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Universitat Politécnica de Catalunya

Joan Porti
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Seade
Complex Kleinian Groups, PM 303

2013 Xavier Tolsa
Analytic capacity, the Cauchy transform,
and non-homogeneous Calderón–Zygmund
theory, PM 307

2014 Veronique Fischer and Michael Ruzhansky
Quantization on Nilpotent Lie Groups,
Open Access, PM 314

2015 The scientific committee decided not to
award the prize

2016 Vladimir Turaev and Alexis Virelizier
Monoidal Categories and Topological Field
Theory, PM 322

2017 Antoine Chambert-Loir, Johannses Nicaise
and Julien Sebag
Motivic Integration, PM 325

2018 Michael Ruzhansky and Durvudkhan
Suragan
Hardy Inequalities on Homogeneous Groups,
PM 327

2019 The scientific committee decided not to
award the prize



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Background

1.1 Simplicial categories . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Simplicial sets . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.2 Simplicial complexes . . . . . . . . . . . . . . . . . . . . . . 21

1.1.3 Simplicial chains . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Differential categories . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Commutative differential graded algebras and
the Sullivan model of a space . . . . . . . . . . . . . . . . . 26

1.2.2 Differential graded Lie algebras and
the Quillen model of a space . . . . . . . . . . . . . . . . . 31

1.2.3 Differential graded coalgebras . . . . . . . . . . . . . . . . . 34

1.2.4 Differential graded Lie coalgebras . . . . . . . . . . . . . . . 37

1.2.5 A∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3 Model categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.3.1 Differential model categories . . . . . . . . . . . . . . . . . 48

1.3.2 Cofibrantly generated model categories . . . . . . . . . . . . 50

2 The Quillen Functors L , C and their Duals A , E

2.1 The functors L and C . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 The functors A and E . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Complete Differential Graded Lie Algebras

3.1 Complete differential graded Lie algebras . . . . . . . . . . . . . . 72

3.2 The completion of free Lie algebras . . . . . . . . . . . . . . . . . 76

3.3 Completion vs profinite completion . . . . . . . . . . . . . . . . . . 86

4 Maurer–Cartan Elements and the Deligne Groupoid

4.1 Maurer–Cartan elements . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Exponential automorphisms and
the Baker–Campbell–Hausdorff product . . . . . . . . . . . . . . . 96

4.3 The gauge action and the Deligne groupoid . . . . . . . . . . . . . 100

vii



viii Contents

4.4 Applications to deformation theory . . . . . . . . . . . . . . . . . . 107

4.5 The Goldman–Millson Theorem . . . . . . . . . . . . . . . . . . . 109

5 The Lawrence–Sullivan Interval

5.1 Introducing the Lawrence–Sullivan interval . . . . . . . . . . . . . 118

5.2 The LS interval as a cylinder . . . . . . . . . . . . . . . . . . . . . 121

5.3 The flow of a differential equation, the gauge action
and the LS interval . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Subdivision of the LS interval and a model of the triangle . . . . . 125

5.5 Paths in a cdgl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 The Cosimplicial cdgl L•
6.1 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Inductive sequences of models of the standard simplices . . . . . . 134

6.3 Sequences of equivariant models of the standard simplices . . . . . 144

6.4 The cosimplicial cdgl L• . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 An explicit model for the tetrahedron . . . . . . . . . . . . . . . . 148

6.6 Symmetric MC elements of simplicial complexes . . . . . . . . . . 152

7 The Model and Realization Functors

7.1 Introducing the global model and realization functors.
Adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 First features of the global model and realization functors . . . . . 163

7.3 The path components and homotopy groups of 〈L〉 . . . . . . . . . 167

7.4 Homological behaviour of LX . . . . . . . . . . . . . . . . . . . . . 172

7.5 The Deligne groupoid of the global model . . . . . . . . . . . . . . 177

8 A Model Category for cdgl

8.1 The model category . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2 Weak equivalences and free extensions . . . . . . . . . . . . . . . . 189

8.3 A path object, a cylinder object and homotopy of morphisms . . . 193

8.4 Minimal models of simplicial sets . . . . . . . . . . . . . . . . . . . 199

Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9 The Global Model Functor via Homotopy Transfer

9.1 The Dupont calculus on APL(Δ
•) . . . . . . . . . . . . . . . . . . 204

9.2 Obtaining L• and LX by transfer . . . . . . . . . . . . . . . . . . . 208

Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211



Contents ix

10 Extracting the Sullivan, Quillen and Neisendorfer Models
from the Global Model

10.1 Connecting the global model with the Sullivan, Quillen
and Neisendorfer models . . . . . . . . . . . . . . . . . . . . . . . . 214

10.2 From the Lie minimal model to the Sullivan model
and vice versa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.3 Coformal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

11 The Deligne–Getzler–Hinich Functor MC• and Equivalence
of Realizations

11.1 The set of Maurer–Cartan elements as a set of morphisms . . . . . 224

11.2 Simplicial contractions of APL(Δ
•) . . . . . . . . . . . . . . . . . . 228

11.3 The Deligne–Getzler–Hinich ∞-groupoid . . . . . . . . . . . . . . 231

11.4 Equivalence of realizations and Bousfield–Kan completion . . . . . 237

Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

12 Examples

12.1 Lie models of 2-dimensional complexes. Surfaces . . . . . . . . . . 245

12.2 Lie models of tori and classifying spaces of right-angled
Artin groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

12.3 Lie model of a product . . . . . . . . . . . . . . . . . . . . . . . . 255

12.4 Mapping spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

12.4.1 Lie models of mapping spaces . . . . . . . . . . . . . . . . . 263

12.4.2 Lie models of pointed mapping spaces . . . . . . . . . . . . 266

12.4.3 Lie models of free loop spaces . . . . . . . . . . . . . . . . . 267

12.4.4 Simplicial enrichment of cdgl and cdga . . . . . . . . . . . 269

12.4.5 Complexes of derivations and homotopy groups
of mapping spaces . . . . . . . . . . . . . . . . . . . . . . . 271

12.5 Homotopy invariants of the realization functor . . . . . . . . . . . 275

12.5.1 Action of π1〈L〉 on π∗〈L〉 . . . . . . . . . . . . . . . . . . . 276

12.5.2 The rational homotopy Lie algebra of 〈L〉 . . . . . . . . . . 278

12.5.3 Postnikov decomposition of 〈L〉 . . . . . . . . . . . . . . . . 280

Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Notation Index

General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



Introduction

Rational homotopy theory is a branch of topology which studies the “non-torsion”
behaviour of the homotopy type of topological spaces. This area was born about
fifty years ago in pursuit, among others and broadly speaking, of the following
objectives:

One of these aims was to associate functorially to each topological space
another which keeps only the rational information of its homotopy type. This was
outlined already by D. Sullivan in [126] and then presented by several authors for
simply connected spaces or more generally, for nilpotent ones1, see for instance [75,
107, 113, 127]. Indeed, an application of localization methods in homotopy theory
gave rise to the rationalization functor, which assigns to each nilpotent space X
the space XQ which is characterized by being rational from the homotopical, or
equivalently, homological point of view. That is,

π∗(XQ) ∼= π∗(X)⊗Q, or equivalently, H̃∗(XQ) ∼= H̃∗(X ;Q).

The notion of completion introduced in [13] generalizes that of localization in two
ways: it can be defined for any simplicial set (and hence, for any topological space,
not necessarily nilpotent) and it coincides with localization when the completion
is taken on any subring of the rational numbers. This applies in particular to the
rational completion or Q-completion, a functor which assigns to a given simplicial
set X another simplicial set Q∞X which is characterized by the property that a
map of simplicial sets f : X → Y induces an isomorphism in rational homology if
and only if the map

Q∞f : Q∞X
�−→ Q∞Y

is a homotopy equivalence.

Another fundamental aim of rational homotopy theory was to characterize
the homotopy type of the rationalization or Q-completion of a space by means
of algebraic models. This goal was attained simultaneously by D. Sullivan and D.
Quillen in two different ways which are now classical in the theory.

1Recall that a space is nilpotent if it has a nilpotent fundamental group which operates
nilpotently in the higher homotopy groups.
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2 Introduction

The Sullivan “commutative” approach, see [12, 128], is based on the discovery
of a pair of adjoint functors

sset
APL ��

cdga
〈 · 〉S

�� (1)

that connect the categories of simplicial sets and commutative differential graded
algebras (cdga’s henceforth).

On the one hand, for any simplicial set X , APL(X) is the cdga of piece-
wise linear differential forms on X . Such a form assigns to each n-simplex of X
a polynomial differential form in the topological n-simplex Δn, in a fashion com-
patible with the faces and degeneracies of X . Given a connected simplicial set
X , the cdga of polynomial forms APL(X) may be replaced by a much simpler
cdga, which still keeps all the “rational topological information” of X . This is
the so-called (Sullivan) minimal model of X , which is a cdga of the form (∧V, d),
where ∧V denotes the free commutative graded algebra generated by the graded
vector space V , and the differential d satisfies a certain recursive condition. The
link between the minimal Sullivan model and the functor APL is established by a
quasi-isomorphism (a cdga morphism inducing isomorphisms in homology),

(∧V, d) �−→ APL(X).

On the other hand, the realization functor is introduced, like in many other
algebraic categories, as the morphisms to a “simplicial universal” object of the
given category. Indeed, the realization of a given cdga A is the simplicial set

〈A〉S = Homcdga(A,Ω•)

of cdga morphisms from A to Ω• = APL(Δ
•), which is the simplicial cdga of PL-

forms on the standard simplices. The simplicial structure on 〈A〉 is induced by
that on Ω•. In other words, we may say that the Sullivan realization functor 〈 · 〉S
is representable by the simplicial cdga Ω•.

It turns out that the pair of adjoint functors in (1) induces equivalences
between the homotopy categories of nilpotent simplicial sets (which are rational
in the sense above and with finite type homology) and connected cdga’s (these are
non-negatively graded cdga’s A =

∑
p≥0 A

p for which A0 = Q) with finite type
minimal models.

Moreover, the techniques and ideas arising from this approach can be suc-
cessfully applied to general, not simply connected, nor nilpotent spaces, see [51].
We mention an illustrative and key result in this direction: whenever X is of finite
type, the Sullivan realization of its minimal model has the homotopy type of the
Q-completion of X :

〈∧V, d 〉S 	 Q∞X.
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In other words, one of the adjunction maps of the above pair of functors is, up to
homotopy, the Q-completion

X −→ Q∞X

for finite-type connected spaces.

On the other side, in his seminal paper [115], D. Quillen constructed a pair
of functors,

sset1
λ ��

dgl1
〈 · 〉Q

�� (2)

between the category of simplicial sets with only one simplex in dimensions 0
and 1, and the category of reduced or 1-connected differential graded Lie algebras
(dgl’s for short), i.e., concentrated in positive degrees. Both the Quillen model
functor λ and the Quillen realization functor 〈 · 〉Q are the result of a composition
of other functors between several simplicial categories. In the end, each of these
compositions induces an equivalence between the homotopy category of rational
simply connected topological spaces of the homotopy type of CW-complexes, and
the homotopy category of 1-connected dgl’s.

However, in contrast to the Sullivan approach, all the functors whose compo-
sition determines the pair above need 1-connectivity in their corresponding domain
and codomain categories to exist. Moreover, their extension to a more general set-
ting is not possible for most of the functors involved.

With all of the above in mind, the present text is mainly devoted to a self-
contained presentation of the Lie approach to rational homotopy for general, not
necessarily simply connected, nor even connected, spaces. In this way we overcome
the main restriction imposed by the classical Quillen approach.

From the topological point of view, the extension of the Quillen model functor
to general spaces will have many useful application and thus, needs no further
motivation. Think for instance of all possible variations of mapping spaces, which
are key examples of non-connected spaces whose global algebraic modelling is even
desirable without restricting to path components which, in any case, might not be
even nilpotent.

On the other hand, there are many situations in a wide range of mathematics,
from algebraic geometry to mathematical physics, where a suitable notion of ge-
ometrical realization of differential graded Lie algebras, not necessarily positively
graded, would be most welcome. An illustrative and ubiquitous example in which
unbounded dgl’s are useful is given by a fundamental principle of deformation
theory which we now briefly explain.

Let R be a local commutative algebra with maximal ideal M, let lk = R/M
be the residue field and let A be a graded lk-vector space endowed with some
additional structure. An R-deformation of A is another such structure in A⊗lk R
that, modulo M, reduces to the original one in A. For instance, if A is a cdga
and we choose R = lk

[
[t]
]
to be the local ring of the formal power series in lk,

an R-deformation of A is just a cdga structure on A
[
[t]
]
, the power series with
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coefficients in A, such that the constant part of a product of two series is precisely
the multiplication in the original cdga.2 In [110], A. Nijenhuis and R. Richardson
outlined what is currently known as the Deligne Principle for deformations. As
stated in a letter of Deligne to J. Millson [38], this principle asserts that, whenever
lk is of characteristic zero,

“Every deformation functor is governed by a dgl.”

In the elaboration of this principle, essential concepts in our theory will come
to light: for any given differential graded Lie algebra L, the set MC(L) of Maurer–
Cartan elements of L, or simply MC elements, is the set of elements a degree −1
satisfying the classical Maurer–Cartan equation

da+
1

2
[a, a] = 0.

The vector space L0 of degree-0 elements has a group structure with the classical
Baker–Campbell–Hausdorff product. Moreover, this group acts as a “group of gauge
transformations” on the Maurer–Cartan set MC(L) via the so-called gauge action,
defined by

xG a =
∑
i≥0

adix(a)

i!
−
∑
i≥0

adix(dx)

(i+ 1)!
, for x ∈ L0 and a ∈ MC(L),

in which adx is the usual adjoint operator, adx(a) = [x, a]. The first summand is

precisely eadx(a), while the second can be written as eadx−1
adx

(dx), in view of the

equality
∑

n≥0
tn

(n+1)! =
et−1

t . Hence, the gauge action takes the standard form,

xG a = eadx(a)− eadx − 1

adx
(dx), for x ∈ L0 and a ∈ MC(L).

We then define
M̃C(L) = MC(L)/G

to be the set of Maurer–Cartan elements modulo the gauge action.

In this context, if we denote by Def(A;R) = the set of (isomorphisms classes
of) R-deformations of A, the Deligne principle asserts that there exists a differen-
tial graded Lie algebra L such that

Def(A;R) ∼= M̃C(L).

Thus, an accurate notion of geometric or topological realization of any dgl will
allow us to consider from a homotopy point of view the moduli spaces of defor-
mations of some structure.

2This particular example is of crucial importance when A is taken to be the smooth functions
on a manifold M in view of the Kontsevich Quantization Theorem [89], which asserts that every
Poisson structure on A arises from a certain R-deformation of A as above.
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After motivating our main objective, it is appropriate to emphasize that our
approach is closely related to recent important results and constructions, including
the following ones, which will be explained in some detail later in this introduction:
the study of the Deligne–Getzler–Hinich functor [60] and its relation with rational
homotopy [2, 8, 93]; the construction of the Lawrence–Sullivan interval [91]; or the
use of transfer methods for building Lie models of spaces [2, 118].

Also, we remark that to avoid excessive technicalities on one side, and to give
specific tools for computations on the other, we have decided to avoid the category
of L∞-algebras and the operadic framework. Rather, the fundamental algebraic
category in the text is that of complete differential graded Lie algebras, cdgl’s from
now on. Its objects are dgl’s L endowed with a filtration {F p}p≥0 compatible with
the Lie bracket and for which

L = lim←−
p

L/F p.

Morphisms in this category are dgl morphisms which respect the corresponding
filtrations.

Having said that, the starting point of our theory is the following observation:
it is well known that, although conceptually different, the Quillen and Sullivan
approaches to rational homotopy theory, briefly presented above, follow almost
perfectly Eckmann–Hilton dual (or more generally Koszul dual) paths.

For instance, just as in the Sullivan setting, for any simply connected space
X , the dgl λ(X) can be replaced by a simpler dgl of the same homotopy type.
This is the (Quillen) minimal model of X , denoted by (L(W ), d), in which L(W )
stands for the free graded Lie algebra generated by a graded vectors space W , and
where the differential d again satisfies a certain recursive condition. Once more,
the link between the minimal Quillen model and the functor λ is established by a
quasi-isomorphism,

(L(W ), d)
�−→ λ(X).

Moreover, if (∧V, d) denotes the Sullivan minimal model, the classical examples be-
low show that the Sullivan and the Quillen approaches faithfully follow Eckmann–
Hilton dual paths:

H∗(∧V, d) ∼= H∗(X ;Q), while H∗(L(W ), d) ∼= π∗(ΩX)⊗Q.

Also,

V ∼= π∗(X)⊗ Q, while W ∼= H∗−1(X ;Q).

However, this duality, of which we could present much more evidence, seems
to fail precisely at the fundamental level of the pairs of functors in (1) and (2),
which give rise to both approaches. Indeed, it quickly becomes quite clear how the
complexity of the functors λ and Quillen realization 〈 · 〉Q strongly contrasts with
the conceptual simplicity of the pair of adjoint functors APL and 〈 · 〉S on which
the Sullivan approach to rational homotopy theory is based.
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For this reason, the lack of an Eckmann–Hilton dual of the simplicial cdga
Ω• to construct a dgl realization functor has puzzled homotopy theorists since the
birth of the theory. We then ask: does there exist such a universal cosimplicial
object in the category of dgl’s on which we may base the topological realization
of any dgl?

The first step for a positive answer to that question was given in [91] by the
construction of the Lawrence–Sullivan interval: in what follows, and given a graded
vector space W , we denote by L̂(W ) the free complete Lie algebra generated by
W , which is defined as

L̂(W ) = lim←−
n

L(W )/L≥n(W ).

Here, L≥n(W ) denotes the ideal generated by Lie brackets of length at least n. In

other words, an element of L̂(W ) consists of a series whose nth term is a sum of Lie
brackets of length exactly n. With this notation, and using ideas from dynamical
systems, R. Lawrence and D. Sullivan construct in [91] a free complete differential
graded Lie algebra of the form,

L1 = (L̂(a, b, x), d),

in which a and b are Maurer–Cartan elements, and hence of degree −1, x is a
degree-0 element, and

dx = adx b+

∞∑
n=0

Bn

n!
adnx(b − a),

where the Bn’s are the Bernoulli numbers.

We may think of the vector space generated by a, b and x as the desuspension
of the simplicial chains on Δ1, which we denote by s−1Δ1. Moreover, the linear
part of the differential d, which we denote by d1, is 0 on a and b, and is b−a on x.
That is, d1 is precisely the desuspension of the differential on the simplicial chains
of Δ1. In other words,

L1 = (L̂(s−1Δ1), d),

in which d makes the vertices Maurer–Cartan elements and extends the usual
chain operator on s−1Δ1.

We extend this and build, for each n ≥ 0, a free cdgl

Ln = (L̂(s−1Δn), d)

in which s−1Δn, together with the linear part of the differential d, is again the
(desuspension) of the rational simplicial chain complex of the standard n-simplex
Δn, and the vertices still correspond to Maurer–Cartan elements.
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Moreover, the cofaces and codegeneracies of the natural cosimplicial structure
in the graded vector space s−1Δ• are extended to cdgl morphisms on (L̂(s−1Δ•), d)
so that the family

L• = {Ln}n≥0

is a cosimplicial cdgl which becomes our coveted “cosimplicial universal object”
in the category of cdgl’s, dual of the simplicial cdga Ω•.

Hence, we are able to define the realization of any cdgl L as the simplicial
set

〈L〉 = Homcdgl(L•, L),

with the simplicial structure induced by the cosimplicial one in L•.
On the other hand, L• also permits us to construct a model functor by

defining the (global) model of any given simplicial set X as

LX = lim−→
σ∈X

L|σ|.

In this way we obtain a pair of adjoint functors, global model and realization,

sset cdgl,
〈 · 〉

��
L ��

whose main features we list below.

Before enumerating the main properties of the realization functor, we first
need to introduce two fundamental notions: given any cdgl L and any MC element
a ∈ MC(L), the differential d on L can be perturbed by a to produce another
differential

da = d+ ada .

We then define the component of L at a as the connected (i.e., non-negatively
graded) sub-cdgl of (L, da) consisting of

La
p =

{
kerda, if p = 0,

Lp, if p > 0.

Then, we first prove that the realization functor “preserves path-connected
components”. That is, given any cdgl L,

〈L〉 = 
a∈˜MC(L)

〈La〉.
In other words, the realization of L has as many path components as classes of
MC elements modulo the gauge action, and each of these components is precisely
the realization of the component of L at the corresponding class of MC elements.

We also compute the homotopy groups of each of these components and show
that, for any connected cdgl L and any n ≥ 1,

πn〈L〉 ∼= Hn−1(L).
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It is important to remark that for n = 1 the group structure on H0(L) is given by
the Baker–Campbell–Hausdorff product.

Via this isomorphism, the action • of π1〈L〉 on each πn〈L〉 is given by the
“exponential morphism”:

α • β = eadαβ, where α ∈ H0(L) and β ∈ Hn−1(L).

Moreover, there is an isomorphism of graded Lie algebras,

H≥1(L) ∼= π≥1Ω〈L〉

where in the latter, the Lie algebra structure is, as usual, induced by the Whitehead
product.

On the other hand, concerning the main characteristics of the global model
functor, the cdgl LX is shown to be the only one, up to isomorphism, satisfying
the following properties:

• As a graded Lie algebra, LX = L̂(s−1X) is the free complete Lie algebra
generated by the desuspension of the non-degenerate simplicial chains on X .

• The generators corresponding to 0-simplices are Maurer–Cartan elements.

• The linear part of the differential in LX is the desuspension of the differential
of the non-degenerate simplicial chain complex.

• If Y ↪→ X is a sub-simplicial set, then the map LY → LX induced by the
inclusion on simplicial chains is a cdgl morphism.

Moreover, we completely determine the Deligne groupoid of the global model
by showing that there are as many classes of MC elements, modulo the gauge
action, as path components (plus one) of X . That is,

M̃C(LX) = π0(X
+),

in which X+ = X ∗ denotes the disjoint union of the given simplicial set X with
an external base point. In particular, if X is connected and a is any 0-simplex,

M̃C(LX) = {0, a}.

Another particularly interesting property of the model functor is its homo-
logical behaviour. Indeed, for any simplicial set X it is easy to see that

H(LX) = 0.

The reader may be initially puzzled by this result, especially if LX is designed
to contain all the information about the rational homotopy type of X . That is
in fact the case, but one has to focus on each component of LX to obtain the
corresponding data.
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More concretely, given a 0-simplex a of the simplicial set X , which we may
assume connected, the homology of the component La

X of the global model LX at
the MC element represented by a is far from being trivial. In fact, it gives precisely
the homotopy groups of the realization of La

X ,

Hn(L
a
X) ∼= πn+1〈La

X〉, for n ≥ 0.

Moreover, it turns out that both the inclusion and the projection (over the ideal
of LX generated by a)

La
X

�
↪−−→ (LX , da)

�−→ LX/(a)

are quasi-isomorphisms. This shows how the homology of a cdgl drastically changes
when its differential is perturbed by an MC element.

Another crucial property of the global model functor lies in its relation with
the functor APL which we now briefly explain: given any simplicial set X , denote
by N∗(X) the complex of non-degenerate simplicial cochains on X . Then, there
is a transfer diagram of the form,

k �� APL(X)
p ��

N∗(X).
i

��

This means that i and p are cochain maps for which pi = id, and ip is chain
homotopic to the identity via the chain homotopy k, which also satisfies k2 =
ki = pk = 0. The classical homotopy transfer theorem endows N∗(X) with a
structure of commutative A∞-algebra and extends i to a quasi-isomorphism of
A∞-algebras. This amounts to having a quasi-isomorphism of differential graded
coalgebras, (

T c
(
sN∗(X)

)
, d
) �−→ Bu APL(X),

where
(
T c
(
sN∗(X)

)
, d
)
is the tensor coalgebra on the suspension of non-degener-

ate cochains on X , with the differential corresponding to the inherited A∞ struc-
ture, and Bu APL(X) is the unreduced bar construction on APL(X).

Whenever X is of finite type, a technical but straightforward procedure al-
lows us to obtain from

(
T c
(
sN∗(X)

)
, d
)
a free differential graded Lie coalgebra,

whose dual is a free cdgl of the form (L̂(s−1X), d), which is isomorphic to LX .
In particular, choosing X to be Δn, for each n ≥ 0, we obtain the cdgl Ln and
therefore we recover in this way the cosimplicial cdgl L•.

This characterization is of vital importance in relating our Lie models with
the “commutative world” and in particular with Sullivan models. Moreover, this
identification will also let us show that all known geometrical realizations of cdgl’s
coincide.

Recall that the Deligne–Getzler–Hinich ∞-groupoid is a functor

MC• : sset −→ cdgl, defined by MC•(L) = MC(Ω•⊗̂L).
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The simplicial set MC•(L) is a generalization of the classical way by which a nilpo-
tent Lie algebra L integrates to its group G via the Baker–Campbell–Hausdorff
product. Indeed, if L = L0 is a finitely generated cdgl, then MC•(L) is equivalent
to BG, the classifying space of G.

Then, the description of L via transfer allows us to prove that, for any con-
nected cdgl L,

MC•(L) 	 〈L〉.
Also, these techniques permit us to finally assert that our model and the realization
functors recover the classical Quillen pair (2) in the simply connected case: for any
1-connected dgl of finite type,

〈L〉Q 	 〈L〉,
that is, the Quillen realization functor 〈 · 〉Q is “co-representable” by the cosim-
plicial cdgl L•. On the other hand, for any simply connected simplicial set X of
finite type and any 0-simplex of X ,

La
X 	 λ(X).

Moreover, in the non-simply connected case, given a connected, finite type
simplicial set X , and any 0-simplex a of X we have homotopy equivalences,

〈La
X〉 	 Q∞X 	 〈∧V, d 〉S ,

where Q∞X is again the Q-completion of X and 〈∧V, d 〉S the Sullivan realization
of the Sullivan minimal model (∧V, d) of X . In particular,

〈LX〉 	 Q∞X+.

Another immediate consequence is that H0(L
a
X), with the group structure given

by the Baker–Campbell–Hausdorff product, recovers the Malcev completion of the
fundamental group π1(X):

H0(L
a
X) ∼= Q∞π1(X).

As a synopsis, we draw the attention of the reader to the following general
picture. The category sset is fully embedded in the pointed category sset∗ by
means of the functor

ι : sset ↪−−→ sset∗,

which sends X to X+ and the map f : X → Y to the pointed map f+ : X+ → Y +

preserving the external point, and being f on X . Then, what L faithfully models
is the rational homotopy category of Im ι. Indeed, given a map f : X → Y between
finite type simplicial sets, there is a homotopy commutative square

Q∞X+
Q∞ι(f) �� Q∞Y +

〈LX〉 〈Lf 〉 ��

�
��

〈LY 〉.
�
��
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In summary, all of the above constitutes an answer, not just “cellularly” but
“simplicialy”, to the following problem posed by R. Lawrence and D. Sullivan in
[91], which we quote:

“If X is a cell complex with one 0-cell and only 2, 3, 4, . . . cells, the
rational theory of Quillen assigns a free differential graded Lie algebra
L with one generator in degree k for each (k + 1)-cell (k ≥ 0) . . . . One
imagines that enlarging this discussion to allow cells in degree 1 would
be related to some Lie algebras associated to non-trivial fundamental
groups, but little is known here, to our knowledge”.

To attain all the results listed up to this point, it is absolutely necessary to embed
the global model and the realization functor in a suitable homotopy theoretical
framework. We do that in such a way that the category cdgl reflects as accurately
as possible the geometric properties of the category sset. It is well known that
the latter category has a cofibrantly generated model structure (in the sense of
Quillen) in which fibrations are Kan fibrations, cofibrations are just simplicial
injections, and weak equivalences are simplicial maps inducing isomorphisms in
all homotopy groups.

We then use the transfer principle [2, 32] to transport this model structure to
cdgl through the model and realization functor. This process guarantees the exis-
tence of a cofibrantly generated model structure on the category of cdgl’s in which
a morphism f is a fibration or a weak equivalence if 〈f〉 is a fibration or a weak
equivalence, respectively, of simplicial sets. We then algebraically characterize the
class of fibrations and weak equivalences in cdgl as follows:

A cdgl morphism f : A → B is a fibration if it is surjective in non-negative
degrees.

On the other hand, f is a weak equivalence if

M̃C(f) : M̃C(A)
∼=−→ M̃C(B)

is a bijection and

fa : Aa �−→ Bf(a)

is a quasi-isomorphism for every a ∈ M̃C(A).

An immediate consequence of endowing a given category with a model struc-
ture via the transfer principle through a pair of adjoint functors is that they au-
tomatically become a Quillen pair. This is then the case for the global model and
realization functor. In particular, they induce adjoint functors in the homotopy
categories,

Ho sset
L ��

Ho cdgl,
〈 · 〉

��

and both preserve weak equivalences and homotopies.
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We analyze this model structure in sufficient detail to provide explicit path,
cylinder and cone objects, as well as computable cofibrant replacements of a given
cdgl. All of this confirms that in fact the homotopy category of cdgl’s mimics the
behaviour of the homotopy category of simplicial sets.

As an illustrative example, we show that the Lawrence–Sullivan interval L1

is just the cylinder of L0 = (L(a), d), where a is an MC element, or more generally,

Ln
∼= Cone Ln−1, for n ≥ 1.

By means of this homotopy theoretical setting we also prove that the gauge
relation among MC elements corresponds quite simply to the existence of a path
in this model structure, connecting gauge equivalent elements! Explicitly, the fol-
lowing are equivalent for any cdgl L:

– The MC elements a and b are gauge related, that is, there exists x ∈ L0 such
that xG a = b.

– There exists a “path” in L joining a and b, that is, a cdgl morphism ϕ : L → L
such that ϕ(a) = a and ϕ(b) = b.

– There exists an MC element Φ in the path object LI of L whose “endpoints”
are precisely a and b, that is, ε0(Φ) = a and ε1(Φ) = b, where ε0, ε1 : L

I → L
are the endpoint cdgl morphisms of the path object.

Of crucial importance in this setting is the notion of minimal (Lie) model of
a connected simplicial set X , which is a particular cofibrant replacement of the
non trivial component of the global model of X :

Given any 0-simplex a of X , the minimal Lie model of X is a free cdgl
(L̂(V ), d), where d has no linear term, together with a quasi-isomorphism,

(L̂(V ), d)
�−→ La

X .

This object is unique up to cdgl isomorphism, does not depend on the chosen 0-
simplex, and is an invariant of the homotopy type of X containing all its rational
data. For instance,

Hq−1(L̂(V ), d) =

{
πq(X)⊗Q, if q ≥ 2,

Q∞π1(X), if q = 1,
and Vq−1

∼= Hq(X,Q), q ≥ 1.

We also give explicit procedures to construct a Sullivan model of any connected
simplicial set of finite type starting from its minimal Lie model, and vice versa.

All of the above constitute the core of this text, which culminates with se-
lected applications which show how the theory can be implemented in situations
lying beyond the classical theory for simply connected or nilpotent complexes.

For example, a particularly illustrative application is given by the Lie models
of 2-dimensional complexes (including surfaces): let X be obtained by attaching a
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family of 2-cells {ej}j∈J to a wedge of circles
∨

i∈I S
1
i along the maps

ωj = y
rj1
j1

· · · yrqjjqj
, for j ∈ J,

where, for i ∈ I, each yi denotes a generator of π1(S
1
i ). Then, in clear analogy

with the presentation of π1(X), a Lie model of X is given by

(L̂(yi, ej), d), where each yi is a 0-cycle and dej = y
rj1
j1

∗ · · · ∗ yrqjjqj
, j ∈ J.

An immediate consequence exhibits an explicit description of the Malcev comple-
tion of a finitely presented group as follows: let

G = 〈 a1, . . . , ap | b1, . . . , bk 〉, with bj = a
rj1
j1

. . . a
rqj
jqj

, j = 1, . . . , k,

be a finitely presented group. Then, the Malcev completion of G is the group

Q∞G = L̂(a1, . . . , ap)/(b1, . . . , bk), with bk = ar1i1 ∗ · · · ∗ arqiq , j = 1, . . . , k.

We also show that for any finite 2-dimensional complex X , its rational com-
pletion is an Eilenberg–MacLane space,

Q∞X 	 K(Q∞π1(X), 1).

Another specially interesting application of our theory, with which we close
this introduction, is the modeling of mapping spaces in full generality: let X and Y
be connected simplicial sets. Let A be any cdga of the homotopy type of APL(X)
and let L be any cdgl of the homotopy type of LY . Then, A⊗̂L is a Lie model of
the simplicial mapping space Map(X,Q∞Y ). That is,

〈A⊗̂L〉 	 Map(X,Q∞Y ).

******************

Although each chapter begins with a concise summary of the material devel-
oped in it, we now briefly outline how the content of this text is organized.

In the first chapter, we compile all the background we need with the main
goal of setting the notation and recalling basic facts, mainly from three different
areas: simplicial objects, algebraic categories (most of them related to rational
homotopy) and some facts on model category theory.

The second chapter is devoted to a careful analysis of two pairs of adjoint
functors and their close relations. The first is formed by the classical chains and
Lie Quillen functors

cdgc
L ��

dgl,
C

��
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between the categories of cocommutative differential graded coalgebras and of
differential graded Lie algebras. The second, less familiar to experts, and which
can be thought as a topological dual of the former, consists of the pair

cdga
E

�� dglc,
A��

running, without any restrictions, between the categories of commutative differen-
tial graded algebras and of differential graded Lie coalgebras. The extension of the
functor E to the category cdga∞ of commutative A∞-algebras is also presented.
These functors turn out to be indispensable in relating, as mentioned earlier, the
model functor L with the Sullivan and Quillen models of a given simplicial set.

In the third chapter we introduce the category cdgl of complete differential
graded Lie algebras and the completion procedure for any dgl. Of particular im-
portance is, as previously remarked, the completion (L̂(V ), d) of a dgl, free as a Lie
algebra, generated by a given graded vector space V . As some classical features of
free dgl’s are not inherited by their complete counterparts, we provide a detailed
analysis of these objects. In particular, as the Quillen functor L takes values in
the category of free dgl’s, we show how the completion of this functor overcomes
certain restrictions in the classical case. We finish the chapter by comparing the
completion of dgl’s with their so-called profinite completion.

Chapter 4 contains a detailed description of the Deligne groupoid associated
to a cdgl, that is, the set M̃C(L) of Maurer–Cartan elements modulo the gauge
action. A fundamental result in this chapter is a general form of the classical
Goldman–Millson theorem, which gives sufficient conditions for a cdgl morphism
to induce an equivalence between the corresponding Deligne groupoids.

In Chapter 5 we proceed to a detailed study of the Lawrence–Sullivan interval
L1, LS interval for short: we first introduce its original conception. We then show
how this cdgl can also be constructed from a flow associated to the differential
equation

u′ = dx+ adx u,

similar to others on some principal bundles whose flows define the so-called gauge
transformations. Then, from a totally different perspective, we also prove that
L1 can also be obtained as the classical dgl cylinder of a point. The main char-
acteristics and properties of this fundamental cdgl are studied in depth in this
chapter.

Chapter 6 is devoted to the construction of the cosimplicial cdgl

L• = {Ln}n≥0,

by means of an inductive procedure. Of particular importance is showing that in
the unique isomorphism class of such a cosimplicial cdgl, each Ln can be chosen
to be equivariant for the natural action of Σn+1.
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In Chapter 7 we first introduce the global model L and the realization functor
〈 · 〉, demonstrate their adjoint character, and prove most of their main features
listed above.

A careful study of the homotopy framework in which the category cdgl is
located is developed in Chapter 8. As described before, this is attained by trans-
ferring the usual closed model structure on the category sset of simplicial sets to
a new model structure on cdgl. As special cofibrant replacements, the minimal
Lie models of connected spaces are introduced and carefully investigated in this
chapter.

As previously indicated, the global model can be obtained by a transfer
procedure from the simplicial cdga Ω•. This is developed in Chapter 9, which
in particular contains a detailed presentation of the classical Dupont simplicial
transfer diagram

s• �� APL(Δ
•)

p• ��
C∗(Δ•),

i•
��

from which L• can be extracted.

In Chapter 10, we show that the global model functor recovers the classical
Quillen model of any simply connected simplicial set of finite type, and more
generally, the Neisendorfer model of any nilpotent simplicial set of finite type.
As remarked above, this is based on both the characterization via transfer of the
global model functor, and essential properties of the pair of adjoint functors A
and E introduced in Chapter 2. Moreover, we also show in this chapter how to
obtain a Sullivan model of a connected finite type simplicial set from its minimal
Lie model, and vice versa. This link between the Sullivan and the Lie models allows
us to introduce the notion of a coformal space in the general, non-nilpotent case.

The Deligne–Getzler–Hinich∞-groupoid functor MC• : sset → cdgl is stud-
ied in Chapter 11 and is shown to coincide, up to homotopy, with our realization
functor. From this, we also prove in this chapter that the realization functor ex-
tends that of Quillen in the classical setting. We finish by proving that

Q∞X 	 〈∧V, d〉 	 MC•(La
X) 	 〈La

X〉,

for any finite connected simplicial set of finite type.

Chapter 12 includes a selected set of examples and applications of our theory.
We include Lie models of 2-complexes, paying special attention to those of surfaces.
From this, as previously observed, one easily deduces the Malcev Q-completion
of a finitely presented group. The same Q-completion of an Artin group is also
explicitly described by a similar method using the Lie model of the associated
Salvetti complex. We then show how to obtain a Lie model of a product of simplicial
sets from Lie models of each factor. The solution turns out to be an extension of
the classical simply connected setting. After that, we give a detailed presentation
of Lie models of mapping spaces, both in the free and pointed version. Special
particular cases, like self equivalences or free loops are also treated. Finally, we
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show how to read, algebraically, some homotopy invariants in the realization of a
given cdgl. For instance, and as indicated above, the action of the fundamental
group on higher homotopy groups, the Whitehead product and the Postnikov
decomposition of the realization of a connected cdgl are explicitly described.

******************
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Chapter 1

Background

We inform the reader that both the writing style and structure of this chapter
are noticeably different from the rest. In fact, we do not intend the content of
this chapter to be exhaustive. Rather, it is mainly and purposely prepared to set
the notation to be used in the text and to highlight the facts we will assume to
be known by the reader. Some of them are indeed well-known results and part of
the folklore in closely related subjects. Others may be less familiar to the non-
expert but, being of general nature, we will not enter into specific details and
instead provide appropriate references. Following this expositional treatment, and
contrary to the self-contained and detailed presentation of the rest of the text,
almost no proofs are given in this chapter, but again we provide the pertinent and
most standard references.

We begin by listing the main definitions and general facts concerning sim-
plicial sets, and more generally, simplicial objects in a given category. For our
purposes, the simplicial chains, cochains (with their corresponding non-degenerate
versions) and homology of a given simplicial object are of particular interest and
therefore carefully introduced.

We then move on to describe the main algebraic categories to be used through-
out the text. For the category of commutative differential graded algebras we
briefly present the bridge given by the Sullivan approach to rational homotopy
theory, connecting this category with that of simplicial sets by means of the APL

and Sullivan realization functors. Analogously, we recount the Quillen approach
to this theory by briefly outlining the λ functor on simplicial sets and the Quillen
realization functor of positively graded differential Lie algebras. In particular, the
notions of Sullivan and Quillen models are presented.

Finally, we highlight the most general facts concerning model categories, from
their definition to the induced homotopy categories, passing through the partic-
ularities of cofibrantly generated model categories. We will pay special attention
to those model category structures with which the previously presented algebraic
structures are endowed.
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18 Chapter 1. Background

From now on and throughout the text, we fix the field Q of rational numbers
as the ground field of coefficients for any algebraic object considered. Also, for any
category C, we will abuse the notation and write A ∈ C whenever A is an object
of C. We denote by HomC the set of morphisms in C, except for the category of
(graded) vector spaces whose morphisms will be denoted by the unadorned Hom.
As usual, by limit we always mean projective or inverse limit and denote lim←−.
Inductive or direct limit is often called colimit and is denoted by lim−→.

1.1 Simplicial categories

As usual, the simplicial category Δ is the category whose objects are the ordered
sets [n] = {0, . . . , n}, n ≥ 0, and whose morphisms HomΔ([n], [m]) are the non-
decreasing maps. Any morphism can be written as a composition of the cofaces
δi : [n − 1] → [n], with i = 0, . . . , n, n ≥ 1, and codegeneracies σi : [n + 1] → [n]
with i = 0, . . . , n, n ≥ 0, defined by

δi(j) =

{
j, if j < i,

j + 1, if j ≥ i,
and σi(j) =

{
j, if j ≤ i,

j − 1, if j > i.

More precisely, any morphism f : [n] → [m] of Δ admits a unique factorization

f = δi1 · · · δirσj1 · · ·σjs ,

such that m ≥ i1 ≥ · · · ≥ ir ≥ 0 and 0 ≤ j1 ≤ · · · ≤ js ≤ n − 1. The cofaces and
codegeneracies satisfy the cosimplicial identities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δjδi = δiδj−1, if i < j,

σjδi =

⎧⎨⎩
δiσj−1, if i < j,

id, if i = j, j + 1,

δi−1σj , if i > j + 1,

σjσi = σiσj+1, if i ≤ j.

(1.1)

A simplicial object in a category C is a contravariant functor from Δ to C.
A cosimplicial object in C is a covariant functor from Δ to C.

A simplicial object in C is therefore a family of objects, C = {Cn}n≥0, to-
gether with face operators di : Cn → Cn−1, and degeneracy operators sj : Cn →
Cn+1, satisfying the dual of the relations (1.1), called simplicial identities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

didj = dj−1di, if i < j,

disj =

⎧⎨⎩
sj−1di, if i < j,
id, if i = j, j + 1,

sjdi−1, if i > j + 1,
sisj = sj+1si, if i ≤ j.

(1.2)
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A similar description can be provided for a cosimplicial object in C, that is, a family
{Cn}n≥0, with coface operators, δi : Cn−1 → Cn, and codegeneracy operators,
σj : Cn+1 → Cn, satisfying (1.1).

A simplicial morphism f : C → D between two simplicial objects in C is
a sequence {fn : Cn → Dn}n≥0 of morphisms in C commuting with faces and
degeneracies. Simplicial objects and morphisms constitute a category.

1.1.1 Simplicial sets

Denote by sset the category of simplicial sets and simplicial maps. Given a sim-
plicial set X = {Xn}n≥0, we write |x| = n if x ∈ Xn and we say that x is an
n-simplex. A simplex is degenerate if it is in the image of some degeneracy map.
Otherwise, it is non-degenerate. A simplicial set is finite (respectively of finite type)
if it has a finite number of non-degenerate simplices (respectively non-degenerate
n-simplices for any n). Given a simplicial set X and a subset S of non-degenerate
simplices of X , the simplicial set generated by S is the sub-simplicial set of X
consisting of S, the faces of the elements in S and all their degeneracies.

For any n ≥ 0 denote by Δn = {Δn
p}p≥0 the simplicial set in which

Δn
p = HomΔ([p], [n]) = {(j0, . . . , jp) | 0 ≤ j0 ≤ · · · ≤ jp ≤ n}.

The faces and degeneracies are given by

di : Δ
n
p → Δn

p−1, di(f) = f ◦ δi, di(j0, . . . , jp) = (j0, . . . , ji−1, ji+1, . . . , jp),

si : Δ
n
p → Δn

p+1, si(f) = f ◦ σi, si(j0, . . . , jp) = (j0, . . . , ji, ji, . . . , jp).

Observe that there is a unique non-degenerate n-simplex in Δn
n, namely 1[n] =

(0, . . . , n).

We denote by Δ̇
n
the boundary of Δn, which is the sub-simplicial set gener-

ated by all non-degenerate simplices except 1[n] = (0, . . . , n). On the other hand,
the ith horn Λn

i of Δn, 0 ≤ i ≤ n, is the sub-simplicial set generated by all

non-degenerate simplices except (0, . . . , n) and (0, . . . , î, . . . , n).

Given a simplicial set X , there is a natural bijection

Xn
∼= Homsset(Δ

n, X), (1.3)

where each simplex x ∈ Xn is naturally identified with the only simplicial map
x ∈ Homsset(Δ

n, X) which sends the only non-degenerate n-simplex (0, . . . , n) to
x. From this we obtain the classical formula

X = lim−→
x∈X

Δ|x|. (1.4)

It is important to note that the family

Δ• = {Δn}n≥0
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is a cosimplicial object in the category of simplicial sets. The cofaces and code-
generacies are given by

δi : Δn−1
p → Δn

p and σi : Δn+1
p → Δn

p , p ≥ 0,

where

δi(f) = δi ◦ f, δi(i0, . . . , ip) = (j0, . . . , jp) with jk =

{
ik, if ik < i,

ik + 1, if ik ≥ i,

σi(f) = σi ◦ f, σi(i0, . . . , ip) = (j0, . . . , jp) with jk =

{
ik, if ik ≤ i,

ik − 1, if ik > i.

(1.5)

The link between sset and the category top of topological spaces and contin-
uous maps is built from the standard topological n-simplex. This is the topological
space

Δn = {(t0, . . . , tn) ∈ Rn+1 such that

n∑
i=0

ti = 1 and ti ≥ 0 for all i} .

In other terms, Δn is the convex hull of its vertices v0, . . . , vn, where vi = (0,
. . . , 1, . . . 0) with 1 in position i. The family Δ• = {Δn}n≥0 form a cosimplicial
topological space. For i = 0, . . . , n, the cofaces and codegeneracies,

δi : Δn−1 −→ Δn and σi : Δn+1 −→ Δn,

are given by
δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1),

and
σj(t0, . . . , tn+1) = (t0, . . . , tj + tj+1, . . . , tn+1).

Equivalently, these are the affine maps defined on the vertices v0, . . . , vn, by

δi(vj) =

{
vj , if i < j,

vj+1, if i ≥ j
and σi(vj) =

{
vj , if j ≤ i,

vj−1, if j > i.

The singular simplicial set SingX of a topological space X is defined by

(SingX)n = Homtop(Δ
n, X) .

The simplicial structure of SingX is induced by the cosimplicial topological space
Δ•. This cosimplicial structure also gives a realization functor from sset to the
category top of topological spaces. Given a simplicial set X , the realization |X | of
X is the quotient topological space⊔

n

(Xn ×Δn)/ ∼
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where each Xn is equipped with the discrete topology, � denotes the disjoint union
and

(dix, u) ∼ (x, δiu) for (x, u) ∈ Xn+1 ×Δn,

(sjx, u) ∼ (x, σju) for (x, u) ∈ Xn−1 ×Δn.

The realization |X | is a CW-complex with one n-cell for each non-degenerate n-
simplex.

A direct inspection shows that the realization functor | · | is left adjoint to
the singular functor Sing,

sset
| · | ��

top .
Sing

�� (1.6)

In particular, for any simplicial set X and any topological space Y , there is a
bijection,

Homtop(|X |, Y ) ∼= Homsset

(
X, Sing(Y )

)
.

Later on in the text, we will be using standard results about homotopy theory
of simplicial sets, for which the reader may consult [63] or [102].

A final warning is in order: in what follows we will sometimes consider the
particular subcategory sset1 of sset consisting of 2-reduced simplicial sets. These
are simplicial sets with only one simplex in dimensions 0 and 1. In particular,
they are simply connected and moreover, any simply connected simplicial set is
weakly homotopy equivalent to a 2-reduced one. From now on, by an abuse of
language, whenever we consider a simply connected simplicial set we will in fact
be considering a 2-reduced replacement of it.

1.1.2 Simplicial complexes

A simplicial complex K consists of a family S of non-empty finite subsets of a
given set V satisfying the following conditions:

(i) If Y ⊂ X , X ∈ S and Y �= ∅, then Y ∈ S.

