties of the preceding chapters can be elegantly formulated in terms of bi-
variant cyclic cocycles.

5.5.6.1 Periodicity Operator. Since the endomorphism S of B(A) commutes
with itself it gives rise to an element of degree 2 in Hom® (B(A), B(B)) which
is a cocycle since it is a morphism of complexes. Let us denote it by [S] €
HC?(A, A). The composition map HC?(A, A)\@ HC™(A, B) = HC™t%(A, B)
evaluated on [S] is the periodicity map (denoted by S) of the exact sequence
5.5.4.
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5.5.6.2 Generalized Trace. Recall from 1.2.1 and 2.2.8 that the general-
ized trace map tr : C(M(A)) — C(A) extends to a degree 0 map in
Hom(B(M(A)), B(A)). It obviously commutes with S and is a map of com-
plexes, so it determines an element [tr] € HC?(M(A), A).

5.5.6.3 Derivation. In Sect.4.1 we showed that any derivation D of A gives
rise to a map of complexes Lp : B(A) — B(A). Since it commutes with S it
determines [Lp] € HC°(A, A). When D is an inner derivation D = ad(u) for
some element u € A, then proposition 4.1.5 can be reinterpreted as: L,q(y) is
a coboundary (image of h(u)), that is [Lqq(u)] = 0. So there is a well-defined
functorial map

H'(A,A) — HC°(A,A), [D]~ [Lp].

Remark that the image of this morphism lands in Ker (S : HC(4, A) —
HC?(A, A)) since by Theorem 4.1.10 Lp o S = 0. The composition product
makes HC?(A, A) into an associative algebra over k, whence a Lie algebra
structure by [z,y] = zy — yz. It is immediate to check that the above map is
a Lie algebra map (cf. Sect. 10.1).

5.5.7 Miscellaneous Variations

5.5.7.1 Non-unital Algebras. For non-unital algebras the correct complex to
start with to define cyclic homology (resp. Hochschild homology) is the cyclic
bicomplex CC(A) (resp. the first two columns of CC(A)). Hence in the def-
inition of bivariant cyclic cohomology it suffices to replace B by CC (resp.
similarly for HH) (cf. Exercise E.5.5.3).

5.5.7.2 A-Decomposition of HC*(—, —). In characteristic zero, the properties
of the Euler idempotents eSf ), as described in 4.4 and 4.5, can be used to

show that there is a canonical decomposition

HC™(A, B) = @;ezHC(;)(A, B) .
Remark that for a fixed integer n the integer : ranges over Z (there is no
reason to have a finite number of pieces in general).

5.5.7.8 Dihedral, Periodic, etc. We leave to the reader the opportunity of
defining and studying bivariant dihedral cohomology, bivariant periodic cyclic
cohomology, etc. It is also clear from the definition that one can extend the
bivariant theory to cyclic modules as well.

Exercises

E.5.5.1. Prove that HC*(A, B) is Morita invariant in A and B.

E.5.5.2. Show that there exists a natural map H*(4, A)[1] - HC*(A, A)
which is a Lie algebra map (cf. Exercise E.4.1.4) and which extends the case
* = 1 described in 5.5.6.3).
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E.5.5.3. Define bivariant cyclic cohomology of non-unital algebras by using
the general principle explained in 1.4.1. Show that it gives the same result as
the one indicated in (5.5.7.1).

E.5.5.4. Show that the composition product is consistent with the A-
decomposition, in the sense that it sends H C'g’i) ®H ng) into H C(’;:‘;) (cf.
Nuss [1992]).

5.6 Topological Algebras, Entire Cyclic Cohomology

When the algebra A has a topology it is interesting in some cases to take into
account this topology in the definition of Hochschild and cyclic homology. In
the homological framework this requires to use a modified tensor product a
la Grothendieck. In the cohomological framework it is slightly easier since it
suffices to use continuous cochains.

Moreover this topology on the algebra can be used to modify the defini-
tion of periodic cyclic cohomology by introducing a growth condition. This
gives rise to a more subtle theory called entire cyclic cohomology which is of
significant importance in the applications, in particular in the proof of most
cases of the Novikov conjecture (cf. Connes-Moscovici [1990] and Connes-
Gromov-Moscovici [1990, 1992)).

This section is a brief exposition without proofs. It is entirely due to A.
Connes [C, 1988].

In this section k =R or C.

Notation. For any locally compact space X the algebra of complex (or real)
continuous functions on X is denoted C(X), and Co(X) for the functions
which vanish at infinity. For any C*°-manifold V', C°°(V) denotes the algebra
of C°°-functions on M.

5.6.1 Locally Convex Algebras. A locally convezr algebra is a k-algebra
A endowed with a locally convex Hausdorff topology for which the product
A x A — A is continuous. This means that for any continuous semi-norm p
on A there exists a continuous semi-norm p’ such that p(zy) < p'(z)p'(v),
z,y € A. In general we assume that A is complete.

5.6.2 Topological Tensor Product and Homology. In order to take into
account the topology of the algebra in the construction of Hochschild and
cyclic homology one topologizes the tensor product to obtain the projective
tensor product ®, (cf. Grothendieck [1955]). This completion has the follow-
ing property: for any compact differentiable manifold V' there is a topological
isomorphism C*®(V)®,C>®(V) 2 C®(V x V).
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In the Hochschild complex, one replaces A®...® A by AR, ...®,A (we
suppose here that A is complete). This gives a well-defined complex whose
homology is still denoted by H H,(A). Similarly one defines topological cyclic
homology HC.(A) = H}(A). All the properties of the previous chapters
extend to these new groups, in particular the Morita invariance and Connes
periodicity exact sequence. Note that, in the case of the Morita invariance,
not only M, (A) has the same homology as A, but also A®,X has the same
homology as A where K is the algebra of trace class operators.

The only difficulty is in the analysis of the topology of the homology and
cohomology groups, which are not separated in general.

5.6.3 Cohomology Theories. It is slightly easier to deal with the coho-
mology theories since then we do not need to appeal to ®,. Indeed let C™(A)
be the space of continuous (n + 1)-linear functionals on A. This means that
¢: A" —> k is in C™(A) if and only if for some continuous semi-norm p on A
one has

|#(ao,.-.,an)] <plag)...plan), a;i€A.

Remark that replacing A by its completion does not change C"(A). By
using this new space of multilinear functionals one can define continu-
ous Hochschild cohomology HH*(A) and also continuous cyclic cohomology
HC*(A)(= H;(A)) like in the algebra case. Most of the properties can be
extended to the topological case, for instance there is a long exact sequence

...— HH"(A) - HC™'(A) » HC" " (A) - HH""'(4) - ... .

Carefulness is in order when dealing with duality properties.