(ii) For each x ∈ V , {x} ∈ S.

The elements of V are called vertices and the elements of S are simplices. The
dimension of a simplex is its cardinality minus one.

The simplicial complex K is ordered if there is a partial order on V such that
it induces a total order on the set of vertices of each simplex. Obviously, every
simplicial complex can be ordered and from now on we will assume this is the
case.

We denote also by Δn the simplicial complex formed by the non-empty sub-
sets of {0, . . . , n}. The sub-complexes Δ̇n and Λn

i are the simplicial complexes con-

taining the non-empty subsets of {0, . . . , n} except (0, . . . , n) and (0, . . . , î, . . . n),
(0, . . . , n), respectively.
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Given an (ordered) simplicial complex K, there is an associated simplicial
set K, where Kn consists of the (n + 1)-tuples of vertices (v0, . . . , vn) such that
v0 ≤ · · · ≤ vn and {v0, . . . , vn} is a simplex of K. The face and degeneracy
operators are given by

di : Kn → Kn−1, di(v0, . . . , vn) = (v0, . . . , vi−1, vi+1, . . . , vn),

si : Kn → Kn+1, sj(v0, . . . , vn) = (v0, . . . , vj , vj , . . . , vn).

Note that the non-degenerate simplices of Kn are precisely the n-simplices of K.

It trivially follows from the definition that the simplicial set associated to
Δn is Δn as previously defined, which confirms the compatibility with the chosen
notation. The same applies to Δ̇

n
and Λn

i .

1.1.3 Simplicial chains

Given a simplicial set X , define the set of simplicial chains on X as

C∗(X) =
⊕
n≥0

Cn(X),

where Cn(X) is the vector space generated by the n-simplices. The face and de-
generacy maps induce linear maps in the chains, denoted in the same way, which
exhibit C∗(X) as a simplicial vector space. Moreover, the linear map,

d : Cp(X) −→ Cp−1(X), dx =

p∑
i=0

(−1)idix,

given by the alternating sum of the faces, makes (C∗(X), d) a chain complex whose
homology H(X) is called the homology of X .

Denote by Dn(X) ⊂ Cn(X) the vector space generated by the degenerate
simplices in Xn. Then, by the simplicial identities (1.2), (D∗(X), d) ⊂ (C∗(X), d)
is a sub-chain complex and we define the chain complex of non-degenerate chains
on X as the quotient,

(N∗(X), d) = (C∗(X)/D∗(X), d).

Since H(D∗(X), d) = 0, killing the degenerate simplices has no effect on the ho-
mology, and therefore,

H
(
N∗(X)

)
= H(X).

On the other hand, given a simplicial complex K, the simplicial chains on K
constitute the chain complex (C∗(K), d), where C∗(K) =

⊕
p≥0 Cp(K), in which

Cp(K) is the vector space generated by the p-simplices, and d : Cp(K) → Cp−1(K)
is given by,

d(v0, . . . , vp) =

p∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vp). (1.7)
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We denote by H(K) the homology of this complex. Observe that, since p-simplices
of K correspond to non-degenerate p-simplices of its associated simplicial set K,
we have

(N∗(K), d) ∼= (C∗(K), d). (1.8)

Hence,

H(K) = H(K) .

Applying the previous statements to the cosimplicial structure on Δ• pro-
duces a cosimplicial object,

(C∗(Δ•), d)

in the category of chain complexes. The cofaces and codegeneracies

δi : Cp(Δ
n−1) → Cp(Δ

n) and σi : Cp(Δ
n+1) → Cp(Δ

n), p ≥ 0,

are given exactly as in formula (1.5). By the cosimplicial identities (1.1), these
maps preserve degenerate chains and therefore they induce a cosimplicial structure
on the non-degenerate chains

(N∗(Δ•), d).

By (1.8),

(N∗(Δ•), d) ∼= (C∗(Δ•), d), (1.9)

and thus, the cosimplicial structure in (N∗(Δ•), d) induces also in (C∗(Δ•), d)
a structure of cosimplicial chain complex. The cofaces and codegeneracies of
(C∗(Δ•), d) are given as in formula (1.5) modulo degenerate chains. Their explicit
expressions, which will be heavily used from Chapter 6 on, become

δi : Cp(Δ
n−1) → Cp(Δ

n), δi(i0, . . . , ip) = (j0, . . . , jp)

with jk =

{
ik, if ik < i,

ik + 1, if ik ≥ i,

σi : Cp(Δ
n+1) → Cp(Δ

n), σi(i0, . . . , ip) = (j0, . . . , jp)

with jk =

{
ik, if ik ≤ i,

ik − 1, if ik > i,

(1.10)

if (j0, . . . , jp) is non-degenerate, i.e., if j0 < · · · < jp. Otherwise, σi(i0, . . . , ip) = 0.
Note that the latter occurs if and only if (i0, . . . , ip) contains a pair (i, i + 1) of
successive integers.

In other terms,

σi(i0, . . . , ip) =

⎧⎨⎩
(
σi(i0), . . . , σ

i(ip)
)
, if σi(i0) < · · · < σi(ip),

0, otherwise.
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All of the above can be done mutatis mutandis replacing chains by cochains.
Hence, for any simplicial set X , the simplicial cochains

(C∗(X), d), with C∗(X) =
⊕
p≥0

Cp(X),

form the cochain complex where Cp(X) = Hom(Cp(X),Q), and the differential
d : Cp(X) → Cp+1(X) is given by the alternating sum of the dual of the face
operators. The cochain complex of the non-degenerate cochains on X , (N∗(X), d)
is defined accordingly.

The main advantage of dealing with simplicial cochains is the structure of
differential graded algebra (see Section 1.2.1 for a precise definition) which then
naturally arises in (C∗(X), d): denote by

dFp : Xp+q −→ Xp, dFp = dp+1 · · · dp+q, and dBq : Xp+q −→ Xq, dBq = d0
p· · · d0,

the front p-face and the back p-face of X . Then, given α ∈ Cp(X) and β ∈ Cq(X),
define α ∪ β ∈ Cp+q(X) by

α ∪ β(a) = α(dFp a) · β(dBq a), for a ∈ Cp+q(X).

Observe that the cochain in C0(X) which sends every 0-simplex of X to 1 ∈ Q,
is an identity for this product. As the differential on C∗(X) is a derivation for
this product it follows that (C∗(X), d) is a differential graded algebra. Moreover,
by the simplicial identities, one checks that the degenerate simplicial cochains
constitute a differential ideal and therefore the non-degenerate simplicial cochains
(N∗(X), d) inherit a structure of differential graded algebra.

As for any simplicial complexK, we define analogously the simplicial cochains
(C∗(K), d) and observe that,

(N∗(K), d) ∼= (C∗(K), d)

where K the associated simplicial set. In particular, for the cosimplicial object Δ•,

(N∗(Δ•), d) ∼= (C∗(Δ•), d), (1.11)

and (C∗(Δ•), d) inherits a structure of simplicial differential graded algebra. Since
we will need it in an explicit way, we specify here this structure:

For each n ≥ 0 and each p = 0, . . . , n we denote by {αi0,...,ip} the basis of
Cp(Δn) = Hom(Cp(Δ

n),Q) defined by,

αi0,...,ip(j0, . . . , jp) =

⎧⎨⎩ (−1)
p(p−1)

2 , if (j0, . . . , jp) = (i0, . . . , ip),

0, otherwise.
(1.12)
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The differential d : Cp(Δn) → Cp(Δn+1) is defined as usual by the formula df(u) =
−(−1)|f |f(du), for f ∈ C∗(Δn) and u ∈ C∗(Δn). We thus deduce from (1.7) that

d(αi0,...,ik) =
∑
q

αq,i0,...,ik , (1.13)

with the following conventions: if some ij is equal to q, then αqi0,...,ik = 0. More-
over, if σ is a permutation of the set {1, . . . , r}, then αiσ(0),...,iσ(r)

= ε(σ)αi0,...,ir ,
with ε(σ) denoting the sign of the permutation σ.

The face and degeneracy operators of (C∗(Δ•), d) are defined by

di : C
p(Δn) −→ Cp(Δn−1), si : C

p(Δn) −→ Cp(Δn+1), for p ≥ 0, (1.14)

where

di(αi0,...,ip) =

⎧⎪⎪⎨⎪⎪⎩
0, if i ∈ {i0, . . . , ip},

αj0,...,jq , otherwise, with

⎧⎨⎩ jr = ir, if ir < i,

jr = ir−1, if ir ≥ i,

and

si(αi0,...,ip) =

⎧⎨⎩ αi0,...,ir ,ir+1+1,...,ip+1 + αi0,...,ir−1,ir+1,...,ip+1, if i = ir,

αi0,...,ir ,ir+1+1,...,ip+1, if ir < i < ir+1.

Finally, the effect of the product of two cochains on a given simplex is, as defined
before, the multiplication of the cochains applied to the front and back faces,
respectively, of the given simplex.

1.2 Differential categories

We first set general notation.

Every algebraic object is considered to be Z-graded unless explicitly stated
otherwise. The usual convention given by the formula V n = V−n for any n ∈ Z let
us use both the “upper” or “lower” grading in what follows. For algebras and Lie
coalgebras we usually use the upper grading, while for Lie algebras and coalgebras
we often use the lower grading.

A graded vector space V , or simply a vector space when there is no possible
ambiguity, is a family of vector spaces V = {Vn}n∈Z. If v ∈ Vn, we say that the
degree of v is n and we write |v| = n. A morphism f : V → W of graded vector
spaces is a collection of linear maps {fn : Vn → Wn}n∈Z. The category of graded
vector spaces is denoted by vect.

We say that V is of, or has, finite type if dimVn < ∞ for all n.
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For any p ∈ Z, the pth suspension of V is the graded vector space spV defined
by (spV )n = Vn−p.

The dual of V is the graded vector space

V # = {(V #)n}n∈Z, where (V #)n = Hom(Vn,Q).

Remark that, for any p ∈ Z,

(spV )# = s−pV # and (s−pV )# = spV #.

A differential graded vector space is simply a chain (or cochain) complex. In
other terms, it is a graded vector space V endowed with a differential, that is, a
collection of linear maps d : Vn → Vn−1, n ∈ Z, such that d2 = 0.

A morphism f : V → W of differential graded vector spaces is a morphism of
chain (or cochain) complexes. Such a morphism is said to be a quasi-isomorphism,

and we write f : V
�−→ W , if H(f) : H(V )

∼=−→ H(W ) is an isomorphism of graded
vectors spaces. We will use the same nomenclature for any additional structure on
the given differential graded vector space.

Denote by dvect the category of differential graded vector spaces. In this
category we write either V or (V, d) to denote the same object. The latter is of-
ten reserved to avoid ambiguity or for situations in which we want to stress the
existence of such a differential. The same applies henceforth to any other consid-
ered differential graded structure (differential algebra, coalgebra, Lie algebra, Lie
coalgebra,. . . ).

We will assume and use the basic facts concerning spectral sequences arising
from filtrations on differential graded vector spaces, most of the times with some
additional algebraic structures.

The Koszul convention is applied from this moment on: whenever two graded
objects of degrees n and m are permuted in a formula, the sign (−1)nm appears.

1.2.1 Commutative differential graded algebras and
the Sullivan model of a space

A graded algebra, or simply an algebra, is a graded vector space A endowed with
an associative linear product,

Ap ⊗Aq −→ Ap+q, x⊗ y �−→ xy,

which has a unit 1 ∈ A0. A graded algebra is commutative if xy = (−1)pqyx for
x ∈ Ap and y ∈ Aq. The corresponding category is denoted by cga.

A differential graded algebra, dga henceforth, is a differential graded vector
space A endowed with a graded algebra structure for which the differential d is a
derivation:

d(xy) = (dx)y + (−1)px(dy), for x ∈ Ap and y ∈ A.
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A morphism of dga’s f : A → B is a morphism of differential vector spaces which
preserves the unit and the product: f(xy) = f(x)f(y). A dga A is augmented if
there is a dga morphism ε : A → (Q, 0). For such a dga the ideal A = ker ε is
called the augmentation ideal . If A is connected, that is, A = A≥0 and A0 = Q,
then A is automatically augmented and A = A+ = A≥1. A morphism f : A → B
of dga’s augmented by εA and εB, respectively, is said to preserve augmentations
if εB ◦ f = εA.

A dga A is called commutative, cdga henceforth, if it is commutative as a
graded algebra.

Unless otherwise mentioned, all dga’s and cdga’s will be augmented and all
morphisms are assumed to preserve the augmentations. We denote by dga and
cdga the corresponding categories. Of particular interest are the following sub-
categories of cdga:

On the one hand, cdga0 denotes the category of cdga’s A non-negatively
graded, A = A≥0.

On the other hand, for n > 0, cdgan denotes the category of n-connected
cdga’s. These are the cdga’s A, satisfying A0 = Q and Ap = 0 for 1 ≤ p ≤
n− 1. In other terms, A = A

≥n
.

The tensor algebra of a graded vector space V is the graded algebra

T (V ) =
⊕
n≥0

T n(V ), where T 0(V ) = Q, T n(V ) = V⊗ n· · · ⊗V = V ⊗n,

and the product is given by juxtaposition. The free commutative graded algebra
on V is the graded algebra defined as

∧V = T (V )/I

where I is the ideal generated by the elements x ⊗ y − (−1)|x| |y|y ⊗ x, for any
homogeneous elements x, y ∈ V . Any free commutative graded algebra ∧V is
naturally augmented and satisfies the usual universality property: any linear map
V → A, in which A is a commutative graded algebra, extends uniquely to an
algebra morphism ∧V → A.

One easily checks that for any given graded vector spaces V and W

∧(V ⊕W ) = ∧V ⊗ ∧W.

Indeed, the coproduct in cdga is the tensor product and the free functor preserves
colimits.

In particular, writing V = V even ⊕ V odd, it follows that ∧V is the tensor
product of the symmetric algebra on the subspace of vectors of even degree with
the exterior algebra on the subspace of vectors of odd degree,

∧V = S[V even]⊗ E[V odd].
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A Sullivan algebra is a cdga of the form (∧V, d) together with an increasing
filtration of graded vector spaces on V , V (0) ⊂ · · · ⊂ V (n) ⊂ · · · , such that
V =
⋃

n V (n), dV (0) = 0 and dV (n) ⊂ ∧V (n − 1). A Sullivan algebra (∧V, d) is
called minimal if the differential is decomposable, i.e., dV ⊂ ∧≥2V .

For instance, the cdga (∧(a, b, c), d) with a, b, c in degree 1 and da = bc, db =
ac and dc = ab is not a Sullivan algebra, even though the differential is decom-
posable. Another example is given by the graded vector space V = V 1 with basis
{a, xn}n∈Z. The cdga (∧V, d) defined by da = 0 and dxn = axn−1, for any n ∈ Z,
is not a Sullivan algebra either, even though again the differential is decomposable.

Two cdga morphisms f, g : (∧V, d) → A from a Sullivan algebra to a given
cdga are homotopic, and we write f ∼ g, if there is a cdga morphism

Φ: (∧V, d) → A⊗ ∧(t, dt)

such that idA ⊗ε0Φ = f and idA⊗ε1Φ = g. Here εi : ∧ (t, dt) → Q are the
augmentations defined by εi(t) = i, i = 0, 1. This is an equivalence relation among
cdga morphisms from the Sullivan algebra (∧V, d). We denote by [(∧V, d), A] the
set of homotopy classes of morphisms.

The commutative differential graded algebra Ωn is the quotient

Ωn = (∧(t0, . . . , tn, dt0, . . . , dtn)/I, d),

where |ti| = 0, |dti| = 1, d(ti) = dti, and I is the ideal generated by (
∑n

i=0 ti)− 1
and
∑n

i=0 dti.

The family

Ω• = {Ωn}n≥0

is a simplicial cdga. For a non-decreasing map ϕ : [n] → [m], the morphism of
cdga’s ϕ∗ : Ωm → Ωn is determined by the formula

ϕ∗(ti) =
∑

j∈ϕ−1(i)

tj .

In particular, the faces and the degeneracies of Ω• are given by

di : Ωn → Ωn−1, di(tj) =

⎧⎨⎩ tj , if j < i,
0, if j = i,

tj−1, if j > i,

si : Ωn → Ωn+1, si(tj) =

⎧⎨⎩ tj , if j < i,
ti + ti+1, if j = i,
tj+1, if j > i.

(1.15)

Proposition 1.1 (Poincaré Lemma [34]). The simplicial algebra Ω• is contractible,
i.e., πq(Ω•) = 0 for q ≥ 0. �
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Here π∗(Ω•) stands for the homotopy groups of Ω• considered just as a sim-
plicial set.

Given a simplicial set X , the algebra of PL-forms on X is the cdga APL(X)
in cdga0 defined by

APL(X) = Homsset(X,Ω•).

In particular, for any n ≥ 0, we have an isomorphism of cdga’s

APL(Δ
n) ∼= Ωn. (1.16)

Moreover, the cosimplicial structure of Δ• induces a simplicial structure on
APL(Δ

•) for which the above becomes an isomorphism

APL(Δ
•) ∼= Ω•

of simplicial cdga’s. Indeed, with the notation of (1.5),

di = APL(δ
i) : Ωn −→ Ωn−1, and si = APL(σ

i) : Ωn −→ Ωn+1.

On the other hand, the Sullivan realization of a cdga A is the simplicial set

〈A〉S = Homcdga(A,Ω•). (1.17)

Theorem 1.2 ([12, §8.1], [51, §1.6], [128]). The contravariant APL functor is left
adjoint to the simplicial realization functor 〈 · 〉S,

cdga
〈 · 〉S

�� sset .
APL��

In particular, for any simplicial set X and any cdga A, there is a natural bijection

Homcdga

(
A,APL(X)

) ∼= Homsset(X, 〈A〉S). �

If X is any topological space we abuse of notation and write APL(X) to
denote APL(SingX).

For any cdga A whose cohomology satisfiesH(A) = H≥0(A) andH0(A) ∼= Q,
there is a unique (up to cdga isomorphism) Sullivan minimal algebra (∧V, d) and
a quasi-isomorphism

ϕ : (∧V, d) �−→ A.

The cdga (∧V, d) is called the Sullivan minimal model of A. When (∧V, d) is a
Sullivan algebra (not necessarily minimal) we say accordingly that this is a Sullivan
model of A. If A = APL(X) for a connected space or simplicial set X , then (∧V, d)
is called the Sullivan minimal model of X or simply a Sullivan model when it is
not minimal. In any case, by construction,

H∗(X ;Q) ∼= H∗(∧V, d) .
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Moreover, the Sullivan minimal model of a connected simplicial set of finite
type describes algebraically and faithfully the homotopy type of its Q-completion
in general, and its rationalization in the nilpotent case:

The rationalization of a nilpotent simplicial set X is another simplicial set
XQ equipped with a morphism ρ : X → XQ satisfying the following two properties:

(i) The reduced homology H̃∗(XQ;Z) is a rational vector space.

(ii) The induced map H∗(ρ;Q) is an isomorphism.

These two properties characterize the rationalization functor up to homotopy
equivalences.

Concerning general, non-nilpotent simplicial sets, recall from [13] that the
Q-completion functor

Q∞ : sset −→ sset

assigns to a given simplicial set X the simplicial set Q∞X equipped with a natural
morphism, X → Q∞X , governed by the following property:

A map f : X → Y induces an isomorphism in rational homology,

H̃(f ;Q) : H̃∗(X ;Q)
∼=−→ H̃∗(Y ;Q),

if and only if the map

Q∞f : Q∞X
�−→ Q∞Y

is a homotopy equivalence. The space Q∞X is called the Q-completion of X , or
the Bousfield–Kan Q-completion of X .

Whenever X is a nilpotent simplicial set, the Q-completion Q∞X and the
rationalization XQ have the same homotopy type [13, Chapter V, 4.3].

Then, given a connected simplicial set of finite type X , the natural map

ψ : X −→ 〈∧V, d 〉S,

the adjoint of

ϕ : (∧V, d) �−→ APL(X),

is the Q-completion of X and is its rationalization in the nilpotent case. Moreover,
the induced map H∗(ψ;Q) is always injective.

In any case, for any n ≥ 1, there are isomorphisms,

Hom(V n,Q) ∼= πn〈∧V, d 〉S,

which translates to isomorphisms,

Hom(V n,Q) ∼= πn(X)⊗Q, for n > 1,
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and
Hom(V 1,Q) ∼= Q∞π1(X),

where the latter denotes the Malcev Q-completion of the fundamental group of X .
In general, a group G is Malcev Q-complete if, given the central series of G,

G1 ⊃ · · · ⊃ Gn ⊃ · · · where G1 = G, Gn = [G,Gn−1],

each Gn/Gn+1 is a Q-vector space and

G ∼= lim←−
n

G/Gn.

The Malcev completion of a group G is a morphism

G −→ Ĝ

where Ĝ is Malcev Q-complete and it induces isomorphisms,

Gn/Gn+1 ⊗Q
∼=−→ Ĝn/Ĝn+1.

All of the above constitutes the basics of the Sullivan approach to rational
homotopy theory which, in the past decades, has been the main tool for proving
deep results in algebraic topology, differential geometry and mathematical physics.
To name just one, we cite the dichotomy theorem for simply connected finite CW-
complexes X : either πn(X) is a finite group for n large enough, or the sequence∑

q≤n rank πq(X) has an exponential growth. For further details on this topic the
reader is referred to [51], and to [50] in the simply connected context.

1.2.2 Differential graded Lie algebras and
the Quillen model of a space

A graded Lie algebra, or simply a Lie algebra, consists of a graded vector space L
together with a linear product, called the Lie bracket,

[ , ] : Lp ⊗ Lq → Lp+q, for p, q ∈ Z,

that is antisymmetric,
[x, y] = −(−1)|x||y|[y, x],

and satisfies the Jacobi identity,

(−1)|x||z|
[
x, [y, z]

]
+ (−1)|y||x|

[
y, [z, x]

]
+ (−1)|z||y|

[
z, [x, y]

]
= 0.

A morphism of graded Lie algebras f : L → L′ is a morphism of graded vector
spaces preserving the Lie bracket: f [x, y] = [f(x), f(y)].
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The tensor algebra T (V ) on the graded vector space V is a graded Lie algebra
in which the bracket is given by the commutator [x, y] = x ⊗ y − (−1)|x||y|y ⊗ x.
The free graded Lie algebra L(V ) generated by V is the sub-Lie algebra of T (V )
generated by V . We denote by Ln(V ) the linear span of the brackets of length n
in V .

The free graded Lie algebra L(V ) satisfies the following universality property:
every linear map f : V → L, where L is a graded Lie algebra, extends uniquely to
a morphism of Lie algebras L(V ) → L. In particular, as the free functor preserves
colimits,

L(V ⊕W ) = L  L(W ),

where  denotes the coproduct.

The universal enveloping algebra UL of a graded Lie algebra L is defined as

UL = T (L)/I,

where I is the ideal generated by the elements of the form x ⊗ y − (−1)|x||y|y ⊗
x− [x, y]. It readily follows that, given dgl’s L and L′,

U(L× L′) ∼= UL⊗ UL′.

Moreover, for any free Lie algebra L(V ),

UL(V ) ∼= T (V ).

Given a graded Lie algebra L, its central series is the sequence of ideals

L1 ⊃ · · · ⊃ Ln ⊃ Ln+1 ⊃ · · ·
defined by L1 = L and Ln = [L,Ln−1] for n > 1. A dgl is nilpotent if Ln = 0
for some n. Since dgl’s are usually considered with the lower grading, there is no
danger of confusion between the ideal Ln and the space Ln of elements of degree
n. In a free Lie algebra L(V ), the nth term of its central series is

L(V )n = L≥n(V ) =
⊕
q≥n

Lq(V ).

A differential graded Lie algebra, dgl for short, is a differential graded vector
space L endowed with a graded Lie algebra structure for which the differential d
is a derivation:

d[x, y] = [dx, y] + (−1)|x|[x, dy].

A morphism f : L → L′ of dgl’s is both a morphism of differential graded vector
spaces and of graded Lie algebras. We denote by dgl the category of differential
graded Lie algebras, and by dgln, for any given n ∈ Z, the subcategory of dgl
formed by the n-connected dgl’s L, that is, L = L≥n. A dgl L is called connected
if L is 0-connected, i.e., if L = L≥0.
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The tensor product A⊗ L of a cdga A and a dgl L is a dgl with the bracket
and the differential given by,

[a⊗ x, b ⊗ y] = (−1)|b||x|ab⊗ [x, y] and d(a⊗ x) = da⊗ x+ (−1)|a|a⊗ dx.

Here, A is considered with a differential of degree −1 and An = A−n.

The set DernL of derivations of degree n ∈ Z of a dgl L consists of linear
maps θ : L → L of degree n such that

θ[a, b] = [θ(a), b] + (−1)|a|n[a, θ(b)], for a, b ∈ L.

The graded vector space

DerL =
⊕
n∈Z

DernL

is endowed with a dgl structure with the usual bracket and differential,

[θ, η] = θ ◦ η − (−1)|θ||η|η ◦ θ,
(dθ)(a) = dθ(a) − (−1)|θ|θ(da), for a ∈ L.

Observe that, given a derivation θ of L of even degree, and any k ≥ 1,

θk[a, b] =
∑

i+j=k

(
k

i

)
[θi(a), θj(b)], for a, b ∈ L. (1.18)

By an abuse of language, a dgl L is called free if L = (L(V ), d) is free as
graded Lie algebra. A free dgl (L(V ), d) is minimal if dV ⊂ L≥2(V ). For each
dgl L ∈ dgl1, there is a unique (up to dgl isomorphism) minimal dgl (L(V ), d)
equipped with a quasi-isomorphism

ϕ : (L(V ), d)
�−→ L .

The dgl (L(V ), d) is called the Quillen minimal model of L. If (L(V ), d) is not
minimal we accordingly say that this is just a Quillen model.

In his seminal paper [115], D. Quillen constructed a pair of functors

sset1
λ ��

dgl1
〈 · 〉Q

�� (1.19)

between the categories of 2-reduced simplicial sets and that of 1-connected dgl’s,
that is, differential graded Lie algebras which are positively graded. These functors
are defined as the composition of the following pairs of adjoint functors in which
the upper arrow denotes left adjoint,

λ : sset1
G ��

sgp0
W

��
̂Q ��

sch0
G

��
�� ̂U

sla1��
P

�� N∗

dgl1 : 〈 · 〉Q.��
N
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Here, sgp0, sch0 and sla1 denote respectively the categories of connected simpli-
cial groups, connected simplicial complete Hopf algebras, and reduced simplicial
Lie algebras. It turns out that each of these pairs induces equivalences on the
corresponding homotopy categories when localizing on the family of rational ho-
motopy equivalences in the simplicial categories sset1, sgp0, sch0, sla1 and on
the family of quasi-isomorphisms in dgl1 [115, Theorem I]. One of the many inter-
esting particularities of Quillen approach is the absence of finite type requirements
in any of the categories involved.

By an abuse of notation, for any simply connected space X , we write λ(X)
to denote λ(SingX). The Quillen minimal model of a simply connected space X
is the Quillen minimal model of λ(X). If (L(U), d) is the Quillen minimal model
of X , there are isomorphisms, respectively of graded vector spaces and of graded
Lie algebras,

U ∼= s−1H̃∗(X ;Q) and H(L(U), d) ∼= π∗(ΩX)⊗Q,

where the Lie bracket in π∗(ΩX)⊗Q, the rational homotopy Lie algebra of X , is
given by the rationalization of the Samelson bracket.

The connection between the Sullivan minimal model (∧V, d) of a simply con-
nected CW-complex X of finite type and its Quillen minimal model (L(U), d) is
provided by the work of M. Majewski [97]: the usual cochain algebra on (L(U), d)
(see Definition 2.7) is quasi-isomorphic to the Sullivan minimal model of X . By
this we mean that both cdga’s are connected by a zigzag of quasi-isomorphisms.

Note here that the Lie algebra π∗(ΩX) ⊗ Q can also be deduced from the
Sullivan minimal model (∧V, d). Denote by d2 : V → ∧2V the quadratic part of
the differential d and define

L = s−1 Hom(V,Q). (1.20)

Using the pairing 〈 ; 〉 : V ⊗ sL → Q, 〈v; sx〉 = (−1)|v|sx(v), define a bilinear map
[ , ] : L⊗ L → L by the formula

〈v; s[x, y]〉 = (−1)|y|+1〈d2v; sx, sy〉, for x, y ∈ L and v ∈ V. (1.21)

The bracket [ , ] makes L a graded Lie algebra, called the rational homotopy Lie
algebra of (∧V, d) and denoted by π(∧V,d). When X is simply connected and of
finite type,

π(∧V,d)
∼= π∗(ΩX)⊗Q.

1.2.3 Differential graded coalgebras

A graded coalgebra, or simply a coalgebra, is a graded vector space C equipped
with a degree zero map Δ: C → C ⊗ C that is coassociative, i.e.,

(Δ⊗ idC)Δ = (idC ⊗Δ)Δ.
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All graded coalgebras are assumed to have a counit and be coaugmented. That is,
there is a degree-0 linear map ε : C → Q and an element u ∈ C0 such that

du = 0, Δ(u) = u⊗ u, ε(u) = 1,

and for each x ∈ C,

Δx− (x⊗ u+ u⊗ x) ∈ ker ε⊗ ker ε.

If we denote C = ker ε, the reduced diagonal Δ: C → C ⊗ C is defined by

Δx = Δx− (u⊗ x+ x⊗ u).

We set Δ
1
= Δ and, for any k ≥ 2, Δ

k
= (Δ ⊗ idk−1

C
) ◦Δk−1

: C → C
⊗k+1

. The

subspace of primitive elements of C is defined as P(C) = kerΔ. A coalgebra

C is locally conilpotent if C =
⋃

k≥1 kerΔ
k
. Note that every coalgebra for which

C = C≥1 is locally conilpotent.

A graded coalgebra C is (co)commutative if τ ◦Δ = Δ, where τ : C ⊗ C →
C ⊗ C is the graded permutation of factors. We denote by cgc the category of
commutative graded coalgebras.

The tensor coalgebra T c(V ) on the graded vector space V is the graded
coalgebra on the vector space T (V ) whose reduced diagonal Δ: T (V ) → T (V )⊗
T (V ) is given by,

Δ[v1| · · · |vn] =
n−1∑
i=1

[v1| · · · |vi]⊗ [vi+1| · · · |vn].

Here [v1| · · · |vn] denotes the element v1 ⊗ · · · ⊗ vn.

On the other hand, the cofree commutative coalgebra generated by the graded
vector space V is the graded coalgebra ∧V whose comultiplication Δ: ∧ V →
∧V ⊗ ∧V is the unique morphism of algebras such that

Δ(v) = v ⊗ 1 + 1⊗ v .

For instance, Δ(v1v2) = v1⊗v2+(−1)|v1||v2|v2⊗v1. This coalgebra is characterized
by the following universality property: each linear map C → V , from a locally
conilpotent graded cocommutative coalgebra, extends uniquely to a morphism of
coalgebras C → ∧V . For this reason, we will assume henceforth that any given
coalgebra is locally conilpotent.

Note that the dual C# of a (cocommutative) graded coalgebra C is a (com-
mutative) graded algebra with the product,

(αβ)(c) = (α⊗ β)(Δc), for α, β ∈ C# and c ∈ C.
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In particular, the dual (∧V )# of the cofree cocommutative coalgebra is a commu-
tative graded algebra which, whenever V is positively graded and of finite type, can
be identified with the free commutative algebra ∧V # via the algebra isomorphism,

∧V # ∼=−→ (∧V )# (1.22)

induced by the inclusion V # ↪→ (∧V )#. A detailed proof of this can be found in
[50, Lemma 23.1].

A differential graded coalgebra, dgc from now on, or cdgc if it is commutative,
is a differential graded vector space C with a graded coalgebra structure for which
the differential d is a coderivation, that is,

Δd = (d⊗ idC + idC ⊗d)Δ, with εd = 0.

A morphism f : C → D of differential graded coalgebras is a map of chain com-
plexes such that (f ⊗ f)Δ = Δf and εC = εDf .

We denote by dgc and cdgc the categories of dgc’s and cdgc’s, respectively.
Given n > 0, we denote also by dgcn and cdgcn the corresponding sub-categories
consisting on dgc’s or cdgc’s C such that C = C≥n.

The categories dga and dgc are related by the bar and cobar constructions
which constitute a couple of adjoint functors,

dga
B ��

dgc,
Ω

��

defined as follows [49], [83]:

Given A ∈ dga, the usual (reduced) bar construction BA and the unreduced
bar construction BuA are the differential graded coalgebras defined by

BA = (T c(sA), d1 + d2) and BuA = (T c(sA), d1 + d2),

with

d1[sa] = −[sda] and d2([sa1| · · · |san]) =
n∑

i=2

(−1)ni [sa1| · · · |s(ai−1ai)| · · · |san] ,

where ni =
∑

j<i |saj|.
On the other hand, given C ∈ dgc, the cobar construction ΩC is the dga

given by
ΩC = (T (s−1C), d1 + d2)

with

d1(s
−1x) = −s−1dx and d2(s

−1x) =
∑
i

(−1)|xi|s−1xi ⊗ s−1yi,

where Δx =
∑

xi ⊗ yi.
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Theorem 1.3 ([49, Theorem 2.14]). For any dga A and any dgc C the adjunction

maps αA : ΩBA
�−→ A and βC : C

�−→ BΩC are quasi-isomorphisms. �

A differential graded Hopf algebra is a graded vector space with structures
of both dga and dgc for which the diagonal is a dga morphism. A Hopf algebra is
commutative if it is so as a dga and as a dgc.

For instance, given a graded vector space V , consider in the tensor coalgebra
T c(V ) the shuffle product

(v1 ⊗ · · · ⊗ vp) · (vp+1 ⊗ · · · ⊗ vn) =
∑

σ∈S(p,n−p)

εσ vσ−1(1) ⊗ · · · ⊗ vσ−1(n),

where εσ is the associated Koszul sign and S(p, n− p) denotes the set of (p, n− p)
shuffles, i.e., permutations σ such that σ−1(1) < · · · < σ−1(p) and σ−1(p + 1) <
· · · < σ−1(n). This product induces a structure of commutative algebra on T c(V )
which makes it a commutative Hopf algebra.

On the other hand, consider in the tensor algebra T (V ) the reduced diagonal,

Δ(v1 ⊗ · · · ⊗ vn) =
n−1∑
p=1

∑
σ∈S(p,n−p)

εσ(vσ(1) ⊗ · · · ⊗ vσ(p))⊗ (vσ(p+1) ⊗ · · · ⊗ vσ(n)).

This induces a structure of commutative graded coalgebra on T (V ) which makes
it a cocommutative Hopf algebra.

In particular, given A ∈ dga and C ∈ dgc, BA and ΩC are commutative
and cocommutative differential graded Hopf algebras, respectively.

We finish by remarking that, for any Hopf algebra H, the bracket given by
the commutator [x, y] = xy−(−1)|x||y|yx induces on the space P(H) of primitives
a structure of graded Lie algebra. Moreover, the Milnor–Moore Theorem, see [106,
Theorem 5.18], asserts that whenever H is connected and of finite type, one can
recover it from its primitives via the universal enveloping algebra:

UP(H) ∼= H.

1.2.4 Differential graded Lie coalgebras

A graded Lie coalgebra, or simply a Lie coalgebra, is a graded vector space V with
a comultiplication Δ: V → V ⊗ V such that its dual

V # ⊗ V # −→ (V ⊗ V )#
Δ#−→ V #

defines a Lie algebra structure on V #. This is equivalent to saying, see for instance
[54, 104], that

(id+τ) ◦Δ = 0 and (id+σ + σ2) ◦ (id⊗Δ) ◦Δ = 0,
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where τ : V ⊗V → V ⊗V is the graded permutation, σ : V ⊗V ⊗V → V ⊗V ⊗V
is the graded cyclic permutation and id stands for the identity on V , V ⊗ V or
V ⊗ V ⊗ V , respectively. Note, however, that in general the dual of a graded Lie
algebra is not a Lie coalgebra unless it is of finite type.

As a first example observe that any graded coalgebra (C,Δ) admits a Lie
coalgebra structure defined by ΔL = Δ− τ ◦Δ.

In particular, the tensor coalgebra T c(V ) on the graded vector space V is a
Lie coalgebra with this structure. It turns out that the Lie coalgebra multiplication
on T c(V ) induces also a Lie coalgebra structure on the indecomposables for the
shuffle product. We denote this Lie coalgebra by

Lc(V ) = T c(V )/T c(V )+ · T c(V )+

and call it the free Lie coalgebra on the graded vector space V .

The Lie coalgebra Lc(V ) satisfies the following universality property: If Γ
is a graded Lie coalgebra and V a graded vector space, then every linear map
f : Γ → V extends uniquely to a morphism of graded Lie coalgebras Γ → Lc(V )
[54, §4.2.1].
Example 1.4. Denote by p : T c(V ) → Lc(V ) the projection, choose homogeneous
elements x, y ∈ V , and set

[x, y]c = p(x⊗ y) .

Since x⊗ y + (−1)|x||y|y ⊗ x is a shuffle product,

[x, y]c = p(x⊗ y) = −(−1)|x||y|p(y ⊗ x) = −(−1)|x||y|[y, x]c .

As the Lie comultiplication Δ in Lc is induced by the Lie comultiplication ΔL in
T c(V ), we have,

Δ[x, y]c = pΔL(x⊗ y) = x⊗ y − (−1)|x||y|y ⊗ x .

Example 1.5. Let (∧V, d) be a Sullivan minimal algebra, and let d2 : V → ∧2V be
the quadratic part of the differential d. The rational homotopy Lie coalgebra of
(∧V, d) is (sV,Δ) where,

Δ(sx) = −
∑
i

(−1)|xi|
(
sxi ⊗ sx′

i − (−1)|sxi||sx′
i|sx′

i ⊗ sxi

)
,

with d2x =
∑

i xix
′
i. The dual graded Lie algebra (s−1V #,Δ#) is π(∧V,d), the

rational homotopy Lie algebra of (∧V, d) defined in Section 1.2.2.

A differential graded Lie coalgebra, dglc for short, is a graded Lie coalgebra
C equipped with a differential d compatible with the comultiplication Δ:

Δ ◦ d = (d⊗ 1 + 1⊗ d) ◦Δ.

We denote by dglc the category of dglc’s. For any n ∈ Z we denote by dglcn the
subcategory of n-connected dglc’s C which satisfy C = C≥n.



1.2. Differential categories 39

1.2.5 A∞-algebras

An A∞-algebra is a graded vector space A, usually considered with upper grading,
equipped with a sequence of linear maps of degree 2− n,

mn : A
⊗n −→ A, for n ≥ 1 ,

such that, for all s ≥ 1 and r, t ≥ 0,∑
r+s+t=n

(−1)rs+tmr+t+1(id
⊗r ⊗ms ⊗ id⊗t) = 0. (1.23)

In particular, m1 : A → A is of degree 1 with m2
1 = 0, m2 : A⊗A → A has degree

0 and satisfies
m1 ◦m2 = m2(m1 ⊗ id+ id⊗m1) .

The map m3 : A⊗A⊗A → A has degree −1 and satisfies

m1m3 −m2(m2 ⊗ id)+m2(id⊗m2)+m3(m1 ⊗ id2 + id⊗m1 ⊗ id+ id2 ⊗m1) = 0 .

An A∞-algebra A is unital if there is an element 1A of degree 0 such that
m1(1A) = 0, m2(1A, a) = a = m2(a, 1A) for all a ∈ A and such that, for all
i > 2 and all a1, . . . , ai ∈ A, the product mi(a1, . . . , ai) vanishes if one of the ai
equals 1A.

Note that a classical dga A is an A∞-algebra with mi = 0 for i ≥ 3. In this
case m1 provides the differential and m2 the product.

Remark that A∞ structures on a graded vector space A are in one-to-one
correspondence with differentials on the tensor coalgebra T c(sA). Indeed, given
an A∞ structure on A, each map mn produces a canonical map of degree 1,
dn : (sA)

⊗n → sA (for recall |sa| = |a| − 1),

dn = (−1)ns ◦mn ◦ (s−1)⊗n , (1.24)

that we extend to a coderivation on the coalgebra T c(sA).

Since

dr+t+1 (id
⊗r ⊗dk ⊗ id⊗t)

= (−1)r+t+1smr+t+1(s
−1)⊗r+t+1 (id⊗r ⊗dk ⊗ id⊗t)

= (−1)r+t+1smr+t+1(−1)t
(
(s−1)⊗r ⊗ s−1dk ⊗ (s−1)⊗t

)
= (−1)r+t+k+1(−1)tsmr+t+1

(
(s−1)⊗r ⊗mk(s

−1)⊗k ⊗ (s−1)⊗t
)

= (−1)r+t+k+1(−1)t+rksmr+t+1 (id
⊗r ⊗mk ⊗ id⊗t) (s−1)⊗r+t+k,

in view of (1.23), we deduce that∑
r+k+t=n

dr+t+1(id
⊗r ⊗dk ⊗ id⊗t) = 0,
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and (T c(sA), d) is a differential graded coalgebra. The converse also holds and
thus (A, {mi}) is an A∞-algebra if and only if (T c(sA), d) is a differential graded
coalgebra.

We say that an A∞-algebra A is minimal if m1 = 0.

A morphism of A∞-algebras f : A → A′ consists of a sequence of linear maps
fn : A

⊗n → B of degree 1− n such that the map, also denote by

f : (T c(sA), d) −→ (T c(sA′), d), (1.25)

induced by the degree-0 linear maps,

(−1)
n(n−1)

2 s ◦ fn ◦ (s−1)⊗k : T n(sA) −→ sA′,

is a morphism of differential graded coalgebras. The morphism f is a quasi-
isomorphism if f1 : (A,m1) → (A′,m1) is a quasi-isomorphism of complexes.

A morphism between unital A∞-algebras f : A → A′ is unital if f1(1A) = 1A′

and for n > 1 fn(a1, . . . , an) = 0 if one of the ai equals 1A.

An A∞-algebra A is augmented if it is endowed with a unital morphism
ε : A → Q such that ε(1A) = 1. The augmentation ideal A = ker ε then inher-
its an A∞-algebra structure. A morphism of augmented A∞-algebras is a unital
morphism f : A → A′ such that εA′ ◦ f = εA. It induces a morphism between the
augmentation ideals. We denote by dga∞ the category of augmented A∞-algebras.

The bar construction and its reduced version defined in Section 1.2.3 are
extended to A∞-algebras by the functors

B, Bu : dga∞ −→ dgc,

which assign to each A∞-algebra A the corresponding dgc’s,

BA = (T c(sA), d) and BuA = (T c(sA), d). (1.26)

Note that the unreduced version is defined in general for not necessarily augmented
A∞-algebras.

Proposition 1.6. The functors B and Bu preserve quasi-isomorphisms.

Proof. Let f : A
�−→ A′ be a quasi-isomorphism of augmented A∞-algebras. The

cdgc’s BA and BA′ are endowed with filtrations,

{T c≤p(sA)}p≥1 and {T c≤p(sA′)}p≥1,

that are preserved by Bf , which in view of (1.25), is denoted also by f . For each
p ≥ 1, let

fp : T
c≤p(sA) −→ T c≤p(sA′)
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be the induced map. It suffices to show that each fp is a quasi-isomorphism. First,
note that the induced map,

fp : (T
c)p(sA) = T c≤p(sA) / T c≤p−1(sA)
�−→ T c≤p(sA′) / T c≤p−1(sA′) = (T c)p(sA′) ,

is a quasi-isomorphism for each p, since f : A
�−→ A′ is. Finally, recursively applying

the five lemma to the diagram

0 �� T c≤p−1(sA) ��

fp−1

��

T c≤p(sA) ��

fp−1

��

(T c)p(sA)

�fp

��

�� 0

0 �� T c≤p−1(sA′) �� T c≤p(sA′) �� (T c)p(sA′) �� 0

we deduce that for each p the induced map fp is a quasi-isomorphism as required.
The same argument works for the unreduced version. �

An A∞-algebra A is commutative, or it is a C∞-algebra if, for each k ≥ 2 and
for each i, 1 ≤ i ≤ k − 1,∑

σ∈S(i,k−i)

ε(σ)mkσ(a1 ⊗ · · · ⊗ ak) = 0,

where ε(σ) is the signature of the permutation. For instance, any cdga is a C∞-
algebra with mi = 0 for i ≥ 3.

Any C∞-algebra considered in this text is supposed to be augmented. We
denote by cdga∞ the category of C∞-algebras.

When A is a C∞-algebra, the differentials on BA = (T c(sA), d) and BuA =
(T c(sA), d) are derivations with respect to the shuffle products, see [88]. Hence,
they induce differentials d on the quotients

Lc(sA) = T c(sA)/T c(sA)+ ·T c(sA)+ and Lc(sA) = T c(sA)/T c(sA)+ ·T c(sA)+,

making
(Lc(sA), d) and (Lc(sA), d) (1.27)

differential graded Lie coalgebras.

Moreover, every morphism of C∞-algebras f : A → A′ preserves the shuffle
products, and thus it induces natural morphisms of differential graded Lie coalge-
bras,

(Lc(sA), d) −→ (Lc(sA′), d′) and (Lc(sA), d) −→ (Lc(sA′), d′). (1.28)

This constitutes the definition of the functors E and E u on cdga∞ (and in par-
ticular on cdga) that will be studied in depth in the next chapter.
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Next, we remark that any cdga is naturally quasi-isomorphic to a minimal
C∞-structure on its cohomology:

Theorem 1.7 ([87, 100]). For any A ∈ cdga0 there exist a minimal C∞-structure
on its cohomology H(A) and a natural quasi-isomorphism of C∞-algebras

H(A)
�−→ A. �

This can be regarded from a general point of view with the aid of the ho-
motopy transfer theorem [57, 90, 94, 103], a variation of the classical homological
perturbation lemma [69, 70, 82, 86], which permits a transfer of any algebraic
structure by a retraction. We give here a precise statement for cdga’s as it is the
only case we use.

A transfer diagram, also known as a homotopy retraction, is a diagram of the
form

φ �� A
p ��

V
i

��

where A and V are differential graded vector spaces, p and i are quasi-isomorph-
isms, pi = idV , and φ is a chain homotopy between idA and ip, i.e., φd + dφ =
idA −ip, which satisfies φi = pφ = φ2 = 0.

Theorem 1.8 ([36]). Any transfer diagram in which A is a cdga induces a structure
of C∞-algebra on V with m1 the differential on V , and quasi-isomorphisms of C∞-
algebras

A
P ��

(V, {mi})
I

��

such that PI = id(V,{mi}), I1 = i and P1 = p. Moreover, if V is an augmented
complex and p and i are augmentation preserving, then V becomes an augmented
C∞-algebra, and I, P are augmentation preserving. �

The operations mk’s can be described explicitly. We give here such an ex-
pression in terms of trees, see for instance [90, §6.4]. A planar tree T is a directed,
simply connected graph which can be embedded in the plane. The valence of a
vertex is the number of edges having this vertex as the source. A leaf is a vertex
of valence 0. A tree is rooted if there is a unique vertex (the root) with valence
1 which is the target of no edge. A rooted tree is binary if every vertex except
the root and the leaves, has valence 2. For any k ≥ 2, denote by Tk the set of
isomorphism classes of planar rooted binary trees with k leaves.

To each T ∈ Tk, we define a linear map mT : V ⊗k → V as follows: label the
root by p, each internal edge by φ, each internal vertex by m, and each leaf by i.
Then, mT is defined as the composition of the different labels moving down from
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the leaves to the root. For instance the tree

i
��
��
� i

��
��
� i

��
��

� i

��
��
�

m
φ
���

���
m

φ�
��

���
m

p

produces mT = p ◦m ◦ (φ ◦m⊗ φ ◦m) ◦ i⊗4 : V ⊗4 → V .

The transferred C∞-algebra structure in V is given by {mk}k≥1, where m1 =
d and, for k ≥ 2,

mk =
∑
T∈Tk

mT .

For instance,

m2 = p ◦m ◦ (i⊗ i),

m3 = p ◦m ◦ ((φ ◦m ◦ (i⊗ i))⊗ i
)
+ p ◦m ◦ (i⊗ (φ ◦m ◦ (i⊗ i))

)
.

(1.29)

We finish with three elementary results on transfer diagrams.

Proposition 1.9. Let A be a differential graded vector space and let H = (H(A), 0).
Then, there exist a bijective correspondence between transfer diagrams of the form

φ �� A
p ��

H
i

�� and decompositions A = B⊕dB⊕C, where B is a complement

of kerd (and thus d : B
∼=→ dB) and C

∼=→ H is a given isomorphism. In particular,
such diagrams always exist.

Proof. Indeed, let A = B ⊕ dB ⊕ C be such a decomposition. Define i : H
∼=→

C ↪→ A, p : A � C
∼=→ H and φ(B) = φ(C) = 0, φ : dB

∼=→ B the inverse of d.

Then φ �� A
p ��

H
i

�� is a transfer diagram. Conversely, given such a diagram,

notice that dφd = d. Then, B = φdA is a complement of ker d. Define C = Im i;
then an easy computation shows that A = B ⊕ dB ⊕ C. �

We now describe how to compose and tensor two given homotopy retractions.
The proofs are mere checks.

Proposition 1.10. Given homotopy retractions

φ �� A
p ��

V
i

�� and ψ �� V
q ��

W,
j

��

then φ+iψp �� A
qp ��

W
ij

�� is also a transfer diagram. �
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Proposition 1.11. Given homotopy retractions

φ �� A
p ��

V
i

�� and ψ �� B
q ��

W,
j

��

then γ �� A⊗B
p⊗q ��

V ⊗W
i⊗j

�� , with γ(a⊗ b) = φ(a)⊗ b+(−1)|a|ip(a)⊗ψ(b),

is also a transfer diagram. �

1.3 Model categories

Closed model categories, or simply model categories in their current meaning, were
first introduced by Quillen [114]. In this text, we follow the presentation given in
[80] and [81], see also the introductory articles [46] and [64]. Recall that C is said to
have all small limits (or colimits) if each functor F : J → C from a small category
has a limit (or a colimit).

A model category is a category C endowed with three distinguished classes of
morphisms, called fibrations, cofibrations and weak equivalences, each of which is
closed under composition, contains the isomorphisms, and is subject to the axioms
below. A fibration that is also a weak equivalence is called a trivial fibration, and
a cofibration that is also a weak equivalence is called a trivial cofibration.

CM 1. C is closed under small limits and colimits.

CM 2. If gf is defined and any two of f , g and gf are weak equivalences,
then so is the third.

CM 3. A retract of a fibration, cofibration or weak equivalence is also a
fibration, cofibration or weak equivalence respectively.

CM 4. Trivial cofibrations have the left lifting property with respect to fi-
brations, and cofibrations have the left lifting property with respect to trivial
fibrations. Explicitly, if the following diagram commutes,

A ��

i

��

X

p

��
B

h

��

�� Y,

where i is a cofibration and p is a fibration, and i or p is a weak equivalence, then
there exists a map h making the diagram commutative.

CM 5. Every morphism f may be factored in two ways, f = pi where p is a
fibration, i a cofibration, and either p or i is a weak equivalence.

The axioms imply that any two of the three classes of maps determine the
third one.
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Also, the definition is self-dual: if C is a model category, then its opposite
category Cop also admits a model structure where weak equivalences correspond
to their opposites, fibrations are the dual of cofibrations and cofibrations are the
dual of fibrations.

From now on we often use �, � and
∼→ to denote fibrations, cofibrations

and weak equivalences, respectively.

A model category C has both a terminal object ∗ and an initial object ∅. An
objectX ∈ C is cofibrant if the only morphism ∅ � X is a cofibration. Analogously,
X is fibrant if the unique map X � ∗ is a fibration. For any object X , applying
the axiom CM5 to the map ∅ → X gives a weak equivalence Z

∼−→ X from a
cofibrant object Z. Then Z is called a cofibrant replacement for X . Similarly, by
starting from X → ∗, we obtain a weak equivalence X

∼−→ Z with Z fibrant; Z is
called a fibrant replacement for X .

Under some restriction on the small category I, a model structure on a cat-
egory C is inherited by the diagram category CI . In what follows I will denote a
direct category [81, §5.1] or more generally, a Reedy category [80, §15.1]: identify
first an ordinal λ with the category where there is a map α → β if and only if
α ≤ β. Then, a direct category is a small category C with a functor degree d : C → λ
such that the image of a non-identity map is a non-identity map. A Reedy category
is a triple C,C+,C− consisting of a small category C, two subcategories C+ and
C−, both of which contain all the objects of C, and a degree functor d : C → λ for
some ordinal λ such that:

(i) Every non-identity map in C+ raises the degree.

(ii) Every non-identity map in C− lowers the degree.

(iii) Every map f can be factored uniquely as f = gh, where h ∈ C− and g ∈ C+.

For instance, the categoryΔ is a Reedy category in which Δ+ contains the cofaces
δi : [n− 1] → [n] and Δ− contains the codegeneracies σi : [n+ 1] → [n].

Theorem 1.12 ([80, Theorem 15.3.4], [81, Theorem 5.1.3]). Given a direct or a
Reedy category I and a model category C, the category of diagrams CI has a model
structure for which a map f = {fi}i∈I is a weak equivalence if each fi is a weak
equivalence. In the case of a direct category f is a fibration if each fi is a fibration.

�

Let C be a model category and let f, g : B → X be maps in C.

• A cylinder object for B is a factorization of the fold map ∇ : B  B → B
into a cofibration i0  i1 : B  B � Cyl (B) followed by a weak equivalence
p : Cyl (B)

∼−→ B.

• A path object forX is a factorization of the diagonal map Δ: X → X×X into
a weak equivalence X

∼−→ XI followed by a fibration (p0, p1) : X
I � X ×X .

• A left homotopy from f to g is a map H : Cyl (B) → X such that Hi0 = f
and Hi1 = g.
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• A right homotopy from f to g is a map H : B → XI such that p0H = f and
p1H = g.

Observe that cylinders and path objects always exist in a model category.

Proposition 1.13 ([81, Proposition 1.2.5]). Let f, g : B → X be two maps in C. If
B is cofibrant and X is fibrant, then f and g are left homotopic if, and only if,
they are right homotopic. We say that f is homotopic to g and write f ∼ g; this
equivalence relation does not depend on the choice of a cylinder or path object. �

The homotopy category HoC of a model category C is the localization of C
with respect to the class of weak equivalences.

The “fundamental theorem of model categories” states that HoC is equivalent
to the category whose objects are the objects of C which are both fibrant and
cofibrant, and whose morphisms are homotopy classes of maps, see for instance
[81, Theorem 1.2.10].

A pair (F,G) of adjoint functors (F the left adjoint to G) between two model
categories,

C
F ��

D
G

�� ,

is a Quillen pair if any of the following equivalent conditions is satisfied:

(i) F preserves cofibrations and trivial cofibrations.

(ii) G preserves fibrations and trivial fibrations.

(iii) F preserves cofibrations and G preserves fibrations.

Given a Quillen pair (F,G), the functor F preserves weak equivalences be-
tween cofibrant objects and G preserves weak equivalences between fibrant objects.
Moreover, they induce an adjunction

HoC
F ��

HoD
G

��

between the homotopy categories [81, Lemma 1.3.10]. In particular, for any fibrant
object D ∈ D and any cofibrant object C ∈ C there is a natural bijection of
homotopy classes of morphisms,

[F (C), D] ∼= [C,G(D)]. (1.30)

A Quillen equivalence is a Quillen pair (F,G) such that for each cofibrant
object C ∈ C and each fibrant object D ∈ D, a map F (C)

∼−→ D is a weak
equivalence in D if and only if its adjoint C

∼−→ G(D) is a weak equivalence in C.

Proposition 1.14 ([81, Proposition 1.3.13]). A Quillen equivalence induces equiva-
lences of categories between the associated homotopy categories. �
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Quillen pairs and Quillen equivalences are inherited by diagram categories.
In what follows I is a direct or Reedy category.

Proposition 1.15 ([80, Proposition 15.4.1], [81, Corollary 5.1.6]). Given a Quillen
pair (F,G), the pair of induced functors on the diagram categories,

CI
F I

��
DI ,

GI

��

is also a Quillen pair. In particular they induce adjoint functors in the homotopy
categories,

HoCI
F I

��
HoDI

GI

�� . �

Corollary 1.16. In the adjunction induced by a Quillen pair,

HoC
F ��

HoD,
G

��

the functor F preserves homotopy colimits and G preserves homotopy limits.

Proof. The homotopy colimit functor hocolim←−−−−− : HoCI → HoC is the left adjoint

to the “constant diagram” functor K : HoC → HoCI . Hence, for any objects
CI ∈ CI , D ∈ D,

HomHoD(F hocolim←−−−−−CI , D) = HomHoC(hocolim←−−−−−CI , GC
)

= HomHoCI (CI ,KGC) = HomHoCI

(
CI , GIK(C)

)
= HomHoDI (F ICI ,KC) = HomHoD(hocolim←−−−−−F ICI , C).

Therefore, by the uniqueness of the adjoint, we have that

F hocolim←−−−−−CI = hocolim←−−−−−F ICI .

The proof of the second assertion is completely analogous. �

We finish this introduction to model categories with two classical examples.
On the one hand, top admits a standard model category structure with the usual
(Serre) fibrations and weak homotopy equivalences as weak equivalences. The cofi-
brations are the maps that have the left lifting property with respect to the trivial
Serre fibrations. Equivalently, they are the retracts of the relative cell complexes
[81, Theorem 2.4.19]. All objects are fibrant in this structure.

On the other hand, sset admits a standard model category structure where
fibrations are Kan fibrations, weak equivalences are precisely weak equivalences of
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simplicial sets, and cofibrations are monomorphisms of simplicial sets. In particu-
lar, all objects are cofibrant.

It turns out that the adjunction in (1.6),

sset
| · | ��

top,
Sing

��

is a Quillen equivalence. Therefore, the homotopy categories of simplicial sets and
of topological spaces are equivalent. In other words, the category of topological
spaces of the homotopy type of CW-complexes and homotopy classes of continuous
maps is equivalent to the category of Kan complexes and homotopy classes of
simplicial maps.

1.3.1 Differential model categories

There is a standard way, due to Hinich [77], to endow a differential category,
i.e., the category dvect of (co)chain complexes enriched with some additional
structure, with a model category structure.

Let C be a category admitting finite limits and arbitrary colimits and let

dvect
F ��

C,
U

��

be a pair of adjoint functors where U commutes with filtered colimits and the
following holds:

Let (v, dv) ∈ dvect be the differential graded vector space with one generator
v in degree n and another generator dv in degree n− 1. We assume that, for any
C ∈ C, the canonical map C → C  F (v, dv) is taken to a weak equivalence,

U(C)
∼−→ U
(
C  F (v, dv)

)
.

Theorem 1.17 ([77, Theorem 2.2.1]). The category C has a model category structure
in which a morphism f is a weak equivalence if U(f) is a weak equivalence; f is a
fibration if U(f) is surjective; and f is a cofibration if it has the left lifting property
with respect to trivial fibrations. �

We may apply this result to the categories dga, cdga or dgl, choosing as U
the forgetful functor and as F the “free” functor which, on each of these cases is
defined respectively by,

(T (V ), d), (∧V, d), and (L(V ), d), for (V, d) ∈ dvect .

In particular, we have:
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Theorem 1.18. The categories dga, cdga and dgl admit a model category structure
in which the weak equivalences are the quasi-isomorphisms, the fibrations are the
surjective morphisms and the cofibrations are the morphisms satisfying the left
lifting property with respect to trivial fibrations. �

This generalizes previous classical bounded versions for connected dga’s [12,
Theorem 4.3], connected cdga’s [84, Theorem 5] or reduced dgl’s [115, Theorem
II] (note the subtle difference in the latter category, where fibrations are dgl mor-
phisms that are surjective in degrees greater than 1).

As for differential graded coalgebras, a similar result holds as long as we do
not assume the existence of infinite limits. This restriction disappears if we restrict
to bounded graded coalgebras and then the following generalizes [109, Proposition
5.2] for cdgc1.

Theorem 1.19 ([62]). The category cdgc admits a model category structure (with-
out infinite limits) in which the weak equivalences are the quasi-isomorphisms,
the cofibrations are the injective morphisms and the fibrations are the morphisms
satisfying the right lifting property with respect to trivial cofibrations. �

In [77, §2.2.3] there is a description of the resulting cofibrations and cofibrant
objects in the model category C when Theorem 1.17 is applied. In the particular
differential categories we are interested in we obtain:

In cdga all objects are fibrant. Sullivan algebras are cofibrant objects and
any cdga has a cofibrant replacement which is a Sullivan algebra. In dgl0 all
objects are also fibrant. Free dgl’s (L(V ), d) are cofibrant and constitute cofibrant
replacements of any given dgl.

On the other hand, in cdgc1 every object is cofibrant, while an object C
is fibrant if and only if it is constructed by elementary extensions starting from
the ground field Q ([109, Proposition 5.7 and 5.8]). Recall that an elementary
extension of cdgc’s is a sequence of cdgc’s of the form

(∧V, d) −→ C −→ C′

which is obtained as a pullback diagram

(∧V, 0)
∼=
��

�� C ��

��

C′

f

��
(∧V, 0) �� (∧(V ⊕ E), d) �� (∧E, 0)

where V = d(E). If we forget the differential, then C ∼= C′ ⊗ ∧V . The extension
is called non-primitive if the map induced by f on the primitive elements is zero.

In particular, in cdgc1 the finite type cofibrant objects are cofree cdgc’s of
the form (∧V, d) whose duals, via (1.22), are Sullivan algebras.



50 Chapter 1. Background

As for path and cylinder objects, a path object for a cdga B is defined by

B �� B ⊗ ∧(t, dt)
ε1

��

ε0

		 B ,

where |t| = 0 and εi(t) = i. Therefore, for any cofibrant object A, two morphisms
f, g : A → B are homotopic if there is a morphism H : A → B⊗∧(t, dt) such that
ε0 ◦H = f and ε1 ◦H = g. Analogously, a path object for a dgl L is defined as,

L �� L⊗ ∧(t, dt)
ε1

��

ε0

		 L ,

where |t| = 0 and εi(t) = i.

On the other hand, a cylinder object for a dgl of the form (L(V ), d) is the dgl

(L(V ⊕ V ′ ⊕ sV ), D),

where (L(V ), D) and (L(V ′), D) are copies of (L(V ), d), and for v ∈ Vn, D(sv)−
(v − v′) + sd1v ∈ L≥2(V<n ⊕ V ′

<n + ⊕sV<n) (Here d1 denotes the linear part of
the differential, d1(V ) ⊂ V ). The description of a cylinder object for a Sullivan
algebra (∧V, d) is analogous.

We finish with two examples of Quillen pairs involving these model differential
categories that constitute the main results on which classical rational homotopy
theory lies.

Theorem 1.20 ([12, Theorem 9.4], [128]). The adjoint functors APL and 〈 · 〉S of
Theorem 1.2 form a Quillen pair whose derived functors restrict to equivalences
between the categories of connected minimal Sullivan algebras of finite type and
rational nilpotent Kan complexes of finite Q-type. �

On the other hand, Quillen proved that all the pairs in (1.2.2) are Quillen
equivalences with the single restriction being to the subcategory ssetQ1 of simply
connected rational simplicial sets. In particular:

Theorem 1.21 ([115, Theorem I]). The functors λ and 〈 · 〉Q induce equivalences of
categories

Ho ssetQ1
λ ��

Hodgl1
〈 · 〉Q

��

that are inverse of each other. �

1.3.2 Cofibrantly generated model categories

Let I be a collection of morphisms in a category C. An object A ∈ C is small
relative to I if for all sequences of maps in I, X0 → · · · → Xβ → . . . , we have

lim−→
β

HomC(A,Xβ) = HomC(A, lim−→
β

Xβ) .
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The set I is said to permit the small object argument if the domains of the maps
in I are small relative to I.

A relative I-cell complex is a composition of morphisms X0 → · · · → Xβ →
. . . , each of which is obtained as a pushout,

Cβ
��

gβ

��

Xβ

��
Dβ

�� Xβ+1,

with gβ ∈ I. An object A ∈ C is a I-cell complex if 0 → A is a relative I-cell
complex.

A model category C is cofibrantly generated if there are sets I and J of maps
satisfying the following properties.

(i) The sets I and J permit the small object argument.

(ii) The fibrations are the maps that have the right lifting property with respect
to the maps in J.

(iii) The trivial fibrations are the maps that have the right lifting property with
respect to the maps in I.

We call I the set of generating cofibrations and J the set of generating trivial cofi-
brations. Indeed, directly from the definition it is not hard to see that cofibrations
in C are precisely retracts of relative I-complexes, and trivial cofibrations in C are
retracts of J-complexes.

The model category on sset, described at the beginning of this section, is cofi-
brantly generated by the sets of cofibrations I and trivial cofibrations J given by,

I = {Δ̇n � Δn}n≥0 and J = {Λn
i � Δn}n≥0,o≤i≤n.

A structure of cofibrantly generated model category may be transferred by
the left adjoint functor of an adjunction, with the so-called Transfer Principle
which we now detail.

Let C be a model category cofibrantly generated by the sets I and J of
generating cofibrations and generating trivial cofibrations, respectively. Let D be
a category with finite limits and small colimits, and let

C
F ��

D
G

��

be a pair of adjoint functors (upper arrow denotes left adjoint). A map f in D is
called a weak equivalence or a fibration if G(f) is a weak equivalence or a fibration
respectively. Then, we have:
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Theorem 1.22 ([80, Theorem 11.3.2]). There is a model category in D, cofibrantly
generated by the families F (I) and F (J), and whose weak equivalences and fibra-
tions are as above, provided the following two conditions:

(i) The sets F (I) and F (J) permit the small object argument.

(ii) The functor G takes relative F (J)-cell complexes to weak equivalences. �
Remark 1.23. In some cases, property (ii) is often difficult to verify. However, as
remarked in [7, §2.6], an argument of Quillen [114, II.4] can be applied to see that
this condition is satisfied if the following holds:

(a) D has a fibrant replacement functor.

(b) D has functorial path objects for fibrant objects.

As the model on D inherited by the Transfer Principle deliberately preserve
fibrations and weak equivalences, automatically it follows that:

Corollary 1.24. The functors

C
F ��

D
G

��

constitute a Quillen pair. �



Chapter 2

The Quillen Functors L , C
and their Duals A , E

The classical pair of adjoint functors

cdgc
L ��

dgl
C

��

was first introduced by Quillen in [114, Appendix B] where their main homotopi-
cal properties were outlined and proved under certain connectivity assumptions.
Namely, see [114, Theorem 7.5], as long as L ∈ dgl1 and C ∈ cdgc2, both func-

tors preserve quasi-isomorphisms, and both adjunctions maps αL : LC (L)
�−→ L,

βC : C
�−→ CL (C), are also quasi-isomorphisms.

Later on, Neisendorfer showed that these connectivity restrictions can be
slightly relaxed: for any L ∈ dgl0 and any C ∈ cdgc1, both αL and βC are quasi-
isomorpisms [109, Proposition 4.1]. Moreover, C preserves quasi-isomorphisms in
dgl0 [109, Proposition 4.1(a)].

In this chapter we first present a detailed description of these functors. More-
over, see [78, Proposition 3.3.2], we extend once again these properties in a self con-
tained presentation by showing that: αL is a quasi-isomorphism for any L ∈ dgl,
C always preserves quasi-isomorphisms, and L preserves quasi-isomorphisms be-
tween finite type fibrant coalgebras in cdgc1. The need for this extension will be
revealed in Chapters 3 and 9.

Also, as a key tool in some forthcoming fundamental results, we need functors
that behave as “duals” of L and C . Straight dualization defines a functor from
cdgc to cdga, but the dual of a dgl is not a dglc unless finite type assumptions are
imposed. Hence, inspired by the work by Sinha and Walter [122], we also introduce
in this chapter another pair of adjoint functors,

cdga
E

�� dglc,
A��
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which solves this problem. Moreover, we extend the functor E and its “unre-
duced” version E u to the infinity category E , E u : cdga∞ → dglc. We then show
the analog of the above homotopical properties whose almost complete lack of
connectivity and finiteness assumptions were predicted in [122]: E and E u pre-
serve quasi-isomorphisms, while A preserve quasi-isomorphisms when restricted

to dglc0; the adjunction map α′
A : A E (A)

�−→ A is a quasi-isomorphism for any
cdga A which is either of finite type or connected; and finally, the other adjunction

β′
E : E

�−→ EA (E) is a quasi-isomorphism for any “Sullivan dglc” E.

Again, while the dual of a dglc is always a dgl, this is not the case for a cdga
unless finite type is assumed. Thus, as a general picture, these two pairs of adjoint
functors fit schematically in the diagram

cdgc
L

��

#

��

dgl
C





cdga
E

		 dglc

#

��

A
��

where the two squares that it contains are not commutative in general unless strong
finiteness and connectivity assumptions are imposed (see Remark 2.17). Some of
this restrictions can be avoided by considering the “completed categories” involved
and replacing the dual functor by its topological dual version. However, except for
the completion of dgl’s of course, none of this will be needed and this material is
therefore omitted.

2.1 The functors L and C

We begin with their definitions. Given a cdgc C define

L (C) = (L(s−1C), d),

with d = d1 + d2, where

d1(s
−1c) = −s−1dc,

d2(s
−1c) =

1

2

∑
i

(−1)|ai|[s−1ai, s
−1bi] with Δc =

∑
i

ai ⊗ bi.

On the other hand, given a dgl L, define the chain coalgebra

C (L) = (∧(sL), d),
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with d = d1 + d2, where

d1(sv1 ∧ · · · ∧ svn) = −
∑

(−1)nisv1 ∧ · · · ∧ s(dvi) ∧ · · · ∧ svn,

d2(sv1 ∧ · · · ∧ svn) =
∑

1≤i<j≤k

(−1)|svi| ρij s[vi, vj ] ∧ sv1 ∧ · · ·
· · · ∧ ŝvi ∧ · · · ∧ ŝvj ∧ · · · ∧ svn,

ni =
∑

j<i |svj | and ρij is the Koszul sign of the permutation

sv1 ∧ · · · ∧ svn �−→ svi ∧ svj ∧ sv1 ∧ · · · ∧ ŝvi ∧ · · · ∧ ŝvj ∧ · · · ∧ svn.

In particular,

d1(sv) = −sdv and d2(sv ∧ sw) = (−1)|sv|s[v, w] .

As usual, we denote by C (L) the augmentation ideal of C (L).

We point out the classical relations of L and C with the universal enveloping
algebra functor. On the one hand one easily checks that the universal enveloping
algebra UL (C) = (T (s−1C), d) is precisely the differential Hopf algebra given by
the cobar construction ΩC. In other words, as observed in Section 1.2.3,L = PΩ,
where P denotes the functor of primitive elements.

On the other hand, the cdgc C (L) is related to the bar construction on UL.
More precisely, see [50, Theorem 22.7], there is a quasi-isomorphism,

ζ : C (L)
�−→ BUL , (2.1)

defined by

ζ(sx1 ∧ · · · ∧ sxk) =
∑
σ∈Σk

εσ[sxσ(1)| . . . |sxσ(k)] .

Here, εσ is the Koszul sign of the permutation

sx1 ∧ · · · ∧ sxk �−→ sxσ(1) ∧ · · · ∧ sxσ(k) .

The following proposition is a direct consequence of the definition of C and
L as such its proof is omitted.

Proposition 2.1. The functor L is left adjoint to C ,

cdgc
L ��

dgl.
C

�� �

The adjunction maps

αL : LC (L) −→ L and βC : C −→ CL (C)

are defined as follows: on the one hand, αL is the unique dgl morphism

(L(s−1∧+sL), d) → L
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extending the projection

s−1∧+sL −→ s−1∧+sL/
(
s−1 ∧≥2 sL

) ∼= L.

On the other hand, βC is the unique cdgc morphism C → (∧sL (C), d) lifting the
inclusion

C ∼= ss−1C ⊂ sL(s−1C).

To prove that, for any dgl and any cdgc in cdgc1, both adjunctions are
quasi-isomorphisms, we need a very slight extension of [109, Proposition 4.2].

Note that, by definition, given a cofree cdgc of the form (∧V, d), the chain
complex (s−1V, s−1d1) is a sub-complex of L (∧V, d) whose underlying graded Lie
algebra is L(s−1 ∧+ V ). In the same way, given a free dgl of the form (L(V ), d),
the chain complex (sV, sd1) is a quotient complex of C (L(V ), d) whose underlying
graded coalgebra is ∧+sL(V ). As always, d1 denotes the linear part of d.

Lemma 2.2.

(i) For any cdgc of the form (∧V, d) the injection

(s−1V, s−1d1)
�

↪−−→ L (∧V, d)
is a quasi-isomorphism of complexes.

(ii) For any L ∈ dgl0 of the form (L(V ), d), the projection

C (L)
�−−� (sV, sd1)

is a quasi-isomorphism of complexes.

Proof. (i) Suppose first that the differential is zero in ∧V . Then let W be a graded
vector space with W = W≥2 equipped with a non-graded isomorphism W → V
preserving the parity of the degree of elements. Hence, ∧V is isomorphic to ∧W .
Moreover, ∧W = C (s−1W ) where s−1W is considered as an abelian Lie algebra
in dgl1. In this reduced category, by [115, Theorem 7.5], we have a dgl quasi-

isomorphism Φ: L (∧W )
�→ s−1W such that the composition

s−1W↪→L (∧W )
Φ−→ s−1W

is the identity on s−1W and thus the inclusion s−1W↪→L (∧W ) is a quasi-iso-
morphism of complexes. Therefore, by the commutativity of the diagram

s−1W
� � � ��

∼=
��

L (∧W )

∼=
��

s−1V � � �� L (∧V ),

the lower injection is also a quasi-isomorphism.



2.1. The functors L and C 57

For a general C = (∧V, d) denote by Γ the quotient complex

Γ = L (∧V, d)/(s−1V, s−1d).

The statement amounts to proving that H(Γ) = 0. To do this, observe that the
bracket length in L (∧V, d) = (L(s−1 ∧+ V ), d) induces a grading on Γ for which
we write Γ =

⊕
q≥1 Γq. The differential of Γ is the sum d = d1 + d2, where d1

preserves this grading and d2 increases it by one. Next, note that (L (∧V ), d2) =
L (∧V, 0). Therefore, we can use the former special case to conclude that the

inclusion (s−1V, 0)
�
↪→ L (∧V, 0) is a quasi-isomorphism, which is equivalent to

H(Γ, d2) = 0.

Now, if x ∈ Γ is a d-cycle, then for some n ≥ 1, x = x1 + · · · + xn with
xq ∈ Γq for q = 1, . . . , n. Hence d2(xn) = 0 and thus xn = d2(y) for some y. Then,
replacing x by x − dy, we get a new cycle homologous to x in Γ<n. By iteration,
in the homology of Γ, [x] = [z] with z ∈ Γ<1 = 0. Therefore, H(Γ) = 0 and the

inclusion (s−1V, s−1d1)
�
↪→ L (∧V, d) is a quasi-isomorphism.

(ii) We use an analogous argument. Consider first the case where L has
zero differential. Then, we may modify the degrees and suppose that L = L≥1.
Then, BUL = BT (V ) = BΩZ, where Z is the coalgebra Q ⊕ sV with trivial
comultiplication and differential. Write BΩZ = T c

(
sT (s−1Z)

)
.

In this particular case, the adjunction quasi-isomorphism βZ : Z
�−→ BΩZ of

Theorem 1.3 has a retraction given by the projection γ : BΩZ → Z which is the
identity on s(s−1Z) and maps T p

(
sT q(s−1Z)

)
to 0 when p or q are greater or

equal than 2.

Finally, observe that the projection C (L)�(sV, sd1) is the restriction to the
respective augmentation ideals of the following sequence of quasi-isomorphisms

C (L)
ζ−→ BUL ∼= BΩZ

γ−→ Z

and thus, it is a quasi-isomorphism. Here, ζ is the cdgc quasi-isomorphism of (2.1).

In the general case, denote byK the kernel of the projection C (L)�(sV, sd1).
The word length in C (L) induces a grading onK for which we writeK =

⊕
q≥1 Kq.

Again, the differential in K can be written d = d1 + d2 with d1 : Kq → Kq,
d2 : Kq → Kq−1. Reasoning exactly as in (i), taking into account the previous
particular case, we obtain that H(K, d2) = 0.

Now, let a by a cycle in K of usual degree n. As L ∈ dgl0, sL is concentrated
in positive degrees C (L) = C (L)≥1 and thus, we can write a =

∑n
q=1 aq with

aq ∈ Kq. Then, d2a1 = 0, so a1 = d2b for some b. Therefore, replacing a by
a − db and iterating the process, the element a is homologous to an element in
Kn+1. However, this element has to vanish as 0 is the only element in Kn+1 of
(usual) degree n. Hence H(K) = 0, and the considered projection is a quasi-
isomorphism. �
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Proposition 2.3. For any L ∈ dgl and any C ∈ cdgc1, the adjunction maps

αL : LC (L)
�−→ L and βC : C

�−→ CL (C)

are quasi-isomorphisms.

Proof. For any L ∈ dgl write C (L) = (∧V, d), where (s−1V, s−1d1) = L. It follows
from Lemma 2.2(i) that the injection

L
�

↪−−→ LCL

is a quasi-isomorphism of complexes. But the composition of this injection with αL,

L
�

↪−−→ LCL
αL−→ L,

is the identity on L. Hence, αL is also a quasi-isomorphism.

Similarly, for any C ∈ cdgc1, write L (C) = (L(V ), d), where C = (sV, sd1).
It follows from Lemma 2.2(ii) that the projection

CL (C)
�−−� C

is a quasi-isomorphism of complexes. Precomposing this with the restriction to
the augmentation ideal of the adjunction map βC

C
βC−→ CL (C)

�−−� C

gives the identity on C, and thus βC is also a quasi-isomorphism. �

We now check that the functor C preserves quasi-isomorphisms and discuss
under which conditions this is also the case for L .

Proposition 2.4.

(1) The functor C preserves quasi-isomorphisms in dgl.

(2) The functor L preserves quasi-isomorphisms between finite type fibrant coal-
gebras in cdgc1 and also preserves all quasi-isomorphisms in cdgc2.

Statement (1) and the second assertion of statement (2) are precisely [109,
Proposition 4.4 and 6.4].

Proof. (1) Let f : L
�−→ L′ be a quasi-isomorphism of dgl’s. The cdgc’s C (L)

and C (L′) are naturally filtered by ∧≤psL and ∧≤psL′ and the morphism C (f)
preserves the filtration so that, for each p, it induces a map

fp : ∧≤p sL −→ ∧≤psL′.
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It suffices to show that each fp is a quasi-isomorphism. First, note that the induced
map,

fp : ∧p sL = ∧≤psL / ∧≤p−1 sL
�−→ ∧≤psL′ / ∧≤p−1 sL′ = ∧psL′ ,

is a quasi-isomorphism for each p, since f is. Finally, recursively applying the five
lemma to the diagram

0 �� ∧≤p−1sL ��

fp−1

��

∧≤psL ��

fp−1

��

∧psL

�fp

��

�� 0

0 �� ∧≤p−1sL′ �� ∧≤psL′ �� ∧psL′ �� 0

we deduce that for each p the induced map fp is a quasi-isomorphism, as required.

(2) Let f : C
�−→ C′ be a quasi-isomorphism in cdgc2. The dgl’s L (C) =

L(s−1C) and L (C′) = L(s−1C′) are naturally equipped with the decreasing fil-
trations L≥p(s−1C) and L≥p(s−1C′). Since L (C) and L (C′) are in dgl1, the
induced spectral sequences are first-quadrant spectral sequences and thus con-
vergent. Therefore, since E1(f) is an isomorphism, by comparison, L (f) is a
quasi-isomorphism.

Assume now that f : C
�−→ C′ is a quasi-isomorphism between fibrant cdgc’s

in cdgc1. Write C = (∧V, d) and C′ = (∧V ′, d) and note, using (1.22) in Section
1.3.1, that the dual of a reduced, finite type fibrant cdgc is a Sullivan algebra.
Hence, the dual of f can be written as the cdga quasi-isomorphism

f# : (∧V #, d#)
�−→ (∧V ′#, d#).

It follows that the induced map on the indecomposable elements f#
1 , and thus

f1 : (V, d1)
�−→ (V ′, d1) is a quasi-isomorphism of chain complexes. Now, by the

naturality in Lemma 2.2(i), we have a commutative diagram of complexes,

(s−1V, s−1d)
s−1f1

�
��

� �

�
��

(s−1V ′, s−1d)� �

�
��

L (C)
L (f) �� L (C′),

in which both vertical arrows are injective quasi-isomorphisms. It follows that
L (f) is a quasi-isomorphism. �
Example 2.5. Here we show that the functor L does not, in general, preserve
quasi-isomorphisms in cdgc1 and the fibrant character of the cdgc is essential.
Consider for instance the (non-fibrant!) cdgc

C = (∧(a, b, c), d)
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with d(ab) = c, d(bc) = a, d(ca) = b, with |a| = |b| = |c| = 1. Then,

L (C) = (L(x, y, z, u, v, w, t), d)

with
x = −s−1a, y = −s−1b, z = −s−1c, u = s−1ab,

v = s−1bc, w = s−1ca, t = s−1abc,

and
dx = dy = dz = 0, du = z − [x, y], dv = x− [y, z],

dw = y − [z, x], dt = [x, v] + [y, w] + [z, u].

On the other hand, consider the cofree cdgc (∧e, 0) with e of degree 3 and the
cdgc morphism

ϕ : C
�−→ (∧e, 0), ϕ(abc) = e.

Then it is an exercise to check that ϕ is a quasi-isomorphism, but L (ϕ) is not:
H0

(
L (∧e, 0)) = 0, but H0

(
L (C)
)
is the semi-simple Lie algebra so(3), that is,

the Lie algebra spanned by x, y and z with [x, y] = z, [y, z] = x and [z, x] = y.

Recall that, under strong finiteness and connectivity restrictions, the pair of
adjoint functors C and L becomes a Quillen equivalence with the usual model
structures. Denote by dglhf 0 the subcategory of dgl0 consisting of those dgl’s
whose homology is nilpotent and of finite type. On the other hand, let cdgccf 1
be the subcategory of cdgc1 consisting of those cdgc’s having a fibrant model of
finite type. Then, J. Neisendorfer proved the following:

Theorem 2.6 ([109, Proposition 7.2]). The adjoint functors

cdgccf 1
L ��

dglhf0
C

��

induce equivalences between the associated homotopy categories. In particular, a
map L (C) → L is a quasi-isomorphism if and only if the adjoint map C → C (L)
is a quasi-isomorphism. �

As a consequence, for fibrant connected cdgc’s C1 and C2 of finite type, and
for cofibrant connected dgl’s L1 and L2 whose homology is nilpotent of finite type,
the functors L and C induce bijections of homotopy classes of maps,

[C1, C2]
∼=−→ [L (C1),L (C2)] and [L1, L2]

∼=−→ [C (L1),C (L2)] .

The equivalence in Theorem 2.6 may be extended on the left to the homotopy
category of cdgahf 1 which is the subcategory of cdga1 consisting of the cdga’s
that have a finite type Sullivan minimal model. This is done by considering the
cochain functor, that is, the dual of the functor C , which we now describe in detail
as it will be of use later.
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Definition 2.7. For any dgl L, the cochain algebra on L is the dual of the chain
coalgebra C (L),

C ∗(L) = Hom(C (L),Q) .

The differential is given by (df)(c) = −(−1)|f |f(dc). In the particular case when
L is connected and of finite type, this cdga has a well-known description: indeed,
via the cga isomorphism (1.22),

C ∗(L) ∼= (∧(sL)#, d) (2.2)

in which d = d1 + d2, where

〈d1v, sx〉 = (−1)|v|〈v, sdx〉,
〈d2v, sx ∧ sy〉 = (−1)|y|+1〈v, s[x, y]〉,

(2.3)

with v ∈ (sL)# and x, y ∈ L. From this point on, the cochain functor will only be
considered in this special case and thus, equation (2.2) can be considered as its
definition.

Let (∧V, d) be the minimal model of a 1-connected cdga with finite type
homology. In that case, see for instance [130, Chapter II], C ∗ and the association
(∧V, d) �→ L (∧V, d)# define equivalences between the homotopy categories of
cdgahf 1 and dglhf 0, which relate the minimal Sullivan and Quillen models of a
simply connected space X of finite type:

If (∧V, d) is the minimal Sullivan model of X , then L (∧V, d)# is a Quillen
model of X .

2.2 The functors A and E

The aim of this section is the study of the functors

cdga
E ,E u

�� dglc .
A��

We begin with their definitions. Given a dglc (E, d), define

A (E) = (∧s−1E, d),

where

d(s−1x) =
1

2

∑
i

(−1)|xi| s−1xi ∧ s−1x′
i − s−1dx,

with Δx =
∑

i xi ⊗ x′
i.
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Remark 2.8. An easy and direct computation shows that, if E is a connected finite
type dglc then,

A (E) = C ∗(E#) = # ◦ C (E#),

where E# denotes the dgl dual to E. Equivalently, whenever L is a connected
finite type dgl,

C ∗(L) = A (L#), that is, # ◦ C (L) = A ◦#(L).

On the other hand, for the construction of E choose a cdga A (which we recall
is always assumed augmented). The differential on the bar construction BA =
T c(sA) preserves the ideal generated by the shuffle products (see Section 1.2.3),
and therefore it induces a differential d on the indecomposables B+A/B+A ·B+A,
which is precisely (see Section 1.2.4) the free Lie coalgebra Lc(sA). This then
defines the dglc,

E (A) = (Lc(sA), d).

As a simple but illustrative example, consider a generic cdga A and homogeneous
elements a, b ∈ A. Recall that [sa, sb]c denotes the projection of [sa|sb] = sa⊗sb ∈
BA on Lc(sA). Then we have

d[sa, sb]c = (−1)|sa|s(ab)− [sda, sb]c − (−1)|sa|[sa, sdb]c .

Exactly the same construction can be performed on the unreduced bar con-
struction BuA to define

E u(A) = (Lc(sA), d).

It is important to observe that the functors E and E u can be extended to the
infinity category,

E , E u : cdga∞ −→ dglc, (2.4)

by means of the formulas (1.27) and (1.28) of Section 1.2.5, as we now recall:
given a C∞-algebra A, the differential on the bar construction BA = (T c(sA), d)
preserves the ideal generated by the shuffle products and therefore it induces a
differential on the quotient B+A/B+A · B+A = Lc(sA). The same procedure is
performed on the unreduced bar construction, and this defines the dglc’s,

E (A) = (Lc(sA), d) and E u(A) = (Lc(sA), d).

Using the universality properties of the free Lie coalgebra and the free com-
mutative algebra, and the explicit definitions of both functors, the following propo-
sition is an easy exercise.

Proposition 2.9. The functor A is left adjoint to E . �
The adjunction maps

α′
A : A E (A) −→ A and β′

E : E −→ EA (E)

are defined as follows:
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On the one hand, α′
A is the unique cdga morphism (∧s−1E (A), d) → A

extending the projection

s−1E (A) −→ s−1sA = A.

On the other hand, β′
E is the unique dglc morphism E → (Lc

(
s∧+ s−1E), d)

induced by the inclusion

E = ss−1E ↪−−→ s ∧+ s−1E.

Preservation of quasi-isomorphisms is proven by similar arguments to Propo-
sition 2.4.

Proposition 2.10.

(1) The functors E and E upreserve quasi-isomorphisms in both cdga and cdga∞.

(2) The functor A preserves quasi-isomorphisms in dglc0.

Proof. (1) The proof is analogous to that of Proposition 1.6: for any cdga or C∞-
algebra A, the dglc E (A) = (Lc(sA), d) is filtered by the sub-dglc’s Lc≤p(sA), each
of which is the image of T c≤p(sA) of the projection BA → E (A).

Let f : A
�→ A′ be a quasi-isomorphism of cdga’s or C∞-algebras. Then, E (f)

preserve the filtration and we get maps

fp : L
c≤p(sA) −→ Lc≤p(sA′).

It is sufficient to show that each fp is a quasi-isomorphism. Note that the induced
map

fp : (L
c)p(sA) = Lc≤p(sA) /Lc≤p−1(sA)
�−→ (Lc)p(sA′) = Lc≤p(sA′) /Lc≤p−1(sA′) = (Lc)p(sA′) ,

is a quasi-isomorphism for each p, since f is. Recursively applying the five lemma
as in Proposition 1.6 we obtain the result. The unreduced version is proved in the
same way.

(2) Given any E ∈ dglc0, filter A (E) = (∧s−1E,D) by the word-length
ideals ∧≥ps−1E. Since s−1E = (s−1E)≥1, the induced spectral sequence E∗ con-

verges. Now, given a quasi-isomorphism f : E
�−→ E′ in dglc0 it follows that

E1

(
A (f)
)
is already an isomorphism since f is. We conclude that A (f) is also a

quasi-isomorphism. �
Example 2.11. The functor A does not preserve quasi-isomorphisms of non-con-
nected dglc’s. As an example, consider the free dglc L = L(x) on one generator
x of degree −1, equipped with the differential d[x, x]c = x, dx = 0. Then the

injection f : 0
�−→ L is a quasi-isomorphism. On the other hand, A (L) = ∧(u, v)

with |u| = 0, |v| = −1, du = 0 and dv = u − u2. Therefore, H
(
A (L)
)
is the

direct sum Q1 ⊕ Q[u], where [u] is an idempotent. In particular A (f) is not a
quasi-isomorphism.



64 Chapter 2. The Quillen Functors L , C and their Duals A , E

To prove that the adjunction maps are quasi-isomorphisms we need some
preparation.

We remark that, given a cofree dglc (Lc(V ), d), the chain complex Q ⊕
(s−1V, s−1d1) is a sub-complex of A (Lc(V ), d) whose underlying graded algebra is
∧s−1Lc(V ). On the other hand, given a Sullivan algebra (∧V, d), the chain complex
(sV, sd1) is a quotient complex of E (A) whose underlying graded Lie coalgebra is
Lc(s∧+ V ). The analogue of Lemma 2.2, whose proof also uses similar arguments,
reads as follows:

Lemma 2.12.

(i) For any cofree dglc (Lc(V ), d) which can be written as the union
⋃

i(L
c(Vi), d)

with each Vi of finite type, the injection

Q⊕ (s−1V, s−1d1)
�

↪−−→ A (Lc(V ), d)

is a quasi-isomorphism of complexes.

(ii) For any Sullivan algebra (∧V, d), the projection

E (∧V, d) �−−� (sV, sd1)

is a quasi-isomorphism of complexes.

Proof. (i) Since A is left adjoint, it commutes with direct limits and thus,

A (Lc(V ), d) = lim−→
i

A (Lc(Vi), d).

Denote by γ : Q ⊕ (s−1V, s−1d1)↪→A (Lc(V ), d) the inclusion, which is also the
direct limit

γ = lim−→
i

γi, where γi : Q⊕ (s−1Vi, s
−1d1)→A (Lc(Vi, d),

is the corresponding injection. Since an inductive limit of a quasi-isomorphism is
again a quasi-isomorphism, we can assume without loss of generality that V is of
finite type.

First, if the differential on Lc(V ) is zero we can rearrange the degrees and

suppose that V = V ≥1, in which case Lc(V ) =
(
L(V #)

)#
, and from Remark 2.8

it follows that
A (Lc(V ), 0) =

(
C (L(V #), 0)

)#
.

Hence, γ = idQ ⊕ρ# with

ρ : C (L(V #), 0)
�−−� (V #, 0)

the quasi-isomorphic projection of Lemma 2.2(ii). Thus, γ is a quasi-isomorphism.
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In the general case, denote by

Γ = A (Lc(V ), d)/(s−1V, s−1d1)

the cokernel of γ. We finish by proving that H(Γ) = 0.

For this, observe that for any dglc E the differential in A (E) can be written
as d = d1 + d2, in which d1 preserves the word length and d2 increases it by 1.
Moreover,

(A (E), d2) = A (E, 0),

and in particular (A (Lc(V ), d), d2) = A (Lc(V ), 0). Now, by the preceding special
case,

Q⊕ (s−1V, 0)
�

↪−−→ A (Lc(V ), 0)

and therefore, H(Γ, d2) = 0. Note also that the word length in A
(
Lc(V )
)
induces

a grading on Γ =
⊕

q≥1 Γq. Now, if x ∈ Γ is a d-cycle, then for some n ≥ 1,
x = x1 + · · ·+ xn with xq ∈ Γq. Then, d2(xn) = 0 and thus xn = d2(y) for some
y. Replacing x by x − dy, we get a cycle in Γ<n homologous to x. By iteration
[x] = [z] with z ∈ Γ<1 = 0. Therefore, H(Γ, d) = 0 and γ is a quasi-isomorphism.

(ii) Denote by ρ : E (∧V, d) �� (sV, sd1) the projection and observe that any
Sullivan algebra (∧V, d) can be written as the increasing union

⋃
i≥0(∧Vi, d) of

Sullivan algebras

(∧V0, d0 ⊂) · · · ⊂ (∧Vi, di) ⊂ · · · ,

where each Vi is of finite global dimension. Even though E may not commute in
general with direct limits, it does in this particular case and

E (∧V, d) = lim−→
i

E (∧Vi, d) and ρ = lim−→
i

ρi : E (∧Vi, d)→(sVi, sd1).

Hence, as the direct limit of quasi-isomorphisms is a quasi-isomorphism, we may
assume again that V is of finite dimension.

When d = 0 in (∧V, d), we can modify the degrees and suppose that V = V ≥2.
Then,

E (∧V, 0)# ∼= (Lc(s ∧+ V )
)# ∼= L(s ∧+ V #) = L (∧V #, 0)

and ρ = γ#, with

γ : (s−1V #, 0)
�

↪−−→ L (∧V #, 0)

the injective quasi-isomorphism of Lemma 2.2(i). Hence, ρ is also a quasi-iso-
morphism.
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In the general case, if we denote K = kerρ the statement will follow by
proving that H(K) = 0.

Note that, for any cdga A, the differential on E (A) can be written as d =
d1 + d2, in which d1 preserves the cobracket length and d2 decreases it by 1.
Moreover,

(E (A), d2) = E (A, 0).

Since, by the previous particular case, the projection

E (∧V, 0) �−−� (sV, 0)

is a quasi-isomorphism, we obtain that H(K, d2) = 0.

Now, the cobracket length on E (∧V, d) induces also a grading on K =⊕
q≥1 K

q for which d1 preserves this grading and d2 decreases it by 1.

Choose a cocycle x ∈ K and write x =
∑n

q=1 xq with xq ∈ Kq. Then d2x1 =
0, so x1 = d2y for some y. Therefore, replacing x by x − dy and iterating the
process, x is homologous to a cycle x′ in Kn. Now construct a sequence zi, i ≥ 1,
with d2z1 = x and for i ≥ 2, d2zi = d1zi−1 Suppose that z1, . . . , zq have been
constructed; then d1zq is a d2-cycle and so is of the form d2zq+1. If we assure that
zq = 0 from some q on, then x = d(z1 + · · ·+ zq−1) and the result would follow.