5.6.4 Example 1: C*(V'). Let V be a compact smooth (i.e. differentiable)
manifold. The algebra C=(V') of differentiable functions on V' is a Fréchet
algebra. Since C*®°(V)&,C>®(V) = C=(V x V) the Hochschild complex (with
C*°(V™*1) in dimension n) is a familiar one. Connes [C] extended the com-
putation of Hochschild-Kostant-Rosenberg to this context and proved that
HH*(C*™(V)) is the space of de Rham currents on V. He also showed that
the operator B corresponds to the de Rham boundary of currents under this
identification.
As a consequence

HCE (€ (V) @ HOY (€(V)) = H*(V,C) .

5.6.5 Example 2: The Non-commutative Torus. In this example k = C.
Let 6 € R/Z and put A = exp(27i8). By definition the algebra Ag of the non-
commutative torus is made of the elements

n_m
E ApmT Y

n,meZ
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where (a, ) is a sequence of rapid decay ((|n| + |m|)?|an,m| is bounded for
any q € N). The product is specified by the relation zy = Ayz. If 6 = 0, then
A = 1 and by Fourier analysis Ag is the algebra of the commutative torus,
that is C°(S* x S1). In fact if § € Q/Z, then Ay is Morita equivalent to
C(St x Sh).

Computation of HH and HC of Ay has been performed by Connes [C].
Here are the results for non-commutative de Rham cohomology:

HCE™ (Ag) 2 C?,
HCP*" = HH,(Ag)/Im B, = C* .

Moreover explicit generators are described as follows. Let 4; and 42 be the
derivations of Ay given by

01 (z"y™) = 2minz™y™ and 62 (z"y™) = 2mima"y™ .

Then ¢(ag,a1,as) = ao(d1(a1)d2(az) — d2(ay)é1(az)) determines a cyclic 2-
cocycle ¢ whose class is a non-trivial element. Another (and linearly indepen-
dent) element is given by ST where 7 is the canonical trace (7(z) = 7(y) =0
and 7(1) = 1).

5.6.6 Example 3: C*-Algebra of a Foliation. To any foliation F on
a smooth compact manifold V' one can associate a C*-algebra C(V, F') (cf.
Connes [1982]). Let us just mention that if the foliation comes from a sub-
mersion V' — B, then this C*- algebra is Morita equivalent to Co(B). For the
foliation of the torus by lines of slope 6 the associated C*-algebra is Morita
equivalent to the completion of the algebra Ay introduced above. In Sect. 12.1
we show how the Godbillon-Vey class of F' can be seen as a cyclic cocycle of
a dense subalgebra of C(V, F).

5.6.7 Example 4: Reduced C*-Algebra. Let G be a discrete and count-
able group. The left regular representation A of G in the Hilbert space {2(G)
is given by

A () =¢€(s7"t) , s teq.

The associated *-homomorphism
X:C[G) = L (*(G))

is faithful and given by convolution on the left

MO = frE@) =) fe)6(s7't), fedG], £el’G).
s€G
By definition the reduced C*-algebra C}(G) is the norm closure of A(C[G])
in £(13(G)). For instance C}(Z) = Cy(S!). The inclusion C[Z] = Clz,27}] =
Co(S*) consists in viewing a Laurent polynomial as a function on S! paramet-
rized by z € C, |z] = 1. More generally if G is a discrete abelian group,
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then C}(G) is the C*-algebra of complex valued continuous functions on the
Pontrjagin dual G = Hom(G, S'). Algebraic K-theory and cyclic homology of
dense subalgebras of C;(G) play an important role in the Novikov conjecture
(cf. Sect. 12.3).

5.6.8 Entire Cyclic Cohomology. Consider the (b, B)-bicomplex BCY," (A)
(cf. Sect.2.1) of the unital Banach C-algebra A, whose norm is denoted by
|I-|l. If one forms the total complex by taking the direct sum on each diago-
nal, then we already mentioned that one gets trivial homology groups. If one
takes the direct product, then this gives periodic cyclic homology HCY* (A).

Dually, if, in the cohomological bicomplex BC}z (A), one takes cochains
with arbitrary support, then the total cohomology is trivial. If, on the other
hand, one takes cochains with finite support, then the total cohomology is
HC} (A). In the cohomological framework there is a refinement which con-
sists in taking only the infinite sequences of cochains which satisfy a growth
condition. Explicitly let

Cc® = {(¢2n)n€N>¢2n € Ctzt;;)(A)}
and C°%4 = {(¢2n+1)neN, Pan+1 € C?;;)H(A)} .

One modifies slightly the boundary maps in the bicomplex BCLy" by
putting (cf. Connes [1988a, p.521])

di(6) = (n—m+1)b(@) for &eC™,
do(@) = ;—_1_7;3(@ for €cCmm.

So the total boundary operator is 8 = d; + da.

A continuous cochain (¢on)nen € C®¥ (resp. (P2n+1)neN € Cc°d4d) s
called entire iff the radius of convergence of X||d2,|2"/n! (resp.
2| 2n+1]|2™/n!) is infinity. It is immediate to check that the boundary d¢
of the entire cochain ¢ is still entire, and so there is a well-defined complex

o2 (4) L c2d(a) 2 007 (4) B c2(a)

where CS¥(A) (resp. C244(A)) is the space of entire cochains. By definition
entire cyclic cohomology of the Banach algebra A is the homology of this
small complex. It consists in two groups denoted

HC®(A) and HC2(4A) respect‘ively.

Since the complex of cochains with finite support is a subcomplex of the
complex of entire cochains, there is defined a canonical map

HC} (A) - HCX(A) .

For A = C this map is an isomorphism, but in general this map is not even
surjective. For some algebras the pairing of algebraic K-theory with HCp,,
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can be extended to HC? and this extension plays an important role in the
applications (see 12.3.14). Notice that entire cyclic homology is defined for
any locally convez topological algebra in Connes [1994], p. 370.

Bibliographical Comments on Chapter 5

§1. The idea of looking at the periodic complex, and so at the periodic theory, is
already in the seminal article of Connes [C], see also Goodwillie [1985a]. The idea
that the theory HC™ is relevant is due to Hood-Jones [1987}, where they recognize
this theory as the dual of the cyclic theory over HC, (k). Similar statements can
be found in Feigin-Tsygan [FT]. The product structure on HC~ was introduced in
Hood-Jones [1987] by using the acyclic model technique. De Rham cohomology has
been generalized to crystalline cohomology by Grothendieck and the comparison
with the periodic cyclic theory is done in Feigin-Tsygan [1987], see also Kassel
[1987, cor. 3.12]. In the literature periodic cyclic homology is denoted either by
HCP®* (adopted here), or PHC, or HCP, or HP, or even simply H.

§2. Dihedral and quaternionic homology were introduced and studied in Loday
[1987]. Independent and similar work appeared in Krasauskas-Lapin-Solovev [1987)
and Krasauskas-Solovev [1986, 1988]. Subsequent work was done in Lodder [1990,
1992] and in Dunn [1989] where the relationship with O(2)-spaces is also worked
out. An interesting application to higher Arf invariants is done in Wolters [1992].

§3-4. The extension of HC to DG-algebras appeared in Vigué-Burghelea [1985]
and also Goodwillie [1985a]. The idea of getting a decomposition of HC from this
point of view is in Burghelea-Vigué [1988]. Extensive computations have been made
in loc. cit., Brylinski [1987b], Vigué [1988, 1990], Geller-Reid-Weibel [1989], Bach
[1992], Hanlon [1986]. Some of these results can be found in Feigin-Tsygan [FT].

§5. Bivariant cyclic cohomology was taken out from Jones-Kassel [1989], see
also Kassel [1989a]. The A-decomposition is in Nuss [1992].

§6. Some computations in the topological framework are done in Connes [C]. En-
tire cyclic cohomology is treated in Connes [1988] and used extensively for the proof
of some cases of the Novikov conjecture in Connes-Moscovici [1990] and Connes-
Gromov-Moscovici [1990]). Further work can be found in Connes-Gromov-Moscovici
[1992]) (asymptotic cyclic cohomology, again in relationship with the Novikov con-
jecture). Many other papers relating the index theory and the entire cyclic coho-
mology are listed in the references.



Chapter 6. The Cyclic Category,
Tor and Ext Interpretation

Simplicial objects in an arbitrary category C can be described as functors from
the category of non-decreasing maps A°P to C. Similarly one can construct a
category, denoted AC and called Connes cyclic category, such that a cyclic
object in C can be viewed as a functor from AC®P to C. The cyclic category
AC was first described by Connes [1983, where it is denoted A or AK] who
showed how it is constructed out of A and the finite cyclic groups.

It permits us to interpret cyclic homology as a Tor-functor and cyclic
cohomology as an Ext-functor. An application to the relationship between
cyclic homology and equivariant homology of S'-spaces will be given in the
next chapter.

The relationship between the family of finite cyclic groups and A, given
by the existence of AC, can be axiomatized to give a generalization of the
simplicial groups called crossed simplicial groups. Examples of such are the
families of dihedral groups, of quaternionic groups, of symmetric groups, of
hyperoctahedral groups, of braid groups.

In the dihedral case it permits us to give a Tor (resp. Ext) interpretation
of dihedral homology (resp. cohomology).

Section 6.1 describes fully the cyclic category AC (and also the category
AS where the cyclic groups are replaced by the symmetric groups). Section
6.2 is devoted to the Tor (resp. Ext) interpretation of Hochschild and cyclic
homology (resp. cohomology). Section 6.3 deals with crossed simplicial groups
and Sect. 6.4 with the category of finite sets and the relationship with the
A-operations. These last two sections are not necessary for the reading of the
subsequent chapters if one is only interested in the cyclic theory.

The construction of AC and the Tor and Ext interpretations are all due to
A. Connes [1983]. The generalization to crossed simplicial groups is taken out
from Fiedorowicz-Loday [1991], as well as the proof describing the structure
of AC. The last section on the relationship with the category of finite sets
follows Loday [1989).

We suppose that the reader is familiar with the category A whose defini-
tion and properties are recalled in Appendix B.

Standing Notation. The symmetric group S, +1 is identified with the auto-
morphism group of the set {0,1,...,n}. The opposite group is denoted S¥

J.-L. Loday, Cyclic Homology
© Springer-Verlag Berlin Heidelberg 1998
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(same set but opposite group structure). For g € 5%, the corresponding
element in S, is denoted g, hence gg' =7 g.

6.1 Connes Cyclic Category AC and the Category AS

Connes cyclic category AC is a nice mixture of A and the cyclic groups. In
fact it has the same objects as A and any morphism can be uniquely written
as a composite of a morphism in A and an element of some finite cyclic
group. Its structure is comparable to that of a group G which contains two
subgroups A and B, and such that any element of G is uniquely the product of
an element of A by an element of B (see Exercise E.6.1.1). Here the category
A plays the role of A and the disjoint union of the finite cyclic groups plays
the role of B. In the last part of the section we provide an isomorphism of
AC with its opposite category (this is not true for A of course). For several
reasons it is helpful to see AC as a subcategory of a category AS made out
of A and the family of the finite symmetric groups.

6.1.1 Definition. The cyclic category AC has objects [n], n € N, and mor-
phisms generated by faces §; : [n—1] = [n], i = 0,...,n, degeneracies
oj i [n+1] = [n], j = 0,...,n, and cyclic operators 7, : [n] = [n], sub-
ject to the following relations:

(a) 5j51' = 5,‘(5]‘_1 for 1 <j y
00 = 00541 for 1 _<_ j,
dioj_1 fori<j
06 = < idpy) fori=j1=7+1,
0i—10; fori>j+1.
(b) Tali = 8;_1Tn—1, for 1<i<n, 7,00 =56,,
TnOi = 0i—1Tn+1, for 1<i<n, T,00= an‘rgﬂ ,
(c) it =4d

Remark that the relation 789 = 4, is a consequence of the others, because
8, = TG, = 8,17 = ... = 76T = T8. Similarly 7oy = 0,72 is a
consequence of the other relations.

The important property of AC is that any morphism can be written
uniquely as the composite of a morphism in A and an element in a cyclic
group C,, (see 6.1.3 below) of order n + 1, whence the notation AC.

It will be shown later (cf. 7.2.6) that the classifying space BAC' is homo-
topy equivalent to BS! = K(Z,2) = CP*.

6.1.2 Presentation of AC®°P and Cyclic Objects. For future reference
let us give a presentation of AC°P. The notations are such that
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* ) * __ o *
6 =di, oj=s; and T, =t,.

Generators of AC°P are
di:[nf=[n-1], 0<i<n,
sjtfn] = [n+1], 0<j<n,
tn: [n] = [n] .
The relations are

(a) did; =dj_1d; for i<y,
5i8; = 8j418; for i<y,
sjad; fori<j,
dis; = < idp fori=j5, i=j+1,
sjdi_q fori>j+1.
(b) dit, =tp_1d;-1 for 1<i<n and dyt, =d,,
Sitp =tpy18i—1 for 1<i<n and spt, = t,zﬂ,lsn ,
(¢) (t)"t! =id, .

6.1.2.1 By definition a cyclic object in a category C is a functor
X:AC® »C.

As usual the image by X of a morphism f in AC°P is denoted by f, or, more
often, simply by f, instead of X(f). Sometimes we prefer to consider X as a
contravariant functor from AC to C, then the image by X of the morphism
¢ of AC is denoted by ¢*.

Composition with the obvious functor A°? — AC®P gives the underlying
simplicial object of the cyclic object. It is still denoted by X or X .

6.1.2.2 For instance if C is the category of modules (k-Mod), then a functor
C : AC°? — (k-Mod) is equivalent to a cyclic module in the sense of 2.5.1.
The point is to introduce the sign (sgnt¢,) = (—1)" in front of ¢, to get the
right formulas. By abuse of language the functor C is still called a cyclic
module (or cyclic module without signs if one wants to make clear which
set of axioms is used). Cyclic sets and cyclic spaces will be studied from a
topological point of view in Chap. 7.