To check that this is the case we set a multigrading in E (∧V, d), and thus in
K, as follows:

Since V is of finite dimension write V =
⊕n

q=1 V[q] with dV[0] = 0 and

dV[q] ⊂ ∧
(⊕q−1

i=1 V[i]

)
. We fix a basis for each V[q]. The product of those elements

forms a basis B for ∧V . Now to each element ω ∈ B we associate a multidegree
�(ω) ∈ Zn as follows:

If v ∈ V[q], �(v) is the n-tuple (a1, . . . , an) with ai = 0 for i �= n − q and
an−q = 1. If ω = v1 ∧ · · · ∧ vr ∈ B, we set �(ω) =

∑r
i=1 �(vi).

The bar construction B(∧V, d) admits then a basis D formed by elements
of the form a = [sω1|sω2| · · · |sωt] with ωj ∈ B, and we extend � to this basis by

setting �(a) =
∑t

i=1 �(ωi).

Next, we select in the graded vector space E (∧V, d) a basis F extracted from
the elements of D along the projection B(A, d) → E (A, d). In F we keep the
multidegree � and consider on it the lexicographic order. Observe that, for each
V[q] and any a ∈ F corresponding to an element of a basis of V[q], d1(a) is a linear
combination

∑
λjaj with λj ∈ Q, aj ∈ F and �(aj) < �(a).

Returning to the proof of zq = 0 for q big enough, observe that, by the
definition of d2, if α is a linear combination of elements of multidegree ≤ r and α
is a d2-boundary, then there is a linear combination β of elements of multidegree
≤ r with d2β = α. Hence, for any q, if d1zq is a linear combination of elements
of multidegree < r, then the same is true for zq+1. Since d1 decreases strictly the
multidegree, zq = 0 after some number of steps. �
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Lemma 2.12(ii) can be sharpened whenever A is a minimal Sullivan algebra.

Proposition 2.13. Let (∧V, d) be a minimal Sullivan algebra. Then

H(ρ) : H(E
(∧V, d)) ∼=−→ sV

is an isomorphism of graded Lie coalgebras.

Here, the Lie coalgebra structure of sV is the one given in Example 1.5.

Proof. Let v ∈ V with d2v =
∑

i viv
′
i. Then using Lemma 2.12(ii), there is a cycle

ṽ = sv −
∑
i

(−1)|vi|[svi, sv′i]
c + ω

with ρ(ṽ) = sv and ω ∈∑p+q≥3 L
q(∧pV ). Since (p⊗ p)Δω = 0,

(p⊗ p)Δ(ṽ) = −
∑
i

(−1)|vi|
(
svi ⊗ sv′i − (−1)|svi||sv

′
i|sv′i ⊗ svi

)
= Δ(sv) . �

Definition 2.14. A Sullivan differential graded Lie coalgebra is a dglc E which is
the union of an increasing sequence of dglc’s 0 = E0 ⊂ · · · ⊂ Ei−1 ⊂ Ei ⊂ · · ·
such that, for each i ≥ 1, the differential and comultiplication on each Ei satisfy

dEi ⊂ Ei−1 and ΔEi ⊂ Ei−1 ⊗ Ei−1.

Observe that for each Sullivan dglc E, the cdga A (E) is a Sullivan algebra.

For instance, any E ∈ dglc1 is a Sullivan dglc as A (E) is a 1-connected free
cdga and hence, a Sullivan cdga.

Proposition 2.15. For any cdga A which is either of finite type or in cdga1, and
any Sullivan dglc E, the adjunction maps

α′
A : A E (A)

�−→ A and β′
E : E

�−→ EA (E)

are quasi-isomorphisms.

Proof. We first suppose that A is of finite type and we prove that α′
A is a quasi-

isomorphism. As E (A) = (Lc(s−1A), d), Lemma 2.12(i) guarantees that the injec-
tion

(A, d)
�

↪−−→ A E (A)

is a quasi-isomorphism of complexes. Composing this inclusion with α′
A yields the

identity on A and therefore, α′
A is a quasi-isomorphism.

We now assume that A ∈ cdga1. In this case, every finitely generated sub-

cdga R ⊂ A is of finite type and we denote by α′
R : A E (R)

�→ R the corresponding
quasi-isomorphism. If x is a cycle in A, there is a finitely generated sub-cdga R



68 Chapter 2. The Quillen Functors L , C and their Duals A , E

such that x ∈ R, and since α′
R is a quasi-isomorphism, there is a cycle y ∈ A E (R)

with α′
R(y) = x. Then y ∈ A E (A) and α′

A(y) = x. That is, H(α′
A) is surjective.

For the injectivity, let z be a cycle in A E (A) such that α′
A(z) = dy. Then there

is a finitely sub-cdga R ⊂ A such that y ∈ R and z ∈ A E (R). Since α′
R is a

quasi-isomorphism, z is a boundary and so H(α′
A) is injective.

We see now that β′
E is a quasi-isomorphism for any Sullivan dglc E. In

this case, A (E) is a Sullivan algebra and by Lemma 2.12(ii), the projection

ρ : EA (E)
�−→ ss−1E = E is a quasi-isomorphism. Since ρ ◦ β′

E is the identity, β′
E

is a quasi-isomorphism. �

Example 2.16. Let us show that the Sullivan character of the dglc E in Proposition
2.15(ii) is necessary. For this (see Example 2.5), consider the dgl so(3) concentrated
in degree 0 and with trivial differential. It is spanned as vector space by x, y and
z with [x, y] = z, [y, z] = x and [z, x] = y. Write E = so(3)# and observe that, by
Remark 2.8,

A (E) = C ∗(so(3)).
By definition,

C ∗(so(3)) = (∧(a, b, c), d),
where

|a| = |b| = |c| = 1 and da = bc, db = ca, dc = ab.

This is not a Sullivan algebra and thus, E is not a Sullivan dglc. Consider the cdga
quasi-isomorphism

(∧e, 0) �−→ (∧(a, b, c), d), e �−→ abc,

and apply Proposition 2.10(1) to obtain that

EA (E) ∼= E (∧e, 0) = (Lc(se), 0).

Therefore, β′
E : E → EA (E) is obviously not a quasi-isomorphism.

We finish the section with the following observation.

Remark 2.17. Under extra connectivity assumptions, Remark 2.8 has a stronger
version: restrict the domain and codomain of the pair of functors C , L and A ,
E as indicated in this diagram,

cdgcf2

L
��

��

#∼=
��

dglf1
C





cdgaf2
E

		 dglc
f
1,

��
# ∼=

��

A��
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where the superscript f denotes the subcategory of finite type objects of the cor-
responding category. Then, an easy inspection shows that the usual dual functors
are self inverse equivalences and all squares inside the diagram are commutative.
That is:

L ◦# = # ◦ E and C ◦# = # ◦A . (2.5)

In particular, given A ∈ cdgaf
2, there is a cdgc C ∈ cdgcf2 with A = C# and

L (C) =
(
E (A)
)#

.

In this special setting the preservation of quasi-isomorphisms by L (respec-
tively by C ) is then equivalent to the preservation of quasi-isomorphisms by E
(respectively A ).



Chapter 3

Complete Differential Graded
Lie Algebras

In this chapter we introduce and carefully study the category cdgl of complete
differential graded Lie algebras, which is the main algebraic category in this text.
This category, together with the completion functor, which can be analogously
built on any of the considered algebraic categories in Section 1.2, is defined in the
usual, filtered way:

Let L be a dgl provided with a filtration L = F 1 ⊃ F 2 ⊃ · · · of Lie ideals
compatible with the bracket. The completion of L is defined as the dgl

L̂ = lim←−
n

L/Fn.

On the other hand, a filtered dgl L is complete if the natural morphism

L
∼=−→ lim←−

n

L/Fn

is already a dgl isomorphism.

In most situations the considered filtration in L is given by its central series
{Ln}n≥1. In particular, if L is nilpotent, then L is automatically complete. More-
over, by definition, any complete dgl is an inverse (or projective) limit of nilpotent
differential graded Lie algebras. Thus, the category of complete differential graded
Lie algebras (cdgl’s) should be thought of as the right generalization of the cate-
gory of nilpotent dgl’s to extend Quillen rational homotopy theory to non-simply
connected, even to non-nilpotent finite type spaces.

After setting the main properties of the completion functor and the category
cdgl in Section 3.1, we analyze in detail the completion of dgl’s that are free
as Lie algebras. These constitute a particularly important class of cdgl’s which
turn out to be essential for several reasons. First, they are specially well adapted
to computations as we will show in Section 3.2. Also, a special subclass of these
cdgl’s become cofibrant replacements in the model structure defined in Chapter 6.
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We finish Section 3.2 by considering the completion L̂ of the Quillen functor L
defined in Chapter 2, which also takes values in this particular class of free cdgl’s.
In this completed context we are able to extend some of the results in Section 2.1.

We close this chapter by warning the reader that the completion of a dgl
should not be confused with its “profinite completion”, which is the inverse limit
of all nilpotent, finite type quotients of the given dgl. We highlight the differences
between these functors and give the restrictive, but necessary, finiteness require-
ments for them to coincide.

3.1 Complete differential graded Lie algebras

Unless specifically stated otherwise, a filtration in a dgl L will always denote a
decreasing filtration

L = F 1 ⊃ · · · ⊃ Fn ⊃ Fn+1 ⊃ · · ·
of differential Lie ideals compatible with the Lie bracket, which means that

[F p, F q] ⊂ F p+q for p, q ≥ 1.

In particular Ln ⊂ Fn for all n.

Definition 3.1. A complete differential graded Lie algebra , cdgl henceforth, is a
dgl L equipped with a filtration {Fn}n≥1 for which the natural map

L
∼=−→ lim←−

n

L/Fn

is a dgl isomorphism. A morphism f : L → L′ between cdgl’s, associated to filtra-
tions {Fn}n≥1 and {Gn}n≥1, respectively, is a dgl morphism which preserves the
filtrations, that is, f(Fn) ⊂ Gn for each n ≥ 1.

We denote by cdgl the corresponding category.

By forgetting differentials we analogously define the category cgl of complete
graded Lie algebras. All that follows in this section remains valid replacing cdgl
by cgl.

Observe that, by definition, any element a in the cdgl L ∼= lim←−n
L/Fn can be

written as a sequence,

a = (an)n≥1, where an ∈ L/Fn and ρn+1(an+1) = an, (3.1)

with ρn+1 : L/F
n+1 → L/Fn. More specifically, a can be represented by a formal

series,
a =
∑

n≥1 xn with xn ∈ Fn, (3.2)

where two such series,
∑

xn and
∑

yn, represent the same element a if
∑q

n=1(xn−
yn) ∈ F q+1 for all q ≥ 1. To see this, it suffices to choose the term an of the
sequence in (3.1) represented by x1 + · · ·+ xn−1 with xp ∈ F p, for 1 ≤ p ≤ n− 1.
Then, since cdgl morphisms preserve filtrations, the following is immediate:
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Lemma 3.2. Let f : L → L′ be a cdgl morphism. Then, for every a = (an) ∈ L,
f(a) =

(
f(an)
)
. In particular, for every series

∑
n≥1 xn ∈ L,

f
(∑

n≥1 xn

)
=
∑

n≥1 f(xn). �

On the other hand, we may complete any filtered dgl as follows:

Definition 3.3. Let L be a dgl filtered by {Fn}n≥1. Its completion L̂ is defined as
the dgl

L̂ = lim←−
n

L/Fn.

The natural map L → L̂ is called the completion morphism.

We now check that the completion of a filtered dgl is always complete with
respect to a certain natural filtration. Let L be a dgl endowed with the filtration
{Fn}n≥1. For each n ≥ 1, consider the commutative diagram

L
pn

����
���

���
���

��

i

��
L̂

qn �� L/Fn

(3.3)

where pn is the projection and i is the natural induced map. Consider in L̂ the
filtration {F̂n}n≥1 given by

F̂n = ker qn : L̂ → L/Fn. (3.4)

It is readily seen that i induces isomorphisms

L/Fn ∼= L̂/F̂n, for n ≥ 1. (3.5)

Then, with respect to the filtration {F̂n}n≥1, we have:

Proposition 3.4. L̂ is a cdgl.

Proof. By the identity (3.5), L̂ = lim←−n
L/Fn ∼= lim←−n

L̂/F̂n. �

Proposition 3.5. The category cdgl is complete and cocomplete.

Proof. It is enough to check that cdgl has equalizers, coequalizers, small products
and small coproducts.

Let f, g : L → L′ be cdgl morphisms, write L = lim←−n
L/Fn, and consider E =

ker(f−g). Then, E is a sub-dgl of L for which it is clear that E = lim←−n
E/(E∩Fn).

That is, E is a complete cdgl which is trivially the equalizer of f and g. A dual
argument shows that cdgl has coequalizers.
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On the other hand, given cdgl’s L and L′ filtered by {Fn} and {Gn}, respec-
tively, their usual dgl product L × L′ is complete with respect to the filtration
{Mn}, where Mn = Fn ×Gn.

Finally we describe the coproduct

L ̂ L′

in the category cdgl. Let L  L′ be the usual coproduct in dgl and consider the
filtration {Rn}n≥1 of L L′ given by

Rn =
∑

p1+q1+···+pr+qr=n

[
F p1 , [Gq1 , [. . . [F pr , Gqr ]

]
. . .
]
,

where, if an index is zero, the corresponding term does not appear. Now, consider
the completion of L L′ with respect to this filtration,

L̂L′ = lim←−
n

(L L′)/Rn, (3.6)

and observe that, since L = lim←−n
L/Fn and L′ = lim←−n

L′/Gn, there are natural
injections

L ↪−−→ L̂L′ ←−−↩ L′.

It is a straightforward exercise to check that this is in fact the coproduct of L and
L′ in cdgl. That is,

L ̂ L′ = L̂L′. �

Observe that, denoting by F-dgl the category of filtered dgl’s and filtration
preserving morphisms, the completion procedure defines a functor

·̂ : F-dgl −→ cdgl

which has a right adjoint:

Proposition 3.6. The completion functor is left adjoint to the forgetful functor K:

F-dgl
·̂ ��

cdgl .
K

��

Proof. Let L be a dgl filtered by {Fn}n≥1 and let L′ be a cdgl associated to the
filtration {Gn}. We define the map

ϕ : Homcdgl(L̂, L
′)

∼=−→ HomF-dgl(L,KL′), ϕ(f) = f ◦ i,
with i as in diagram (3.3), and check that it is a bijection. If g : L → KL′ is a
filtered dgl morphism, it induces morphisms gn : L/F

n → L′/Gn for each n ≥ 1.

Define ϕ−1(g) = lim←−n
gn : L̂ → L′.
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On the one hand, consider ϕ(f) = f ◦ i and observe that, for each n ≥ 1 the
induced morphism

(f ◦ i)n = fn ◦ in : L/Fn ∼=−→ L̂/F̂n fn−→ L′/Gn

can be identified with fn, since in is an isomorphism, see identity (3.5). Hence,

ϕ−1ϕ(f) = lim←−
n

(f ◦ i)n = lim←−
n

fn = f,

since f is a morphism between complete dgl’s.

On the other hand it is obvious that lim←−n
gn ◦ i = g, which proves that

ϕϕ−1(g) = g. �

We finish the section with two clarifying observations.

Remark 3.7. Any dgl L is always equipped with the filtration given by the central
series (or bracket length) {Ln}n≥1. Recall that L1 = L and Ln = [Ln−1, L] for
n > 1. From now on, and unless explicitly stated otherwise, this is the filtration
we consider by default to complete any given dgl. As any dgl morphism preserves
this filtration, this choice defines a full embedding

dgl ↪−−→ F-dgl .

Observe that any dgl L which is either nilpotent or in dgl1 is automatically com-
plete with respect to this filtration, as L ∼= lim←−n

L/Ln.

Remark 3.8. Let L be a dgl filtered by {Fn}n≥1. By declaring this family a basis
of open neighbourhoods at 0, this endows L with a structure of topological dgl,
that is, a differential graded Lie algebra and a topological space for which addition,
bracket and differential are continuous maps. Note that, by translation, the family
{x+ Fn}n≥1 is a basis of open neighbourhoods at any point x ∈ L.

Now, observe that any filtration preserving dgl morphism is automatically
continuous, but the converse is not true in general. For instance, in any abelian
dgl L consider the filtrations F1 = {L,L, 0, . . .} and F2 = {L, 0, . . .}. Then, the
identity (L,F1) → (L,F2) is obviously continuous, but not filtration preserving.

Nevertheless, we could define a cdgl morphism to be a continuous dgl mor-
phism between cdgl’s and the resulting category contains, faithfully but not fully,
the category cdgl. Most of the forthcoming results remain valid in this more gen-
eral context, but the arguments needed are substantially more technical.

For the reader acquainted with pro-categories, the above remark has the
following translation to the context of pro-objects in the category of dgl’s.

Remark 3.9. Recall that a pronilpotent dgl L is, by definition, a projective limit

L = lim←−
n

L(n)
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of a tower
. . . −→ L(p) −→ L(p−1) −→ . . . −→ L(2) −→ L(1)

of nilpotent dgl’s.

Observe that a dgl L is complete if and only if is pronilpotent: obviously,
every complete dgl L = lim←−n

L/Fn is pronilpotent, as each L/Fn is nilpotent.

Conversely, let L = lim←−n
L(n) be a pronilpotent dgl. Then, L = lim←−n

L/Fn with

Fn = ker(L → lim←−
p

L(p)/L
n
(p)).

Indeed, the natural map
L −→ lim←−

n

L/Fn

is easily seen to be injective because its kernel
⋂

n F
n = 0, since each L(n) is

nilpotent. On the other hand, by definition, L/Fn → lim←−p
L(p)/L

n
(p) is injective

and, since inverse limits preserves injections, we have an injective map

lim←−
n

L/Fn −→ lim←−
n

lim←−
p

L(p)/L
n
(p) = lim←−

p

lim←−
n

L(p)/L
n
(p) = lim←−

p

L(p) = L.

Finally the composition of the above two injections is the identity on L and the
assertion follows.

However, the set of pro-morphisms between two pronilpotent dgl’s (defined as
in any other pro-category) strictly contains the set of cdgl morphisms with respect
to the corresponding filtrations. In fact, one can see that pronilpotent morphisms
correspond to continuous morphisms arising from these filtrations.

In other terms, if we denote by pro-dgl the category of pronilpotent dgl’s
and morphisms, the obvious functor

cdgl −→ pro-dgl

is bijective on objects, but not full on morphisms.

Again, mainly to simplify the computations, especially when dealing with
morphisms, we have chosen to work in cdgl instead of pro-dgl.

3.2 The completion of free Lie algebras

The completion of dgl’s which are free as Lie algebras plays an essential role in
what follows and deserves to be studied in depth.

Given a free Lie algebra L(V ) we denote its completion with respect to the
bracket length (see Remark 3.7) by

L̂(V ) = lim←−
n

L(V )/L≥n(V ).



3.2. The completion of free Lie algebras 77

Observe that, as a graded vector space,

L̂(V ) ∼=∏n≥1 L
n(V ),

and thus, any element a ∈ L̂(V ) can be uniquely written as a series

a =
∑
n≥1

an, where an ∈ Ln(V ).

Note also that the induced filtration on L̂(V ), see (3.4), is given by the ideals,

L̂≥n(V ) =
∏
q≥n

Lq(V ), for n ≥ 1.

In particular, in view of (3.5),

L̂(V )/L̂≥n(V ) = L(V )/L≥n(V ). (3.7)

It is convenient to keep in mind that if V = V≥1, then L(V ) = L̂(V ). It is

also important to note that L̂(V ) is the free complete Lie algebra generated by V :

Proposition 3.10. Any linear map V → L to a complete Lie algebra extends
uniquely to a cgl morphism L̂(V ) → L. In particular, the functor L̂ : vect → cgl,

V �→ L̂(V ), is left adjoint to the forgetful functor.

Proof. By the universal character of L(V ), the map V → L extends uniquely to a
Lie algebra morphism L(V ) → L which is filtration preserving, and thus it induces
the sought-for cgl morphism. From this, the second assertion is obvious. �

From the general property of left adjoint functors we deduce:

Corollary 3.11. The functor L̂ preserves colimits and, in particular,

L̂(V ) ̂ L̂(W ) ∼= L̂(V ⊕W ). �

By an abuse of language a cdgl of the form (L̂(V ), d) will often be called a
free cdgl, although it is clear that this is not a free object in the category cdgl.
Nevertheless, for two such objects we still have

(L̂(V ), d) ̂ (L̂(W ), d) ∼= (L̂(V ⊕W ), d).

Let f : (L̂(V ), d) → (L̂(W ), d) be a cdgl morphism. We write

f =
∑
i≥1

fi, where fi(V ) ⊂ Li(W ).

Observe that d induces in V a differential d1 for which f1 : (V, d1) → (W,d1) is a
morphism of chain complexes.
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Proposition 3.12. If f1 is a quasi-isomorphism (respectively, an isomorphism),
then f is a quasi-isomorphism (respectively, an isomorphism).

Remark 3.13. Observe that this statement fails if we work with non-complete free
Lie algebras. Consider, for instance, the morphism f : (L(a, b), 0) → (L(u, v), 0),
defined by f(a) = u and f(b) = v + [u, v], |u| = |a| = 0, |b| = |v| = n ∈ Z. Then,
f1 is an isomorphism but not f , because v is not in the image of f . However, the
completion f̂ : L̂(a, b) → L̂(u, v) of f is an isomorphism. In particular,

v = f̂

( ∞∑
i=0

(−1)n adna(b)

)
.

In fact, Proposition 3.12 is an immediate consequence of a more general fact
on complete differential graded vector spaces. As the reader may easily guess, such
a space is simply a differential graded vector space V endowed with a decreasing
filtration V = F 1 ⊃ F 2 ⊃ · · · , which is preserved by the differential, and such
that the induced map

V
∼=−→ lim←−

n

V/Fn

is an isomorphism. Note in particular that the injective character of this isomor-
phism implies that

⋂
n F

n = 0. A morphism of complete differential vector spaces
is one which preserves the corresponding filtrations.

Lemma 3.14. Let f : V → W a morphism of complete differential graded vec-
tor spaces filtered by {Fn}n≥1 and {Gn}n≥1, respectively. If for each n ≥ 1 the
induced map fn : Fn/Fn+1 → Gn/Gn+1 is an isomorphism (respectively, a quasi-
isomorphism), then f is an isomorphism (respectively, a quasi-isomorphism).

Proof. Suppose first that each fn is an isomorphism, and let a ∈ ker f . If a �=
0, there is a maximal q such that a ∈ F q. Then f q(a) = 0 and a ∈ F q+1 by
hypothesis. This is in contradiction with the maximality of q. For the surjectivity
of f , let 0 �= b ∈ W and let q be the maximal integer such that b ∈ Gq. Then
0 �= [b] ∈ Gq/Gq+1, and there exists aq ∈ F q with f q[aq] = [b]. Then b − f(aq) ∈
Gq+1 and we take aq+1 ∈ F q+1 such that f q+1[aq+1] = [b− f(aq)]. In this way we
construct a sequence of elements an ∈ Fn, with n ≥ q, such that b−f(aq+aq+1+
· · ·+ an) ∈ Fn+1W . Then, see (3.2), the series

∑
n≥q an represents an element in

lim←−n
V/Fn ∼= V such that b = f(

∑
n≥q an).

Now we suppose that each fn is a quasi-isomorphism and show that f is also
a quasi-isomorphism. To this end consider the spectral sequences E(V ) and E(W )
on V and W induced by the respective filtrations, and let E(f) : E(V ) → E(W )
the induced morphism. Observe that at the E0-term,

E0(f) =
⊕
n≥1

fn :
⊕
n≥1

Fn/Fn+1 �−→
⊕
n≥1

Gn/Gn+1,

and thus E1(f) is an isomorphism. As
⋂

n F
n =
⋂

n G
n = 0, the spectral sequences

converge and therefore, by comparison, H(f) is an isomorphism. �
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Proof of Proposition 3.12. Simply apply Lemma 3.14 to f : (L̂(V ),d)→(L̂(W ),d).

In fact, recall from (3.7) that L̂(V )/L̂≥n(V ) = L(V )/L≥n(V ) and therefore,

L̂≥n(V )/L̂≥n+1(V ) = L≥n(V )/L≥n+1(V ) = Ln(V ).

Hence, in this particular case, and for each n ≥ 1, the morphism fn of Lemma
3.14 is of the form

fn : (Ln(V ), d̄)
�−→ (Ln(W ), d̄),

which is trivially a quasi-isomorphism since f1 : (V, d1)
�−→ (W,d1) is. Indeed,

H(Ln(V ), d̄) ∼= Ln
(
H(V, d1)

)
and, under this identification, H(fn) becomes Ln

(
H(f1)
)
. �

As in the classical case we now introduce the notion of minimality of free
cdgl’s and check that, even in the general, non-reduced case, every complete cdgl
has a minimal model.

Definition 3.15. A minimal cdgl is a free cdgl (L̂(V ), d) such that d(V ) ⊂ L̂≥2(V ).
A minimal Lie model of a cdgl L is such a minimal cdgl together with a quasi-
isomorphism

ϕ : (L̂(V ), d)
�−→ L .

Proposition 3.16. Every L ∈ cdgl0 admits a minimal Lie model.

Proof. We will construct by induction on n a minimal cdgl (L̂(V≤n), d) and a
morphism

fn : (L̂(V≤n), d) → L

such that Hq(fn) is an isomorphism for q < n and is surjective in degree n. To
begin, let (ai), i ∈ I be elements in L0 whose classes form a basis of H0(L). We
define V0 to be the vector space spanned by the variables xi, i ∈ I, and we define
dxi = 0 and f0(xi) = ai.

Now we suppose to have constructed V≤n and fn with the above properties.
We denote by (ai)i∈I a family of cycles in Ln+1 whose classes form a basis of
cokerHn+1(fn) and we define Wn+1 to be the vector space generated by elements
xi, i ∈ I. As above, we define dxi = 0 and fn+1(xi) = ai. Now we select cycles

bj in L̂(V≤n) that form a basis of kerHn(fn). Then, we introduce a vector space
Rn+1 generated by corresponding variables yj and we set d(yj) = bj . Moreover,
since there are elements vj with fn(bj) = d(vj), we define fn+1 extending fn by
fn+1(yj) = vj . Finally, we set Vn+1 = Wn+1 ⊕Rn+1. �

The next results also extend classical results involving free dgl’s to the com-
pleted context.

Definition 3.17. A contractible cdgl is a cdgl of the form L̂(R⊕dR). Observe that,
by Lemma 3.14, any contractible cdgl has indeed trivial homology.
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Proposition 3.18. Every free cdgl (L̂(V ), d) in dgl0 is the coproduct

(L̂(V ), d) ∼= (L̂(Z), d) ̂ L̂(R ⊕ dR),

of a minimal cdgl and a contractible cdgl.

Proof. Decompose the differential d in the form d =
∑

i≥1 di with dq(V ) ⊂ Lq(V ),
and write V = Z ⊕R⊕ d1(R), with d1Z = 0. It follows that the projection

p : (L̂(V ), d1) −→ (L̂(Z), 0)

defined by p(R) = p(d1R) = 0 is a quasi-isomorphism. We denote its kernel by I.
Thus, H(I, d1) = 0. Write Iq = I ∩ Lq(V ), and let {zi} be a graded basis for Z.

For each i we now construct by induction a sequence of elements zi(n), for
n ≥ 1, such that

zi(1) = zi, zi(n+ 1)− zi(n) ∈ In+1 and d
(
Z(n)
) ⊂ I>n ⊕ L̂

(
Z(n)
)
,

where Z(n) is the vector space generated by the elements zi(n).

Suppose that zi(q) has been defined with the above properties for q ≤ n and
all i. For simplicity of notation, fix some index i and set z = zi(n). We write then

dn+1(z) = α(z) + β(z),

with α(z) ∈ Ln+1(Z(n)) and β(z) ∈ In+1. Since d2 = 0, by the induction hypoth-
esis,

d1dn+1z = −
n∑

i=2

didn+2−iz ∈ Ln+1
(
Z(n)
)
.

It follows that d1β(z) = 0 and β(z) = d1μ(z) for some μ(z) ∈ In+1. To conclude,
define zi(n+ 1) = z − μ(z).

Now, consider the elements

z′i =
∑
n≥1

zi(n) ∈ L̂(V )

and let Z ′ the vector space generated by the z′i. Observe that, by construction,

both (L(Z ′), d) and L̂(R ⊕ dR) are sub-cdgl’s of (L̂(V ), d).

To finish, observe that the linear part j1 of the induced injection

j : (L̂(Z ′), d) ̂ L̂(R ⊕ dR) −→ (L̂(V ), d)

is an isomorphism. Hence, by Lemma 3.14, j is an isomorphism. �

Theorem 3.19. Every quasi-isomorphism f : (L̂(V ), d)
�−→ (L̂(W ), d) between min-

imal cdgl’s in dgl0 is an isomorphism. In particular, the minimal Lie model of a
cdgl in cdgl0 is unique up to isomorphism.
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Proof. By Proposition 3.12, it is enough to prove that f1 : V → W is an isomor-
phism.

Let w ∈ W0. Then dw = 0 and since f is a quasi-isomorphism, there is a
cycle a =

∑
n≥1 an ∈ L̂(V ) such that f(a) − w is a boundary. Since (L̂(W ), d)

is minimal, it follows that f(a) = w. Thus, f1(a1) = w, and f1 : V0 → W0 is
surjective.

Now, let v ∈ V0 with f1(v) = 0, which amounts to saying that f(v) ∈
L̂≥2(W0). By the surjectivity of f1, there is an element a2 ∈ L2(V0) such that

f(v− a2) ∈ L̂≥3(W0). The same argument applies to find a3 ∈ L3(V0) with f(v−
a2−a3) ∈ L̂≥4(W0). In this way, we construct an element a =

∑
n≥2 an ∈ L≥2(V0)

such that f(v−a) = 0. As f is a quasi-isomorphism, v−a is necessarily a boundary,

but since (L̂(V ), d) is minimal it follows that v = 0 and thus f1 : V0

∼=→ W0 is an
isomorphism.

We suppose by induction that f1 : V<n → W<n is an isomorphism, which
implies in particular that

f : L̂(V<n)
∼=−→ L̂(W<n) (3.8)

is an isomorphism.

Let w ∈ Wn and note that dw is a boundary in L̂(W<n). Taking into account
that f is a quasi-isomorphism and the isomorphism in (3.8), it follows that there

is an element u ∈ L̂(V )n with f(du) = dw. Then, the element w− f(u) ∈ L̂(W ) is

a cycle, and again since f is a quasi-isomorphism, there is a cycle v in L̂(V ) such
that f(v)− (w − f(u)

)
is a boundary.

In particular, f1(u1 + v1) = w, where u1 and v1 denotes the linear part of u
and v. Hence, the morphism f1 : Vn → Wn is surjective.

Now suppose u ∈ Vn with f1(u) = 0. By the surjectivity of f1, and using the

same argument as for the injectivity of f1|V0 , there is an element v ∈ L̂≥2(V )n
such that f(u+ v) = 0. The element u+ v is a cycle because f is an isomorphism
in degrees < n and df(u + v) = 0. Therefore, as f is a quasi-isomorphism, u + v
is a boundary. But, since d1 = 0, this implies that u = 0. Hence f1 : Vn → Wn is
injective and the proposition follows. �

Proposition 3.20. Let f : (L̂(V ), d) → (L̂(W ), d) be a morphism of cdgl’s.

1. If f is an isomorphism, then f1 is an isomorphism.

2. If both V≥0 and W = W≥0, and f is a quasi-isomorphism, then f1 is a
quasi-isomorphism.

Remark 3.21. The restriction to cdgl0 in the second part of the statement is
necessary. For instance the inclusion 0 ↪→ (L(x), d) where |x| = −1 and dx = [x, x]
is a quasi-isomorphism, but its linear part obviously is not.
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Proof. (1) Since f is an isomorphism, for each element w ∈ W there is an element

a =
∑

n≥1 an in L̂(V ) with an ∈ Ln(V ) and f(a) = w. Then f1(a1) = w, and so
f1 is surjective.

Now suppose v ∈ V with f1(v) = 0. By the surjectivity of f1, and using the
same argument as in the proof of Theorem 3.19 we can find elements an ∈ Ln(V )
for n ≥ 2, such that f(v +

∑
n≥2 aq) = 0. The injectivity of f implies that v = 0.

(2) By Proposition 3.18, there are minimal cdgl’s (L̂(Z), d), (L̂(Z ′), d) and
quasi-isomorphisms

g : (L̂(Z), d)
�−→ (L̂(V ), d) and h : (L̂(W ), d)

�−→ (L̂(Z ′), d),

such that g1 and h1 are also quasi-isomorphisms. In fact g is the injection of
the non-contractible minimal factor and h is the projection onto it. Then, hfg is
a quasi-isomorphism between minimal cdgl’s and thus, it is an isomorphism by
Theorem 3.19. By (1), it follows that h1f1g1 is an isomorphism and therefore, f1
is also a quasi-isomorphism. �

Next, we show that the completion functor preserves quasi-isomorphisms
between free cdgl’s in dgl0.

Proposition 3.22. Let f : (L(V ), d)
�−→ (L(W ), d) be a quasi-isomorphism in dgl0.

Then, the completion f̂ : (L̂(V ), d)
�−→ (L̂(W ), d) is also a quasi-isomorphism.

Proof. It is enough to show that f1 is a quasi-isomorphism and then apply Propo-
sition 3.12 to conclude.

To begin, we first extend f into a surjective quasi-isomorphism g,

(L(V ), d) �
� h ��

f

��
���

���
���

(L(Z), D)

g

��
(L(W ), d),

σ

��

by setting

Z = V ⊕W ⊕ s−1W, Dv = dv, Dw = s−1w,

g(w) = w and g(s−1w) = dw.

Now, since g is a surjective quasi-isomorphism, it admits a section σ. We give here
a detailed proof of this standard fact to preserve the self-contained character of
the text.

First of all, each a ∈ W0 is a cycle and thus, there is a cycle b ∈ L(Z) with
g(b) = a + dc for some c. By the surjectivity of g, there is a c′ ∈ L(Z) with
g(c′) = c. We define σ(a) = b− dc′ and so we have gσ(a) = a.
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Suppose σ is defined on W<n and let a ∈ Wn. Then, σ(da) is a cycle and
gσ(da) is a boundary. Hence, σ(da) = db for some b and therefore a − g(b) is a
cycle. As g is a quasi-isomorphism, it follows that

a− g(b) = g(b′) + dc

for some cycle b′ ∈ L(Z) and c ∈ L(W ). Once again, by the surjectivity of g,
c = g(c′) and we define σ(a) = b+ b′ + dc′. Clearly, gσ(a) = a, σ(da) = dσ(a) and
the section of g has been constructed.

Since gσ = id, H(g1)H(σ1) = id and thus, H(g1) is surjective.

Also, σ is a quasi-isomorphism since g is. Hence, we can repeat the same
process, replacing σ by a surjective quasi-isomorphism with a section, to assert
that H(σ1) is also surjective.

Next, we prove that H(g1) is injective: let z ∈ Z be a D1-cycle such that
H(g1)[z] = 0. By the surjectivity of H(σ1), [z] = H(σ1)[a] for some d1-cycle
a ∈ W . It follows that 0 = H(g1)H(σ1)[a] = [a] and therefore, [z] = 0. Hence g1
is a quasi-isomorphism.

On the other hand, an easy inspection shows that h and h1 are also quasi-
isomorphisms. Simply note that since W = W≥0, then dWn ⊂ L(W<n) for each
n ≥ 0.

Thus, we conclude that f1 = g1h1 is also a quasi-isomorphism. �

The following result shows that free cgl’s appear naturally as the duals of
cofree graded Lie coalgebras.

Proposition 3.23. Let V be a finite type graded vector space. Then, Lc(V )# =

L̂(V #).

Proof. Recall from Section 1.2.4 that any cofree graded Lie coalgebra Lc(V ) is the
union of sub-Lie coalgebras Lc≤n(V ), n ≥ 1, defined as the image of T≤n(V ) by
the projection T (V ) � Lc(V ). That is,

Lc(V ) = lim−→
n

Lc≤n(V ). (3.9)

Note also that, since V is of finite type, Lc≤n(V ) is finite-dimensional and

Lc≤n(V )# = L(V #)/L>n(V #). (3.10)

Then,

Lc(V )# = Hom( lim−→
n

Lc≤n(V ),Q)

= lim←−
n

Hom
(
Lc≤n(V ),Q

)
= lim←−

n

L(V #)/L>n(V #) = L̂(V #). �
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Remark 3.24. The converse is not true, that is, Lc(V #) is not L̂(V )#, as this
may not be even a Lie coalgebra. Nevertheless, by identity (3.10), Lc≤n(V #) =(
L(V )/L>n(V )

)#
as long as V is of finite type. And thus, by formula (3.9),

Lc(V #) = lim−→
n

(
L(V )/L>n(V )

)#
.

We finish the section with a first application which highlights the strength
of the extension of the classical theory of free dgl’s to the completed context.

Observe that the completion L̂ of the Quillen functor L takes values pre-
cisely in the category of free cdgl’s. We extend and complement some of the results
in Chapter 2 whenever completion is considered. First, we prove that the restric-
tion to fibrant objects in (2) of Proposition 2.4 disappears when completing L .

Proposition 3.25. Let f : C
�−→ C′ be a quasi-isomorphism of cdgc’s. Then,

L̂ (f) : L̂ (C)
�−→ L̂ (C′)

is a quasi-isomorphism.

Proof. It follows directly from Proposition 3.12 as L̂ (f)1 = s−1f is a quasi-
isomorphism. �
Example 3.26. Consider the quasi-isomorphism of differential graded coalgebras

ϕ : C
�→ (∧e, 0), described in Example 2.5 for which L (ϕ) fails to be a quasi-

isomorphism. Nonetheless, by Proposition 3.25, L̂ (C) is a quasi-isomorphism.
Indeed, using the same notation as in Example 2.5, we have seen that

H0(L (∧e, 0)) = 0,

in contrast with

H0(L (C)) = 〈x, y, z〉, where [x, y] = z, [y, z] = x and [z, x] = y.

Despite z being a cycle in L (C) defining a non-zero class in H0(L (C)), it is a

boundary in L̂ (C): write

z = du+ [x, y] = du+ d[v, y] + [[y, z], y]

= du+ d[v, y] + d[[w, z], y] + [[[z, x], z], y] = · · ·
and proceed inductively in this way to show that z = dv, where v =

∑
i≥0 vi with

v0 = u+ [v, y] + [[w, z], y] and vi+1 = −adyadzadx(vi).

A similar computation shows that the cycles x and y are boundaries in L̂ (C).

Proposition 3.27. Let (∧V, d) be a Sullivan algebra where V is a finite type graded
vector space. Then,

(i) L̂ (∧V, d)# ∼= (E (∧V, d))#.
(ii) The completion map L (∧V, d)# �−→ L̂ (∧V, d)# is a quasi-isomorphism.
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Proof. (i) By definition and using Proposition 3.23, it follows that(
E (∧V, d))# =

(
Lc(s ∧+ V ), d

)# ∼= (L̂(s ∧+ V )#, d#) ∼= L̂
(
(∧V, d)#).

(ii) By Lemma 2.12(2), the projection E (∧V, d) �−→ s−1V is a quasi-isomorph-
ism and therefore, the injection

s−1V # �−→ (E (∧V, d))#
is also a quasi-isomorphism. On the other hand, by Lemma 2.2, the injection

s−1V # �−→ L (∧V, d)#

is also a quasi-isomorphism. The statement follows from the commutativity of the
diagram

s−1V #
��

�
�����

���
���

�� ��

�
��

���
���

��

L (∧V, d)# �� L̂ (∧V, d)#. �

The topological translation of this result is the following.

Definition 3.28. Let (∧V, d) be the minimal Sullivan model of a nilpotent simpli-
cial set of finite type. Since V has finite type, its dual (∧V, d)# is a well-defined
cocommutative differential graded coalgebra and we can consider (see Section 2.1)
the dgl

L (∧V, d)#.

This is the Neisendorfer model of X as introduced in [109].

Then, Proposition 3.27(ii) reads:

Proposition 3.29. The Neisendorfer model of any nilpotent simplicial set of finite
type is quasi-isomorphic to its completion. �

Assertion (ii) of Proposition 3.27 suggests the possibility of comparing, in
general, the homology of a free dgl with that of its completion. We finish the
section with two results in this direction.

Proposition 3.30. Let (L(V ), d) be a dgl in dgl0 with V a finite type graded vector
space, whose homology is a finite type nilpotent Lie algebra. Then, the completion
morphism

(L(V ), d)
�−→ (L̂(V ), d)

is a quasi-isomorphism.
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Proof. By the Neisendorfer equivalence in Theorem 2.6, there is a Sullivan minimal
algebra (∧Z, d) with Z a finite type graded vector space such that (L(V ), d) is
quasi-isomorphic to L (∧Z, d)#. By Proposition 3.22 it follows then that their
completions are also quasi-isomorphic

(L̂(V ), d)
�−→ L̂ (∧Z, d)# .

Now, by Proposition 3.27, the completion morphism L (∧Z, d)# �−→ L̂ (∧Z, d)#
is a quasi-isomorphism. The result is then a consequence of the commutativity of
the following diagram

(L(V ), d)

�
��

�� (L̂(V ), d)

�
��

L (∧Z, d)# �
�� L̂ (∧Z, d)#. �

Remark 3.31. The nilpotency hypothesis on the homology is necessary. For in-
stance, when dimV0 ≥ 2 and the differential is 0, the inclusion (L(V ), 0) →
(L̂(V ), 0) is clearly not a quasi-isomorphism.

Concerning this general question, we also show that the homology of a free
cdgl generated by a finite type vector space is always a limit of nilpotent Lie
algebras:

Proposition 3.32. Let (L̂(V ), d) be a free cdgl in which V has finite type. Then,

H
(
L̂(V )
) ∼= lim←−

n

H
(
L(V )/L>n(V )

)
.

Proof. In general, under no finiteness assumptions, a classical result on the ho-
mology of inverse limits, see for instance [131, Theorem 3.5.8], provides a short
exact sequence

0 −→ lim←−
n

1Hq+1

(
L(V )/L>n(V )

) −→ Hq

(
L̂(V )
) −→ lim←−

n

Hq

(
L(V )/L>n(V )

) −→ 0.

Moreover, if V is a finite type graded vector space, then each Hq

(
L(V )/L>n(V )

)
is also a finite type graded vector space and the tower is Mittag-Leffler. Therefore,
lim←−n

1 vanishes on it and the result follows. �

3.3 Completion vs profinite completion

This section, which can be regarded simply as an appendix to this chapter, is de-
voted to stressing the difference between the completion and profinite completion
procedures and to giving some particular instances in which they coincide or are
related.
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Definition 3.33. A profinite vector space is an inverse limit

V = lim←−
α∈I

Vα,

endowed with the inverse limit topology, considering on each Vα the discrete topol-
ogy. As 0 is open in each Vα, one easily sees that the kernels of the maps V → Vα

form a system of open neighborhoods of 0 ∈ V .

The profinite vector spaces form a category pvect in which the morphisms
are the continuous linear maps.

Proposition 3.34. The category pvect is isomorphic to the opposite category
vectop of graded vector spaces.

Proof. Consider the functors

vectop
# ��

pvect,
#c

��

where # is the usual dual and #c denotes the topological dual. That is, given V
a profinite vector space, V #c consists of continuous maps V → Q. We will show
that these functors are inverses of each other.

For this, consider V = lim←−Vα ∈ pvect. Then the continuous dual of each

projection pα : V → Vα produces a map V #
α → V #c (observe that, since each Vα

is of finite type, its topological dual is just the usual dual). These maps induce a
morphism,

lim−→
α

V #
α −→ V #c . (3.11)

We verify that it is an isomorphism. This amounts to saying that it is surjective,
i.e., that each continuous map f : V → Q in V #c factors through some Vα.

For such a map, W = f−1(0) is a closed vector subspace of codimension 1
and we denote by f : V/W → Q the induced isomorphism.

Now, since the topology of V is given by the inverse limit topology where
each Vα is discrete, every closed subset of V is the intersection of closed subsets of
the form p−1

α (Fα), with pα : V → Vα the corresponding projection and Fα ⊂ Vα.
Therefore, there is a subset Zα � Vα with W ⊂ p−1

α (Zα). It follows that pα(W ) ⊂
Zα, and pα(W ) �= Vα. In particular, the induced map

pα : V/W
∼=−→ Vα/pα(W )

is an isomorphism. Define fα : Vα → Q as the composition

Vα −→ Vα/pα(W )
pα

−1

−→ V/W
f−→ Q .

Then f = fα ◦ pα and the map (3.11) is in fact an isomorphism. In other words,

lim−→
α

V #
α

∼= (lim←−
α

Vα)
#c . (3.12)

From this, the proposition easily follows:
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On the one hand, let V a graded vector space. Then, V is the inductive limit
V = lim−→α

Vα of its finite type subspaces. Then, V # = lim←−V #
α and, using (3.12)

together with the finite type character of each Vα, we get:

#c ◦#(V ) = (lim←−V #
α )#c ∼= lim−→

α

(V #
α )# ∼= lim−→

α

Vα = V.

Analogously, given V = lim←−α
Vα ∈ pvect,

# ◦#c(V ) ∼= (lim−→
α

V #
α )# ∼= lim←−

α

(V #
α )# ∼= V. �

We now extend the notion of profiniteness to differential graded Lie algebras.

Definition 3.35. A profinite dgl L is an inverse limit

L = lim←−Lα

of finite type nilpotent dgl’s, endowed with the inverse limit topology, considering
on each Lα the discrete topology. Profinite dgl’s form the category pdgl in which
the morphisms are the continuous dgl morphisms.

The isomorphism in Proposition 3.34 restricts to an isomorphism between
profinite Lie algebras and the opposite category of conilpotent Lie coalgebras,
which we now introduce:

Definition 3.36. A conilpotent differential graded Lie coalgebra is an inductive limit

E = lim−→
α

Eα

of finite type dglc’s such that each E#
α is a nilpotent dgl.

Then we have, cf. [10, A.15]:

Proposition 3.37. The category pdgl is isomorphic to the opposite category of
conilpotent dglc’s.

Proof. By definition, the linear dual of a conilpotent Lie coalgebra E = lim−→Eα is
a profinite dgl,

E# = lim←−E#
α .

On the other hand, let L = lim←−α
Lα be a profinite dgl. Then, in view of (3.12), its

topological dual,

L#c ∼= lim−→L#
α ,

is an inductive limit of dglc’s whose duals are nilpotent finite type dgl’s. Hence,
the isomorphism in Proposition 3.34 restricts to the sought-for isomorphism. �
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Definition 3.38. The profinite completion L̂f of a dgl L is the profinite dgl

L̂f = lim←−
α

L/Fα ,

where Fα runs over all ideals such that L/Fα is of finite type and nilpotent. The

natural map L → L̂f is the profinite completion morphism.

As in [10, Remark 7.2] we prove:

Proposition 3.39. Every profinite dgl is a cdgl.

Proof. Let L = lim←−α
Lα a profinite dgl and consider, for each α, the short exact

sequence
0 −→ Ln

α −→ Lα −→ Lα/L
n
α −→ 0.

Since the projective limit is an exact functor on finite type spaces, we get the short
exact sequence

0 −→ lim←−
α

Ln
α −→ L −→ lim←−

α

Lα/L
n
α −→ 0.