6.1.3 Theorem. The category AC contains A as a subcategory and

(1) the group of automorphisms of [n] in AC is cyclic of order n + 1,
(2) any morphism from [n] to [m] in AC can be uniquely written as the com-
posite ¢ o g with ¢ € Homa([n], [m]) and g € Autac([n]) = Z/(n + 1)Z.

It will prove helpful to deduce this result from the following more general
statement (for another proof see Exercise E.6.1.2).
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6.1.4 Theorem. There exists a category AS with objects [n], n > 0, con-
taining A as a subcategory and such that

(1) the group of automorphisms of [n] in AS is the group Sy,
(2) any morphism from [n] to [m] in AS can be uniquely written as the

composite ¢ o g with ¢ € Homu([n],[m]) and g € Autss([n]) = SpEy.

Proof of Theorem 6.1.4. Recall that any ¢ € Homa([m], [n]) can be consid-
ered as a set-map from [m] = {0,1,...,m} to [n] = {0,1,...,n}. In fact it is
a non-decreasing map for the obvious order on these sets (cf. Appendix B).

6, 0<i<n 0, 0<j<n

For any g € SZE’H, corresponding to g € S,1;, we consider the following set
map

(6.1.4.1) g:lnl =, g(i)=7"0).

The main technical point of the proof is the following

6.1.5 Lemma. Given ¢ € Homa([m],[n]) and g € S}%, there exist a unique
element g.(¢) € Homa([m],[n]) and a unique element ¢*(g) € Syr,, such

that
(i) the following set diagram is commutative

m 5 )
¢*(g)l lg
m = )

(ii) the restriction of $*(g) to each subset $~1(i), fori =0,...,n, preserves
the order.

Proof. A morphism ¢ in A is completely determined by the sequence of
numbers #¢~1(i), i = 0,...,n (# means number of elements of). In order
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to fulfill condition (i), #g.(¢) 1(¢) has to be equal to #(g o ¢)~!(z), which
determines g.(¢) uniquely.

To determine ¢*(g) it is sufficient to get it on ¢~1(i). By condition (ii)
there is only one possibility. The following figure illustrates a particular case:

i

r—

¢*(9)

A
77

~<

G~ (Q)

O

6.1.6 Proposition. The maps g, : Homa([m],[n]) = Homa([m],[n]} for
geE S, and ¢* : SN, = S, for ¢ € Homa([m], [n]) satisfy the following
rules (where o is either composition in A or composition in S;5 1):

Lh. (go¢')(9) = ¢ (¢"(9)),

Lv. (gog)u(e) = g.(g.(0)) ,

2h. gu(do¢') = gu(d) 0 (67(9))+(¢),
2v. ¢*(go ')=(g*(¢)) (9)o¢"(d"),
3h. (idn)'(g) =g and ¢*(1n)=1n,
3.v. (n)*(¢)= and  g.(idy) = id, .

Proof. Each formula is a consequence of the preceding lemma. Let us prove
L.h and 2.h in details.
Counsider the following set diagrams
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0— ] = ) 0 —2 s
ACON [#@ o] @ed) @ | o
[l] ?"(g)« (") [m] i@) [n] [l] g+ (d09¢") [n]

Let us verify that on the left-hand side the maps g.(¢) o (¢*(9)).(¢’) and
@&'*(¢*(g)) satisfy the conditions of Lemma 6.1.5 with respect to ¢ o ¢’ and
g. It is immediate for condition (i). For condition (ii) we remark that the set
(¢ 0 ¢')~1(3) is made of the (ordered) union of subsets. The map ¢'*(¢*(g))
preserves the order of the subsets and preserves the order in each subset,
therefore the order of the union is also preserved.

By uniqueness of Lemma 6.1.5 we get identifications with the correspond-
ing maps in the right-hand side diagram. This proves formulas 1.h and 2.h.
The other formulas are proved similarly by looking at ad hoc diagrams. O

End of the Proof of Theorem 6.1.4. Define a morphism in AS as a pair (¢, g)
with ¢ € Homy([n], [m]) and g € S7% ;. Composition is defined by

((}5,9) °© (d’?h) = (¢°9*(¢) ) 1/)*(9) 0 h) )

where we use composition in A and in S;% ;.

Associativity is a consequence of formulas 1 and 2 of 6.1.6 The existence
of identities (t¢dn, 1,) is a consequence of formulas 3 of 6.1.6. Hence AS is a
well-defined category.

A morphism ¢ of A is identified with (¢,1,) and composition of such
elements is as in A. So A is a subcategory of AS.

An element g of S;%, is identified with (idy,g) and composition of such
elements is as in S;F ;. From the definition of composition and relations 3 of
6.1.6 we get

(6,9) = (¢,1n) 0 (idn, g) = do g,

and this proves condition (2).

An automorphism of AS is of the form (id,,, g), because the only automor-
phisms in A are the identities. Therefore Autas([n]) = S;%;, which proves
condition (1). O

Proof of Theorem 6.1.8. Let t,, be the cycle (0 1...n) in Spyq, that is ¢,(¢) =
i+ 1for 0 < i < nand t,(n) = 0. It generates the cyclic group C, =
Z/(n +1)Z in Sp41. Denote by 7, the corresponding element in S;%; (with
our previous notation 7, = t,).

From the definition of ¢* we compute 8;(7,) = Tn—1 for i = 1,...,n and
63(Tn) = 1n—1 and also 0} (1) = Tyt1 fori = 1,...,n, and o(r) = 72,,.
Therefore A and the cyclic groups C,, generate a subcategory of AS.
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In order to verify that this is AC as defined in 6.1.2 it suffices now to
check that 7;(8;) = 6;—1 for i = 1,...,n, and 7,(8y) = 6, and also that
Ti(0i) =041 for i =1,...,n, and 7,;(0p) = 0,,. For instance

Tn08; = (Tn)a(8:) 0 (6;)"(Tn) = 6101y for i=1,...,n:

b2

8y
O

6.1.7 Corollary. Under the identifications made in the above proof we have
the following formula in AS (and hence in AC):

god=g.()od™(g). 0

6.1.8 The Categories AS°P and AC°®P, Let us summarize the preceding
results for the category AS°P. It is clear that AS°P contains A°P as a subcat-
egory and contains all the symmetric groups S,41 as Autager([n]). Moreover
any morphism in AS°P? can be uniquely written ¢ o f with o € S,4; and
f € Homuor([m], [n]). For any w € S,;; and f as above there exist unique
elements f.(w) € Sp41 and w*(f) in Hompep ([m], [n]) such that

fow= fi(w)ow™(f).

In particular if f = d; (resp. s;), then w*(d;) = d; (resp. w*(s;) = s;) where
s _1 .
j=w(5).

If w is in the cyclic group C,, of S, generated by the cyclic permutation
tn, then f,(w) is in Cy,.

6.1.9 Proposition. The family of cyclic groups C, := Autacer([n]) (of
order n+ 1), n > 0, forms a cyclic set (and in particular a simplicial set).
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Proof. For any a € Homacer (Jm], [n]) and any g € C,, there exist unique
elements a,(g) € C, and g*(a) € Homaer([m], [n]) such that aog =
a«(g) o g*(a). From the associativity of the composition in AC°P we de-
duce that a! (a.(g)) = (a’ 0 a).(g) where ¢’ € Homacor([n], [n']). This shows
that the functor C. : AC°P? — (Sets) given by [n] —» C, and a — a, is
well-defined. a

6.1.10 The Explicit Structure of C.. Let t,, € C,, be the dual of 7,, as
in 6.1.2. From the formula d; o t, = d;.(t,) 0 t}(d;) in AC°P we deduce from
(6.1.2.b) that

di(ty) :=diu(tn) =tn—1 and ¢,(d)=di-; for 1<i<mn,

do(tn) = dou(tn) =id and t}(do) =dn .

Similarly we get for degeneracies
Si(tn) := Six(tn) =tny1 and t)(s;)) =si—; for 1<i<n,

So(tn) ‘= S0« (tn) = t,21+1 and t;(so) =S, .

As a simplicial set C, has only two non-degenerate cells, ty and ¢;. Hence its
geometric realization is the circle S! (cf. 7.1.2).

6.1.11 Proposition. The category AC is isomorphic to its opposite ACP.
Therefore there is an inclusion of categories A% — ACP =2 AC — AS.

Proof. One first constructs an eztra degeneracy ony1 : [n+ 1] — [n] in AC
by putting

Opt1 1= ao'r;il .
Hence formula 7,,0; = 0;_17p41 (cf. 6.1.1.b) is also valid for i = n + 1.

The duality functor AC°? — AC sends [n] to [n] d; to o; : [n+ 1] — [n]
for i = 0,...,n+ 1 (this is possible because of the existence of the extra
degeneracy op41), Si to 8i41: [n— 1] = [n] for £ = 0,...,n — 1 (note that &
is not used), and t, to 7! : [n] = [n].

By using relations 6.1.1 extended as said above, it is straightforward to
check that all the relations 6.1.2 are fulfilled. For instance d;d; = d;_1d; for
i < j becomes 0;0; = 0j_10; for ¢ < j, which is 6.1.1.a if j < n. If j = n,
then d;d, = d,_,d; becomes 0,0, = 0,_10;, that is 0,007, ! = 007',1__11@.
This is valid because 0;09 = 0¢0;4+1 = 0'07';_}10,‘7'" by 6.1.1.a and 6.1.1.b. O

6.1.12 The AS-Module of an Algebra. For any unital k-algebra A there
is defined a functor

C¥™(A) : AS — (k-Mod)
as follows. The image of [n] is A®™*. The action of the operators é;,0; and
g € 5,8 (corresponding to § € Spy1) are given by
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glag,...,an) = (aﬁ—l(o),...,aa—l(n)) ,
di(ag,...,an-1) = (ag,..-,8i-1,1,Giy...,ap—1), fori=0,...,n,

U]‘(ao,...,an+1) = (ao,...,a]-_l,ajaj_,.l,aj_,.g,...,an+1) fOI‘_] = 0,...,n .

In order to make the verifications (which are left to the reader) it is useful to
remark that the action of ¢ € Homa ([n], [m]), considered as a non-decreasing
application, is given by

(6.1.12.1) ®(ag, ... an) = (bo,...,bm) ,

where b; = a;, ...a;, when ¢7!(i) = {i; <142 < ... <i,}, and b; = 1 when
¢~ (i) = 0.

The composite

Csym( A

AC? =2 AC - AS ———(k-Mod)
is the cyclic module C(A) (see 6.4.4).

6.1.13 Remark on the Extra Degeneracy. Note that the extra degener-
acy Spt+1 : [n] = [n+1] in AC®P is such that dospy1 # sndo but dospt; =

t;!. In the case of the cyclic module C(A) one has s,ii(ag,...,a,) =
(1,aq,...,an), so this extra degeneracy is precisely the one used in the proof
of 1.1.12.

6.1.14 Automorphisms of AC. Remark that there are other possible for-
mulas for an isomorphism AC = AC°P since AC has non-trivial automor-
phisms. Indeed any sequence i = (ip = 1,13,...,1n,...) of integers gives rise
to an inner automorphism a; of AC by the formula

ai(¢) =Tiropor,*, ¢ € Homac([n],[m]) .
But there exists also an outer automorphism given by
gion_iin+1]—[n] for i=0,...,n,
b 0p_i:[n—1—>[n] for i=0,...,n,

Ti b Tp—q - [n] - [TL] .

Exercises

E.6.1.1. Let G be a group and let A and B be two subgroups of G such that
any element of G can be uniquely written as a product ¢ o g with ¢ € A and
g € B. Define functions ¢* : B — B and g, : A » A by the requirement

goo=g.(d)od*(g) -
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Show that these functions satisfy the properties of 6.1.6. Show that the case
¢* = id for all ¢ corresponds to a semi-direct product G = B x A.

E.6.1.2. Connes’ Proof of Decomposition in AC. Show that AC can
be identified with the category A whose objects are [n], n € N, and whose
morphisms f € Homy([n], [m]) are homotopy classes of monotone degree 1
maps ¢ from S to itself such that ¢(Z/(n +1)Z) C Z/(m + 1)Z. Here S! is
identified with the complex numbers of module 1 and Z/nZ with the group
of nth roots of unity.

Deduce from this interpretation another proof of Theorem 6.1.3 (cf.
Connes [1983]).

E.6.1.3. Show that the relations d;t, = t,_1d;_; for 1 < i < n and dyt, = d,,
imply d;(t,)"*! = (t,—1)"d; for all i. Show some similar implications with

degeneracies.

E.6.1.4. Show that the family of modules [n] — k [Up4+1]® A®™*! is equipped
with faces and degeneracy maps like for a simplicial module, except that the
formulas s;s; = s;418; are not fullfilled. (Cf. Frabetti [1997]).

E.6.1.5. Prove that all the automorphisms of AC are generated by those
described in 6.1.14. Give the complete structure of this automorphism group.
Show that the outer automorphism becomes inner for AD (cf. 6.3.4).