But a simple inspection shows that lim←−α
Ln
α = Ln for each n ≥ 1 and therefore

L/Ln = lim←−α
Lα/L

n
α. On the other hand, since each Lα is of finite type, Lα

∼=
lim←−n

Lα/L
n
α. Therefore,

lim←−
n

L/Ln ∼= lim←−
n

lim←−
α

Lα/L
n
α
∼= lim←−

α

lim←−
n

Lα/L
n
α
∼= lim←−

α

Lα = L,

that is, L is complete (with respect to the bracket length filtration). �

The converse however is not true.

Example 3.40.

(1) Let L be an infinite-dimensional abelian Lie algebra with basis {xα}. Then,
L̂ = L, while L̂f =

∏
α Qxα.

(2) Denote by L = L0 the Lie algebra L(ai, bi, i ≥ 1)/I, where I is the ideal
generated by the brackets [ai, aj ], [bi, bj ] and [ai, bj ] for i �= j, and the ele-
ments [ai, bi] − [a1, b1] for i ≥ 2. Denote by q : L → E a morphism from L
to a finite-dimensional nilpotent Lie algebra E and let an +

∑
i<n λiai be an

element in ker q. Then,

0 = q[an +
∑
i<n

λiai, bn] = q[an, bn] +
∑
i<n

λi q[ai, bn] = q[an, bn].

Therefore, [a1, b1] belongs to the kernel of the natural morphism L → L̂f . In

this case L̂f is abelian, but L̂ = L.

Let us show that if the space of “indecomposables” of the considered dgl is
of finite type, then the completion coincides with the profinite completion.
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Proposition 3.41. Let L be a dgl for which L/[L,L] is of finite type. Then, L̂ ∼= L̂f .

In particular, for any free Lie algebra L(V ) in which V is of finite type, L̂(V ) ∼=
L̂f(V ).

Here, L̂f(V ) denotes the profinite completion of L(V ).

Proof. If L/[L,L] is of finite type, then each L/Ln is also of finite type. To see this,
observe that if the classes of the elements xi generate L/[L,L], then the family[
[. . . [xi1 , xi2 ], xi3 ] . . . ], xin

]
generates Ln/Ln+1 and therefore, all of these are finite

type vector spaces. The result is then obtained by induction on the short exact
sequence 0 → Ln/Ln+1 → L/Ln+1 → L/Ln → 0.

Write any x ∈ L̂ = lim←−n
L/Ln as a sequence (xn) with n ≥ 1 and xn ∈ L/Ln.

In the same way write any y ∈ L̂f as the family (yα) of its projections in the
quotients L/Fα.

Define an explicit isomorphism

L̂
∼=−→ L̂f

as follows: since each L/Ln is finite-dimensional and nilpotent, to a family y =

(yα) ∈ L̂f , we associate the sub-family (xn) ∈ L̂.

Conversely, let x = (xn) ∈ L̂ and let L/Fα be a finite-dimensional nilpotent
quotient. Then, the projection p : L → L/Fα factors through some qn,α : L/L

n →
L/Lα. We define xα = qn,α(xn). This construction does not depend on the choice

of the integer n and defines a map L̂ → L̂f which is clearly the inverse of the
morphism above. �

Corollary 3.42. Let V be a finite type graded vector space. Then, Lc(V )# ∼=
L̂f(V #).

Proof. Apply Propositions 3.23 and 3.41. �

We finish with the following:

Proposition 3.43. Let (L̂(V ), d) be a cdgl where V = V≥0 and H(V, d1) is a finite
type graded vector space. Then, the profinite completion morphism

αV : (L̂(V ), d)
�−→ (L̂(V )f , d)

is a quasi-isomorphism.

Here, L̂(V )f denotes the profinite completion of L̂(V ) and is not to be con-

fused with L̂f(V ), the profinite completion of L(V ).

Proof. By Proposition 3.18, we have a quasi-isomorphism

ϕ : (L̂(W ), d)
�−→ (L̂(V ), d),
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where W is a finite type graded vector space. The naturality of the profinite
completion yields then a commutative diagram

(L̂(W ), d)
ϕ

�
��

αW ∼=
��

(L̂(V ), d)

αV

��
(L̂(W )f , d)

ϕf

�
�� (L̂(V )f , d) .

By Proposition 3.20, ϕ1 is a quasi-isomorphism and a similar proof to that of
Proposition 3.12 shows that ϕf is a quasi-isomorphism. Finally, by the first as-
sertion of Proposition 3.41, αW is an isomorphism and therefore, αV is a quasi-
isomorphism. �



Chapter 4

Maurer–Cartan Elements and
the Deligne Groupoid

In a dgl L, a Maurer–Cartan element is an element z of degree −1 that satisfies
the so-called Maurer–Cartan equation,

dz = −1

2
[z, z].

Whenever the dgl is complete, the set of these elements is endowed with a particu-
lar equivalence relation given by the gauge action, a particular action of L0 in the
set of Maurer–Cartan elements. This plays a fundamental role in the geometrical
interpretation of complete differential graded Lie algebras.

For the time being, the reader may heuristically think of Maurer–Cartan
elements of a cdgl L as “points” in the topological space represented by L. More-
over, the path component of this space containing the point represented by the
Maurer–Cartan element a can be identified with the cdgl L with a new differential
da obtained by perturbing the original differential d by a,

da = d+ ada .

In the same way, the fact that two Maurer–Cartan elements are gauge re-
lated should be thought as a “path” in L joining these two points. This path
is represented by an element of L0 acting as a gauge transformation, sending a
Maurer–Cartan element into the corresponding gauge related one. We prove then
that the group of gauge transformations can be regarded as the vector space L0

with the group structure given by the Baker–Campbell–Hausdorff formula.

With this point of view, the reader may then think of the Deligne groupoid
of a given cdgl L as the category of points and paths in L. With this analogy, the
orbit space of the gauge action of L0 on Maurer–Cartan elements, intuitively for
now, represents the set of “path components” of L, or equivalently, of its Deligne
groupoid.
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In this language, the Goldman–Millson Theorem establishes that a cdgl mor-
phism, which induces a quasi-isomorphism at each term of the corresponding filtra-
tions, also induces a bijection between the sets of Maurer–Cartan elements modulo
the gauge action. That is, this cdgl morphism “is” a homotopy equivalence between
the spaces represented by the given cdgl’s.

All of this is carefully presented in this chapter, from a purely algebraic and
self-contained point of view. Nevertheless, in subsequent chapters, specially when
the realization of a cdgl and its homotopical behavior are finally presented, the
intuition gives way to a formal homotopy theory of cdgl’s in which all of the above
makes perfect sense. In particular, the gauge relation between Maurer–Cartan
elements would precisely become a simple homotopy between two points, in the
geometrical realization of the considered cdgl.

From this point on we advise the reader to pay attention to the following:
as we have seen, elements in cdgl’s appear naturally as series and, as such, their
manipulation is often easier when they are expressed by their corresponding gen-
erating functions. This chapter contains many computations of this kind in which
the advantage of using such generating operators will be revealed.

4.1 Maurer–Cartan elements

Given L a dgl, a Maurer–Cartan element or MC element, is an element a ∈ L−1

satisfying the Maurer–Cartan equation

da+
1

2
[a, a] = 0 .

For instance, the element 0 is always an MC element and is the only one if
L = L≥0. On the other hand, each central cycle in L−1 is also an MC element.

The set of Maurer–Cartan elements of L is denoted by MC(L). Since MC(L)
is preserved by dgl morphisms, MC can be regarded as a functor

MC: cdgl −→ set*,

where set* is the category of pointed sets and 0 ∈ MC(L) is the base point for
any L.

Lemma 4.1. The functor MC commutes with small inverse limits.

Proof. This follows directly from the fact that MC commutes with products and
equalizers. �

Example 4.2. Let (L, d) = (L(a, b)/[a, b], d) with |a| = |b| = −1, da = − 1
2 [a, a]

and db = − 1
2 [b, b]. Then, MC(L) = {0, a, b, a+ b}, and therefore, nonzero different

Maurer–Cartan elements are not necessarily linearly independent.
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Example 4.3. Let A be the cdga, with trivial differential, generated by the elements
e1, . . . , en in degree 0 with e2i = ei for all i and eiej = 0 for i �= j. That is,
{e1, . . . , en} is a family of orthogonal idempotents. Then, by definition (see Section
2.2),

E (A) = (Lc(se1, . . . , sen), d),

with |sei| = −1 and d([sei, sei]
c) = −sei. By Proposition 3.23,

E (A)# = (L̂(x1, . . . , xn), d),

where {x1, . . . , xn} is a dual basis of the vector space generated by the family
{e1, . . . , en} and the Lie bracket is precisely the dual of the comultiplication of
E (A). In particular, if we denote by 〈 , 〉 the pairing between a vector space and
its dual, we have 〈xi, sej〉 = δij and

〈[xi, xi], [ei, ei]
c〉 = 〈xi ⊗ xi,Δ([ei, ei]

c)〉 = 2.

It follows that

dxi = −1

2
[xi, xi],

and therefore,

MC(E (A)#) = MC(L̂(x1, . . . , xn), d) = {0, x1, . . . , xn}.
Observe that A is isomorphic to the cdga APL(X) of PL-forms on X , the dis-
crete topological space of n points. As we will see later in Chapter 7, the cdgl
(L̂(x1, . . . , xn), d) becomes a Lie model of X .

Definition 4.4. Given a ∈ MC(L), the derivation, da = d+ada is again a differential
on L, called the perturbed differential by a .

Here, ada denotes the usual adjoint operator ada b = [a, b], which is clearly a
derivation of L of degree |a|.

A simple computation shows the following.

Proposition 4.5. Let (L, d) be a dgl. Then b ∈ MC(L, d) if and only if b − a ∈
MC(L, da). In particular, the map b �→ b − a defines a bijection MC(L, d)

∼=−→
MC(L, da). �

The “truncation” of a dgl with respect to a given MC element constitutes an
important object in our theory:

Definition 4.6. Let L be a dgl and a ∈ MC(L). The component of L at a is the
non-negatively graded cdgl La in which,

La
p =

{
kerda, if p = 0,

Lp, if p > 0,

with the perturbed differential da.
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Observe that La is not a quotient, neither an ideal, but just a sub-dgl of
(L, da) for which the injection (La, da) ↪→ (L, da) induces an isomorphism in ho-
mology in degrees ≥ 0.

We finish with the following trivial, yet useful observation in which we use
the notation in (3.1).

Lemma 4.7. Let L = lim←−n
L/Fn be a cdgl and a = (an)n≥1 ∈ L−1 such that each

an is a Maurer–Cartan element in L/Fn. Then a ∈ MC(L). �

4.2 Exponential automorphisms and

the Baker–Campbell–Hausdorff product

Given a cgl L, the sub-Lie algebra L0 can be equipped with the group structure
given by the Baker–Campbell–Hausdorff product. This is an important object in
our theory which is carefully presented in this section. Specific details of what
follows can be found in [51, §2.4].

Let UL be the universal enveloping algebra of a graded Lie algebra L. Let
I be the ideal of UL0 generated by L0 and consider the filtration in the graded
algebra UL0 given by

I0 ⊃ I1 · · · ⊃ In ⊃ · · · ,
where I0 = UL0, I

1 = I and In = In−1I, n ≥ 2. We now complete the graded
algebra UL0 and the ideal I with respect to this filtration, to obtain

ÛL0 = lim←−
n≥0

UL0/I
n and Î = lim←−

n≥1

I/In. (4.1)

It is well known that the maps

Î ∼=
exp ��

1 + Î
log

��

are bijections and inverses of each other. Here,

exp(x) = ex =
∑
n≥0

xn

n!
and log(1 + x) =

∑
n≥1

(−1)n+1x
n

n
.

On the other hand, given two graded vector spaces V and W , filtered respec-
tively by

F 0 = V ⊃ F 1 · · · ⊃ Fn ⊃ · · · and G0 = V ⊃ G1 · · · ⊃ Gn ⊃ · · · ,
their tensor product V ⊗W is naturally filtered by {Jn}n≥0 where

Jn = ⊕i+j=nF
i ⊗Gj .
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Define the complete tensor product of V and W as the completion of V ⊗W with
respect to this filtration,

V ⊗̂W = lim←−
n

(V ⊗W )/Jn.

Given x ∈ V and y ∈ W , denote by x ⊗̂ y the image of x ⊗ y under the canonical
map V ⊗W → V ⊗̂W .

Now consider the diagonal map on the Lie algebra L0,

Δ: L0 −→ L0 × L0, Δ(x) = (x, x),

and its extension to UL0 → U(L0 ×L0) = UL0 ⊗UL0. As this map preserves the
filtration {In}n≥0 in UL0, and the induced one in UL0 ⊗UL0, by completing, we
obtain an algebra morphism, which we denote in the same way,

Δ: ÛL0 −→ ÛL0 ⊗̂ ÛL0.

Let
G = {x ∈ ÛL0 |Δ(x) = x ⊗̂ x}

be the group of grouplike elements in ÛL0, and denote by

P = {x ∈ Î |Δ(x) = x ⊗̂ 1 + 1 ⊗̂x}

the set of primitive elements in ÛL0. Whenever L0 = lim←−n
L0/L

n
0 is complete, see

for instance [51, Proposition 2.3], the injection L0 ↪→ Î0 restricts to an isomorphism

L0

∼=−→ P and the exponential and logarithm restrict to bijections

L0 ∼=
exp ��

G.
log

�� (4.2)

In particular, the group structure on G induces a multiplication law in L0, called
the Baker–Campbell–Hausdorff product, BCH product henceforth, defined by

a ∗ b = log(ea · eb).
As the multiplication in G is associative, the BCH product is associative. An
explicit form of the product is given by the classical Baker–Campbell–Hausdorff
formula,

a ∗ b = a+ b+
1

2
[a, b] +

1

12

[
a, [a, b]

]− 1

12

[
b, [a, b]
]
+ · · ·

Note that a ∗ (−a) = 0 and therefore, −a is the inverse of a for the BCH product.
We also use the notation −a = a−1.

A particularly useful class of automorphisms of a given cdgl consists of ex-
ponential maps of certain derivations, which often are adjoint operators. The rest
of the section is devoted to a detailed analysis of this class.
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Definition 4.8. Let L be a cdgl associated to the filtration {Fn}n≥1. We denote by
DerL the sub-dgl of DerL consisting on derivations θ which increase the filtration
degree, that is,

θ(Fn) ⊂ Fn+1, for any n ≥ 1.

Note that DerL is also complete with respect to the filtration

Fn = {θ ∈ DerL, θ(F i) ⊂ F i+n, i ≥ 1}, for n ≥ 1.

Observe also that adx ∈ DerL for any x ∈ L0.

Definition 4.9. Let L be a cdgl and let θ ∈ Der0L. Define the exponential map
of θ as

eθ =
∑
i≥0

θi

i!
.

Proposition 4.10. For any θ ∈ Der0L, the exponential map eθ is a cgl automor-
phism of L. Moreover, if θ is a cycle, then eθ is a cdgl automorphism and as such,
it preserves Maurer–Cartan elements.

In particular, for any x ∈ L0, eadx is always a cgl automorphism and it
commutes with the differential only when x is a cycle.

Proof. Note first that the exponential map is well defined, since L is complete
and θ increases the filtration degree. In view of the general formula (1.18), given
x, y ∈ L and i ≥ 0,

θi[x, y]

i!
=
∑

j+k=i

[θj(x), θk(y)]

j! k!
.

Therefore,

eθ[x, y] =
∑
i≥0

∑
j+k=i

[θj(x), θk(y)]

j! k!
=
∑
j≥0

∑
k≥0

[θj(x), θk(y)]

j! k!
= [eθ(x), eθ(y)],

and thus eθ is a cgl morphism, which trivially commutes with the differential
whenever θ is a cycle.

On the other hand, one can easily prove that

eθeγ = eθ∗γ , for θ, γ ∈ Der0L, (4.3)

where ∗ denotes, as usual, the BCH product inDer0L. Hence, e
θ is clearly bijective

with inverse e−θ, as
eθe−θ = eθ∗(−θ) = idL .

For completeness, we include now a more conceptual proof of this result:
observe that the injectionDer0L ↪→ Homcgl(L,L) extends to an algebra morphism

̂UDer0L −→ Homcgl(L,L),
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where the product on the endomorphisms of L is given by composition. By re-

stricting to the grouplike elements G of ̂UDer0L we obtain a group morphism

ϕ : G −→ AutL,

where AutL denotes the cgl automorphisms of L. Now, as in (4.2), we have iso-
morphisms

Der0L ∼=
exp ��

G,
log

��

and e : Der0L → AutL is simply the composition ϕ◦exp. This also readily implies
formula (4.3). �
Lemma 4.11. Let L be a cdgl and let x, y ∈ L0. Then,

adx∗y = adx ∗ ady .

Proof. From the Jacobi identity we immediately deduce that, in DerL,

ad[x,y] = [adx, ady].

Therefore, by the BCH formula, we get adx∗y = adx ∗ ady . �

The following is an immediate consequence of Lemma 4.11 and formula (4.3).

Corollary 4.12. Let L be a cdgl and let x, y ∈ L0. Then,

eadx∗y = eadx ◦ eady . �

Next, we show that, when applied to elements of degree 0, the exponential
of an adjoint operator can be explicitly given in terms of the BCH product:

Proposition 4.13. Let L be a cdgl and let x, y ∈ L0. Then,

x ∗ y ∗ (−x) = eadx(y).

With the previous convention, this formula also reads

x ∗ y ∗ x−1 = eadx(y).

Proof. We first show that the extension of eadx to the ideal Î of ÛL0, see (4.1),
satisfies

eadx(y) = exye−x. (4.4)

Indeed,

eadx(y) =

∞∑
n=0

adnx(y)

n!
=

∞∑
n=0

1

n!

n∑
i=0

(−1)i
(
n

i

)
xn−iyxi

=

∞∑
i=0

∞∑
n=i

xn−i

(n− i)!
y
(−x)i

i!
= exye−x.
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Replacing y by ey, we see that

eadx(ey) = exeye−x. (4.5)

In a second step, considering also the extension of eadx to Î, we prove the
equality

(eadx)(yn) =
(
eadx(y)

)n
. (4.6)

On the left-hand side, the term in x of length k, with k ≥ 0, equals

adkx(y
n)

k!
.

On the right-hand side, this term is

∑
k1+···+kn=k

adk1
x (y)

k1!
. . .

adkn
x (y)

kn!
.

As adx is a derivation of Î, the two expressions coincide and the equality (4.6) is
proved. Therefore,

eadx(ey) =
∑
n≥0

(eadx)(yn)

n!
=
∑
n≥0

(
eadx(y)

)n
n!

= ee
adxy. (4.7)

Finally, the proposition follows from the chain of equalities

x ∗ y ∗ (−x) = log(exeye−x) =(4.5) log
(
eadx(ey)

)
=(4.7) log(e

eadx (y)) = eadx(y). �

Corollary 4.14. Let L be a cdgl, x, y ∈ L0 and λ ∈ Q. Then,

x ∗ (λy) ∗ (−x) = λ (x ∗ y ∗ (−x)) .

Proof. x ∗ (λy) ∗ (−x) = eadx(λy) = λeadx(y). �

4.3 The gauge action and the Deligne groupoid

In a cdgl L, the gauge action of an element x ∈ L0 on a Maurer–Cartan element
b ∈ MC(L) is defined by

xG b =
∑
i≥0

adix(b)

i!
−
∑
i≥0

adix(dx)

(i+ 1)!
.
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Observe that the first series is by definition eadx(b). The second one can also
be expressed as an operator considering its “generating function”: in view of the
equality, ∑

n≥0

tn

(n+ 1)!
=

et − 1

t
,

we write ∑
i≥0

adix(dx)

(i+ 1)!
=

eadx − 1

adx
(dx),

where 1 = idL. Hence, the gauge action takes the classical form,

xG b = eadx(b)− eadx − 1

adx
(dx). (4.8)

By means of the perturbed differential db the gauge action adopts a particularly
simple form:

xG b = eadx(b)− eadx − 1

adx
(dx)

= b+
eadx − 1

adx
([x, b]− dx)

= b− eadx − 1

adx
(dbx).

(4.9)

The fact that this action is preserved by cdgl morphisms is a simple obser-
vation.

Proposition 4.15. Let f : L → L′ be a cdgl morphism, x ∈ L0 and b ∈ MC(L).
Then, f(xG b) = f(x)G f(b). �
Theorem 4.16. Let L be a cdgl. The gauge action is an action of the group L0,
equipped with the BCH product, on MC(L).

The proof is the result of the next two lemmas.

Lemma 4.17. Let L be a cdgl, b ∈ MC(L) and x ∈ L0. Then, xG b ∈ MC(L).

Proof. Write

a = eadx(b)− eadx − 1

adx
(u),

where u denotes dx to avoid excessive notation. In view of the general formula for
the gauge action (4.8), the lemma reduces to showing that a is a Maurer–Cartan
element. We proceed by direct computation.

On the one hand,

[a, a] = [eadx(b), eadx(b)]− 2

⎡⎣eadx(b),
∑
i≥0

adix(u)

(i+ 1)!

⎤⎦+
⎡⎣∑

i≥0

adix(u)

(i + 1)!
,
∑
j≥0

adjx(u)

(j + 1)!

⎤⎦ .
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On the other hand,

da = eadx(db)+
∑
i≥0

∑
j<i

1

i!
adjx adu ad

i−j−1
x (b)−

∑
i≥0

∑
j<i

1

(i + 1)!
adjx adu ad

i−j−1
x (u).

(4.10)
Next, we show that in this expression, each of the three summands can be written
as follows:

eadx(db) = −1

2
[eadxb, eadxb],

∑
i≥0

∑
j<i

1

i!
adjx adu ad

i−j−1
x (b) =

⎡⎣eadx(b),
∑
i≥0

adix(u)

(i+ 1)!

⎤⎦ ,
∑
i≥0

∑
j<i

1

(i + 1)!
adjx adu ad

i−j−1
x (u) =

1

2

⎡⎣∑
i≥0

adix(u)

(i+ 1)!
,
∑
j≥0

adjx(u)

(j + 1)!

⎤⎦ .
(4.11)

The first identity is trivial as b is Maurer–Cartan and eadx is a cgl morphism
in view of Proposition 4.10.

For the second identity in (4.11), recall from (1.18) that, for any α, β ∈ L,

adjx[α, β] =

j∑
k=0

(
j

k

)
[adkx α, ad

j−k
x β].

Hence,

∑
i≥0

∑
j<i

1

i!
adjx adu ad

i−j−1
x (b) =

∑
i≥0

∑
j<i

j∑
k=0

1

i!

(
j

k

)
[adkx u, ad

i−k−1
x b]. (4.12)

By setting r = i− k − 1, and taking into account that

r+k∑
j=k

(
j

k

)
=

(
r + k + 1

k + 1

)
,

equation (4.12) becomes

∑
r,k

⎛⎝r+k∑
j=k

(
j

k

)
1

(r + k + 1)!

⎞⎠ [adkx u, ad
r
x b] =
∑
r,k

[
adkx u

(k + 1)!
,
adrx b

r!

]
,

in which the right-hand side term is precisely⎡⎣eadx(b),
∑
i≥0

adix(u)

(i + 1)!

⎤⎦ .
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For the third identity in (4.11), we begin as above and write

∑
i≥0

∑
j<i

1

(i+ 1)!
adjx adu ad

i−j−1
x (u) =

∑
i≥0

∑
j<i

j∑
k=0

1

(i+ 1)!

(
j

k

)[
adkx u, ad

i−k−1
x u

]
=
∑
r,k

1

(r + k + 2)!

(
r + k + 1

k + 1

)
[adkx u, ad

r
x u].

Since [adkx u, ad
r
x u] = [adrx u, ad

k
x u], this equals

1

2

∑
r,k

1

(r + k + 2)!

((
r + k + 1

k + 1

)
+

(
r + k + 1

k + 1

))
[adkx u, ad

r
x u]

=
1

2

∑
r,k

1

(r + k + 2)!

(
r + k + 2

k + 1

)
[adkx u, ad

r
x u] =

1

2

[∑
k

adkx u

(k + 1)!
,
∑
r

adrx u

(r + 1)!

]
.

Finally, equations (4.10) and (4.11) readily imply that

da = −1

2
[a, a]. �

Lemma 4.18. For any a ∈ MC(L) and any x, y ∈ L0,

(x ∗ y)G a = xG (y G a) .

Proof. Denote L⊕Qc the cdgl where |c| = −1, dc = 0 and the bracket, extending
that on L, is defined by [x, c] = −(−1)|x|dx for any x ∈ L, and [c, c] = 0. Then,
for x ∈ L0, a simple computation shows that

eadx(b + c) = xG b + c .

Using Corollary 4.12, we thus have

(x ∗ y)G b+ c = eadx∗y(b + c) = eadxeady (b+ c) = eadx (y G b+ c) = xG (y G b) + c,

and therefore (x ∗ y)G a = xG (y G a). �
Corollary 4.19. xG b = a if and only if −xG a = b.

Proof. Indeed, if xG b = a, then

(−x)G a = (−x)G (xG b) = ((−x) ∗ x)G b = b . �

Next, we show that the isotropy group of a given Maurer–Cartan element
consists of the cycles of the corresponding perturbed differential.

Proposition 4.20. Let L be a cdgl, a ∈ MC(L), x ∈ L0. Then xG a = a if and only
if dax = 0. In particular, if xG a = a, then for each λ ∈ Q, (λx)G a = a.
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Proof. Note that for each x ∈ L0,

eadx − 1

adx

is a cgl automorphism of L with inverse

adx
eadx − 1

.

Hence, in view of formula (4.9), xG a = a if and only if dax = 0. �

Let (L, d) be a cdgl and a ∈ MC(L). We denote by Ga the gauge action in
the perturbed cdgl (L, da).

Proposition 4.21. With the above notation, for any b ∈ MC(L),

xGa (b− a) = (xG b)− a .

Proof. Recall from Proposition 4.5 that b− a is indeed in MC(L, da). Then,

xGa (b − a) = eadx(b− a)− eadx − 1

adx
(dx+ [a, x])

= eadx(b)− eadx − 1

adx
(dx) −

(
eadx(a)− eadx − 1

adx
[x, a]

)
= (xG b)− a. �

We now introduce the Deligne groupoid as the groupoid associated to the
gauge action.

Definition 4.22. The Deligne groupoid of L is the groupoid that has MC(L) as
objects, and the elements x ∈ L0 as arrows from xGa to a.

The next proposition shows that, if a and b are in the same path component
of the Deligne groupoid, then the cdgl’s (L, da) and (L, db) are isomorphic and
thus, the corresponding components La and Lb are also isomorphic. The first step
in the proof is the computation of d(eadxv) for any element v ∈ L. This already
appears in [91, Lemma 1].

Lemma 4.23. Let L be a cdgl, x ∈ L0 and v ∈ L. Then,

d(e− adxv) = e− adx(dv) + (−1)|v|e− adx adv
eadx − 1

adx
(dx) .

Proof. By definition,

d(e− adxv) =

∞∑
n=0

(−1)n

n!
d(adnx v) . (4.13)
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In each summand, we apply the Leibniz rule to get

d(adnx v) =

n−1∑
m=0

adn−m−1
x addx ad

m
x (v) + adnx(dv). (4.14)

Now addx ad
m
x (v) = (−1)|v|+1[admx (v), dx] and an easy inductive argument using

the Jacobi identity shows that

[admx (v), dx] =

m∑
k=0

(−1)k
(
m

k

)
adm−k

x adv ad
k
x(dx).

Then, using the identity
∑n−1

m=k

(
m
k

)
=
(

n
k+1

)
in the last equality of the following

formula, (4.14) becomes

d(adnx v) = (−1)|v|+1

(
n−1∑
m=0

m∑
k=0

(−1)k
(
m

k

)
adn−k−1

x adv ad
k
x(dx)

)
+ adnx(dv)

= (−1)|v|+1

(
n−1∑
k=0

(−1)k
(

n

k + 1

)
adn−k−1

x adv ad
k
x

)
(dx) + adnx(dv) .

To finish, insert this expression in (4.13); the result can be easily rewritten as

d(e− adxv) = (−1)|v|e− adx adv
eadx − 1

adx
(dx) + e− adx(dv) . �

Proposition 4.24. Let L be a cdgl, x ∈ L0 and a, b ∈ MC(L) with xG b = a. Then,
for any v ∈ L,

da e
adx(v) = eadx(dbv).

In other words, the map eadx : (L, db)
∼=−→ (L, da) is cdgl isomorphism which re-

stricts to an isomorphism eadx : Lb
∼=−→ La between the corresponding components.

Proof. Apply first Lemma 4.23 for the cdgl (L, da), choosing −x ∈ L0 and v ∈ L,
to obtain,

da e
adx(v) = eadx(dav)− (−1)|v|eadx adv

e− adx − 1

− adx
(dax) (4.15)

In the second summand of this expression note that

e− adx − 1

− adx
(dax) =

e− adx − 1

− adx
(dx+ [a, x]) =

e− adx − 1

− adx
(dx) +

e− adx − 1

− adx
(− adx a)

=
e− adx − 1

− adx
(dx) + e− adx(a)− a. (4.16)

Next, by Corollary 4.19, −xG a = b, that is,

b = e− adx(a) +
e− adx − 1

− adx
(dx) ,
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or equivalently,
e− adx − 1

− adx
(dx) = −e− adx(a) + b .

Inserting this in the last equality of (4.16) we deduce that,

e− adx − 1

− adx
(dax) = b− a.

Replacing this in (4.15) we finally obtain,

da e
adx(v) = eadx(dav)− (−1)|v|eadx adv(b − a)

= eadx
(
dav − (−1)|v| adv(b− a)

)
= eadx(dbv) . �

From a geometrical point of view the orbit set of the gauge action will become
a crucial object.

Definition 4.25. We denote by M̃C(L) = MC(L)/G the orbit set of the gauge
action, that is, the set of equivalence classes of Maurer–Cartan elements modulo
the gauge action. For a pair a, b of MC elements we write a ∼ b if they define the
same class, that is, if there exists x ∈ L0 such that xG a = b.

For the rest of the text, to simplify notation, we will often denote in the same
way an element in MC(L) and its corresponding class in M̃C(L). Nevertheless, it
will always be clear in which set such an element is considered.

Note that, since cdgl morphisms preserve the gauge action, the functor MC
induces a functor

M̃C: cdgl −→ set* .

Example 4.26. Let L be the cdgl defined in Example 4.2, L = L(a, b)/[a, b] where
a and b are MC elements. Then, all the MC elements are gauge non-equivalent.
Therefore,

M̃C(L) = {a, b, 0, a+ b}.
In particular, classes of non-zero Maurer–Cartan elements are not necessarily lin-
early independent.

Example 4.27. Let L be an abelian Lie algebra. Then, the Maurer–Cartan elements
are the cycles of L−1. Moreover, two MC elements are equivalent if and only if
they represent the same homology class, i.e.,

M̃C(L) = H−1(L).

For instance, in the abelian dgl (L, 0) where L = Qa with |a| = −1, each element

λa, λ ∈ Q represents a different class in M̃C(L).

From Propositions 4.5 and 4.21 we immediately deduce:

Proposition 4.28. Let (L, d) be a cdgl and a ∈ MC(L, d). If M̃C(L, d) = {[ai], i ∈
I}, then M̃C(L, da) = {[ai − a], i ∈ I}. �
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4.4 Applications to deformation theory

In this section we apply the main results of previous sections to the deformation
theory of cdgl’s, in the sense of homological algebra. More specifically, we classify
perturbations of the differential of a given cdgl by means of gauge related elements
in the corresponding cdgl of derivations. We begin with the natural generalization
of Definition 4.4.

Definition 4.29. Let L be a cdgl. A perturbation of the differential d of L is another
differential in L of the form d+ ψ, where ψ ∈ DerL.

Given a cdgl L, note that a Maurer–Cartan element in DerL is a derivation
ψ of degree −1 satisfying

dψ + ψd = −1

2
[ψ, ψ] = −ψ2.

Moreover, the following is a simple observation

Lemma 4.30. Let (L, d) be a cdgl. Then, d + ψ is a perturbation of d if and only
if ψ ∈ MC(DerL). �

That is, perturbations of d are in bijective correspondence with Maurer–
Cartan elements of DerL. We show next that gauge related MC derivations cor-
respond to particular isomorphisms between the perturbed cdgl’s.

Theorem 4.31. Let (L, d) be a cdgl for which d ∈ DerL, that is, d increases the
filtration degree, and let d + ϕ, d + ψ be perturbations of d. Then, ϕ ∼ ψ if and
only if there exists an isomorphism

f : (L, d+ ϕ)
∼=−→ (L, d+ ψ)

such that f − idL increases the filtration degree.

Proof. Assume ϕ ∼ ψ. That is, there exists θ ∈ Der0L such that θ Gϕ = ψ. Then

ψ = eadθ (ϕ) − eadθ − 1

adθ
(dθ).

Recall that, in DerL, dθ = [d, θ]. Hence, the second summand in the right-hand
side is

eadθ − 1

adθ
(dθ) =

∑
i≥0

adiθ
(i + 1)!

[d, θ] =
∑
i≥1

adiθ
i!

d.

Therefore,

d+ ψ = d+ eadθ (ϕ)−
∑
i≥0

adiθ
i!

(d) = eadθ (d+ ϕ).
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But, taking into account that d+ ϕ ∈ Der0L, the general formula (4.4) yields,

eadθ (d+ ϕ) = eθ(d+ ϕ)e−θ.

That is,

d+ ψ = eθ(d+ ϕ)e−θ.

By Proposition 4.10, eθ is a cgl automorphism with inverse equal to e−θ. Hence,
the above equation becomes

(d+ ψ)eθ = eθ(d+ ϕ)

and therefore,

eθ : (L, d+ ϕ)
∼=−→ (L, d+ ψ),

is the sought-for isomorphism.

On the other hand, given f : (L, d + ϕ)
∼=→ (L, d + ψ), write f = eθ with

θ = log(f − idL). Note that θ is a derivation in Der0L. Finally, since f commutes
with differentials, (d + ψ)eθ = eθ(d + ϕ), and the argument above shows that
θ Gϕ = ψ. �

Remark 4.32. We briefly consider here an important application of Theorem 4.31.

First, note that there is no obstruction to state and prove this result replacing
the cdgl DerL by the cdgl DerA whenever A is a complete cdga whose differential
d increases the filtration degree, that is, d ∈ Der−1A. Again, perturbations of d
correspond to Maurer–Cartan elements in DerA, and two such elements ϕ, ψ ∈
MC(DerA) are gauge equivalent if and only if there is an isomorphism f : (A, d+

ϕ)
∼=→ (A, d+ ψ) such that f − idA increases the filtration degree.

Now, fix a 1-connected cga H and construct the minimal model (∧V, d) �−→
(H, 0) in the standard bigraded way, see [74, §3], which induces a particular fil-
tration on (∧V, d). Then, given a simply connected CW-complex X with ratio-
nal cohomology algebra H , there exist a perturbation d + ϕX of d and a quasi-

isomorphism (∧V, d+ϕX)
�→ APL(X), see [74, Theorem 4.4]. An application of the

above version of Theorem 4.31 allows us to conclude that two simply connected
complexes X and Y , sharing the same rational cohomology algebra H , have the
same rational homotopy type if and only if the Maurer–Cartan elements ϕX and
ϕY are gauge related.

In other words, denoting by CWH the class of rational homotopy types of
simply connected complexes with rational cohomology algebra H , we have:

CWH
∼= M̃C
(
Der(∧V, d)).

The reader can find in [125] detailed explanations of every assertion in this remark.
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4.5 The Goldman–Millson Theorem

In general, cdgl quasi-isomorphisms are not preserved by perturbation of differ-

entials. That is, given a cdgl quasi-isomorphism f : L
�→ L′ and a ∈ MC(L), the

morphism f : (L, da) → (L′df(a)) is not necessarily a quasi-isomorphism. More-

over, the set map MC(f), or even M̃C(f), is not in general a bijection. An elemen-
tary example consists on the injection 0 → (L(a), d), where a is an MC element.

Nevertheless, the following result, whose earliest version was proved by Sch-
lessinger and Stasheff in [125, Theorem 5.3], shows that any cdgl morphism whose
associated graded cdgl morphism is a quasi-isomorphism, induces a bijection on
the set of equivalence classes of Maurer–Cartan elements. Moreover, it is also a
quasi-isomorphism for every perturbed differential.

Theorem 4.33. Let f : L → L′ be a morphism of cdgl’s, filtered by {Fn}n≥1 and

{Gn}n≥1, respectively, such that the induced map Fn/Fn+1 �−→ Gn/Gn+1 is a

quasi-isomorphism for any n ≥ 1. Then, M̃C(f) is a bijection and, for each a ∈
MC(L), f : (L, da)

�−→ (L′, df(a)) is a quasi-isomorphism.

Remark 4.34. The first (and main) assertion of this result, that is, the bijective

character of M̃C(L), is commonly known as the Goldman–Millson Theorem. How-
ever, and even acknowledged by these authors in the introduction of [65], it was
first stated by Deligne in [38] and proved by Schlessinger and Stasheff in op. cit.,
under slightly different hypotheses on L. An exact analogue of our statement can
be found in [41, Theorem C.2], while the original Goldman–Millson version [65,
Theorem 2.4] is precisely Proposition 4.40 below.

The relevance of Theorem 4.33 will be revealed later in the text: in Chapter
8 we introduce a model structure on cdgl where a morphism f : L → L′ is a
weak equivalence if and only if M̃C(f) is a bijection and for every a ∈ M̃C(L),

fa : (L, da)
�→ (L′, df(a)) is a quasi-isomorphism (see Theorem 8.1). Moreover, via

the realization functor from cdgl to the category of simplicial sets, to be introduced
in Chapter 7, we will see that the realization 〈f〉 of a weak equivalence is in fact a
weak homotopy equivalence of simplicial sets. Hence, in this language, the theorem
above asserts that 〈f〉 is a weak homotopy equivalence.

On the other hand, in Theorem 11.13 of Chapter 11, we will show that
the realization 〈L〉 of a given cdgl has the same homotopy type as the simplicial
set MC•(L) given by the Deligne–Getzler–Hinich groupoid. Hence, Theorem 4.33
amounts to saying that, under the given hypotheses, MC•(f) is a weak homotopy
equivalence. This is precisely the cdgl version of [42, Theorem 1.1], proved by
Dolgushev and Rogers in the wider context of complete L∞-algebras.

Proof of Theorem 4.33. We first show that, for each a ∈ MC(L), f : (L, da)
�−→

(L′, df(a)) is a quasi-isomorphism. Observe that, with the perturbed differentials,
f also preserves filtrations and is a cdgl morphism. Moreover, the differentials
induced by da and df(a) on F p/F p+1 and Gp/Gp+1, respectively, coincide with
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the differentials induced by d, since d − da and d − df(a) increase the filtration
degree. To finish, simply apply Lemma 3.14.

For the first assertion consider the following commutative diagram where the
vertical arrows are all induced by f :

0 �� Fn/Fn+1 j ��

h

��

L/Fn+1 p ��

g

��

L/Fn

k

��

�� 0

0 �� Gn/Gn+1 j �� L′/Gn+1 q �� L′/Gn �� 0

In what follows and as in (3.1), any element of L (or L′) will be written as a
sequence,

a = (an), where an ∈ L/Fn and p(an+1) = an.

We first show that M̃C(f) is surjective. To see this, given b = (bn) ∈ MC(L′)
we construct by induction on n ≥ 1 a sequence of elements an in MC(L/Fn) and
a sequence of elements xn ∈ (L′/Gn)0, such that

q(xn+1) = xn, p(an+1) = an and k(an) = xn G bn.

This will prove the assertion. Indeed, by Lemma 4.7, the sequence (an) then de-
fines a Maurer–Cartan element a in L = lim←−L/Fn. On the other hand, the se-
quence (xn) defines an element x in L′

0 such that f(a) = xG b. In other words,

M̃C(f)(a) = b.

Suppose elements ar and xr for r ≤ n with the above properties are already
constructed. Since p is surjective, there is an element z ∈ Fn/Fn+1 with p(z) = an.
Let x′ ∈ (L′/Gn+1)0 be a lifting of xn: q(x

′) = xn. Then,

q(x′ G bn+1 − g(z)) = xn G bn − kp(z) = xn G bn − k(an) = 0,

which implies that the element x′ G bn+1 − g(z) belongs to the abelian Lie algebra
Gn/Gn+1. In particular,

[x′ G bn+1 − g(z), x′ G bn+1] = 0 = [x′ G bn+1 − g(z), g(z)].

Therefore,

[g(z), g(z)] = [x′ G bn+1, g(z)] = [x′ G bn+1, x
′ G bn+1]. (4.17)

Write u = dz + 1
2 [z, z] ∈ (L/Fn+1)−2. Since p(z) = an is an MC element,

p(u) = 0, so that u ∈ Fn/Fn+1. As Fn/Fn+1 is abelian,

du = [dz, z] = [u, z]− 1

2

[
[z, z], z

]
= 0.
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Since bn+1 belongs to MC(Gn/Gn+1), it follows that x′ G bn+1 ∈ MC(Gn/Gn+1):

d(x′ G bn+1) = −1

2
[x′ G bn+1, x

′ G bn+1].

Now, in view of (4.17),

jh(u) = dg(z) +
1

2
[g(z), g(z)] = dg(z) +

1

2
[x′ G bn+1, x

′ G bn+1]

= d(g(z)− [x′ G bn+1, x
′ G bn+1]).

Since h is a quasi-isomorphism and h(u) is a boundary, there are elements t ∈
(Fn/Fn+1)0 and s ∈ (Gn/Gn+1)1 such that

dt = u and h(t) = (g(z)− x′ G bn+1)− ds.

Since t is central, [z, z] = [z − t, z − t]. Also,

d(z − t) = dz − u = −1

2
[z, z] = −1

2
[z − t, z − t],

that is, z − t is an MC element. On the other hand, since s is central,

(x′ − n)G bn+1 =
∑
i≥0

adix′−s(bn+1)

i!
−
∑
i≥0

adix′−s(d(x
′ − s))

(i + 1)!

=
∑
i≥0

adix′(bn+1)

i!
+ ds−

∑
i≥0

adix′ d(x′)
(i + 1)!

= x′ G bn+1 + ds.

We set xn+1 = x′ − s and an+1 = z − t. Clearly,

q(xn+1) = xn, p(an+1) = an,

and

g(an+1) = g(z)− h(t) = x′ G bn+1 + ds = (x′ − s)G bn+1 = xn+1 G bn+1.

As previously observed, M̃C(f) is then surjective.

Next, we show that M̃C(f) is injective. Let a, b ∈ MC(L) such that

M̃C(f)(a) = M̃C(f)(b),

that is, f(a) = y G f(b) for some y ∈ L′
0. We construct by induction on n ≥ 1 a

sequence of elements xn ∈ (L/Fn)0 such that

p(xn+1) = xn and xn G bn = an.
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This would define an element x = (xn) ∈ L0 such that xG b = a which would
prove the assertion. To do so, we will need to find at the same time, and also
inductively, a sequence of elements y[n] ∈ L′

0, n ≥ 1, such that y[n]G f(b) = f(a)
and k(xn) = y[n]n.

Suppose we have constructed xm and y[m], for m ≤ n, with the above prop-
erties. Let x′ ∈ L/Fn+1 be a lifting of xn and denote u = x′ G bn+1 ∈ L/Fn+1.
Then, since p(an+1 − u) = an − p(u) = an − xn G bn+1 = 0, an+1 − u is a central
element in Fn/Fn+1. Now, as an+1 and u are Maurer–Cartan elements,

d(an+1 − u) = −1

2
[an+1, an+1] +

1

2
[u, u] = −1

2
[an+1 + u, an+1 − u] = 0.

On the other hand, in Gn/Gn+1, v = y[n]n+1 ∗ g(x′)−1 is in the kernel of q and
is a central element, because q(v) = y[n] ∗ k(xn)

−1 = 0. Here ∗ denotes the BCH
product on the elements of degree zero.

On the one hand, by Theorem 4.16, it follows that in L′/Gn+1:

v G g(u) =
(
y[n]n+1 ∗ g(x′)−1

)
G g(u) = y[n]n+1 G g(bn+1)

= (y[n]G f(b))n+1 = g(an+1).

On the other hand, since v is central,

v G g(u) = g(u)− dv.

As a result of these two equations,

h(u− an+1) = dv.

Since h is a quasi-isomorphism, there exist elements w ∈ Fn/Fn+1 and r ∈
Gn/Gn+1 such that dw = u− ap+1 and h(w) = v + dr.

Since w is central, an+1 = u − dw = w Gu. Set xn+1 = w ∗ x′ and observe
that

xn+1 G bn+1 = w G (x′ G bn+1) = w Gu = an+1.

We have p(xn+1) = p(x′) = xn and, since dr is central,

g(xn+1) = h(w) ∗ g(x′) =
(
y[n]n+1 ∗ g(x′)−1 + dr

) ∗ g(x′) = y[n]n+1 + dr.

Finally, let t ∈ L′
1 with tn+1 = r, set s = df(a)t and y[n+1] = s ∗ y[n]. Since

ds = [s, f(a)], by Proposition 4.20, sG f(a) = f(a) and so y[n+ 1]G f(b) = f(a).
On the other hand, y[n+ 1]n+1 = dr + y[n]n+1 = g(xn+1). �

We will now apply Theorem 4.33 in various situations to detect cdgl quasi-
isomorphisms which, in addition, induce bijections on the corresponding M̃C sets.
All these consequences will be very important later on.

In what follows, given a cdgl morphism f : L → L′, we will call the induced
map

fn : Fn/Fn+1 −→ Gn/Gn+1

the (nth) associated graded morphism.
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Proposition 4.35. Let f : (L̂(V ), d) → (L̂(W ), d) be a morphism of cdgl’s whose

linear part f1 : (V, d1)
�−→ (W,d1) is a quasi-isomorphism. Then, M̃C(f) is a bi-

jection.

Proof. In the proof of Proposition 3.12 we checked that for the usual filtration
Fn = L̂≥n(V ) in (L̂(V ), d), and the analogous one in (L̂(W ), d),

Fn/Fn+1 = (Ln(V ), d̄)

and that the associated graded morphism

(Ln(V ), d̄)
�−→ (Ln(W ), d̄)

is a quasi-isomorphism since f1 is. To finish, apply Theorem 4.33. �

Given a graded vector space U , consider the contractible cdgl (L̂(U ⊕ sU), d)
(see Definition 3.17). In other words, sU is the suspension of U and the differential
d is defined by dsu = u and du = 0.

Let L be any cdgl and consider the coproduct

B = L ̂ (L̂(U ⊕ sU), d)

together with the natural cdgl morphisms,

ι : L ↪−−→ B and p : B → L,

given by the inclusion into the first factor and the projection onto it.

Proposition 4.36. Given any cdgl L, both M̃C(ι) and M̃C(p) are bijections. More-
over, for any a ∈ MC(L),

ι : (L, da)
�−→ (B, da) and p : (B, da)

�−→ (L, da)

are quasi-isomorphisms.

Proof. Let {Fn}n≥1 and {Gn}n≥1 be the filtrations on L and L̂(U ⊕ sU), respec-
tively. Recall that

Gn = L̂≥n(U ⊕ sU).

Recall also from (3.6) in Proposition 3.5 that

B = lim←−
n

(
L L̂(U ⊕ sU)

)
/Rn,

where

Rn =
∑

p1+q1+···+pr+qr=n

[
F p1 , [Gq1 , [. . . [F pr , Gqr ]

]
. . .
]
.
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Therefore, in view of (3.5), for each n ≥ 1 the associated graded morphism of p is

pn : Rn/Rn+1 −→ Fn/Fn+1.

We prove that this is a quasi-isomorphism by showing, more generally, that

p : Rn �−→ Fn

is also a quasi-isomorphism. As pι = idL it suffices to show that H(p) is injective.