E.6.1.6. Consider a category presented by generators and relations as follows.
The objects are [n],n > 0, the generating morphisms are d;, s;,t, and ¢, :
[n] = [n]. Relations are as in 6.1.2, plus relations (b) and (c) with ¢;, in place
of t,, plus t,t}, = t)t,. Show that, contrarily to what was expected, this
category is simply AC. In other words show that all these relations imply
t, = t'. (This was a naive and unsuccesful attempt to discretize S* x S'.)
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E.6.1.7. Let 0x,k = 0,...,n — 1 be the involution (kk+1) in Sp41 =
Aut{0,...,n}. Show that a presentation of AS is given by the generators
di, 0j, Ok and the relations

(a) those of A (cf.6.1.1.a),

(b) 0x0; = 8;0, for k<i-—-1,
=8, for k=i-1,
=641 for k=1,
= 6;0,_1 fork > 1,

Oroj =00, for k<j-—1,
=0j-10;0,_, for k=j-1,
=0410;0;41 for k=7,
=0jbk41 for k> 7,

(c) those of S;8, for n>0.

(Cf. Clauwens [1992].)

6.2 Tor and Ext Interpretation of HH and HC

An interpretation of Hochschild homology in terms of Tor-functors of the
category of A°-modules was given in 1.1.13. In fact there is another one
which involves the category of simplicial modules rather than the category of
A®-modules. It takes the form

HH,(A) = Tor®” (k,C(A)) .

The advantage of this interpretation is its extension to the category of cyclic
modules which gives a Tor-interpretation of cyclic homology:

HCn(A) = Tor2°” (k,C(4)) .

Dually Hochschild cohomology and cyclic cohomology are interpreted in
terms of Ext functors:

HH"(A) & Ext’o, (C(A), k), HC™(A) 2 Extly0on(C(A), k) .

6.2.1 Simplicial and Cosimplicial Modules. A simplicial module is a
functor E : A°® — (k-Mod) or equivalently a contravariant functor from
A to (k-Mod). A cosimplicial module is a functor F : A — (k-Mod). One
can do homological algebra within the abelian category of simplicial (resp.
cosimplicial) modules and so the groups Torfop(F , E) are well-defined for all
n > 0. They are in fact k-modules. For n = 0 one has
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TOI‘OAOP(F,E)::F@AopE:E@AF:: HEn®Fn /ga_,,
n>0

where the equivalence relation & is generated by:

z® ¢u(y) = ¢*(z) ®y
forany z€F,,, y€F, and ¢ € Homu([n],[m]).

When F' is the trivial functor k given by F([n]) = k, for all n > 0,
with faces and degeneracies given by the identity, one can relate the groups
Torfop(k, E) to the classical homology groups of the complex E, (with dif-
ferential map X;(—1)'d;) associated to E..

6.2.2 Theorem. For any simplicial module E there s a canonical isomor-
phism
Tor2™ (k, E) = H,(E.) .

6.2.3 Corollary. Let E = C(A, M) be the simplicial module Cn,(A, M) =
M ® A®™ associated to the unital k-algebra A and the A-bimodule M. Then
there is a canonical isomorphism

Tor2™ (k, C(A, M)) = H,(A, M) . |

Note that this Tor-interpretation of Hochschild homology is different from
what was done in 1.1.13. In particular one does not need A to be flat over &
here.

Proof of Theorem 6.2.2. The idea of the proof is to provide a particular resolu-
tion of the trivial A-module k. Let A, := Homa([n], —) be the cosimplicial
set such that A,[m] = Homa([n],[m]). Then K, = k[A,] (free k-module
over A,) is a cosimplicial module.

Define b : K, -+ K,_; by b = ZLO(—l)idi. Then the following is a
well-defined complex of cosimplicial modules

K, : ...-—%Kz-—)Kl—)K()—}k,

where the last map is the augmentation map to the trivial cosimplicial module
k.

Let us show that the complex K, [—] is a projective resolution of the trivial
cosimplicial module k in the category of cosimplicial modules.
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6.2.4 Lemma. For any m > 0 the complex of projective k-modules
... = Kojm| = Ki[m] = Ko[m] — k

1s an augmented acyclic complex.

Proof. The homology of K,[m] is the homology of the simplicial set A [m],
whose geometric realization is the geometric m-simplex A™ (cf. Appendix
B.6). Since A™ is contractible, K,[m] is acyclic. a

End of the Proof of Theorem 6.2.2. An immediate consequence of the lemma
is that we can use K. to compute the Tor-group. This gives Tor2™ (k, E) =
H,(E ®a K.). But the map £ ® K, — E,, which is induced by z ® ¢ —
¢*(z) for ¢ € Homu([n],[m]) and z € E,,, is an isomorphism of k-modules.
Therefore the complex E ® 5 K, is precisely the classical complex associated
to a simplicial module. |

6.2.5 Remark. We may wish to work with A instead of A°P. The same kind
of property applies since it is a formality to show that

Tor®(E, F) = Tor®™ (F,E) .

6.2.6 Ext-Interpretation of HH*. Let E and E’ be two simplicial mod-
ules. Then one can define the derived functors Ext.p(E, E’). In particular
Ext%er (E, E') = Hompes (E, E'). The proof of Theorem 6.2.2 can be mim-
icked to show than for any k-algebra A there is a canonical isomorphism

Ext™o, (C(A), k) = HH™(A) .

6.2.7 Tor-Interpretation of Cyclic Homology. The interpretation of
cyclic homology and cylic cohomology as Tor and Ext functors respectively
consists in replacing A by AC. The proof is along the same lines as for
Hochschild homology, though instead of constructing a particular resolution
for the trivial AC-module k, one constructs a biresolution.

6.2.8 Theorem. For any cyclic module E there is a canonical isomorphism
Tor2¢” (k, E) = HC,(E) .
In particular, for any unital k-algebra A there is a canonical isomorphism

Tor2™ (k,C(A)) = HC,(A) .

Proof. The biresolution of the trivial cyclic module k is constructed as follows.
Let (K(p,q))n = k[Homa([g],[n])] (same module for all p). Then K,
can be made into a left AC-module by using composition in AC.
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Obviously K, ) is a simplicial AC-module, therefore it defines a com-
plex of AC-modules. We look at it as a vertical complex. The horizontal
differential K, oy = K(p_1,q) is induced by (1 —t,) when p is odd and by
N =1+1t,...+t] when p is even. Here ¢, is the cyclic operator with sign
(cf. 2.5.1).

This defines a bicomplex of AC-modules K. ..

For fixed n the bicomplex of k-modules K. .)[n] has columns (p fixed)
which are acyclic but in dimension 0, where the homology is k. In fact the
resulting horizontal complex (in dimension 0) is

L DL L DL

and therefore the homology of the bicomplex K. y[n] is k concentrated in
dimension 0. This proves that K. ) is a biresolution of the trivial AC-module
k.

The AC-module K, is projective because it is equal to the ideal
k[AC).id}g and id[g is an idempotent.

The computation of Tor®“(E,k) is a consequence of the equality
E®ac K(p,q) = Eq and so the bicomplex E ® ac K. ) is precisely the cyclic
bicomplex C(F) described in 2.5.5. O

6.2.9 Ext-Interpretation of Cyclic Cohomology. For cyclic cohomology
one gets an isomorphism

Extcop (B, k) & HC™(E)
and so for any unital k-algebra A one gets

Ext?y cop (C(A), k) = HC™(A) .

6.3 Crossed Simplicial Groups

The notion of crossed simplicial group comes from the following natural ques-
tion: are there families of groups which have the same kind of relationship
with A as the family of cyclic groups? We have already seen in 5.2 (resp. 6.1)
that the dihedral groups and the quaternionic groups (resp. the symmetric
groups) are such families. The axiomatization of the properties of the cate-
gory AC gives rise to the notion of crossed simplicial group. Simplicial groups
are particular examples of this new structure, in fact examples for which a
certain type of action is trivial, whence the choice of the adjective crossed for
the general notion.

Apart from cyclic, dihedral, quaternionic and symmetric groups, other
examples are hyperoctahedral groups and braid groups. In fact there is a
classification of crossed simplicial groups in terms of simplicial groups and
seven particular crossed simplicial groups (cf. 6.3.5).
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Any crossed simplicial group gives rise to a theory analogous to cyclic ho-
mology, for instance dihedral and quaternionic homology. For the symmetric
case and braid case the associated theories are related to the functors 2°5*
and 2252 (cf. Exercise E.6.3.2).

This section is taken out from Fiedorowicz-Loday [1991].

6.3.0 Definition. A crossed simplicial group is a family of groups G, n > 0,
such that there exists a category AG with objects [n], n > 0, containing A
as a subcategory and such that

(1) the group of automorphisms of [n] in AG is the (opposite) group G2P,
(2) any morphism from [n] to [m] in AG can be uniquely written as the
composite ¢ o g with ¢ € Homa([n], [m]) and g € Autac([n]) = G2P.

6.3.1 Lemma. The family of groups G. = {G,} form a simplicial set and
even a AG°P-set.

Proof. Once Gy, is identified with Autager([n]), the proof is the same as in
Proposition 6.1.9. O

Remark that in general G is not a simplicial group, example: C (there is no
non-trivial group homomorphism from Z/nZ to Z/(n + 1)Z). On the other
hand it is interesting to know when a simplicial set which has a group struc-
ture in each dimension is a crossed simplicial group.

6.3.2 Proposition. A crossed simplicial group is a simplicial set G, such
that each G,, is equipped with

~ a group structure,
- an action (on the right) on Homa([m], [n]) for all m, such that the formulas
of Proposition 6.1.6 are fulfilled. 0

6.3.3 Examples. Let H, be the hyperoctahedral group, that is the semi-
direct product of the symmetric group S,, with (Z/2Z)", where the symmetric
group acts by permutation of the factors: H, := (Z/2Z)™ x S,,. The quotient
map is denoted by 7= : H, — S,. The dihedral group D, = {r,w|t" =
w? =1, wrw™! = 771} = Z/2Z x Z/nZ can be identified to a subgroup of
H, by sending Z/2Z diagonally to (Z/2Z)™ and T to the cyclic permutation
(12...n). The quaternionic group Q, = {r,w|™" = w?,wrw™! =771} is the
2-fold non-trivial central extension of D,,.

6.3.4 Proposition. The following families of groups are crossed simplicial
groups:
(a) any simplicial group,

and also the following, which are not simplicial groups (except {1}):
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(b) the seven “fundamental crossed simplicial groups” that is the family of
hyperoctahedral groups {Hp11}, and the following subfamilies:
()22 % Suir}, {Snsr}, {Dusr}, {2/ (n + 12}, {2/22}, {1},
(c) the family {Z},
(d) for any fized integer r the family of cyclic groups (C(r))n={Z/r(n + 1)Z},
(e) the family of quaternionic groups {Qn+1},
(f) the family of braid groups {Bp41}.

Proof. (a) By Proposition 6.3.2 we only need to provide a right action of G,
on Homu([m], [n]) or equivalently a left action of GSP. Let this action be
trivial, that is g*(¢) = ¢ for any g € GSP and any ¢ € Hom,. Then formulas
of Proposition 6.1.6 are obviously fulfilled. Note that, vice-versa, a crossed
simplicial group for which G,, acts trivially is a simplicial group.

(b) The proof is similar to the one provided for AS by Theorem 6.1.4 but
with the following modifications concerning Lemma 6.1.5. Write ¢ =
(90s--+,9n:7(9)), 9 € Z/2Z and 7(g) € S,%,, for an element of H.Y ;.
In Lemma 6.1.5
— put H in place of S,

- in the diagram of (i) replace the vertical maps by m(¢*(g)) and = (g)
respectively,

~ condition (ii) is: the restriction of w(¢*(g)) to the subset (¢)~1(i)
preserves (resp. inverts) the order if g, (g)(;) = O (resp. 1),

— there is one more condition: (iii) (¢*(9)): = gs(i)-

Note that the action of H,1; on Homa([m], [n]) is via the canonical pro-
jection 7. This ends the proof of the hyperoctahedral case.

Then it is straightforward to check that all the other families are stable
under the simplicial structure. The last case was listed for completeness of
the subfamilies of H . Remark that {Z/2Z} is not the trivial simplicial group,
in fact it is not even a simplicial group.

1

For cases (c), (d) and (e) we describe the presentation of AG. (For case
(f) see Exercise E.6.3.1). The proof consists in providing another crossed
simplicial group G”, which is one of the seven fundamental crossed simplicial
groups, and a simplicial group G’ together with maps

1-G -G -G —1



6.3 Crossed Simplicial Groups 217

which form extensions of groups in all dimensions. The uniqueness property
(2) of 6.3.0 follows from the uniqueness property for G and G'.

(c) The category AZ has a presentation by generators and relations like in
6.1.1 but with condition (c) replaced by: 7, is an isomorphism. Remark
that now the relations 7,8y = 8, and 0y = 0,72 41 are not consequences
of the others anymore. Here G = C and G’ is the trivial simplicial group
Z (cf. Exercise E.6.1.3).

(d) The category AC(r) has a presentation by generators and relations like
in 6.1.1 but with condition (c) replaced by (7,,)""*1) = 1. Here G = C
and G’ is the trivial simplicial group Z/rZ (again cf. Exercise E.6.1.3).

(e) The category AQ has for generators those of A and those of @, for all
n. The relations are:

— those of A,

= Tnb; = 0;_1Tn_1, for 1 <i < n, 7,00 = Op,y
Wnd; = dp_jwn_1, for 0 < i < m,
TnOi = Oi—1Tn41, for 1 <4 < m,
w'néi = 5n—iwn+1, for 0 <i1<n,

— those of Q,, for all n.

Remark that if one adds the relation w? = 1, then one gets a presentation
of the dihedral crossed simplicial group. Here G” = {Dy,41} and G’ is the
trivial simplicial group Z/2Z. a

6.3.5 Classification of Crossed Simplicial Groups. The case (b) of
the preceding proposition is important in view of the following classification
theorem:
Any crossed simplicial group G is an eztension of G’ by G", where G' is
a simplicial group and G" is one of the seven fundamental crossed simplicial
groups (see 6.3.4.b),
12G -G =G ' —>1.