To this end, observe first that

Rn = Fn ⊕ Γ

where every bracket in Γ contains at least one non-zero element of U ⊕ sU . Thus,
p(Γ) = 0 and is the identity on Fn.

We define a derivation s of degree +1 in B by s(L) = 0, s(u) = su and
s(su) = 0. The derivation θ = sd + ds is equal to the identity on U ⊕ sU and
therefore is simply multiplication by i on each bracket of Γ containing exactly i
non-zero elements of U ⊕ sU . In particular, if z is such an element, which is also
a cycle, then z is also a boundary:

z =
1

i
θ(z) = (dsz + sdz) = d

(1
i
sz
)
.

Therefore, since sz ∈ Γ, this is an acyclic graded vector space.

Now let x = y+z ∈ Rn, with y ∈ Fn and z ∈ Γ represent a class in kerH(p).
This amounts to saying that both y and z are cycles and there exists a ∈ Fn such
that da = y. As Γ is acyclic, z = dz′ and x = d(a + z′). Hence, H(p) is injective
and thus, it is an isomorphism.

Again, as pι is the identity on L, and the associated graded morphism of p
is a quasi-isomorphism, the corresponding associated graded morphism

ιn : Fn/Fn+1 �→ Rn/Rn+1

is also a quasi-isomorphism. To finish, apply Theorem 4.33. �
Definition 4.37. Let A be a cdga and L be a cdgl filtered by {Fn}n≥1. Define the
cdgl,

A⊗̂L = lim←−
n

A⊗ (L/Fn),

where the differential and the bracket in A⊗ (L/Fn) are defined as usual by

d(a⊗ x) = da⊗ x+ (−1)|a|a⊗ dx and [a⊗ x, a′ ⊗ x′] = (−1)|a
′||x|aa′ ⊗ [x, x′] .

Observe that this is indeed a complete dgl with respect to the usual filtration, see
(3.4), given by the kernels of the natural maps A⊗̂L → A⊗ L/Fn.
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Proposition 4.38. Let ϕ : A
�−→ B be a cdga quasi-isomorphism and let

ϕ⊗̂ id : A⊗̂L
�−→ B⊗̂L

be the induced quasi-isomorphism. Then, M̃C(ϕ⊗̂ id) is a bijection.

Proof. First of all, note the following general fact: let C, D and E be chain

complexes and let f : C
�→ D be a quasi-isomorphism. Then, there are a quasi-

isomorphism g : D
�→ C and homotopies h and k with dh + hd = gf − idC and

dk+kd = fg− idD. Denote F = idE ⊗f and G = idE ⊗g and observe that idE ⊗h
and idE ⊗k are respectively homotopies between GF and idE⊗C , and between FG
and idE⊗D. Therefore, F is a quasi-isomorphism.

The morphism ϕ⊗̂ id preserves the filtrations and, by the comment above,
the associated graded morphism

A⊗ Fn/Fn+1 �−→ B ⊗ Fn/Fn+1

is a quasi-isomorphism for every n ≥ 1. Theorem 4.33 shows that M̃C(ϕ⊗̂ id) is a
bijection. �

A completely analogous argument proves the following:

Proposition 4.39. Let A be a cdga and f : L → L′ a cdgl morphism such that the

associated graded morphism fn : Fn/Fn+1 �−→ Gn/Gn+1 is a quasi-isomorphism
for n ≥ 1. Then,

M̃C(idA ⊗̂f) : M̃C(A⊗̂L)
∼=−→ M̃C(A⊗̂L′)

is a bijection. �

For completeness, we now state and prove the original Goldman–Millson
Theorem as appears in [65, Theorem 2.4]:

Proposition 4.40. Let R be an Artinian local ring with maximal ideal m and let

f : L
�−→ L′ be a quasi-isomorphism of dgl’s. Then,

M̃C(id⊗f) : M̃C(m⊗ L)
∼=−→ M̃C(m⊗ L′)

is a bijection.

Proof. Filter m⊗ L and m⊗ L′ by {mn ⊗ L}n≥1 and {mn ⊗ L′}n≥1, respectively.
As R is Artinian, the dgl’s m⊗L and m⊗L′ are complete. Clearly, the associated
graded morphism of idm ⊗f is a quasi-isomorphism and thus, the result follows
from Theorem 4.33. �



Chapter 5

The Lawrence–Sullivan Interval

LetX be a simply connected CW-complex. Recall from Section 1.2.2 that a Quillen
model of X is a free dgl (L(V ), d) positively graded and not necessarily minimal,

together with a quasi-isomorphism (L(V ), d)
�→ λ(X).

Fix a cellular structure on X with a single 0-cell and no 1-cell, and denote by
Cell∗(X) the cellular rational chain complex of X . It is well known that one can
obtain a Quillen model of X of the form (L(V ), d), where V = s−1 Cell≥2, and in
which d(s−1e) encodes the attaching map of the cell e. In particular, if we write
as usual d =

∑
i≥1 di with each di increasing the bracket length by i− 1, then d1

corresponds to the desuspension of the chain differential on Cell∗(X) and

d2 : s
−1 Cell∗(X) −→ L2(V ) ⊂ s−1 Cell∗(X)⊗ s−1 Cell∗(X)

is the desuspension of an approximation to the diagonal.

Our intention is to extend this procedure to any simplicial set X , not neces-
sarily simply connected, so that we allow the existence of simplices in all dimen-
sions. To do this, let N∗(X) be the non-degenerate rational simplicial chains on
X and denote by

V = s−1N∗(X)

its desuspension. Our goal is to construct a differential d =
∑

i≥1 di on the com-

plete free graded Lie algebra L̂(V ) which faithfully reflects the simplicial structure
of X . Again we may choose d1 to be the chain differential on N∗(X) and

d2 : V = s−1N∗(X) −→ L2(V ) ⊂ s−1N∗(X)⊗ s−1N∗(X)

to be exactly the desuspension of an approximation of the diagonal of N∗(X).
Observe that any vertex σ of X , or equivalently, any generator of N0(X), corre-
sponds to a degree −1 element a = s−1σ ∈ V−1. Thus, if we choose the diagonal
approximation so that σ is sent to −σ ⊗ σ, then

d2a = −a⊗ a = −1

2
[a, a].
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That is, any generator of V−1 must be a Maurer–Cartan element. The question
is then whether it is possible to define d3, d4, . . . so that their sum becomes a
differential on L̂(V ).

An affirmative answer to this question was given by R. Lawrence and D. Sul-
livan in [91] for the simplest possible non-trivial simplicial set, namely the closed
interval Δ1. In this case V = s−1N∗(Δ1) is generated by two elements a, b of de-
gree −1, corresponding to vertices, and an element x of degree zero, corresponding
to the only non-degenerate 1-simplex. By the above argument, for the differential
d to be set on L̂(V ), a and b must be Maurer–Cartan elements,

da = −1

2
[a, a], db = −1

2
[b, b],

and the linear part of d on x is simply b − a. The fundamental result in op.
cit. asserts that, under these constraints, there is a unique expression for the
differential dx so that

(L̂(a, b, x), d)

becomes a cdgl. Namely,

dx = adx b+

∞∑
n=0

Bn

n!
adnx(b − a),

where Bn denotes the nth Bernoulli number. A detailed analysis of this particular
cdgl constitutes the core of this chapter and the departure point for the develop-
ment of a consistent homotopy theory in cdgl.

5.1 Introducing the Lawrence–Sullivan interval

We first recall some elementary facts concerning the Bernoulli numbers {Bn}n≥1

as they play an important role in what follows. Among other ways, these are
defined by the series

x

ex − 1
=

∞∑
n=0

Bn

n!
xn. (5.1)

Taking into account that

ex − 1

x
=

∞∑
n=0

1

n+ 1!
xn,

we calculate the first Bernoulli numbers from the equation
x

ex − 1
· e

x − 1

x
= 1:

B0 = 1 , B1 = −1

2
, B2 =

1

6
, B3 = 0 , B4 = − 1

30
, B5 = 0, B6 =

1

42
, . . .
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On the other hand, the formula( −x

e−x − 1

)
= x+

(
x

ex − 1

)
(5.2)

implies that ∑ Bn

n!
(−x)n −

∑ Bn

n!
xn = x,

and in particular Bn = 0 if n is odd and n ≥ 3.

To begin, recall from Section 1.1.3 that N∗(Δ1) = C∗(Δ1). The desuspension
of this chain complex is thus generated by cycles a, b of degree −1 and an element
x of degree 0 whose chain boundary is b− a.

Definition 5.1. The Lawrence–Sullivan interval , LS interval for short, is the cdgl

L1 = (L̂(a, b, x), d),

in which a and b are Maurer–Cartan elements, x is of degree 0 and

dx = adx b+

∞∑
n=0

Bn

n!
adnx(b − a).

From (5.1) we may write dx in terms of operators as

dx = adx b+
adx

eadx − 1
(b− a). (5.3)

Remark 5.2. There are several other useful ways of expressing dx. For instance,
using the identity (5.2), we write

adx
eadx − 1

(b− a) =

(
− adx +

− adx
e− adx − 1

)
(b − a) .

Therefore, dx can also be written as

dx = adx a+
− adx

e− adx − 1
(b− a). (5.4)

From this and (5.3) we obtain formulas for the perturbed differentials:

dbx =
adx

eadx − 1
(b − a) and dax =

− adx
e− adx − 1

(b− a) . (5.5)

On the other hand, starting from (5.3), we have

dx = adx b+
adx

e− adx − 1
(b− a) =

adx
1− eadx

(a) + adx b+
adx

e− adx − 1
(b).

Then, applying (5.2) to the last term we get a more symmetric expression of dx:

dx =
adx

1− eadx
(a) +

adx
1− e− adx

(b) .
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We postpone the proof of the fact that d2 = 0 for the next sections and
present now some important properties of L1.

First, a direct computation shows that the MC elements a, b are gauge related
through x:

Proposition 5.3. In the LS interval, xG b = a.

Proof. Indeed,

xG b = eadx(b)− eadx − 1

adx
(dx)

= eadx(b)− eadx − 1

adx

(
adx b+

adx
eadx − 1

(b− a)
)

= eadx(b)− eadx − 1

adx
(adx b)− (b− a) = b− (b − a) = a. �

Corollary 5.4. Let L be a cdgl, u, v ∈ MC(L), y ∈ L0. Then, y G v = u if and only
if there exists a cdgl morphism ϕ : L1 → L with ϕ(a) = u, ϕ(b) = v and ϕ(x) = y.

Proof. By Proposition 5.3, if such ϕ exists, then y G v obviously equals u, as gauge
related elements are preserved by cdgl morphisms (see Proposition 4.15).

On the other hand, isolating dy from the identity y G v = u, that is, from

u = eadx(v)− eadx − 1

adx
(dy),

we see that

dy = ady u+
ady

eady − 1
(v − u) .

This means precisely that ϕ(dx) = dϕ(x), that is, ϕ is a cdgl morphism. �

We also show that the differential in L1 is completely and uniquely deter-
mined by its linear part provided that a and b are Maurer–Cartan elements.

Theorem 5.5. Let (L̂(a, b, x), d′) be a cdgl in which a, b are Maurer–Cartan
elements and the linear part of the differential satisfies d′1x = b− a. Then

(L̂(a, b, x), d′) = L1.

Proof. Let d be the differential in L1. Write d =
∑

n≥1 dn and d′ =
∑

n≥1 d
′
n,

where dn and d′n increase the bracket length by n − 1. We show that dnx = d′nx
for any n ≥ 1. For n = 1 this is by definition.

For n = 2, since a, b are MC elements for both differentials and d1x =
d′x = b − a, it follows that 0 = d′1d

′
2 + d′2d

′
1 = d1d

′
2 + d2d1. Then, d1d2x =

d1d
′
2x and therefore, d2x− d′2x is d1-cycle of bracket length 2 and degree −1. But

H(L̂(a, b, x), d1) = L(a) and thus, any such cycle must be a boundary: d2x−d′2x =
d1α with α ∈ L2(a, b, x)0 = 0. Hence, d2x = d′2x.
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Similarly, if dmx = d′mx for 1 ≤ m < n, then from d2 = d′2 = 0 and the
induction hypotheses we deduce that dnx−d′nx is a d1-cycle of bracket length n and
degree −1. Again, there are no non-trivial such d1-cycles and thus, dnx = d′nx. �

Next, we show that the derivation d in L1 certainly defines a differential.
We will do this by using two completely different approaches: classical rational
homotopy theory and the flow generated by a particular differential equation.

5.2 The LS interval as a cylinder

Here, we identify the LS interval L1 with the classical Tanré cylinder [130, §II.
5] on the free dgl generated by a Maurer–Cartan element. This procedure will be
generalized in Section 8.3.

Definition 5.6. The cylinder construction on the free Lie algebra generated by an
MC element a is the cdgl (L̂(a, u, v), d), where |u| = −1, |v| = 0, du = 0 and
dv = u.

Let i be the derivation of degree +1 on the cylinder defined by i(a) = v,
i(v) = i(u) = 0. Then,

θ = di+ id

is also a degree-0 derivation of (L̂(a, u, v), d) commuting with d and satisfying
θ(u) = θ(v) = 0.

Let L̂(a, b, x) be the complete free Lie algebra on the three elements a, b and
x with |a| = |b| = −1, |x| = 0. We define a morphism of graded Lie algebras

ψ : L̂(a, b, x) −→ L̂(b, u, v),

ψ(a) = a, ψ(b) = eθ(a), ψ(x) = v.
(5.6)

Theorem 5.7. The map ψ is a cgl isomorphism, and the induced derivation ψ−1dψ
on L̂(a, b, x) is precisely the original derivation in the Lawrence–Sullivan interval.
In particular, it is a differential for which ψ is a cdgl isomorphism.

Proof. Note that the linear part of ψ is trivially an isomorphism. By Proposition
3.12, ψ is also an isomorphism.

Next, observe that the elements a and b are Maurer–Cartan elements for the
differential ψ−1dψ:

da = ψ−1dψa = −1

2
[ψ−1a, ψ−1a] = −1

2
[a, a],

db = ψ−1dψb = ψ−1deθ(a) = −1

2
ψ−1[eθ(a), eθ(a)] = −1

2
[b, b].

Note that in the last equation we have used that eθ is a cdgl automorphism (see
Proposition 4.10).
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Now, an inductive argument establishes the identity

θk+1(a) = (−1)kadkv(u) + (−1)k+1adk+1
v (a), for k ≥ 0,

which in terms of operators translates to

eθ(a) =
e−adv − 1

−adv
(u) + e−adv(a).

We isolate u from this expression and eθ(a) by ψ(b) to see that,

u =
−adv

e−adv − 1
(ψ(b)− a) + adv(a),

and finally obtain

dx = ψ−1dψx = ψ−1dv = ψ−1u =
−adx

e−adx − 1
(b − a) + adxa,

which is the form in (5.4) of the differential in the LS interval. �

5.3 The flow of a differential equation,

the gauge action and the LS interval

Consider the following generic situation: the differential equation

u′(t) = y + adx u(t),

defined on any manifold M endowed with a smooth Lie bracket, is invariant under
translation of the variable t and therefore its solution defines a flow in M , that is,
an action of (R,+) on M , given by t · b = u(t) with u(0) = b. Note the similarity
of this equation with others on certain principal bundles whose flows define the
so-called gauge transformations.

In our context, replace M by any given graded Lie algebra L, choose Q
instead of R, and define a curve in L as an element u(t) in the cgl

L⊗̃ ∧ t,

defined by completing the dgl L ⊗ (∧t, 0) in which |t| = 0, with respect to the
filtration {L⊗ ∧≥nt}n≥0. That is,

L⊗̃ ∧ t = lim←−
n

(L⊗ ∧t)/(L ⊗ ∧≥nt),

whose elements can be written as series of the form,∑
n≥0

ant
n, with an ∈ L.
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The derivative operator is defined by(∑
n≥0

ant
n

)′
=
∑
n≥1

nant
n−1.

Then, we have:

Lemma 5.8. Given x ∈ L0 and y ∈ Lr, with r ∈ Z, the formal differential equation
in L⊗̃ ∧ t, {

u′(t) = y + adxu(t),

u(0) = c ∈ Lr,
(5.7)

has a unique solution given by

u(t) =
et adx − 1

− adx
(y) + et adx(c) ∈ (L⊗̃ ∧ t)r.

Proof. If we write u(t) =
∑

n≥0 ant
n, an ∈ L, the equation (5.7) can be written

as the following recurrence relation:

a0 = c,

a1 = y + adx(a0),

an =
adx
n

(an−1), n > 1.

Then,

an =
(adx)

n−1

n!
(a1) =

(adx)
n−1

n!
(y) +

(adx)
n

n!
(c), n > 1,

and the unique solution is

u(t) =
∑
n≥0

ant
n =
∑
n≥1

(tn)(adx)
n−1

n!
(y) +
∑
n≥0

(t adx)
n

n!
(c)

=
et adx − 1

adx
(y) + et adx(c). �

Remark 5.9. As we observed above, whenever y is fixed, this produces a flow, i.e.,
an action of (Q,+) on Lr given by

t · c = u(t), with u(0) = c.

Consider now the cgl L̂(a, b, x) with |a| = |b| = −1 and |x| = 0. In this cgl
we define a derivation d by declaring a and b to be MC elements and

dx = adx(b) +
adx

eadx − 1
(b − a).
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Theorem 5.10. (L̂(a, b, x), d) is a cdgl, i.e., d2x = 0.

Proof. In L̂(a, b, x) we consider the differential equation (5.7) in which we choose
y = dx and the initial condition c = b:{

u′(t) = dx+ adxu(t),

u(0) = b.
(5.8)

By Lemma 5.8, the corresponding unique solution is

u(t) =
et adx − 1

−adx
(dx) + et adx(b), (5.9)

whose evaluation at 1 gives

u(1) =
eadx − 1

− adx
(dx) + eadx(b) =

eadx − 1

− adx

(
adx(b) +

adx
eadx − 1

(b − a)
)
+ eadx(b)

=
eadx − 1

− adx

(
adx(b)
)
+ eadx(b)− (b− a) = b− (b − a) = a.

Now, consider the element of degree −2

f(t) = du(t) +
1

2
[u(t), u(t)],

which satisfies
f(0) = f(1) = 0,

because a and b are MC elements, and whose derivative is

f ′(t) = du′(t) + [u(t), u′(t)] = d
(
dx+ adx u(t)

)
+ [u(t), dx+ adx u(t)]

= d2x+ [x, du(t)] +
1

2

[
x, [u(t), u(t)]

]
= d2x+ adx f(t).

Therefore, the curvature function is a solution of the differential equation{
f ′(t) = d2x+ adxf(t),
f(0) = 0,

which, again by Lemma 5.8, has a unique solution of the form

f(t) =
et adx − 1

−adx
(d2x) + et adx(0) =

etadx − 1

−adx
(d2x),

Evaluating at t = 1 we have

0 = f(1) =
eadx − 1

−adx
(d2x) = 0.

As eadx−1
−adx

is a cgl isomorphism, d2x = 0. �
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Now let L be a cdgl. In the differential equation (5.7), choose any x ∈ L0 and
y = dx. Then, for the flow generated by this equation (see Remark 5.9), we have:

Corollary 5.11. For any t ∈ Q and any b ∈ MC(L), t · b = (tx)G b.

Proof. Simply observe that, by Lemma 5.8, the unique solution of solution of
(5.7) is:

u(t) =
et adx − 1

−adx
(dx) + et adx(b) = (tx)G b. �

Remark 5.12. In particular, u(1) = xG b. In other words, given a cdgl L, the flow
generated by u(t) with y = dx, takes the MC element b to the MC element xG b
in time t = 1. Hence, interpreting Maurer–Cartan elements as points, this can
be thought of as a path joining a to xG a. In particular, the differential in L1,
providing a and b are MC elements, is the only one for which xG b = a.

5.4 Subdivision of the LS interval and

a model of the triangle

We first proceed to “subdivide” the LS interval as in [91, Theorem 2]. Consider

two LS intervals (L̂(a, u, y), d) and (L̂(u, b, z), d) and glue them together to obtain
the cdgl

(L̂(a, u, v, y, z), d)

with the obvious differential. Note that this is simply the coproduct of the given
LS intervals in which both u’s have been identified. Then, we can state

Theorem 5.13. The map defined by

γ : L1 −→ (L̂(a, u, b, y, z), d), γ(a) = a, γ(b) = b, γ(x) = y ∗ z,
is a cdgl morphism.

Proof. Theorem 4.16 and Proposition 5.3 imply that in (L̂(a, u, b, y, z), d),

(y ∗ z)G b = y G (z G b) = y Gu = a.

Hence, by Corollary 5.4, the map γ is a cdgl morphism. �

Now, recall that the LS interval L1 is the only solution to the question with
which we started this chapter for the simplicial set Δ1. Suppose we want to go
a step further and try to solve this problem for Δ2, whose non-degenerate chains
are

N∗(Δ2) = C∗(Δ2).

a

x

b
−→γ

a u b

y z
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We are then aiming to find a cdgl

L2 = (L̂(s−1C∗(Δ2)), d)

satisfying the following conditions: the generators given by the vertices are MC
elements, the sub-cdgl given by each edge is an LS interval, and the linear part of
the differential is the simplicial chain differential of s−1C∗(Δ2). If we denote by

{a0, a1, a2, a01, a02, a12, a012}

the generators of s−1C∗(Δ2), the solution is given in the following:

Proposition 5.14 (Model of the triangle). There is a cdgl

L2 = (L̂(a0, a1, a2, a01, a12, a02, a012), d),

in which (L̂(a0, a1, a01), d), (L̂(a1, a2, a12), d) and (L̂(a0, a2, a02), d) are LS inter-
vals and

da012 = a01 ∗ a12 ∗ a−1
02 − [a0, a012], or equivalently, da0a012 = a01 ∗ a12 ∗ a−1

02 .

Proof. Note first that the linear part of

da012 = a01 ∗ a12 ∗ a−1
02 − [a0, a012]

is a01 − a12 + a02. Hence, we only need to check that d2a012 = 0 as, by definition,
this is the case for all the simplices of lower degrees. Equivalently, we prove that
d2a0

a012 = 0. The composition of two morphisms as in Theorem 5.13 yields the
cdgl morphism

ψ : L1 −→ (L̂(a0, a1, a2, a01, a12, a02), d),

with ψ(a) = ψ(b) = a0 and ψ(x) = a01 ∗ a12 ∗ a−1
02 . Hence,

d(a01 ∗ a12 ∗ a−1
02 ) = dψ(x) = ψ(dx) = ψ

(
adx(b) +

∑
k≥0

Bk

k!
adkx(b− a)

)
= ψ[x, b]

= ada01∗a12∗a−1
02
(a0) = −ada0(a01 ∗ a12 ∗ a−1

02 ).

It follows that a01 ∗ a12 ∗ a−1
02 is a da0-cycle, and thus d2a0

(a012) = 0. �

a−1
02 a12

a012

a0 • • a1

•a2

a01

L2
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In geometrical terms, the differential of the 2-face a012 draws the border of
Δ2 starting from the base point a0 and connecting each edge with the following
one by their BCH product. If we start drawing the border of the triangle from the
vertex a1, the same process produces a new cdgl

L′
2 = (L̂(a0, a1, a2, a01, a12, a02, a012), d

′),

where

d′a012 = a12 ∗ a−1
02 ∗ a01 − [a1, a012].

Fortunately, we have:

Proposition 5.15. The cdgl’s L2 and L′
2 are isomorphic. An explicit isomorphism

is given by

L2

∼=−→ L′
2, ϕ(a012) = eada01 (a012),

and is the identity on all generators of smaller dimension.

Proof. The following computation checks that ϕ is in fact a cdgl morphism (the
second and fourth equalities follow from Propositions 4.24 and 4.13, respectively):

d′ϕ(a012) = d′a0
eada01a012 − [a0, e

ada01a012]

= eada01d′a1
(a012)− [a0, e

ada01 (a012)]

= eada01 (a12 ∗ a−1
02 ∗ a01)− [a0, e

ada01 (a012)]

= a01 ∗ a12 ∗ a−1
02 − [a0, e

ada01 (a012)] = ϕ(da012) .

The result is then a consequence of Proposition 3.12. �

We prove next that the differential d on L2 is completely determined provided
the edges are LS intervals and the perturbed differential of the top simplex is in
the cdgl generated by the 1-skeleton.

Proposition 5.16. Let D be a differential in L̂(s−1C∗Δ2) such that D = d on

L̂(s−1C∗Δ̇2), D1 = d1, and Da0(a012) ∈ L̂(s−1C∗Δ̇2). Then D = d.

Proof. Write e = a012 and

D = D1 +D2 + · · · , d = d1 + d2 + · · · ,

where Dn and dn increase the bracket length by n− 1. We show inductively that
Dn = dn for n ≥ 1. By definition, D1 = d1. Suppose Di = di for i < n. Since
D2 = 0, by induction we have

d1Dn = −
n∑

i=2

DiDn+1−i = −
n∑

i=2

didn+1−i = d1dn.
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Therefore, d1(Dn−dn)(e) = 0. Since H(L̂(s−1C∗Δ̇2), d1) is generated by the class
of a0 in degree −1 and that of d1e in degree 0, it follows that every decomposable
d1-cycle in degree 0 must be a d1-boundary. In particular, the difference (Dn −
dn)(e) is a d1-boundary. But, since L̂(s−1Δ̇2) = L̂(s−1Δ̇2)≤0, we conclude that
Dne = dne. �

5.5 Paths in a cdgl

The geometrical interpretation of the LS interval given in Remark 5.12, together
with Corollary 5.4, motivates the following:

Definition 5.17. Given a cdgl L and u, v ∈ MC(L), a path from u to v is a morphism
ϕ : L1 → L with ϕ(a) = u and ϕ(b) = v. By abuse of language we often identify
the path ϕ with the element ϕ(x) ∈ L0 as long as the endpoints of the path are
unambiguously determined.

Equivalently, in view of Corollary 5.4, a path in L joining u with v is an
element y ∈ L0 such that y G v = u.

With this terminology notice that, in view of Proposition 5.13, if y is a path
in L from u to v and z is another path in L from v to w, then y ∗ z is a path from
u to w.

The results in this section might be deduced from general facts if we endow,
as we do in Chapter 8, the category cdgl with a closed model structure reflecting
the geometry of sset. Nevertheless, we collect them here to illustrate that the LS
interval L1 and a cdgl morphism L1 → L behave exactly like the closed interval
and a path, respectively.

The first result asserts that any surjective cdgl morphism p has the path
lifting property. If moreover, H0(p) is an isomorphism, the second result states
that any path can be lifted with prescribed endpoints.

Proposition 5.18 (Path lifting lemma). Let p : L → L′ be a surjective cdgl mor-
phism, let c ∈ MC(L) and let f : L1 → L′ be a path with f(a) = p(c). Then, there
is a path h : L1 → L with h(a) = c and p ◦ h = f ,

L

p

��
L1

f ��

h

����������
L′

Proof. Since p is surjective, there is an element y ∈ L with p(y) = f(x). Let

(L̂(a, u, v), d) be the cylinder construction on the MC element a (see Definition
5.6) and let

ψ : L1

∼=−→ (L̂(a, u, v), d)
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be the isomorphism of Theorem 5.7. We define a map ρ : (L̂(a, u, v), d) → L by
ρ(a) = c, ρ(v) = y and ρ(u) = dy. Clearly p◦ρ = f ◦ψ−1. We set h = ρ◦ψ : L1 → L
and get p ◦ h = f . �

Corollary 5.19. Let p : L → L′ be a surjective morphism such that M̃C(p) is sur-
jective. Then, MC(p) is also surjective.

Proof. Let v′ ∈ MC(L′). By hypothesis, there exist u ∈ MC(L) and a path x in
L′ from p(u) to v′. The path lifting lemma above gives a path in L from u to an
MC element v with p(v) = v′. �

Example 5.20. In Corollary 5.19, the surjection hypothesis on M̃C(p) is necessary.
Consider for instance the surjective morphism

f : (L̂(a, b), d) −→ (L(a), d′), f(a) = a, f(b) = −1

2
[a, a].

Here, |a| = −1, da = b, db = 0 and d′(a) = − 1
2 [a, a]. Observe that

M̃C(L̂(a, b), d) = {0} and M̃C(L(a), d′) = {0, a}.

Thus, MC(f) is obviously not surjective.

In the proof of the next proposition we use the following basic fact whose
proof is completely straightforward.

Lemma 5.21. Let p : L → L′ be a surjective morphism such that Hn(p) is an
isomorphism for some n. Then:

1) For any cycle z′ ∈ L′
n, there exists a cycle z ∈ Ln such that p(z) = z′.

2) For any cycle z ∈ Ln such that p(z) = dx, there exists y ∈ Ln such that
z = dy and p(y) = x. �

Proposition 5.22. Let p : L → L′ be a surjective cdgl morphism for which H0(p)
is an isomorphism, and let u ∼ v ∈ MC(L), u′ ∼ v′ ∈ MC(L′) with p(u) = u′,
p(v) = v′. Then, given a path f from u′ to v′, there exists a path h from u to v
such that p ◦ h = f ,

L

p

��
L1

f ��

h

����������
L′

Proof. Choose a path g from u to v. In view of Theorem 5.13, p(g(x))−1 ∗ f(x) is
a dv′ -cycle. By Lemma 5.21, there is a dv-cycle y with p(y) = p(g(x))−1 ∗ f(x).
Observe that y is a loop on v and therefore g(x) ∗ y is a path h : L1 → L from u
to v. As p(g(x) ∗ y) = f(x), it follows that p ◦ h = f . �
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Bibliographical notes

The fundamental work of Lawrence and Sullivan has been the cornerstone to develop
ideas concerning rational models of non-connected spaces, see [32, 33].

On the other hand, the central problem stated in the introduction of this chapter
was attacked “cellularly” (instead of simplicially) by D. Sullivan in an appendix to [129]:
let X be a CW-complex in which the closure of each cell has the rational homology of a
point. Consider V = s−1 Cell∗, the desuspension of the rational cellular complex. Then,
see [129, Theorem A.1], there is a complete differential Lie algebra (L̂(V ), d), such that
the linear part of d is the boundary operator of the cells and the quadratic part comes
from a cellular approximation of the diagonal. Applied to the interval I , with two 0-cells
and one 1-cell, one obtains a complete free Lie algebra (L̂(a, b, x), d) with d1x = b − a.
This was conjectured to agree with the LS interval in [91] and [129], and it was proved
in [112].

It is also worth mentioning the implications of the analysis of the LS interval in
number theory. Recall that an Euler-type identity is a convolution equation involving
Bernoulli numbers of the form

n∑
k=0

λkBkBn−k = 0,

where both k and n are even and the λk’s are rational numbers depending on k and n.
Classical identities of this type are the Euler equation,

−(n+ 1)Bn =

n−2∑
k=2

k even

(
n

k

)
BkBn−k, n even with n ≥ 4,

and the Miki identity [105],

2HnBn =

n−2∑
k=2

k even

n

k(n− k)

(
1−

(
n

k

))
BkBn−k, n even with n ≥ 4,

where Hn is the nth harmonic number. In [19] the authors deduce a very general Euler
type identity, which includes both the Euler equation and the Miki identity, from the
fact that d2 = 0 on the LS interval. In the same context, new relations among Bernoulli
numbers are also obtained in [112]. Direct proofs of the Miki identity can be found in
[37] and [59].



Chapter 6

The Cosimplicial cdgl L•

In this chapter we further develop the ideas and machinery developed in Chapter
5, specially those involving the construction of the LS interval and the “model of
the triangle” in Section 5.4, to find compatible models of the simplicial sets Δn,
for any n ≥ 0.

More specifically, our goal is to find a family of cdgl’s

L• = {Ln}n≥0

such that, for each n ≥ 0, the following holds:

• Ln = L̂(s−1C∗(Δn), d) is the free cdgl generated by the desuspension
s−1N∗(Δn) = s−1C∗(Δn) of the non-degenerate simplicial chains on the simplicial
set Δn.

• The differential on each vertex is a Maurer–Cartan element, i.e., for each
a = s−1x, with x a generator of C0(Δ

n),

da = −1

2
[a, a].

• The linear part d1 : s−1C∗(Δn) → s−1C∗(Δn) of d is precisely the simplicial
chain boundary.

• For each i = 0, . . . , n, the maps

δi : Ln−1 −→ Ln and σi : Ln+1 −→ Ln

induced by the cofaces and codegeneracies,

δi : C∗(Δn−1) −→ C∗(Δn) and σi : C∗(Δn+1) −→ C∗(Δn),

are cdgl morphisms.
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As a result, L• becomes a cosimplicial cdgl, which is unique up to cdgl iso-
morphism, and constitutes the central object around which we will develop the
geometrical realization of any cdgl and the cdgl model of any simplicial set.

The construction of L• is obtained inductively by choosing L0 to be the free
cdgl generated by an MC element, L1 as the LS interval and L2 to be the “model
of the triangle” of Proposition 5.14. Along the way we will prove many interesting
properties of this cosimplicial cdgl and give an explicit formula for the differential
in the model L3 of the tetrahedron.

We finish the chapter by noticing that MC elements are ubiquitous, not
only in Ln but more generally, in the “model” of any finite simplicial complex.
Moreover, we see that these MC elements can be chosen to be invariant under
actions of any given subgroup of automorphisms of the 1-skeleton of the given
simplicial complex.

6.1 The main result

In this short section, we give a precise and detailed statement of our main objective.
A very helpful preliminary consists in setting and simplifying the notation used:

Recall from Section 1.1.3 the cosimplicial object

C∗(Δ•) = {C∗(Δn)}n≥0

in the category of chain complexes, whose cofaces and codegeneracies,

δi : Cp(Δ
n−1) −→ Cp(Δ

n) and σi : Cp(Δ
n+1) −→ Cp(Δ

n),

for i = 0, . . . , n, are explicitly given in formula (1.10). The differential d on each
C∗(Δn) is the usual one, given in formula (1.7).

Consider the desuspension s−1C∗(Δ•), which is trivially again a cosimplicial
chain complex whose cofaces and codegeneracies,

s−1 ◦ δi ◦ s : s−1Cp(Δ
n−1) −→ s−1Cp(Δ

n)

and

s−1 ◦ σi ◦ s : s−1Cp(Δ
n+1) −→ s−1Cp(Δ

n),

are simply the ones induced by those of C∗(Δ•). From now on, and to simplify
notation we write

s−1Δ• = s−1C∗(Δ•), δi = s−1δis, σi = s−1σis,

and denote by
ai0...ip ∈ s−1Δn

the generator of degree p− 1 corresponding to the p-simplex (i0, . . . , ip) ∈ Δn
p .
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For each n ≥ 0, we denote by d1 the differential s−1 ◦ d ◦ s on the chain
complex s−1Δn which is defined on generators by:

d1ai0...ip =

p∑
j=0

(−1)jai0...̂ij ...ip .

It is convenient to keep in mind that, in view of (1.9),

s−1Δ• = s−1N(Δ•),

where the latter is the desuspension of the non-degenerate simplicial chains on
the Δ•.

We then consider the family

{(L̂(s−1Δn), d1)}n≥0 (6.1)

of free cdgl’s in which the differential on each of them is simply induced by d1,
and thus, it only has a linear part. For each i = 0, . . . , n, the coface δi and the
codegeneracy σi can be extended “bracket-wise” to obtain morphisms

δi : L̂(s−1Δn−1) −→ L̂(s−1Δn), σi : L̂(s−1Δn+1) −→ L̂(s−1Δn),

which are given, once again as in (1.10), by

δi(ai0...ip) = aj0...jp with jk =

{
ik, if ik < i,

ik + 1, if ik ≥ i,
(6.2)

σi(ai0...ip) = 0 if (i, i+ 1) ⊂ {i0, . . . , ip}, and otherwise,

σi(ai0,...,ip) = aj0...jp with jk =

{
ik, if ik ≤ i,

ik − 1, if ik > i.
(6.3)

With the above notation, this chapter is mainly devoted to the proof of the
following:

Theorem 6.1. For each n ≥ 0, there is a differential d on L̂(s−1Δn) such that:

(1) The generators a0, . . . , an are MC elements.

(2) The linear part of d is precisely d1.

(3) Every coface δi : (L̂(s−1Δn−1), d) → (L̂(s−1Δn), d) is a cdgl morphism.

(4) Every codegeneracy σi : (L̂(s−1Δn+1), d) → (L̂(s−1Δn), d) is a cdgl mor-
phism.
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In particular, the family

L• = {(L̂(s−1Δn), d)}n≥0,

is a cosimplicial cdgl.

Moreover, if = {(L̂(s−1Δn), d)}n≥0 is a family of cdgl’s satisfying properties

(1), (2), and (3), then each (L̂(s−1Δn), d) is unique up to cdgl isomorphism.

We outline the strategy for its proof. First, we inductively prove the exis-
tence and uniqueness of such a family of cdgl’s satisfying (1), (2), and (3) of the
statement. Then, we show that, among this class of isomorphic families there is
one for which the codegeneracies are also cdgl morphisms. For this, a particular
equivariant behaviour of the differential is needed.

6.2 Inductive sequences of models of
the standard simplices

We begin by considering particular families of cdgl’s satisfying (1), (2), and (3) of
Theorem 6.1, plus an inductive property on their differentials.

Definition 6.2. A sequence of models (of the standard simplices) is a family of
cdgl’s of the form

{(L̂(s−1Δn), d)}n≥0

satisfying:

(1) For each cdgl in this family the generators a0, . . . , an are MC elements.

(2) For each cdgl in this family the linear part of d is d1.

(3) For each i = 0, . . . , n, the coface δi : (L̂(s−1Δn−1), d) ↪→ (L̂(s−1Δn), d) is a
cdgl morphism.

A sequence of models is called inductive if the following additional property is
satisfied:

(4) For each n ≥ 2,

da0...n = ada0 a0...n +Φ, with Φ ∈ L̂(s−1Δ̇n).

In other words, for the perturbed differential,

da0a0...n ∈ L̂(s−1Δ̇n).

For this definition, and in what follows, the following observation is necessary
and should be taken into account.
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Remark 6.3. Recall from Section 1.1.1 that Δ̇n and Λn
i , for i = 0, . . . , n, are the

sub-simplicial complexes of Δn consisting of its boundary and the ith horn. Hence,
s−1C∗(Δ̇n) and s−1C∗(Δ̇n) are sub-chain complexes of s−1Δn which, by consis-
tency on the notation, are denoted henceforth by s−1Δ̇n and s−1Λn

i , respectively.

In particular L̂(s−1Δ̇n) and L̂(s−1Λn
i ) are free sub-cgl’s of L̂(s−1Δn).

Moreover, for any element (L̂(s−1Δn), d) of a sequence of models, the differ-

ential restricts to L̂(s−1Δ̇n) and L̂(s−1Λn
i ) and thus the cdgl’s

(L̂(s−1Δ̇n), d) and (L̂(s−1Λn
i , d)

are well defined. Indeed, note that s−1Δ̇n is the sub-chain complex of s−1Δn

generated by the images of all cofaces δk : s−1Δn−1 ↪→ s−1Δn, k = 0, . . . , n.
Therefore, in view of Definition 6.2(3), given a generator v of s−1Δ̇n,

dv = dδk(v′) = δk(dv′) ∈ L(s−1Δ̇n).

The same applies to s−1Λn
i , as this is the sub-chain complex of s−1Δn generated

by the images of all cofaces δk, for k �= i.

More generally, let {(L̂(s−1Δn), d)}n≥0 be a sequence of models and let K
be a finite simplicial complex. Then K is a sub-simplicial complex of Δn for some
n and we denote by s−1K = s−1C∗(K) the corresponding sub-simplicial chain

complex of s−1Δn. Then, the same argument implies that d preserves L̂(s−1K)
and defines a sub-cdgl

(L̂(s−1K), d) ⊂ (L̂(s−1Δn), d).

All of the above also trivially applies when we replace d by a perturbed differential
da with a a Maurer–Cartan element of any of the chosen sub-cdgl’s.

Before proving the existence and uniqueness of an (inductive) sequence of
models, we need the following preliminary results which are of particular impor-
tance.

Proposition 6.4. Let {(L̂(s−1Δn), d)}n≥0 be a sequence of models. Then, for any

n ≥ 2, any i = 0, . . . , n, and any Maurer–Cartan element a of (L̂(s−1Λn
i ), d):

(i) H(L̂(s−1Δn), da) = H(L̂(s−1Λn
i ), da) = 0.

(ii) There is a cdgl isomorphism

(L̂(s−1Δn), da) ∼= (L̂(s−1Λn
i ), da) ̂ L̂(u, du) with |u| = n− 1.

Notice that, in particular, the above applies also to the original differential
d choosing a = 0.

Proof. (i) Observe that the linear part of da obviously coincides with d1 indepen-
dently of the chosen a, and consider the inclusions,

(L̂(s−1Δn), da)
j←−−↩ (L(a), da)

k
↪−−→ (L̂(s−1Λn

i ), da),
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whose linear parts,

(s−1Δn, d1)
j1←−−↩ (Qa, 0)

k1

↪−−→ (s−1Λn
i , d1)

are clearly quasi-isomorphisms. Then, by Proposition 3.12, j and k are also quasi-
isomorphisms. But H(L(a), da) = 0 and the statement follows.

(ii) Extend the inclusion

(L̂(s−1Λn
i ), da) ↪−−→ (L̂(s−1Δn), da)

to a cdgl morphism

f : (L̂(s−1Λn
i ), da) ̂ L̂(u, du) −→ (L̂(s−1Δn), da) (6.4)

by setting f(u) = a0,...,n and thus f(du) = daa0,...,n. Since the linear part f1 is
again an isomorphism, by Proposition 3.12, f is an isomorphism. �

From this result we obtain two immediate but important consequences:

Corollary 6.5. For any cdgl L, any i = 0, . . . , n, and any MC element of (L̂(Λn
i ), d),

the map

Homcdgl

(
(L̂(s−1Δn), d), L

) ∼=−→ Homcdgl

(
(L̂(Λn

i ), da), L
)× Ln,

f �−→ (f |
̂L(Λn

i )
, f(ao,...,n)

)
,

is a bijection. In particular, given x ∈ Ln, any cdgl morphism f : LΛn
i
→ L extends

to a cdgl morphism f : LΔn → L such that f(a0...n) = x.

Proof. Indeed, using 6.4(ii), we have:

Homcdgl

(
(L̂(s−1Δn), d), L

)
∼= Homcdgl

(
(L̂(s−1Λn

i ), da) ̂ L̂(u, du), L
)

∼= Homcdgl

(
(L̂(s−1Λn

i ), da), L
)×Homcdgl(L̂(u, du), L).

But, trivially, the map,

Homcdgl(L̂(u, du), L)
∼=−→ Ln, f �−→ x,

is bijective. The composition of these identifications is the bijective map of the
statement. �

The second consequence of Proposition 6.4 reads as follows.

Corollary 6.6. Let {(L̂(s−1Δn), d)}n≥0 be an inductive sequence of models. Then,
for any n ≥ 2,

H(L̂(s−1Δ̇n), da0) = L(Ω), with Ω = da0a0...n.
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Proof. Observe that the isomorphism f in (6.4) restricts to an isomorphism,

f : (L̂(s−1Λn
i ), da0) ̂ (L̂(du), 0)

∼=−→ (L̂(s−1Δ̇n), da0).

By Proposition 6.4(ii), H(L̂(s−1Λn
i ), da0) = 0 and therefore,

H(f) : L(du)
∼=−→ H(L̂(s−1Δ̇n), da0)

is the isomorphism which maps du to [da0a0,...,n]. �

We now show the existence and uniqueness of sequences of models.

Theorem 6.7.

(i) There exist inductive sequences of models.

(ii) Let {(L̂(s−1Δn), d)}n≥0 and {(L̂(s−1Δn), d′)}n≥0 be two sequences of models.
Then, there are cdgl isomorphisms,

ϕn : (L̂(s
−1Δn), d)

∼=−→ (L̂(s−1Δn), d′), for n ≥ 0,

which commute with the coface morphisms δi, for i = 0, . . . , n,

(L̂(s−1Δn), d)
ϕn

∼=
�� (L̂(s−1Δn), d′)

(L̂(s−1Δn−1), d)

� 	

δi

��

ϕn−1

∼=
�� (L̂(s−1Δn−1), d′)

� 	

δi

��
(6.5)

and such that Im (ϕn − id) ⊂ L̂≥2(s−1Δn).

Proof. (i) We construct by induction on n a inductive sequence of models

{Ln}n≥0 = {(L̂(s−1Δn), d)}n≥0.

For n = 0, let
L0 = (L(a0), d),

where a0 is a Maurer–Cartan element.

For n = 1, let
L1 = (L̂(a0, a1, a01), d)

be the LS interval. Note that a0, a1 are MC elements, d1a01 = a1−a0, and trivially
δ0, δ1 : L0 → L1 are cdgl morphisms. Hence (1), (2) and (3) of Definition 6.2 are
satisfied.

For n = 2, let

L2 = (L̂(a0, a1, a2, a01, a12, a02, a012), d)
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be the cdgl of Proposition 5.14 in which (L̂(a0, a1, a01), d), (L̂(a1, a2, a12), d) and

(L̂(a0, a2, a02), d) are LS intervals and

da012 = a01 ∗ a12 ∗ a−1
02 − [a0, a012], or equivalently, da0a012 = a01 ∗ a12 ∗ a−1

02 .

By definition, this cdgl verifies (1), (2), (3) and (4) of Definition 6.2.

Let n > 3 and suppose we have a sequence of cdgl’s {(L̂(s−1Δm), d)}m<n

such that each of them satisfies all conditions of Definition 6.2. We will define
a differential d on L̂(s−1Δn) so that (L̂(s−1Δn), d) satisfies the same properties.
Note that condition (3) of Definition 6.2 determines the differential d on each
generator of s−1Δ̇n. Indeed, as this chain complex is generated by the images of
the cofaces, given v ∈ s−1Δ̇n write it as v = δi(v′) for some i, so that

dv = dδi(v′) = δi(dv′)

is already defined. It suffices then to define da0...n so that it squares to 0 and
satisfies properties (2) and (4).

For this, note that, by condition (4) applied to (L̂(s−1Δn−1), d),

da0a0...n−1 ∈ L̂(s−1Δ̇n−1).

Also, observe that L̂(s−1Δ̇n−1) is mapped injectively to L̂(s−1Λn
n) by δ

n. Moreover,
by (3),

δn(da0a0...n−1) = da0δ
n(a0...n−1) = da0a0...n−1.

Hence, as H(L̂(s−1Λn
n), da0) = 0 by Proposition 6.4(i), there exists Γ ∈ L̂(s−1Λn

n),
of degree n− 2, such that

da0a0...n−1 = da0Γ.

We set

da0a0...n = (−1)n (a0...n−1 − Γ) . (6.6)

By definition, da0a0...n is a cycle satisfying property (4) of Definition 6.2. To prove
(2) denote by Γ1 the linear part of Γ and let ω be the difference

ω = (−1)n−1Γ1 −
n−1∑
i=0

(−1)ia0...̂i...n.

Since d1(
∑n

i=0(−1)ia0...̂i...n) = d21(a0...n) = 0 and d1Γ1 = d1(a0...n−1), it follows
that,

d1ω = (−1)n−1d1(a0...n−1) + (−1)nd1(a0...n−1) = 0.

Hence, ω is a d1-cycle of degree n− 2 in L̂(s−1Λn
n).

Note however that H(L̂(s−1Λn
n), d1)

∼= L(a0) and thus, as n− 2 > 0, ω must

be a d1-boundary. That is, there is a linear element γ of degree n− 1 in L̂(s−1Λn
n)
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such that d1γ = ω. But observe that L̂(s−1Λn
n) is generated by elements of degree

≤ n− 2, and therefore γ = 0. Hence, ω = 0 and

d1a0...n = (−1)na0...n−1 +

n−1∑
i=0

(−1)ia0...̂i...n−1

as required.

(ii) We now prove the uniqueness up to isomorphism of sequences of models

(not necessarily inductive). Obviously, there is only one choice for (L̂(s−1Δ0), d)

while (L̂(s−1Δ1), d) is also unique by Theorem 5.5.

Let {(L̂(s−1Δn), d)}n≥0 and {(L̂(s−1Δn), d′)}n≥0 be two sequences of mod-
els, fix n ≥ 2 and suppose that, for m < n, we have isomorphisms,

ϕm : (L̂(s−1Δm), d)
∼=−→ (L̂(s−1Δm), d′)

making the diagram (6.5) commutative. We construct

ϕn : (L̂(s
−1Δn), d)

∼=−→ (L̂(s−1Δn), d′)

with the same property. By condition (3) of Definition 6.2, ϕn is already deter-

mined on every generator of L̂(s−1Δn), except on x = a0...n, and its restriction

to (L̂(s−1Δ̇n) is already an isomorphism. Note that there is no loss of generality

in assuming that the sequence {(L̂(s−1Δn), d)}n≥0 is inductive, as we will show
then that any other sequence of models is isomorphic to it.

Hence, as da0x ∈ L̂(s−1Δ̇n), the induction hypothesis

Im (ϕi − id) ⊂ L̂≥2(s−1Δi) for i < n,

implies that
ϕnda0x− da0x

is a decomposable element. Now since d1 = d′1 the element

u = ϕnda0x− d′a0
x

is also decomposable. Write

u =
∑
p≥2

up, with up ∈ Lp(s−1Δn).

As d′a0
u = 0, it follows that d′1u2 = 0. Now, since |ur| ≥ 0 and H(L̂(s−1Δn), d1) ∼=

L(a0), there is an element v2 ∈ L2(s−1Δn) such that d1v2 = u2. Then,

u− d′a0
v2 ∈ L̂>2(s−1Δn).
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The same argument is then applied to find v3 ∈ L3(s−1Δn) such that u− d′a0
v2 −

d′a0
v3 ∈ L̂>3(s−1Δn). In this way we construct a sequence of elements vq ∈

Lq(s−1Δn), q ≥ 2, such that

u = d′a0

(∑
q≥2

vq

)
.

We define

ϕn(x) = x+
∑
q≥2

vq.

Then,

ϕnda0x = d′a0
x+ u = d′a0

ϕnx,

and hence, ϕn is trivially an isomorphism for which the condition Im (ϕn − id) ⊂
L̂≥2(s−1Δn) is fulfilled. �

Property (4) of Definition 6.2 guarantees that for any element (L̂(s−1Δn), d),
with n ≥ 2, of a given inductive sequence of models,

da0a0...n ∈ L̂(s−1Δ̇n).

Moreover, by formula (6.6) in the proof of Theorem 6.7(i), we have been more
specific and have shown that for n ≥ 3 we may choose

da0a0...n = (−1)n(a0...n−1 − Γ), with Γ ∈ L̂(s−1Λn
n).

We can go a step further and assume that the expression of da0a0...n involves none
of the vertices a0, . . . , an. To simplify the notation, in what follows write

s−1Δ̃n = (s−1Δ̇n)≥0 and s−1Λ̃n
n = (s−1Λn

n)≥0.

Proposition 6.8. There exist inductive sequences of models = {(L̂(s−1Δn), d)}n≥0

such that, for n ≥ 2,

da0(a0...n) ∈ L(s−1Δ̃n).

Moreover, for n ≥ 3 we may choose

da0a0...n = (−1)n(a0...n−1 − Γ), with Γ ∈ L̂(s−1Λ̃n
n).

Proof. We require the following notation:

For each n ≥ 2 and each i = 0, . . . , n, define elements ci, of degree 0 in
L̂(s−1Δn) by

c0 = 0 and ci = a01 ∗ a12 ∗ · · · ∗ ai−1,i.
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That is, for i ≥ 1, ci is the path (see Section 5.5) joining a0 and ai by elements
of the form ar,r+1. For instance, in the picture below the red line represents c3 in

L̂(s−1Δ3):

Also, for 0 ≤ i < j ≤ n define degree-0 elements,

bij = ci ∗ aij ∗ c−1
j ,

which are clearly loops at a0. Observe that, by Proposition 4.13,

bij = eadci (aij),

and therefore, this definition can be extended to any generator ai0...ir of s−1Δ̃n,
0 < r ≤ n, by

bi0...ir = e
adci0 (ai0...ir ) .

Note however that, by construction, bij = 0 when j = i + 1. With this notation,
and for any n ≥ 2 define

En ⊂ L̂(s−1Δ̃n)

as the subspace generated by

bi0...,ir with 0 < r ≤ n.

On the other hand,
Fn ⊂ L̂(s−1Λ̃n

n),

will denote the subspace generated by

bi0...,ir with 1 < r < n and {i0, . . . , ir} �= {0, 1, . . . , n− 1}.
The proposition will follow once we prove, by induction on n ≥ 2, that

da0a0...n ∈ L̂(En−1). (6.7)

By doing so we check that, for n ≥ 3, the element da0...n may also be chosen with
the required special property.

For n = 2 this is immediate having chosen the model of the triangle L2 in
Proposition 5.14:

da0a012 = a01 ∗ a12 ∗ a−1
02 = −(a02 ∗ a−1

12 ∗ a−1
01 ) = −b02.

•a1

a01 a03

a02

a13

•a0

a12

a2

•

• a23

a3
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As induction hypothesis, assume that

da0a0...m ∈ L̂(Em−1), for 2 ≤ m ≤ n− 1.

With this assumption, we first see that Fn is da0 -stable, that is,

da0(bi0...ir ) ∈ L̂(Fn), for bi0...ir ∈ Fn. (6.8)

We use induction on r. For r = 2:

da0bijk = eadcidai(aijk) (Proposition 4.24)

= eadci (aij ∗ ajk ∗ a−1
ik ) (Proposition 5.14)

= ci ∗ aij ∗ ajk ∗ a−1
ik ∗ c−1

i (Proposition 4.13)

= (ci ∗ aij ∗ c−1
j ) ∗ (cj ∗ ajk ∗ c−1

k ) ∗ (ck ∗ a−1
ik ∗ c−1

i )

= bij ∗ bjk ∗ b−1
ik .

Next, given ai0...ir ∈ s−1Λ̃n
n, with 1 < r, and a path c from a0 to ai L̂(s−1Λn

n), we
check that

eadc(ai0...ir ) ∈ L̂(Fn). (6.9)

Indeed, write c = c ∗ c−1
i0

∗ ci0 and observe that, by Corollary 4.12,

eadc(ai0...ir ) = e
ad

c∗c−1
i0 e

adci0 (ai0...ir ) = e
ad

c∗c−1
i0 (bi0...ir ). (6.10)

But notice that c ∗ c−1
i0

is a loop at a0 and that every loop in L̂(s−1Λn
n) based at

a0 is a Baker–Campbell–Hausdorff product of loops of the form bij . The asser-
tion follows from expressing c ∗ c−1

i0
as such a product, replacing it in (6.10), and

repeatedly applying Corollary 4.12.

Assume the assertion (6.8) holds for 2 < s < r with r < n and let us prove
it for r. For this, let

bi0...ir = e
adci0 (ai0...ir )

be a generator of Fn. By Proposition 4.24,

da0(bi0...ir ) = e
adci0 dai0

(ai0...ir ).

Now, by the inductive hypothesis (6.7),

da0(a0...r) ∈ L̂(Er) ⊂ L̂(Fn).

On the other hand, the element ai0...ir is the image of a0...r under a composi-
tion of coface operators δi. Since the δi are morphisms of cdgl’s, we conclude
that dai0

(ai0...ir ) belongs to the complete free Lie algebra generated by two types

of elements: degree-0 loops in L̂(s−1Λn
n) based in ai0 , and elements of the form

eadc(aj0...js), where c is a path joining ai0 to aj0 .
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It follows that da0(bi0...ir ) is in the complete free Lie algebra generated by

loops in L̂(s−1Λn
n) based at a0 (which are obviously in L̂(Fn)), and elements of

the form eadt(aj0...js), where t is a path joining a0 to aj0 (which are also in L̂(Fn)

in view of (6.9)). Therefore, da0(bi0...ir ) ∈ L̂(Fn). We have thus shown the da0 -

stability of L̂(Fn).

Once this is assured we close the induction process by proving that

da0a0...n ∈ L̂(En−1).

Recall that, for n ≥ 3, we showed in (6.6) of the proof of Theorem 6.7(i) that there

is a Γ ∈ L̂(s−1Λn
n) with

da0Γ = da0(a0...n−1) and da0(a0...n) = (−1)n(a0...n−1 − Γ).

We will slightly modify the differential so that Γ can be chosen in L̂(Fn), which

would finish the proof, because Fn ⊂ L̂(s−1Λ̃n
n). By the induction hypothesis we

first observe that
α = da0(a0...n−1) ∈ L̂(Fn).

Then write
α =
∑
p≥0

αp, with αp ∈ Lp(Fn).

Then, α1 is a d1-cycle. But observe that, since H∗(L̂(s−1Λn
n), d1) = L(a0), we

have H(L̂(Fn), d1) = 0. Hence, there is a u1 ∈ Fn with d1u1 = α1. In particular

α−d1u1 ∈ L̂>1(Fn). Suppose, by induction, that we have constructed u1, . . . , up ∈
Fn such that

v = α− da0(u1 + · · ·+ up) ∈ L̂>r(Fn).

Then, the component vr+1 in bracket length r + 1 of v is a d1-cycle and so a
d1-boundary, vr+1 = d1ur+1. Thus,

α− da0(u1 + · · ·+ ur+1) ∈ L̂>r+1(Fn).

We have just built an element

Γ =
∑
p≥1

up ∈ L̂(Fn)

so that da0α = da0Γ, that is,

da0(a0...n−1) = da0Γ.

To finish, set
da0(a0...n) = (−1)n(a0...n−1 − Γ),

which is clearly in L̂(En). �
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6.3 Sequences of equivariant models
of the standard simplices

Note that, up to this point, Theorem 6.7 guarantees the existence and uniqueness
of an inductive sequence of models {(L̂(s−1Δn), d)}n≥0 satisfying properties (1),
(2), and (3) of Theorem 6.1. However, for such a sequence, the codegeneracies

σi : L̂(s−1Δn+1) → L̂(s−1Δn) defined by formula (6.3) may not be cdgl mor-
phisms, as they do not commute with d in general. We will now slightly modify
the differential on each model of the sequence so that it satisfies a particular
equivariance property which fixes the problem.

To do this, given a generator ai0...ip of L̂(s−1Δn), with 0 ≤ i0 < · · · < ip ≤ n,
and a permutation σ ∈ Σp+1 we denote

aiσ(0)...iσ(p)
= εσ ai0...ip , (6.11)

where εσ is the signature of σ.

Definition 6.9. For any n ≥ 0, consider the action of the symmetric group Σn+1

on s−1Δn defined on generators by

σ ai0...ip = aσ(i0)...σ(ip),

and then extended linearly to s−1Δn. Note that, if σ(i0) < · · · < σ(ip), then the
element aσ(i0)...σ(ip) is well defined. Otherwise, use the convention in (6.11). In
particular, this action extends the natural permutation action on the vertices, and
for the top generator,

σa0...n = εσa0...n.

Finally, extend this action bracket-wise to a Σn+1-action on L̂(s−1Δn).

Definition 6.10. A sequence of models {(L̂(s−1Δn), d)}n≥0 is equivariant if, for

each n ≥ 0, (L̂(s−1Δn), d) is a Σn+1-cdgl, that is, if the differential d is equivariant
for this action: σd = dσ for any σ ∈ Σn+1.

Theorem 6.11. There exist equivariant sequences of models.

In this proof we will use an auxiliary result. Notice that the linear differential
d1 on L̂(s−1Δn) is equivariant for the Σn+1-action, that is, d1σ = σd1 for any

permutation σ, and thus makes (L̂(s−1Δn), d1) a Σn+1-cdgl.

Lemma 6.12. Let (V, d1) ⊂ (L̂(s−1Δn), d1) be the chain complex of “ε-invariants”:

V = {u ∈ L̂(s−1Δn), σu = εσu, σ ∈ Σn+1}.

Then,

Hq(V, d1) = 0 for q �= −1,−2.
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Proof. Given u ∈ V ,
σd1u = d1σu = d1εσu = εσd1u,

and thus (V, d1) is in fact a sub-chain complex of (L̂(s−1Δn), d1).

On the other hand, if u ∈ L̂(s−1Δn), then
∑

σ∈Σn+1
εσσu ∈ V . Indeed, given

τ ∈ Σn+1,

τ
∑

σ∈Σn+1

εσσu =
∑

σ∈Σn+1

εστσu = ετ
∑

σ∈Σn+1

ετστσu.

Hence, the map

(L̂(s−1Δn), d1) −→ (V, d1), u �−→ 1

(n+ 1)!

∑
σ∈Σn+1

εσσu

is a retraction of the inclusion (V,d1) ↪→(L̂(s−1Δn),d1). This implies that H(V, d1)

is a subspace of H(L̂(s−1Δn), d1) ∼= L(a0). �

Proof of Theorem 6.11. We inductively modify the differential on each element of
a given sequence of models {(L̂(s−1Δn), d)}n≥0 to make it equivariant.

The model of Δ0 is trivially equivariant and there is nothing to do.

For n = 1, the LS interval L1 = (L̂(a0, a1, a01), d) is also equivariant: let σ
be the generator of Σ2. By definition,

σa0 = a1, σa1 = a0 and σa01 = −a01.

Then,

dσa0 = da1 = −1

2
[a1, a1] = σda0.

Analogously, dσa1 = σda1. Finally,

σda01 = σ

(
ada01(a1) +

ada01

eada01 − 1
(a1 − a0)

)
= − ada01(a0) +

ad−a01

ead−a01 − 1
(a0 − a1)

= −
(
ada01(a0) +

ad−a01

ead−a01 − 1
(a1 − a0)

)
(∗)
= −da01 = dσa01,

where the equality (∗) is given by formula (5.4).

As induction hypothesis, assume that the model (L̂(s−1Δm), d) of the se-
quence is equivariant for m < n with n ≥ 2.

We first check that the restriction of the differential in (L̂(s−1Δn), d) to

L̂(s−1Δ̇n) is equivariant, that is,

dσu = σdu, for σ ∈ Σn+1 and u ∈ s−1Δ̇n.
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For this, it suffices to choose

u = δi(v), v ∈ s−1Δn−1, i = 0, . . . , n,

and
σ = (q, q + 1),

a transposition of adjacent elements. Indeed, every permutation is a composition
of such transpositions and s−1Δ̇n is the sub-chain complex of s−1Δn generated
by the images of all cofaces δi : s−1Δn−1 ↪→ s−1Δn, i = 0, . . . , n.

Notice first that, if i = q, then σδi = δi+1. Hence, using property (3) of
Definition 6.2,

dσu = dσδi(v) = dδi+1(v) = δi+1(dv) = σδi(dv)σdδi(v) = σdu.

If i = q + 1, then σδi = δi−1 and an analogous argument applies.

Assume then that i �∈ {q, q + 1}. Then, one easily checks that there is a

permutation σ′ ∈ Σn such that σ ◦ δi = δi ◦σ′. Hence, since (L̂(s−1Δn−1), d) is an
equivariant model,

dσu = dσδi(v) = dδi(σ′v) = δi(dσ′v) = δi(σ′dv) = σδi(dv) = σdδi(v) = σdu.

Therefore, we only need to modify d(a0...n) in an equivariant way. Write
x = a0...n and

dx =
∑
p≥1

dpx, with dpx ∈ Lp(s−1Δn).

We suppose by induction on q that, for 1 ≤ p < q, the elements dqx have been
defined, are equivariant and satisfy

d

(
q−1∑
p=1

dpx

)
∈ L̂≥q(Δn).

To simplify in the notation, write u =
∑q−1

p=1 dpx. Since σx = εσx for any permu-
tation σ, it follows that σdu = εσdu. In particular, if (du)q denotes the component
of du in Lq(Δn), it also satisfies

σ(du)q = εσ(du)q.

Hence, (du)q is in the space V of Lemma 6.12 and is trivially a d1-cycle. By Lemma
6.12, there exists an element ωq ∈ V such that

(du)q = −d1ωq.

We set dqx = ωq, so that d(
∑q

p=1 dpx) ∈ L≥q+1(s−1Δn). By construction, dx =∑
p≥1 dpx is equivariant and d2x = 0. �

Remark that the model of the triangle given in Proposition 5.14 is not equiv-
ariant. Nevertheless, we will provide such an equivariant model in Proposition
6.21.
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6.4 The cosimplicial cdgl L•
Let

L• = {Ln}n≥0 = {(L̂(s−1Δn), d)}n≥0

be a sequence of equivariant models. We finish the proof of Theorem 6.1 by showing
property (4). That is, for any n ≥ 0 and any i = 0, . . . , n, the codegeneracy

σi : (L̂(s−1Δn+1), d) −→ (L̂(s−1Δn), d)

defined by formula (6.3) is a cdgl morphism.

Let ai0...ip be a generator of Ln and assume first that σi(ai0) < · · · < σi(aip).
Then, ai0...ip ∈ Im δi, i.e., ai0...ip = δi(x). The identity σiδi = ids−1Δn yields the
equalities

dσiai0...ip = dσiδi(x) = dx = σiδi(dx) = σidδi(x) = σidai0...ip .

Otherwise, see formula (6.3), the sequence i0, . . . , ip contains consecutive el-
ements i and i+ 1 and therefore, by definition,

σi(ai0...ip) = 0.

Denote by τ = (i, i + 1) the transposition of those adjacent elements and
observe that σiτ = σi. Thus,

σidai0...ip = σiτdai0...ip = σidτai0...ip = −σid(ai0...ip),

whence,
σid(ai0...ip) = 0 = dσi(ai0...ip).

This completes the proof of Theorem 6.1. �

We finish by observing that, if L• = {Ln}n≥0 is a (not necessarily equivariant)
inductive sequence of models, we still have a cosimplicial cdgl structure on it, with
the same cofaces but with slightly different codegeneracies.

Theorem 6.13. Any inductive sequence {Ln}n≥0 of models admits a cosimplicial
cdgl structure for which the cofaces are the maps δi’s and each codegeneracy

σ̃i : Ln+1 −→ Ln

satisfies
Im (σ̃i − σi) ⊂ L̂≥2(s−1Δn).

Proof. Let {L′
n}n≥0 be an equivariant sequence of models whose existence is guar-

anteed by Theorem 6.11. By the uniqueness property of Theorem 6.7, we have
isomorphisms

ϕn : Ln

∼=−→ L′
n,
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which commute with the coface morphisms δi, for i = 0, . . . , n,

Ln
ϕn

∼=
�� L′

n

Ln−1

� 	

δi

��

ϕn−1

∼=
�� L′

n−1

� 	

δi

��

We then define the codegeneracies by

σ̃i : Ln+1 −→ Ln, σ̃i = ϕ−1
n σiϕn+1,

with σi as in (6.3). It is an easy exercise to check that the cosimplicial identities

are satisfied. Finally, as Im (ϕn − id) ∈ L̂≥2(s−1Δn) for each n ≥ 0, it follows that

Im (σ̃i − σi) ⊂ L̂≥2(s−1Δn). �

6.5 An explicit model for the tetrahedron

In this section we build an explicit model

L3 = (L̂(s−1Δ3), d)

of the tetrahedron. This example highlights its geometrical approach and the com-
binatorial issues that one encounters when producing a closed formula for the
differential in a sequence of inductive models.

We remark here that the existence of explicit formulae for the differential in
the model of Δn remains an open problem for n ≥ 4. Although the differentials in
L1 and L2 are unambiguously determined by Theorem 5.5 and Proposition 5.16,
no such uniqueness results hold for s−1Δn when n ≥ 3.

Given L a cdgl, we first introduce an operation x� y on the elements of L1,
defined via the property

d(x� y) = dx ∗ dy .
Definition 6.14. Let L be a cdgl and e1, . . . , en ∈ L1. Consider the contractible
cdgl

L′ = L̂(ui, dui)1≤i≤n, with |ui| = 1,

and the cdgl morphism defined by

γ : L′ −→ L, γ(ui) = ei, γ(dui) = dei.

Since H(L′) = 0, there is an element ω with dω = du1 ∗ · · · ∗ dun. Define,

e1 �e2 � · · · �en = γ(ω).

Then,
d(e1 �e2 � · · · �en) = de1 ∗ de2 ∗ · · · ∗ den. (6.12)
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Remark 6.15. Note that the linear part of e1 � · · · �en is precisely
∑n

i=1 ei.

Observe also that � is uniquely defined by property (6.12), up to a boundary.
That is, if

d(e1 �e2 � · · · �en) = d(e1 �′ e2 �′ · · · �′ en) = de1 ∗ de2 ∗ · · · ∗ den,

then,

e1 �e2 � · · · �en − e1 �′ e2 �′ · · · �′ en

is always a boundary.

In the same way � is also associative up to a boundary: for any elements
e1, e2, e3 in L1, the difference

e1 � (e2 �e3)− (e1 �e2)� e3

is always a boundary.

By the above observation, there are many choices for the element e1 �e2 � · · ·
· · · �en. The most heuristic one is to simply consider the element de1∗de2∗· · ·∗den
and replace one and only one of the dei’s appearing in the bracketing of each
summand by the corresponding ei.

A canonical construction can be done as follows. With L′ as in Definition
6.14, consider the adjoint action of UL′ on L′, denoted simply by juxtaposition.
Let E be the UL′

0-module in L′ generated by the elements

xij = [ui, duj]− [uj , dui], with 1 ≤ i < j ≤ n.

Then

L′
1 = dL′

2 ⊕ E

and therefore, there is a unique choice for e1 �e2 � · · · �en as a sum
∑

i<j ωijxij ∈
E, with ωij ∈ UL′

0.

A natural and more explicit construction of the operation � goes as follows.
Recall from [116, Corollary 3.24] that, given a cdgl L and elements a, b ∈ L0,
the component of a ∗ b containing only one a on the bracketing of each of its
summands is

z =
adb

eadb − 1
(a) .

Next, given z ∈ L̂(a, b), let z ∂
∂b denote the derivation of L̂(a, b) that is zero on a

and maps b to z. Then, following [116, Corollary 3.25], we have

a ∗ b = exp

(
z
∂

∂b

)
(b) = b + z +

∑
n≥2

1

n!

(
z
∂

∂b

)n
(b) .
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Then, given x, y ∈ L1, write dx = a, dy = b and define,

x� y = y +
∑
n≥1

1

n!

(
z
∂

∂b

)n−1

(z′), with z′ =
adb

eadb − 1
(x) .

By the preceding discussion, d(x� y) = dx ∗ dy.
The reader may choose his/her favourite form of the operation � for the

following.

Proposition 6.16. A model L3 = (L̂(s−1Δ3), d) for the tetrahedron is given by:

da0(a0123) = eada01a123 − (a012 � a023 � a−1
013).

•a1

a01 a03

a02

a13

•a0

a12

a2

•

• a23

L̂(s−1Δ3)

a3

Observe that giving the differential of the top simplex a0123 completely de-
termines the model. In fact, in view of the compatibility condition (3) of Definition
6.2, the differential is already defined in any face of smaller dimension.

Proof. The expressions of differential on the 2-faces da0a012, da0a023 and da0a013
are already explicitly given in Proposition 5.14 as the BCH product of the edges
bounding the corresponding face. With this, the arithmetic properties of the BCH
product, and the properties of the � product, the following is a simple computa-
tion:

da0(a012 � a023 �a−1
013) = da0a012 ∗ da0a023 ∗ da0a

−1
013

= a01 ∗ a12 ∗ a23 ∗ a−1
13 ∗ a−1

01 .

On the other hand, a direct computation, using first Proposition 4.24 and
then Proposition 4.13, gives

da0

(
eada01 a123

)
= eada01da1(a123) = eada01 (a12 ∗ a23 ∗ a−1

13 )

= a01 ∗ a12 ∗ a23 ∗ a−1
13 ∗ a−1

01 .

Hence, eada01a123 − (a012 � a023 � a−1
013) is a cycle and we set,

da0a0123 = eada01a123 − (a012 � a023 � a−1
013).

Finally, by Remark 6.15, da0123 = da0a0123 − [a0, a0123] has the right linear part
and, by definition, L3 is inductive. �
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The reader may take advantage of the geometrical process leading to this
model which we now explain.

First, we subdivide the triangle as follows: let L be the cdgl given by two
glued models of Δ2 as in Proposition 5.14, and whose generators are denoted as
in the following picture.

Proposition 6.17. The map ϕ : (L̂(s−1Δ2), d) −→ L given by,

ϕ(a0) = a, ϕ(a1) = b, ϕ(a2) = c,

ϕ(a01) = x1, ϕ(a02) = x3, ϕ(a12) = y1 ∗ y2,
ϕ(a012) = e1 �e2,

is a cdgl morphism.

Proof. Trivially, the differential commutes with ϕ in any vertex and in the 1-
simplices a01, a02. In view of Theorem 5.13, d commutes with ϕ also in a12. For
the top face a012 this is also straightforward:

daϕ(a012) = da(e1 �e2) = dae1 ∗ dae2 = (x1 ∗ y1 ∗ x−1
2 ) ∗ (x2 ∗ y2 ∗ x−1

3 )

= x1 ∗ y1 ∗ y2 ∗ x−1
3 = ϕ(da0a012). �

Once we know how to subdivide the triangle, do it twice to obtain the cdgl
on the left in the picture below, in which

da0(e0 �e1 �e2) = x ∗ y1 ∗ y2 ∗ y3 ∗ z−1,

that is, it shapes the outer triangle. Then, identify x = −z to obtain the model of
the horn (L̂(s−1Λ3

3), d) as the middle cdgl in the picture. In this cdgl,

da0(e0 �e1 �e2) = x ∗ y1 ∗ y2 ∗ y3 ∗ x−1,

which equals eadx(y1 ∗ y2 ∗ y3) by Proposition 4.13.

x1 x3

y1 y2

e1 e2

b • • c

•a

•
d

x2

L

x z

y2y1 y3

e0 e2e1

a1• •

•
a0

•a1

x

•
a0

y1 y2

y3

e0 e1

e2

•a1

x

•
a0

y1 y2

y3

e0 e1

e2

e3
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Finally, build (L(s−1Δ3), d) by attaching the bottom triangle e3 as in the right
cdgl in the picture, for which da1e3 = y1 ∗ y2 ∗ y3, or equivalently, by Proposition
4.24, da0e

adx(e3) = eadx(y1 ∗ y2 ∗ y3). In this way the da0 -cycle

e0 �e1 �e2 − eadx(e3)

of Proposition 6.16 arises naturally.

Other approaches can be also followed, for instance gluing appropriately two
subdivided triangles, to find different forms of the differential of the maximal face
a0123. However, by the uniqueness property in Theorem 6.7, the obtained models
will all be isomorphic.

6.6 Symmetric MC elements of simplicial complexes

Recall that any finite simplicial complex K can be considered as a subcomplex of
Δn for some n. Hence, recall also from Remark 6.3, the differential on an inductive
model Ln = (L̂(s−1Δn), d) preserves L̂(s−1K) and defines a sub-cdgl

(L̂(s−1K), d) ⊂ (L̂(s−1Δn), d).

We denote it by LK and call it, for the time being, a model of K. This terminology
will be made precise in the next chapter.

In this final section we show that in the model of a given finite simplicial
complex, Maurer–Cartan elements are ubiquitous and are not restricted to the
vertices. Moreover, we will see that they can be chosen to be invariant under the
action of automorphisms of the 1-skeleton of the given simplicial complex.

Let Γ be a connected, simple, non-oriented, finite graph. In particular it is a
finite simplicial complex and, as previously remarked, we can consider the cdgl

LΓ = (L̂(s−1Γ), d)

which is always a sub-cdgl of some (L̂(s−1Δn), d).

Fix a subgroup G ⊂ aut(Γ) of the group of automorphisms of Γ. Extend the
action of G on Γ linearly first to the chain complex s−1Γ, and then bracket-wise
to LΓ. Finally, fix a vertex in Γ which corresponds to an MC element a in LΓ.

Theorem 6.18. The cdgl LΓ contains an MC element that is G-invariant, and
whose linear part is

1

|G|
∑
g∈G

ga.

We warn the reader that in what follows the lower grading corresponds to
the bracket length grading and not to the usual homological degree.

We start by an auxiliary result of a general nature:
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Lemma 6.19. Let L = (L̂(V ), d) be a free cdgl, let b ∈ MC(L) and let x ∈ L0 be
such that for some n ≥ 2,

(xG b)<n = b<n.

Then,

(dx)<n = [x, b]<n and (xG b)n = bn + [x, b]n − (dx)n.

Proof. It is convenient to keep in mind the original definition of the gauge action,

xG b = eadx(b)− eadx − 1

adx
(dx).

We prove the first identity by showing inductively that

(dx)r = [x, b]r, for r < n. (6.13)

For r = 1 this means that (dx)1 = 0, which is obvious since, on the one hand

(xG b)1 = b1 − (dx)1,

while, by hypothesis, (xG b)1 = b1.

Suppose (6.13) holds for s < r, and write

(dx)r = [x, b]r + αr.

Hence, we have

(xG b)r =
(
eadx(b)

)
r
−
(
eadx − 1

adx
[x, b]

)
r

−
(
eadx − 1

adx
(αr)

)
r

= br − αr.

But again, in view of the hypothesis, (xG b)r = br. Hence, αr = 0 and

(dx)r − [x, b]r.

Finally, the same computation yields

(xG b)n = bn − αn = bn + [x, b]n − (dx)n . �

Proof of Theorem 6.18. Recall from Definition 5.17 that a path in a cdgl L joining
two Maurer–Cartan elements u and v is an element y ∈ L0 such that y G v = u.

Now, given g ∈ G, ga is (the desuspension of) another vertex of Γ and
therefore, it is an MC element of LΓ. As Γ is connected, we can join a with ga by
a path: take a sequence of adjacent edges of Γ going from a to ga which are LS
intervals

L̂(a, a1, x1), L̂(a1, a2, x2), . . . , L̂(ak−1, ga, xk)

inside LΓ. Then (see Section 5.5), x1 ∗ · · · ∗ xk is a path joining a with ga.
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For each g ∈ G fix such a path vg from a to ga, and let

y = − 1

|G|
∑
g �=1

vg.

Then,

(y G a)1 = a+
1

|G|
∑
g �=1

(ga− a) =
1

|G|
∑
g∈G

ga,

which is obviously invariant under G.

Defining b(1) = (y G a), we construct a sequence of MC elements b(1), . . . ,
b(n), . . . of LΓ satisfying:

b(n)<n = b(n− 1)<n and
(
gb(n)
)
≤n

= b(n)≤n, for g ∈ G.

Suppose by induction we have constructed

b = b(n− 1)

such that (gb)<n = b<n for all g ∈ G. Then for each g we denote by xg a path
from b to gb. By Lemma 6.19,

(dxg)<n = [xg, b]<n and (xg G b)n = bn + [xg, b]n − (dxg)n .

We define

x = − 1

|G|
∑
g �=1

xg and b(n) = xG b .

Then, (dx)1 = 0 and (dx)r = [x, b]r for r < n. Hence,

(xG b)r = br +

r−1∑
i=1

1

i!
(adix(b))r −

r−1∑
i=0

1

(i+ 1)!
(adix(dx))r = br.

This shows that for r < n, b(n)r = br, and (xG b)r = br is G-invariant.
It remains to verify that the component of b(n) in Lie bracket of length n is
G-invariant. For this write

(dx)n = [x, b]n + αn,

and using formula (5.4) note also that,

(dxg)n = (gb)n − bn + [xg , b]n.
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Then,

b(n) = (xG b)n

= bn +

n−1∑
i=1

1

i!
(adix b)n −

n−2∑
i=0

1

(i+ 1)!
(adix(dx))n

= bn − αn = bn + [x, b]n − (dx)n

= bn − 1

|G|
∑
g �=1

([xg , b]n − (dxg)n)

= bn +
1

|G|
∑
g �=1

((gb)n − bn) =
1

|G|
∑
g∈G

(gb)n ,

which is trivially G-invariant.

Finally, by construction, ∑
n≥1

b(n)n ∈ LΓ

is an invariant MC element that has the prescribed linear part. �

Corollary 6.20. For each n ≥ 1, the cdgl Ln has an MC element invariant under the
action of the symmetric group Σn+1. In particular, its linear part is the barycentre
of Δn.

Proof. As usual, a0, . . . , an denote the generators of Ln of degree −1. Observe
that Σn+1 acts by automorphisms on the graph given by the 1-skeleton of Δn. By
Theorem 6.18, there is an MC element b whose linear part is

1

|Σn+1|
∑

σ∈Σn+1

σa0.

Denote by Er the set of permutations σ ∈ Σn+1 such that σa0 = ar. Then
E0 is the stabilizer of a0. For each r choose an element σr such that σra0 = ar.
This choice induces a bijection ϕr : E0 → Er given by ϕr(h) = σrh. Then

1

|Σn+1|
∑
σ

σa0 =
1

|Σn+1|
n∑

r=0

(∑
σ∈Er

σa0

)
=

|E0|
|Σn+1|

n∑
r=0

ar =
1

n+ 1

n∑
r=0

ar,

which is the barycenter of Δn. �

As an application, we deduce a model for the triangle which is symmetric by
the action of Σ3. Recall from Proposition 5.14 that an inductive model of Δ2 is

L2 = L̂(a, b, c, x, y, z, e),
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where a, b, c are MC elements, L̂(a, b, x), L̂(b, c, y) and L̂(c, a, z) are LS intervals
and

dae = x ∗ y ∗ z.

Observe that, in this case, the graph given by the 1-skeleton of the triangle
is precisely Δ̇2. The group Σ3 is generated by τ = (a, b, c) and σ = (a, b). The
action of Σ3 on Δ̇2 is defined by

τ(x) = y, τ(y) = z, τ(z) = x,

and

σ(x) = −x, σ(y) = −z, σ(z) = −y.

By Theorem 6.18, choose an MC element u ∈ LΔ̇2 invariant under the natural
action of Σ3, and denote by ω a path in LΓ joining a to u. That is, ω Gu = a.
Then,

(x ∗ τ(ω) ∗ (−ω)) G a = a and (x ∗ σω ∗ (−ω)) G a = a.

By Proposition 4.20,

da(x ∗ τ(ω) ∗ (−ω)) = 0 = da(x ∗ σω ∗ (−ω)).

However, in view of Corollary 6.6, H(LΔ̇2 , da) = L(x ∗ y ∗ z). Hence, there are
integers λ and μ such that

x ∗ τ(ω) ∗ (−ω) = λ(x ∗ y ∗ z) and x ∗ σ(ω) ∗ (−ω) = μ(x ∗ y ∗ z).

Denote

e′ = ead−ω(e).

Proposition 6.21. With the above notation,

(L̂(a, b, c, x, y, z, e′), d)

is a symmetric model for the triangle.

Proof. We have to verify that

τ(e′) = e′ and σ(e′) = −e′.

x z
e

b • • c

•a

y
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By Proposition 4.24, d(e′) = ead−ω(dae). Then by Proposition 4.13, this can
be written as

d(e′) = (−ω) ∗ x ∗ y ∗ z ∗ ω.
Now a simple computation shows that the extensions of τ and σ to e′ commute
with the differentials. �
Remark 6.22. Notice that the invariant MC element produced by Theorem 6.18
is not unique. For instance, consider again the 1-skeleton Δ̇2 of the triangle and
let u be a Σ3-invariant MC element in LΔ̇2 . Consider the degree 0-element

γ = [[x, y] + [y, z] + [z, x], x+ y + z],

which is trivially Σ3-invariant. Therefore, γ Gu is also an MC-invariant element.



Chapter 7

The Model and
Realization Functors

The cosimplicial cdgl L• leads naturally to the definition of cdgl models for any
simplicial set and to a geometrical realization for any given cdgl. Indeed, the global
model LX of a simplicial set X is the cdgl obtained as the colimit,

LX = lim−→
σ∈X

L|σ|.

On the other hand, the realization of a given cdgl L is the simplicial set,

〈L〉 = Homcdgl(L•, L).

These constructions constitute a pair of adjoint functors

sset cdgl
〈 · 〉

��
L ��

,

which are crucial objects in our theory.

The first thing to notice is that this pair provides the precise Eckmann–Hilton
dual of the classical Sullivan approach to rational homotopy theory. Indeed, the
role of L• in this context is the Eckmann–Hilton analogue of the simplicial cdga
Ω• (see Section 1.2.1), which is identified with the piecewise linear forms on the
standard simplices. Recall that the Sullivan realization of a given cdga A is

〈A〉S = Homcdga(A,Ω•).

After presenting in detail the global model and realization functors, we prove
some of their first features, arising immediately from adjointness. In particular we
notice that

LX = (L̂(s−1X), d)
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is a free cdgl generated by the desuspension of the non-degenerate simplicial chains
of X . On the other hand, 〈L〉 is always a Kan complex.

Then, we describe in detail the path components and the homotopy groups
of the realization of a given cdgl L. As for π0〈L〉, we see that the number of

path components of 〈L〉 is given by (the cardinality of) M̃C(L). Moreover, for any

z ∈ M̃C(L), the corresponding path component has the homotopy type of the
realization 〈Lz〉 of the component of L at z (see Definition 4.6), which is already
a connected cdgl. In particular,

〈L〉 	 
z∈˜MC(L)

〈Lz〉.

On the other hand, we find the first strong evidence that the realization functor
extends the classical Quillen realization: for any connected cdgl L and any n ≥ 1,

πn〈L〉 = Hn−1(L),

where, for n = 1, H0(L) is considered with the group structure given by the
Baker–Campbell–Hausdorff product.

Dually, we describe the homological behaviour of the global model LX of a
given simplicial set X . The first thing we notice is its acyclicity,

H(LX) = 0.

The reader may be either confused or surprised by this fact, since LX is supposed
to contain all the rational information about the homotopy type of X . However,
to recover this information for any of the path components of X , we have to look
at the component of the global model at a given Maurer–Cartan element.

In fact, the homology of the component La
X of LX at a non-trivial MC element

a drastically changes and is far from being trivial. Recall that La
X is a connected

sub-cdgl of the perturbed cdgl (LX , da). We see that the inclusion La
X

�
↪→ (L, da)

is a quasi-isomorphism, and thus

H(LX , da) = H(La
X).

Under this point of view, the fact that H(LX) = 0 amounts to saying that the
realization of the component of LX at the MC element 0 has the homotopy type
of a point.

We support the geometrical flavour of all these results and ideas by showing
also that the cardinality of the M̃C set of LX coincides with the number of path
connected components of X plus one.
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7.1 Introducing the global model and
realization functors. Adjointness

Having constructed the cosimplicial cdgl L•, one is tempted to define right away,
for each simplicial set X , its global Lie model LX as

LX = lim−→
σ∈X

L|σ|.

However, to make the recipe functorial, we need to be more precise. For this, recall
that given functors

F : A −→ C and G : A −→ B,

the (left) Kan extension of F along G consists of a functor, usually denoted by

LanGF : B −→ C,

and a natural transformation

η : F −→ LanG F ◦G
which is universal in the following sense: given any other functor H : B → C and
any other natural transformation ξ : F → H ◦ G, there exists a unique natural
transformation ϑ : LanG F → H such that the following diagram of natural trans-
formations commutes:

F
η ��

ξ ��		
			

			
		 LanG F ◦G

ϑ◦G
��

H ◦G
Even though F is different in general from LanG F ◦ G, by abuse of notation we
write

A
G ��

F
��













 B

LanG F

��
C

If A is small and C is cocomplete, then the left Kan extension of F along G exists.
Moreover, for any object B ∈ B, LanG F (B) is the colimit of the functor

G ↓ B −→ C (7.1)

which assigns to each (A, g) ∈ G ↓ B the object F (A). That is,

LanG F (B) = lim−→
(A,g)∈G↓B

F (A).
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As usual, G ↓ B denotes the comma category whose objects are pairs (A, g) where
A ∈ A and g : G(A) → B. On the other hand, HomG↓B

(
(A, g), (A′, g′)

)
is the

subset of HomA(A,A
′) consisting of morphisms f : A → A′ such that the following

diagram commutes:

G(A)
F (f) ��

g

���
��

��
��

�
G(A′)

g′
����
��
��
��

B

Next, let L• be the cosimplicial cdgl introduced in Section 6.4. The cosim-
plicial character of this object amounts to saying that

L : Δ −→ cdgl, defined by L[n] = Ln,

is a functor. Consider also the functor

I : Δ −→ sset, defined by I[n] = Δn.

Definition 7.1. The global model functor L : sset → cdgl is defined as the left
Kan extension of L along I,

Δ
I ��

L
���

��
��

��
� sset

L=LanI L

��
cdgl

As Δ is small and cdgl is cocomplete, this functor exists. Moreover, given a
simplicial set X , any object ([n], σ) ∈ I ↓ X corresponds to a simplicial map
σ : Δn → X , which in turn defines an n-simplex σ ∈ Xn. In this way, a morphism
([m], σ) → ([n], τ) in I ↓ X corresponds to a commutative diagram of simplicial
maps

Δm ��

σ
��





 Δn

τ

����
��
��
�

X

It follows that
LX = lim−→

σ∈X

L|σ|. (7.2)

Proposition 7.2. The diagram

Δ
I ��

L
���

��
��

��
� sset

L=LanI L

��
cdgl
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is commutative. In other terms, for each n ≥ 0,

LΔn = Ln.

Proof. Observe that the comma category I ↓ Δn has as final object ([n], idΔn).
Therefore, the limit of the functor (7.1) in this particular case is attained by its
image on the final object. That is, LΔn = Ln. �

On the other hand, the right adjoint to the global model functor is given by
the following:

Definition 7.3. The realization functor 〈 · 〉 : cdgl → sset assigns to each cdgl L
the simplicial set

〈L〉 = Homcdgl(L•, L),

where the faces and degeneracies are given respectively by,

di : 〈L〉n+1 −→ 〈L〉n, di = Homcdgl(δ
i, L),

sj : 〈L〉n −→ 〈L〉n+1, sj = Homcdgl(σ
j , L),

for n ≥ 0, i = 0, . . . , n+ 1 and j = 0, . . . , n.

Theorem 7.4. The global model functor is left adjoint to the realization functor,

sset cdgl
〈 · 〉

��
L ��

.

That is, for any simplicial set X and any cdgl L, there is a bijection,

Homsset(X, 〈L〉) ∼= Homcdgl(LX , L).

Proof. The result follows from formulas (1.3), (1.4), and (7.2), together with clas-
sical properties of commutation of limits and colimits with Hom functors:

Homcdgl(LX , L) = Homcdgl( lim−→
σ∈X

L|σ|, L) = lim←−
σ∈X

Homcdgl(L|σ|, L)

= lim←−
σ∈X

〈L〉|σ| = lim←−
σ∈X

Homsset(Δ
|σ|, 〈L〉)

= Homsset( lim−→
σ∈X

Δ|σ|, 〈L〉) = Homsset(X, 〈L〉). �

7.2 First features of the global model and
realization functors

Essentially as corollaries of Theorem 7.4, we deduce in this section the first prop-
erties satisfied by the global model and realization functors.

We start with the following, trivially satisfied by any other pair of adjoint
functors:
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Proposition 7.5. The functors L and 〈 · 〉 preserve inductive and projective limits
respectively. �

In particular:

Corollary 7.6. Let {Xi}i∈I be the path components of the simplicial set X. Then,

LX = ̂i∈ILXi . �

Another consequence is the following: recall, for instance from [81, Lemma
3.1.4], the refinement of formula (1.4) by which any simplicial set X can be recov-
ered from its non-degenerate simplices as

X = lim−→
σ∈X′

Δ|σ|.

Here, X ′ denotes the category that has the non-degenerate simplices of X as ob-
jects and the composition of faces as morphisms. Hence, applying directly Propo-
sitions 7.2 and 7.5 we get:

Corollary 7.7. For any simplicial set X,

LX = lim−→
σ∈X′

L|σ|. �

Based on this corollary we now give an explicit description of the cdgl struc-
ture of the global model of any simplicial set X as a free cdgl and characterize its
differential. As usual, let

N∗(X) = C∗(X)/D∗(X)

denote the chain complex of non-degenerate simplicial chains on X obtained by
taking the quotient of the simplicial chains by the degenerate ones. To avoid ex-
cessive notation, we often simply denote the desuspension of this complex by

s−1X = s−1N∗(X).

Note that this is in accordance with the notation previously used in Chapter 6
where, for any n ≥ 0, we denoted

s−1Δn = s−1C∗(Δn) = s−1N∗(Δn).

Proposition 7.8. For any simplicial set X,

LX = L̂(s−1X)

as a graded Lie algebra. Moreover, the differential d on LX is completely deter-
mined by the following:
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• The 0-simplices are Maurer–Cartan elements.

• The linear part ∂1 of ∂ is the desuspension of the differential in N∗(X).

• If j : Y ⊂ X is a sub-simplicial set, then Lj = L̂
(
s−1N∗(j)

)
.

Proof. We begin by recalling the Dold–Kan correspondence, see for instance [63,
Corollary 2.3], which establishes inverse equivalences,

sAbGrp
N

�� dvect0
Γ��

(7.3)

between the category of abelian simplicial groups and that of connected differential
graded vector spaces, i.e., non-negatively graded chain complexes. All we need
from the Dold–Kan correspondence is an explicit description of the functor N:
given A ∈ sAbGrp we consider the chain complex (A, d) where

d : An −→ An−1, d =

n∑
i=0

(−1)idim,

is given by the alternating sum of the faces of A. We define

NA = A/D,

where D is the subgroup of degenerate simplices. By the simplicial identities, d
preserves D and makes of (NA, d) a chain complex.

On the other hand, consider the pair of adjoint functors,

sset
F ��

sAbGrp,
U

�� (7.4)

where U is the forgetful functor and F assigns to each simplicial set X the free
abelian simplicial group generated by X . Composing (7.3) and (7.4) we obtain a
pair of adjoint functors

sset
NF ��

dvect0 .
UΓ

��

Notice that NF is precisely the functor N of non-degenerate simplicial chains and
thus this functor preserves inductive limits.

On the other hand, recall from Corollary 3.11 that the functor L̂ : vect → cgl
also preserves inductive limits.

Hence, by all of the above, and starting with Corollary 7.7, we have:

LX= lim−→
σ∈X′

LΔ|σ| = L̂( lim−→
σ∈X′

s−1Δ|σ|) = L̂
(
lim−→
σ∈X′

s−1N∗(Δ|σ|)
)

= L̂
(
s−1N∗( lim−→

σ∈X′
Δ|σ|)
)
= L̂
(
s−1N∗(X)

)
.

To finish the proof simply take into account the behaviour of the differential on
each Ln given in detail in the past chapter. �
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A direct consequence of this result is:

Corollary 7.9. Let LX = (L̂(V ), d) be the global model of a simplicial set X. Then,
for any q ≥ −1,

Hq(V, d1) ∼= Hq+1(X ;Q). �

Another consequence of this description of the global model is the following:
let X ⊂ Y be a simplicial inclusion. Note that s−1X ⊂ s−1Y and, by Proposition
7.8, LX = (L̂(s−1X), d) is a sub-cdgl of LY = (L̂(s−1Y ), d). Then:

Proposition 7.10. LY/X
∼= LY /I, where I is the ideal generated by (s−1X)≥0 and

by {a− a0}a∈(s−1X)−1
, where a0 is a fixed 0-simplex.