Since we will not use this result in the book we refer to the literature for
the proof (cf. Fiedorowicz-Loday [1991]).

6.3.6 AG°P-Objects. Mimicking what was done for simplicial modules and
cyclic modules one can define AG°P-modules and a homology theory attached
to them (see 6.3.7 below). More generally a AG°P-object in a category C is
simply a functor

X :AG®? 5 C.

We already noted in 6.3.1 that [n] — G, is a AG°P-set. For any a €
Homages ([m], [n]) and any g € G,,, the element a.(g) is defined by the fol-
lowing equality of morphisms in AG°P,

aog=a.g)og(a), a.(9)€G,, g'(a)€ Hompor([m],[n]).
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The classifying space of this simplicial set is a topological group which
plays an important role in the theory. The particular case AG = AC will
be studied in detail in the next chapter, in a way which easily allows its
generalization to any crossed simplicial group (mutatis mutandis).

Let us indicate what the geometric realizations are in a few cases:

|IC.| = S1, |D| = 0(2), |Q.| = Pin(2) (normalizer of S* in S%), |{Z}| = R,
{z/2Z}| =Z/2Z, |S| = S = lim, S™, |H | = Z/2Z x S*.

6.3.7 Homology and Cohomology Theories Associated to Crossed
Simplicial Groups. Let G, be a crossed simplicial group with associated
category AG. Any functor F : AG°? — (k-Mod) gives rise to a homology
theory Tor*AGOP(k,E). We know by 6.2.3 and 6.2.8 that for G = {1} and
G = C these homology groups can be computed via the Hochschild complex
and cyclic bicomplex respectively.

In the dihedral case, and under the assumption 1/2 € k, we constructed in
Sect. 5.2 a bicomplex CC* giving rise to dihedral homology HD,. The same
proof as in 6.2.8 shows that for any dihedral module F, there is a canonical
isomorphism

Tor2P* (k, E) = HD,(E) .

If 2 is not invertible in &, then one can either work with quaternionic homology
(cf. 5.2.13) to get an isomorphism (for any quaternionic module):

Tor2?™ (k, E) = HQ.(E) .

or, if one still wants to use TorfD Qp, then take as HD the theory due to J.
Lodder and defined in Exercise E.5.2.4.

Of course similar isomorphisms hold in cohomology by using the Ext
functors.

For the categories AS°P; AH°P and AB°P (see Exercise E.6.3.1) the asso-
ciated homology theory is simply Hochschild homology, see Exercise E.6.3.2.
For the category AC we still recover cyclic homology since AC is isomorphic
to AC°P. However for the category AS we get another theory that Fiedorow-
icz showed to be strongly related to the functor 2°S* (cf. Exercise E.7.3.8).

6.3.8 Generalization. One can view a crossed simplicial group, more pre-
cisely the category AG, as a particular case of the following situation: there is
given a category C with two subcategories A and B having the same objects
as C with the property that any morphism f in C can be uniquely written as
a composite f = a o b with a € Mor A and b € Mor B. The consequence of
this feature is that for any C-module X there is a spectral sequence abutting
to Tor(k, X). A simple example of such a category (with only one object)
is given in Exercise E.6.1.1. When, in this example, the action of A on B
is trivial so that G =AxB, the spectral sequence is the Hochschild-Serre
spectral sequence. Crossed simplicial groups are examples in which A = A
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and B is a groupoid. The epicyclic category (cf. Exercise E.6.4.3) is a slight
generalization consisting in replacing the product of A and B by an abelian
amalgamated product.

Exercises

E.6.3.1. Braid Groups. Show that the family of braid groups { B,+1} form
a crossed simplicial group and identify the components G’ and G” of the
decomposition (cf. 6.3.5). (G” = {Sn+1}n>0 and G’ is the simplicial group of
coloured braids, cf. Fiedorowicz-Loday [1991].)

E.6.3.2. Show that if G is the crossed simplicial group {Z} described in
6.3.4.c or {Snt1}n>0, OF {Bnt1}n>0, Of {Hpnt1}n>0, then one has

Tor2S™ (k, E) = Tor®” (k, E) = H,(E) ,

for any functor £ : AG°® — (k-Mod). (In all these examples there are
inclusions G, — Gp4; which can be used to construct a homotopy. cf.
Fiedorowicz-Loday [1991].)

E.6.3.3. Denote by AZ the category associated to the crossed simplicial
group of 6.3.4.c. Let E : AZ°® — (k-Mod) be a functor. Show that using
a free resolution of the infinite cyclic group one can construct a bicomplex
analogous to the cyclic bicomplex. Show that it is the first two columns of the
cyclic bicomplex (except that ¢ is an infinite cyclic operator instead of being
a finite cyclic one). Recover the statement of Exercise E.6.3.2 for G = {Z}.
Note that if we ignore the degeneracies, this statement is no more valid. (Use

the resolution 0 — ZJt,t~1] =5 Z]t,t~] — 7).)
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E.6.3.4. Let G, be a simplicial group with associated category AG. Then
|G | is a topological group. Show that there is a homotopy equivalence

B|G| = BAG .

E.6.3.5. Generalize 6.1.12 to involutive algebras by replacing AC by AD
and AS by AH.

6.4 The Category of Finite Sets
and the A-Decomposition

In Chap.4 we proved that if A is commutative, then the cyclic module
C(A) is equipped with M-operations. Moreover if k contains Q, then these A-
operations give rise to the Eulerian idempotents which split both Hochschild
homology and cyclic homology. Suppose now that one deals with a general
simplicial or cyclic module. Under what conditions do there exist A-operations
on its homology or on its cyclic homology? The answer is surprisingly simple:
for a simplicial module it suffices that the functor F : AP — (k-Mod) fac-
tors through the category of finite pointed sets; for a cyclic module it suffices
that the functor E : AC°P — (k-Mod) factors through the category of finite
sets. Of course this is what happens for C(A4) when A is commutative.
The main reference for this section is Loday [1989).

6.4.1 The Category Fin of Finite Sets. Let [n] = {0,1,...,n} be a set
with n + 1 elements, base-pointed at 0 if necessary. The category of finite sets,
denoted Fin, has for objects the elements [n], n > 0, and for morphisms from
[n] to [m] all the possible set maps between {0,1,...,n} and {0,1,...,m}.
The category of finite pointed sets, denoted Fin’, is the subcategory of Fin
with the same objects and with morphisms the pointed maps (i.e. f(0) = 0).
Of course composition in these categories is just the usual composition of
maps.

6.4.2 Functorial Interpretation of C. The cyclic set C, is a functor
AC°P — (Sets). Since C,, = Z/(n+1)Z = {0,1,...,n} = [n] it is clear
that one can consider it as a functor

C:AC°? » Fin.
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