Proof. Notice that the simplicial set Y/X is the colimit of

〈x0〉 �−−X ↪−−→ Y

where 〈x0〉 denotes the simplicial set generated by a 0-simplex x0 of X . Then, by
Proposition 7.5, LY/X is the pushout

LX
��

��

LY

��
L〈x0〉 �� LY/X

of the induced cdgl morphisms: on the one hand, the upper horizontal arrow is
just the inclusion. On the other hand, by Proposition 7.8,

L〈x0〉 = L0 = (L(a0, ), d),

where a0 is an MC element. Thus, the left vertical arrow is just the projection
which sends (s−1X)≥0 to 0 and any Maurer–Cartan generator ai of (s

−1X)−1 to
a0. From this the result follows trivially. �

In particular,

Corollary 7.11. Let X ⊂ Y be a sub-simplicial set and let a ∈ X0. Then

La
Y/X

∼= La
Y /L

a
X . �

It is important to note that this quotient – how could it be otherwise – is
not taken over the cdgl La

X , but over the ideal generated by this cdgl.

The next example is a generalization of Proposition 7.2:

Example 7.12 (Simplicial complexes). Let K be a simplicial complex and consider
the corresponding simplicial set K (see Section 1.1.1). Recall from (1.8) that the
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chain complexN∗(K) of non-degenerate chains onK is precisely the chain complex
C∗(K) of simplicial chains on K. Hence, by Proposition 7.8,

LK = (L̂(s−1K), d)

is generated by the desuspension of the simplicial chains on K and the linear part
d1 of d is the desuspension of the chain map on K.

In the special case of K being a finite simplicial complex, observe that, by
definition, LK is precisely the cdgl LK defined in Remark 6.3, as a sub-cdgl of
Ln with n big enough so that K ⊂ Δn. For this reason, we often write LK to
denote LK .

Concerning the realization functor, we prove here how Theorem 7.4 readily
implies that this functor takes values in the category of Kan complexes.

Proposition 7.13. The realization 〈L〉 of a cdgl L is a Kan complex.

Proof. Recall that 〈L〉 is a Kan complex if for any n ≥ 1, any i = 0, . . . , n and
any pair of solid arrows

Λn
i

��

�� 〈L〉

Δn

���������

there exists an extension making this diagram commutative. By adjunction, this is
equivalent to the existence of the dotted lifting in the corresponding cdgl diagram

LΛn
i

��

��

L

Ln

���������

To construct this extension, recall from Proposition 6.4(ii) the isomorphism

Ln
∼= LΛn

i
̂ L̂(u, du).

Now trivially extend the morphism LΛn
i
→ L to Ln by sending u to any degree n

element in L and du to its boundary. �

7.3 The path components and homotopy groups of 〈L〉
We first recall that a path in a simplicial set X joining two 0-simplices y0, y1 ∈ X0

is a 1-simplex x ∈ X1 such that d0x = y0 and d1x = y1. If X is a Kan complex
this is an equivalence relation whose set π0(X) of equivalence classes consists of
the path components of X .
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Moreover, given a Kan complex X and a 0-simplex y ∈ X0, the path compo-
nent of X containing y is homotopy equivalent (i.e., it is weakly equivalent) to the
reduced simplicial set Xy with only one 0-simplex, resulting by the identification
of all the 0-simplices of this path component to y, and all the simplices of X which
are connected by faces to y. That is,

Xy
n =

{
{y}, if n = 0,

x ∈ Xn such that di1 · · · dinx = y for some i1, . . . , in, if n > 0.

The simplicial structure is induced by that onX , with the mentioned identification
on the set of 0-simplices.

In this section, and for any cdgl L, we explicitly describe the path components
of 〈L〉 and the homotopy groups of each of them.

Proposition 7.14. Given a cdgl L, there are natural bijections

〈L〉0 ∼= MC(L) and π0〈L〉 ∼= M̃C(L).

Proof. Note that the 0-simplices of 〈L〉 are the cdgl morphisms ψ : L0 → L. Since
L0 = L(a0), where a0 is an MC element, such a morphism is identified with the
MC element ψ(a0), and the first bijection is thus trivial.

By virtue of Proposition 7.13, 〈L〉 is a Kan complex and thus, two 0-simplices
z0, z1 ∈ 〈L〉 = MC(L) are in the same path component if there is a 1-simplex,

ϕ ∈ 〈L〉1 = Homcdgl(L1, L) with d1(ϕ) = z0, d0(ϕ) = z1.

By definition, this amounts to saying that ϕ(a0) = z0 and ϕ(a1) = z1. In other
terms, invoking Corollary 5.4, z0 G z1, and so both represent the same element in
M̃C(L). �
Remark 7.15. Notice that, in view of Definition 5.17, paths in 〈L〉 correspond to
paths in L. Hence, in what follows we often use the same notation for both.

Next we identify the homotopy type of each path component of 〈L〉.
Theorem 7.16. Given a cdgl L and z ∈ MC(L), the path component of 〈L〉 con-
taining z has the same homotopy type as the realization 〈Lz〉 of the component of
L at z. More specifically, there is a simplicial isomorphism,

〈L〉z ∼= 〈Lz〉.
Proof. Notice first that the reduced simplicial set 〈L〉z, homotopy equivalent to
the path component of 〈L〉 containing z, takes the form,

〈L〉zn = {f : Ln → L, f(ai) = z for any vertex ai, i = 0, . . . , n}.
We will prove that the map

ϕ : 〈L〉z ∼=−→ 〈Lz〉
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that assigns to each n-simplex f : Ln → L of 〈L〉z the n-simplex of 〈Lz〉 given by,

ϕ(f)(ai) = 0, i = 0, . . . , n, and ϕ(f)(ai0...ir ) = f(ai0...ir ), if r > 0 ,

is an isomorphism of simplicial sets. To begin, recall from Definition 4.6 that Lz

is the connected sub-cdgl of the perturbed (L, dz) where,

(Lz)n =

{
ker dz , if n = 0,

Ln, if n > 0.

Next, it is easy to see that ϕ is a bijection between the corresponding morphisms
of Lie algebras. We now check that ϕ(f) is a cdgl morphism, that is,

ϕ(f) ◦ d = dz ◦ ϕ(f).

For generators of degree −1 and 0 this is an easy computation:

ϕ(f) ◦ d(ai) = −1

2
ϕ(f)[ai, ai] = 0 = dzϕ(f)(ai).

On the other hand, since f(ai) = z for all i, it follows that df(aij) = fd(aij) =
[−z, f(aij)]. Hence,

dzϕ(f)(aij) = dzf(aij) = df(aij) + [z, f(aij)] = 0 = ϕ(f)d(aij).

Now, let ai0...ir be a generator of Ln with r > 1. By Proposition 6.8, we may
assume that dai0

(ai0...ir ) does not contain any generator ai and therefore dai0
f

and ϕ(dai0
f) are equal. Hence,

dzϕ(f)(ai0...ir ) = dzf(ai0...ir ) = df(ai0...ir ) + [z, f(ai0...ir )]

= fd(ai0...ir ) + [f(ai0), f(ai0...ir )] = fdai0
(ai0...ir ) = ϕ(f)dai0

(ai0...ir )

= ϕ(f) (d(ai0...ir ) + [a0, ai0...ir ]) = ϕ(f)d(ai0...ir ).

Finally, the compatibility of ϕ with the faces and degeneracies follows easily
from the cosimplicial structure of Ln. �

As an immediate consequence we obtain:

Corollary 7.17. Let L be a cdgl. Then,

〈L〉 	 
z∈˜MC(L)

〈Lz〉. �

The next result computes the homotopy groups of 〈L〉.
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Theorem 7.18. Let L be a connected cdgl. Then, 〈L〉 is a connected simplicial set
and the natural morphism

ρn : πn〈L〉
∼=−→ Hn−1(L), ρn(f) = [f(a0...n)], n ≥ 1,

is a group isomorphism. When n = 1, the group H0(L) is considered with the BCH
product.

Proof. By Proposition 7.14, 〈L〉 is connected. Moreover, it is reduced as 0 is the
only MC element which is taken the 0-simplex to compute π∗〈L〉. Even though
the face operators di : 〈L〉n → 〈L〉n−1 are not linear, we write

ker di = {f : Ln → L | f ◦ δi = 0}

and recall that

πn〈L〉 =
n⋂

i=0

kerdi/ ∼

where f ∼ g if there is an h ∈ 〈L〉n+1 such that dnh = f , dn+1h = g and dih = 0
for i < n. Observe that,

n⋂
i=0

ker di = {f : Ln → L, f(ai0...iq ) = 0 for (i0, . . . , iq) �= (0, . . . , n)}.

In particular, f(a0...n) is a cycle and therefore,

ρn :

n⋂
i=0

kerdi −→ Hn−1(L) , ρn(f) = [f(a0...n)],

defines a surjective map.

We first check that, for n > 1, ρn induces a group isomorphism on the
quotient πn〈L〉. If h ∈ 〈L〉n+1 is a homotopy between f and g, then dih = 0
for i < n is equivalent to the vanishing of h : Ln+1 → L on all the generators,
except a0...n, a0...n̂n+1 and a0...n+1. On the other hand, dnh = f and dn+1h = g
translate to

h(a0...n̂n+1) = f(a0...n) and h(a0...n) = g(a0...n).

Now, for degree reasons,

dh(a0...n+1) = (−1)n
(
f(a0...n)− g(a0...n)

)
,

and therefore ρn induces a quotient map

ρn : πn〈L〉 −→ Hn−1(L),
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which is obviously surjective. For the injectivity suppose ρn(f) = ρn(g), that is,
there exists an element u ∈ Ln+1 with

du = f(a0...n)− g(a0...n).

Then, define a homotopy h : Ln+1 → L between f and g by

h(a0...n+1) = (−1)nu, h(a0...n) = g(a0...n) and h(a0...n̂n+1) = f(a0...n).

Finally, we see that ρ is a group morphism: given f, g ∈ ⋂n
i=0 ker di, the sum [f ]+

[g] ∈ πn〈L〉 is by definition [dn(h)], where h : Ln+1 → L belongs to
⋂n−1

i=0 ker di,
dn+1h = f and dn−1h = g. Define such a morphism by

h(a0...n+1) = 0, h(a0...n̂n+1) = f(a0...n) + g(a0...n).

Then, we obviously have ρn([f ] + [g]) = ρn[f ] + ρn[g].

Next, we prove that, for n = 1, ρ1 also induces a group isomorphism. Since
L = L≥0, a map f : L1 → L corresponds to the cycle f(a01) ∈ L. Suppose f ∼ g,
which means that there is a map

h : L2 −→ L such that h ◦ δ2 = g, h ◦ δ1 = f and h ◦ δ0 = 0.

Recall that, in L2,
da0(a012) = a01 ∗ a12 ∗ a−1

02 .

Applying h to this expression we get

f(a01) ∗ g(a01)−1,

whose homology class vanishes being a boundary. Therefore, ρ1(f) = ρ1(g) and
thus ρ1 also induces a map ρ1 : π1〈L〉 → H0(L) which is also bijective.

We show that ρ1 is also a group morphism. Again by definition, given

f, g : L1 → L,

the product [f ] · [g] is defined as [d1h], where h : L2 → L is a cdgl morphism such
that d0h = f and d2h = g. Choose such a morphism by setting,

h(a012) = 0 and h(a02) = f(a01) ∗ g(a01).

This shows that ρ1([f ] · [g]) = f(a01) ∗ g(a01) = ρ1[f ] ∗ ρ1[g]. �

Example 7.19. Let L = (L, 0) be a cdgl concentrated in degree 0, with zero differ-
ential. It follows that H(L) = L, and so 〈L〉 is an Eilenberg–MacLane space whose
fundamental group is the vector space L equipped with the Baker–Campbell–
Hausdorff product.
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7.4 Homological behaviour of LX

From now on, and as we did for the standard simplices in the preceding chapter,
we will often not distinguish a 0-simplex x of X from the MC element a = s−1x
in LX .

We begin this section by proving the acyclicity of the global model functor.

Theorem 7.20. Let X be a simplicial set. Then, H(LX) = 0.

Proof. As homology commutes with inductive limits, the result trivially follows
from Proposition 6.4(i) and formula (7.2):

H(LX) = lim−→
σ∈X

H(L|σ|) = 0. �

As we remarked in the introduction to this chapter, the reader should not
be surprised by this fact. As we will see shortly, this only means that the path
component of 〈LX〉 containing the MC element 0, considered as a 0-simplex, has
the homotopy type of a point.

The situation, however, changes drastically when we perturb the differential
of the global model LX of a given simplicial set X by an MC element given by
one of its 0-simplices. As a simple example consider, for any n ≥ 2, the simplicial
set Δ̇

n
and let a be any of its vertices. Then, by Corollary 6.6,

H(LΔ̇n , da) ∼= Q

while, by Theorem 7.20,
H(LΔ̇n) = 0.

In Theorems 7.23 and 7.27 below we prove that the homology H(LX , da) of
the global model perturbed by an MC element a corresponding to a 0-simplex of
X coincides with the homology H(La

X) of the component of LX at a. In other
words, by Corollary 7.17 and Theorem 7.18, H(LX , da) provides the homotopy
groups of the path component of 〈LX〉 containing the vertex a.

We begin with a general useful decomposition of the perturbed global model
of a given simplicial set X . Recall from Proposition 7.8 that

LX = (L̂(V ), d),

where V = s−1X is the desuspension of non-degenerate chains on X . Consider as
usual the set {ai} of 0-simplices of X as Maurer–Cartan elements in V−1 and fix
one of them a. Define the graded vector space Z = Z≥−1 as follows:

Zp =

{
Span{ai − a}, if p = −1,

Vp, if p ≥ 0.
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Proposition 7.21. The differential d in LX can be chosen so that (L̂(Z), da) is a
sub-cdgl of (LX , da). In particular,

(LX , da) = (L(a), da) ̂ (L̂(Z), da).

In the unperturbed global model LX ,

dz = daz − [a, z], for z ∈ Z.

Proof. Note that, as cgl’s,
LX = L(a) ̂ L̂(Z)

so we only have to prove the first assertion. To this end, and by the description of
LX in Proposition 7.8, it is enough to prove it for X = Δn, i.e., for Ln. Fix a a
vertex of Δn. We show that for any p = −1, . . . , n we can choose d in Ln so that
da(Zp) ⊂ L̂(Zp). For p = −1 this is obvious, since

da(ai − a) = −1

2
[ai − a, ai − a].

The case p = 0 is also clear in view of the form of the differential in L1,

dax = [x, b − a] +

∞∑
i=0

Bi

i!
adix(b− a).

In higher degrees apply Proposition 6.8 to find a form of d so that da of any
generator of degree greater than 0 does not contain any vertex. In particular,
da(Zp) ⊂ L̂(Zp). �

From this, we extract the following important consequence, where (a) denotes
the ideal of LX generated by a.

Corollary 7.22. (LX/(a), da) is a free cdgl and a quasi-isomorphic retract of the
cdgl (LX , da). Moreover,

(LX/(a), da) = LX/(a)

and thus the projection,

(LX , da)
�−→ LX/(a)

is a quasi-isomorphism.

Proof. As H(L̂(a), da) = 0, both the inclusion

(L̂(Z), da)
�

↪−−→ (L(a), da) ̂ (L̂(Z), da)

and the projection

(L(a), da) ̂ (L̂(Z), da)
�−−� (L̂(Z), da)
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are quasi-isomorphisms. But, since (LX , da) = (L(a), da) ̂ (L̂(Z), da),

(L̂(Z), da) = (LX/(a), da),

and the first assertion follows. For the identity, note that da = d + ada and thus
da coincides with the differential induced by d. �
Theorem 7.23. Let X be a connected simplicial set and let a be one of its 0-
simplices. Then, the injection

La
X

�
↪−−→ (LX , da)

is a quasi-isomorphism, and

H(La
X) ∼= H(LX , da).

Proof. We first see that H(LX , da) is a connected Lie algebra, that is,

H(LX , da) = H≥0(LX , da).

Assume first that X is a finite simplicial complex and X ⊂ Δn. Let {xi}i∈I be the
0-simplices of X and let {xjk}, (j, k) ∈ J, be the set of edges of a spanning tree
of X , i.e., a maximal tree in the 1-skeleton of X which contains all its vertices. In
view of Example 7.12 and Remark 6.3,

LX ⊂ Ln.

Fix a 0-simplex x and let a be the corresponding MC element of LX =(L̂(s−1X,d)).

With the notation of Proposition 7.21, consider the vector subspace of Z
given by

E = Span{ai − a, ajk, with i ∈ I and (j, k) ∈ J}.
Then, (L̂(E), da) is a sub-cdgl of (L̂(Z), da) = (LX/(a), da) and, if we denote by
L the quotient cdgl, we have a short exact sequence,

(L̂(E), da) ↪−−→ (LX/(a), da)−−� L.

Since H(E, d1) = 0, we can apply Proposition 3.12 to deduce that (L̂(E), da) is
acyclic and thus the projection

(LX/(a), da)
�−−� L (7.5)

is a quasi-isomorphism. However, observe that, by construction, L = L≥0 is con-
nected and therefore H(LX/(a), da) is also non-negatively graded. But, by Corol-
lary 7.22, H(LX/(a), da) = H(LX , da) and the result follows.

For a general connected simplicial set X write it as an increasing union of
finite simplicial sets containing the 0-simplex a and apply the usual limit argument
taking into account that both L and H preserve inductive limits.

To finish, notice that the injection La
X ↪→ (LX , da) is trivially an isomorphism

in homology in non-negative degrees. But, as H(LX , da) is non-negatively graded,
this injection is a quasi-isomorphism. �
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Combining Theorems 7.18 and 7.23 yields

Corollary 7.24. Let X be a connected simplicial set and a be a 0-simplex. Then,
for any n ≥ 0,

Hn(LX , da) ∼= πn+1〈La
X〉. �

However, the trivial element 0 ∈ LX is a Maurer–Cartan element which does
not correspond to a 0-simplex of X . For it we have

Corollary 7.25. Let X be a simplicial set. Then, 〈L0
X〉 	 ∗.

Proof. By Theorems 7.20 and 7.23, H(L0
X) = H(LX) = 0 which, by Theorem

7.18, implies that πi〈L0
X〉 = 0 for all i. �

The following is also an immediate but essential consequence in our theory:

Corollary 7.26. For any connected simplicial set X and any 0-simplex a, the com-
position

La
X

�−→ (LX , da)
�−→ LX/(a)

is an injective quasi-isomorphism.

Proof. The first map is the injective quasi-isomorphism of Theorem 7.23. The
second is the surjective quasi-isomorphism of Corollary 7.22. Their composition is
trivially injective. �

We next see that the homology of the global model of a simplicial set per-
turbed by a 0-simplex only depends on the path component containing the given
simplex.

Theorem 7.27. Let Y be a connected component of a simplicial set X and let a be a

0-simplex in Y . Then, the injection (LY , da)
�
↪→ (LX , da) is a quasi-isomorphism.

Combining this result with Theorem 7.23 we immediately obtain a refinement
of the latter.

Corollary 7.28. Let Y be a path connected component of the simplicial set X and
let a be a 0-simplex of Y . Then, the injection

La
Y

�
↪−−→ (LX , da)

is a quasi-isomorphism,

H(La
Y )

∼= H(LX , da). �

The rest of the section is devoted to the proof of Theorem 7.27. We begin by
a technical but interesting ancillary result.
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Lemma 7.29. Let L̂(Qa ⊕ Z) be the complete graded Lie algebra in which a is of
degree −1 and let Z be a graded vector space such that Zp = 0 if p does not belong

to some interval [m,M ]. Then, the ideal I generated by Z in L̂(Qa ⊕ Z) is the
free complete Lie algebra on the vector space W generated by the elements adna vi,
n ≥ 0, where vi is a graded basis of Z.

Proof. Since W ∈ L≥1(Qa ⊕ Z), we have that Ln(W ) ⊂ L≥n(Qa ⊕ Z) for any
n ≥ 1, and thus

L̂(W ) ⊂ I .

On the other hand, since Zp = 0 for p < m and p > M ,

( I ∩ Ln(Qa⊕ Z) )q ⊂ (L≥ q+n
M+1 (W )

)
q
,

and we deduce that I ⊂ L̂(W ). �

Remark 7.30. The bounding hypothesis on Z is necessary as shown by the fol-
lowing example. Let Z be the vector space generated by the elements vi, i ≥ 0
with |vi| = i. Then,

∑
i≥0 ad

i
a vi is a degree-0 element of I, but does not belong

to L̂(W ). The inclusion L̂(W ) ⊂ I is thus strict in this case.

Proof of Theorem 7.27. Assume first that X is a finite simplicial set. As in Propo-
sition 7.21, write

LY = L̂(a) ̂ L̂(Z) and LX = L̂(a) ̂ L̂(Z ⊕ V ).

Denote by I the ideal of LY generated by Z, and by J the ideal of LX generated
by Z ⊕ V . Consider the commutative diagram,

0 �� (I, da) ��
� �

��

(LY , da) ��
� �

��

(LY /I, da)

��

�� 0

0 �� (J, da) �� (LX , da) �� (LX/J, da) �� 0

Since LX/J = LY /I = L(a), the right vertical arrow is the identity and thus
(LY , da)↪→(LX , da) is a quasi-isomorphism if (I, da) ↪→ (J, da) is. By Lemma 7.29,

I = L̂(U) and J = L̂(W ⊕ U),

where

W = {adna (zi), n ≥ 0 , with zi a basis of Z}
and

U = {adna (vj), n ≥ 0 , with vj a basis of V } .
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Hence, the inclusion (I, da) ↪→ (J, da) has the form

(L̂(W ), da) ↪−−→ (L̂(W ⊕ U), da)

and its quotient is

(L̂(U), da).

We finish by showing that this cdgl is acyclic.

Denote by δ the linear part of da in (L̂(W ⊕ U), da). We show inductively
that for any element adqa(vj) of the basis of U , with q even,

δ(adqa(vj)) = adq+1
a (vj).

This is true for q = 0. Suppose it holds for q − 2 and write

adqa(vj) =
1

2

[
[a, a], adq−2

a (vj)
]
.

Then,

δ(adqa(vj)) =
1

2
δ
[
[a, a], adq−2

a (vj)
]
=

1

2

[
[a, a], adq−1

a (vj)
]
= adq+1

a (vj) .

This amounts to saying that (L̂(U), da) is a contractible cdgl and the assertion
follows.

For a general, not necessarily finite, simplicial set X, write it as an increasing
union of finite simplicial sets and apply a standard limit argument. �

7.5 The Deligne groupoid of the global model

Here we show that, given a simplicial set X , the cardinality of M̃C(LX) is the
number of path components of X plus one. We first consider an example which
illustrates this assertion:

Let X be a disjoint union of points xi, i ∈ I. Then LX = (L(V ), d), where
V = V−1 is generated by MC elements ai, i ∈ I. Since each element in degree −1
is a linear combination of the ai, a simple computation shows that

M̃C(LX) = {ai}i∈I ∪ {0} .

A natural generalization of this fact constitutes our main theorem in this section.
Let X = i∈IXi be the decomposition of X into path connected components.
For each i ∈ I, we choose a 0-simplex in Xi, and denote by ai the corresponding
Maurer–Cartan element.
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Theorem 7.31. With the above notation,

M̃C(LX) = {ai}i∈I ∪ {0} .

In particular, there is a bijection

π0(X
+) ∼= M̃C(LX),

where X+ = X  {∗}.
Corollary 7.32. For any connected simplicial set X and any vertex a ∈ X0,
M̃C(LX) = {0, a} and M̃C(LX/(a)) = {0}.
Proof. The first assertion is immediate. For the second assume first thatX is a con-
nected simplicial complex. Then, apply Proposition 4.35 to the quasi-isomorphic

projection LX/(a)
�� L of (7.5) to conclude that

M̃C(LX/(a)) = M̃C(L) = {0},

as L is non-negatively graded. Taking into account that M̃C preserves inductive
limits, this extends trivially to a general connected simplicial set. �

Remark 7.33. By Corollary 7.17, the bijection in Theorem 7.31 can now be re-
stated as follows: for any simplicial set,

π0(X
+) = π0〈LX〉.

The rest of the section is devoted to the proof of Theorem 7.31.

Definition 7.34. Let n ≥ 1. Two Maurer–Cartan elements u, v in a cdgl (L̂(V ), d)
are said to be n-equivalent if there is a morphism

ϕ : L1 = (L̂(a, b, x), d) −→ (L̂(V ), d)

with ϕ(x) ∈ L≥n(V ), ϕ(a) = u and ϕ(b) = v. We denote this relation by u ∼n v.

Lemma 7.35. Let α be a Maurer–Cartan element in (L̂(V ), d). Suppose that α =
β + w with w ∈ L≥n(V ), and there is z ∈ L≥n(V ) with dz = w + t and t ∈
L≥n+1(V ). Then, α ∼n β + w′ with w′ ∈ L≥n+1(V ).

Proof. Recall the isomorphism ψ defined in Theorem 5.7,

ψ : (L̂(a, b, x), d)
∼=−→ (L̂(a, u, v), d), dv = u, du = 0,

with ψ(a) = a, ψ(x) = v and

ψ(b) = ead−v (a) +
ead−v − 1

ad−v
(u) .
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Let
f : (L̂(a, u, v), d) −→ (L̂(V ), d)

be the cdgl morphism defined by f(a) = α, f(v) = −z and f(u) = −dz. Then,

f ◦ψ is a path in (L̂(V ), d) which starts at fψ(a) = α and fψ(x) = −z. To locate
the MC element fψ(b), we observe that ψ(b)− a+ u ∈ L≥r+1(V ). Therefore,

fψ(b)− f(a)− f(u) = fψ(b)− α+ dz ∈ L≥r+1(V ).

Hence, α ∼r fψ(b) and fψ(b)− β ∈ L≥r+1(V ). �

Lemma 7.36. Let (ur)r≥n0 be a sequence of Maurer–Cartan elements in (L̂(V ), d)

of the form ur = z + vr, with vr ∈ L̂≥r(V ), and such that ur ∼r ur+1 for each
r ≥ n0. Then, un0 ∼n0 z.

Proof. By hypothesis, for r ≥ n0 there is a morphism

ϕr : (L̂(a, b, x), d) −→ (L̂(V ), d)

with ϕr(a) = ur, ϕr(b) = ur+1 and ϕr(x) ∈ L≥r(V ). For each r > n0, we define
wr to be the Baker–Campbell–Hausdorff product

wr = ϕn0(x) ∗ ϕn0+1(x) ∗ · · · ∗ ϕr−1(x).

Theorem 5.13 implies that the element wr is a path from un0 to ur. We form the
infinite product

w = ϕn0(x) ∗ ϕn0+1(x) ∗ · · · ,
which is well defined in L̂(V ). We claim that w is a path of order n0 from un0 to
z, i.e., un0 ∼n0 z, or equivalently,

dw = [w, z]−
∑
n≥0

Bn

n!
adnw(z − un0).

Consider the element

y = dw − [w, z]−
∑
n≥0

Bn

n!
adnw(z − un0),

and observe that y has the same image in L̂(V )/L̂≥r(V ) as

dwr − [wr , ur]−
∑
n≥0

Bn

n!
adnwr

(ur − un0).

This last expression is equal to 0 because wr is a path from un0 to ur. This implies
y = 0 and proves the result. �
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Proof of Theorem 7.31. Assume first that X is a finite and connected simplicial
set. Let

LX = (L̂(Z), d),

and let a ∈ Z−1 be a 0-simplex of X . Denote by W−1 the vector space generated by
the difference b− a where b runs over the MC elements of Z−1. Then, Z0 contains

a subvector space W0 such that, if W = W−1 ⊕W0, we have d(W ) ⊂ L̂(W ) and
H(W,d1) = 0. If we denote by I the ideal of LX generated by W , it follows that
the projection

LX
�−→ LX/I

is a quasi-isomorphism. Hence, by Proposition 4.35, it induces a bijection

M̃C(LX) ∼= M̃C(LX/I).

By construction,

LX/I = (L̂(V ), d)

where

V = Qa⊕ V≥0 and dx− [a, x] ∈ L(V≥0) for x ∈ V.

Consider the ideal of (L̂(V ), d) generated by V≥0. Since V is finite-dimen-

sional, by Lemma 7.29, this ideal has the form (L̂(U), d), where U is generated by
the elements {adra(vk)}r,k, where r ≥ 0 and {vk} is a graded basis of V≥0.

We denote by Er the subvector space of LX generated by the Lie words
containing exactly r elements of V≥0. The differential d can be written as a series
d =
∑

i≥1 di with di(V ) ⊂ Ei. By hypothesis, d1(v) = −[a, v] if v ∈ V≥0. A simple
computation gives:

d1 ad
r
a(v) =

{
adr+1

a (v), if r is even,
0, if r is odd.

On the other hand, the derivation defined by θ = − ada −d1 verifies

θ
(
adra(v)
)
=

{
0, if r is even,

− adr+1
a (v), if r is odd.

In particular, θ2 = 0.

Observe that H−1(E≥1, θ) = 0.

Now, we see that any MC element is gauge related either to a or to 0. Consider
a general MC element of (L̂(V ), d), which is necessarily of the form

u = λa+ ξ, with λ = 0, 1, and ξ ∈ L̂≥2(V ).
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Assume first that λ = 1, i.e., u = a+ξ. We will build a sequence of Maurer–Cartan
elements {un}n≥1 such that u1 = u, un − a ∈ E≥n and un ∼n un+1. Suppose that
for some n ≥ 1 the MC element un has been constructed. Then we can write it as

un = a+ ωn + γ, with ωn ∈ En and γ ∈ E>n.

Since un is a Maurer–Cartan element, we have d1ωn = −[a, ωn] and θ(ωn) = 0.
From H−1(E≥1, θ) = 0, we deduce the existence of t ∈ En such that ωn = θ(t).
This implies that

ωn = −[a, t]− d1t.

Recall the cylinder isomorphism in Theorem 5.7,

ψ : (L̂(a, b, x), d) −→ (L̂(a, e, c), d),

and construct a morphism μ : (L̂(a, e, c), d) → (L̂(V ), d), by μ(a) = un, μ(e) = t
and μ(c) = dt. A short computation shows that

μ ◦ ψ(b) = a+ γ′, with γ′ ∈ E>n.

The path μ ◦ ψ defines un+1 such that un ∼n un+1. By Lemma 7.36, a ∼ u.

Suppose now that in our generic MC element u, λ = 0, i.e., u is decomposable.
Then,

u =
∑
i≥1

ωi, where ωi ∈ Ei for i ≥ 1.

Since u is a Maurer–Cartan element, dω1 = 0. Since H−1(L̂(V ), d) = 0, we deduce
the existence of an ω′

1 such that ω1 = dω′
1 and Lemma 7.35 implies that u ∼1 u2

with u2 ∈ E≥2. By the same process we obtain a sequence of Maurer–Cartan
elements un ∈ E≥n such that un ∼n un+1. Finally, by Lemma 7.36, u ∼ 0.

All of the above shows that M̃C(LX) = {a, 0} and proves the theorem when
X is finite and connected.

For any connected (non-finite) X ,

M̃C(LX) = M̃C

(
lim−→

Y⊂X,
a∈Y finite

LY

)
∼= lim−→

Y ⊂X,
a∈Y finite

M̃C(LY ) = {a, 0}.

For a general simplicial set X = i∈IXi,

M̃C(LX) = M̃C(i∈ILXi)
∼= ⋃i∈IM̃C(LXi )

=
⋃

i∈I{0, ai} = {ai}i∈I ∪ {0}. �



Chapter 8

A Model Category for cdgl

As we recalled in Section 1.3.1, practically all categories of chain complexes en-
riched with some additional structure, in particular cdgl, also possess a model
category structure in which fibrations and weak equivalences are surjections and
quasi-isomorphisms, respectively.

However, this model category structure does not, in general, reflect the ho-
motopical properties inherited in cdgl from sset via the realization and model
functors,

sset
L ��

cdgl.
〈 · 〉

��

For instance, take the free cdgl (L(a), d) generated by a Maurer–Cartan element
and consider the quasi-isomorphism

0
�−→ (L(a), d).

Notice that the realization of this cdgl morphism is not a homotopy equivalence of
simplicial sets, since 〈(L(a), d)〉 has two path connected components, while 〈0〉 has
only one (see Corollary 7.17). On the other hand, any map f : X → Y between
simplicial sets is trivially modeled by a quasi-isomorphism

LX
�−→ LY

since, in view of Theorem 7.20, H(LX) = H(LY ) = 0.

To overcome this handicap we use the Transfer Principle of Section 1.3.2 to
endow cdgl with a model category structure which perfectly matches the classical
one on sset through the above pair of adjoint functors. In this new category
structure the fibrations turn out to be cdgl morphisms which are surjective only
in non-negative degrees. On the other hand, weak equivalences are cdgl morphisms
f : L → L′ such that M̃C(f) is a bijection and for each z ∈ M̃C(L) the component

fz : Lz �−→ L′f(z)

of f at z is a quasi-isomorphism.
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Automatically, the global model and realization functors become a Quillen
pair and we extract some important consequences from this fact. In particular,
these functors preserve, respectively, the homotopy type of Kan complexes and
that of cofibrant cdgl’s. We also give explicit path and cylinder objects in this new
model structure which enable us to describe in detail homotopies between cdgl
morphisms.

For computational purposes, cofibrant replacements of a given object are
important in any given model category. In our setting we describe a special class
of cofibrations and, in particular, of cofibrant replacements of any cdgl.

As a crucial special case we define the minimal model of a connected simplicial
set X as the minimal model of La

X ,

mX
�−→ La

X ,

where a is any 0-simplex of X . This object is an invariant of the homotopy type of
X and, as we will see in following chapters, it contains all its rational information.
Nevertheless, the tools which we have up to now enable us to show that, if mX =
(L̂(V ), d), and for each q ≥ 1,

πq〈La
X〉 ∼= H−1(mX) and Hq(X ;Q) ∼= Vq−1.

8.1 The model category

In this section we show that cdgl is endowed with the particular model structure
proposed in the introduction of this chapter. The first important consequences
are also listed and proved. For the particularities of cofibrantly generated model
categories we refer the reader to Section 1.3.2 for a brief compendium.

Theorem 8.1. There is a cofibrantly generated model category structure on cdgl
for which:

• A morphism f : L → M is a fibration if it is surjective in non-negative de-
grees,

f : L≥0 −−� M≥0.

• A morphism f : A → B is a weak equivalence if

M̃C(f) : M̃C(L)
∼=−→ M̃C(M)

is a bijection and

fa : La �−→ Mf(a)

is a quasi-isomorphism for each a ∈ M̃C(L).

• A morphism is a cofibration if it has the left lifting property with respect to
trivial fibrations.
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Moreover, the cdgl morphisms

{LΔ̇n ↪→ LΔn}n≥0 and {LΛn
i

∼
↪→ LΔn}n≥0, i=0,...,n,

are generating sets of cofibrations and trivial cofibrations, respectively.

Proof. We first prove that a morphism

f : L −→ M

is a fibration or a weak equivalence, with the notation of the statement, if and
only if its realization

〈f〉 : 〈L〉 −→ 〈M〉
is a fibration or a weak equivalence respectively of simplicial sets which, by Propo-
sition 7.13, are necessarily Kan complexes.

By definition, the realization

〈f〉 : 〈L〉 �−→ 〈M〉

of a morphism f : L → M is a weak equivalence of simplicial sets if π0〈f〉 is bijec-
tive and, for the restriction of 〈f〉 to each path component, πn(f) is an isomorphism
for any n ≥ 1.

On the one hand, by Proposition 7.14, π0〈f〉 is identified with

M̃C(f) : M̃C(L) −→ M̃C(M).

Hence, π0〈f〉 is bijective if and only if M̃C(f) is.

On the other hand, for n ≥ 1, recall also from Theorem 7.16 that the com-
ponent of 〈L〉 containing the 0-simplex a ∈ M̃C(L) has the homotopy type of the
realization 〈La〉 of the component of L at a. Hence, the restriction of 〈f〉 to this
path component has the homotopy type of the map

〈fa〉 : 〈La〉 −→ 〈Mf(a)〉.

Finally, from Theorem 7.18, πn〈fa〉 is an isomorphism if and only if Hn(f
a) is.

Summarizing, f is a weak equivalence if and only if 〈f〉 is.
Now, the realization 〈f〉 : 〈L〉 → 〈M〉 is by definition a fibration, i.e., a Kan

fibration, if there exists a lifting in any square commutative diagram of the form

Λn
i

��

��

〈Aa〉
〈f〉
��

Δn ��

���
�

�
�

〈B〉
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By the adjunction between the global model and realization functors, this is equiv-
alent to the existence of the lifting in the corresponding cdgl diagram

LΛn
i

��

��

Aa

f

��
LΔn ��

���
�

�
�

�
B

We will see that this lifting exists if and only if f is surjective in non-negative
degrees.

Assume first that this is the case. By Corollary 6.5, the morphism LΔn → B
is uniquely determined by the image x ∈ Bn of a0...n, as it is

LΛn
i
−→ A

f−→ B

on LΛn
i
. Since f is surjective in non-negative degrees and n ≥ 0, there exists y ∈ A

such that f(y) = x. Using again Corollary 6.5 define the lifting φ : LΔn → Aa as
the only morphism extending LΛn

i
→ A for which φ(a0...n) = y.

Conversely, assume the lifting exists for any such commutative square and
let x ∈ Bn with n ≥ 0. By Corollary 6.5, there exists a unique cdgl morphism
LΔn → B which is zero on LΛn

i
and sends a0...n to x. Hence, its lifting LΔn → A

sends a0...n to y with f(y) = x.

Hence, f is a fibration if and only if 〈f〉 is.
Once the classes of fibrations and weak equivalences of cdgl’s have been

characterized in geometrical terms, we plan to transfer the usual model structure
on sset (see Section 1.3) along the adjunction

sset
L ��

cdgl,
〈 · 〉

��

by applying the Transfer Principle described in Theorem 1.22. It is enough then
to check that all the hypotheses of this theorem are satisfied in our case.

Recall first that sset is cofibrantly generated by the sets

I = {Δ̇n ↪→ Δn}n≥0 and J = {Λn
i

∼
↪→ Δn}n≥0, i=0,...,n

of cofibrations and trivial cofibrations, respectively. Moreover (see Proposition
3.5), the category cdgl has arbitrary limits and colimits. Hence, it only remains
to verify the following two conditions:

(1) The sets {L(I)} and {L(J)} permit the small object argument.

(2) The realization functor takes relative L(J)-cell complexes to weak equiva-
lences.
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Concerning condition (1), since LΔ̇n and LΛn
i
are complete free Lie algebras

on a finite number of generators, it follows by a simple inspection that the sets of
morphisms,

L(I) = {LΔ̇n ↪→ LΔn}n≥0 and L(J) = {LΛn
i
↪→LΔn}n≥0, i=0,...,n,

permit the small object argument.

For condition (2), observe that each of the morphisms LΛn
i

�
↪→ LΔn in L(J)

is identified with the natural inclusion

LΛn
i

�
↪−−→ LΛn

i
̂ L̂(u ⊕ du), with |u| = n− 1,

via the cdgl isomorphism

LΔn ∼= LΛn
i
̂ L̂(u⊕ du), with |u| = n− 1,

of Proposition 6.4(ii). Therefore, the pushout of LΔn
�←↩ LΛn

i
→ L is necessarily

of the form
LΛn

i

��
� �

�
��

L� �

�
��

LΛn
i
̂ L̂(u⊕ du) �� L ̂ L̂(u, du)

for any morphism LΛn
i
→ L. Hence, any L(J)-cell complex f is an injective quasi-

isomorphism of the sort

f : L
�

↪−−→ L ̂ L̂(V ⊕ dV ),

for some cdgl L and some graded vector space V . By Proposition 4.36,

M̃C(f) : M̃C(L)
∼=−→ M̃C

(
L ̂ L̂(V ⊕ dV )

)
is an isomorphism and, for each a ∈ MC(L),

fa : (L, da)
�

↪−−→ (L ̂ L̂(V ⊕ dV ), da)

is a quasi-isomorphism. In particular, the restriction of fa to

fa : (La, da)
�

↪−−→ ((L ̂ L̂(V ⊕ dV )
)a
, da
)

is also a quasi-isomorphism. Hence, f is a weak equivalence and, as previously
proved, 〈f〉 is a weak equivalence of simplicial sets, which proves condition (2).

To finish we apply the Transfer Principle in Theorem 1.22 and obtain a model
category in cdgl for which fibrations and weak equivalences are as stated. �
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The first consequences are summarized in the following.

Corollary 8.2. The realization and model functors,

sset
L ��

cdgl,
〈 · 〉

��

form a Quillen pair and therefore, they induce adjoint functors in the homotopy
categories,

Ho sset
L ��

Ho cdgl .
〈 · 〉

��

In particular,

(i) The realization functor 〈 · 〉 preserves homotopies between morphisms of cofi-
brants cdgl’s.

(ii) The global model functor L preserves homotopies between maps of Kan com-
plexes.

(iii) The realization functor 〈 · 〉 preserves weak equivalences of cdgl’s and the global
model functor preserves weak equivalences of simplicial sets.

(iv) For any cdgl L and any simplicial set X, we have a natural bijection between
homotopy classes of maps

[LX , L] ∼= [X, 〈L〉].

Proof. The main assertion follows at once from Corollary 1.24. Recall from Sec-
tion 1.3 that both functors of a Quillen pair preserve homotopies of maps between
fibrant and cofibrant objects. This is precisely (i) and (ii), taking into account that
every cdgl is fibrant, every simplicial set is cofibrant and Kan complexes are the fi-
brant simplicial sets. Concerning (iii), recall that the left adjoint (respectively, right
adjoint) of a Quillen pair preserves weak equivalences between cofibrant (respec-
tively, fibrant) objects. Finally, (iv) is the general fact summarized in (1.30). �

Another important feature of these functors is the following direct conse-
quence of Corollary 1.16. Here, limits and colimits are considered over a direct or
Reedy category.

Proposition 8.3. The realization functor 〈 · 〉 preserves homotopy limits, while the
model functor L preserves homotopy colimits. �
Corollary 8.4. Let p : L → L′ be a cdgl morphism which is surjective in non-
negative degrees. Then, the simplicial set 〈 ker p 〉 is the homotopy fibre of

〈p〉 : 〈L〉 → 〈L′〉.

Proof. Since p is a fibration in cdgl, the homotopy limit of L
p→ L′ ← 0 is its

ordinary limit ker p. To finish, apply Proposition 8.3. �
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Remark 8.5. The isomorphism ρn : πn〈L〉 ∼= Hn−1(L) described for any connected
cdgl in Theorem 7.18 is a direct consequence of a special version of Theorem
8.2(iv). In fact, the naturality of the adjunction induces a bijection

Φ: Homcdgl

(
(LΔn ,LΔ̇n), (L, 0)

) ∼=−→ Homset

(
(Δn, Δ̇n), (〈L〉, a)).

Note then that ρn is the composition

[(Sn, ∗), (〈L〉, a)] ∼= �� [(Δn, Δ̇n), (〈L〉, a)]
Φ �� [(LΔn ,LΔ̇n), (L, 0)] ∼=

ev �� Hn−1(L),

where ev(g) = g(a0...n).

Remark 8.6. From now on we write

L 	 L′

to denote that L and L′ are weakly equivalent cdgl’s. We also often use the classical
terminology by which L and L′ have the same homotopy type. Whenever L and
L′ are connected, L 	 L′ if and only if they are related by a zigzag of quasi-
isomorphisms. In this case, by abuse of language we say that L and L′ are “quasi-
isomorphic”.

To finish, it is worth noting that, if we restrict this model structure on cdgl
to the subcategory dgl1 of 1-connected dgl’s, we get the classical one in [115,
Theorem 5.1] in which fibrations are surjections in degrees greater than 1 and
weak equivalences are quasi-isomorphisms.

8.2 Weak equivalences and free extensions

In this section we analyze in detail some weak equivalences and cofibrations in
this new model structure on cdgl. In particular, we explicitly describe convenient
cofibrant replacements of any given cdgl.

We begin with the following important observation. Let X be a connected
simplicial set and let a be any of its 0-simplices. Then, the non-trivial component
La
X may not be easy to handle, while LX/(a) is free as cgl, as guaranteed by

Corollary 7.22. Nevertheless, we have:

Proposition 8.7. The injection j : La
X

�
↪→ LX/(a) is a weak equivalence.

Proof. By Corollary 7.32, 0 is the only element in M̃C
(
LX/(a)

)
, while this is

trivially the case for La
X . Hence, M̃C(j) is a bijection. On the other hand, Corollary

7.26 asserts that j = j0 is a quasi-isomorphism. �
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Remark 8.8. Despite the preceding result, it is convenient to keep in mind that
quasi-isomorphisms are not always weak equivalences. For instance, the inclusion

0
�

↪−−→ (L(a), d),

where a is a Maurer–Cartan element, is a quasi-isomorphism, but it is not an
equivalence because M̃C(L(a), d) = {0, a}.

Another illustrative set of examples is the following: recall from Corollary 7.26
that the injection j of Proposition 8.7 is the composition of the quasi-isomorphisms

La
X

�
↪−−→ (LX , da)

�−→ LX/(a).

However, by Theorem 7.31 and Proposition 4.28,

M̃C(LX , da) = {0,−a}.
This shows that none of these quasi-isomorphisms is a weak equivalence.

Nevertheless, certain quasi-isomorphisms are always weak equivalences. The
next result is simply the translation of Theorem 4.33 to this model category vo-
cabulary:

Theorem 8.9. Let f : L → L′ be a morphism of cdgl’s, filtered respectively by
{Fn}n≥1 and {Gn}n≥1, such that the induced map

Fn/Fn+1 �−→ Gn/Gn+1

is a quasi-isomorphism for any n ≥ 1. Then, f is a weak equivalence. �
Another set of special weak equivalences is given by the following:

Proposition 8.10. Let L be a cdgl and let U be a graded vector space. Then:

(i) The injection ι : L
∼
↪→ L ̂ L̂(U ⊕ dU) is a weak equivalence. Moreover, it is

a cofibration if and only if U = U≥0 is non-negatively graded.

(ii) The projection p : L ̂ L̂(U ⊕ dU)
∼� L is a trivial fibration.

Proof. (i) The fact that ι is a weak equivalence follows from Proposition 4.36.
It is also easy to check that ι is a cofibration whenever U = U≥0: consider a
commutative square

L
γ ��

ι
��

A

p∼
����

L ̂ L̂(U ⊕ dU) ϕ
��

φ

��������
B

in which p is a trivial fibration. As p is surjective in non-negative degrees, for any
generator u ∈ U choose a ∈ A such that p(a) = ϕ(u). Define the morphism φ as
being γ on L, φ(u) = a, and φ(du) = da.
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However, if U contains an element u of negative degree, then ι is no longer a
cofibration: let p : (L(du), 0) → L̂(u⊕ du) be the inclusion. It is obviously a trivial
fibration, as it is surjective at non-negative degrees and the component of p at the
only MC element 0 is the zero map. However, the identity id

̂L(u⊕du) does not lift

to p. The same example extends to the general inclusion i as long as there is a
generator of U of negative degree.

(ii) As it is surjective, p is trivially a fibration. On the other hand, again by
Proposition 4.36, p is also a weak equivalence. �

Next, we present a large and useful class of cofibrations.

Definition 8.11. A free extension of a cdgl L is an inclusion

L ↪−−→ (L ̂ L̂(V ), d)

such that the following properties are satisfied:

• V = V≥−1 and V−1 is generated by Maurer–Cartan elements.

• V0 = V ′
0 ⊕ V ′′

0 , where dV ′
0 = 0 and V ′′

0 is generated by paths between MC

elements in L ̂ L̂(V−1).

• For x ∈ Vn, with n ≥ 1, there is a Maurer–Cartan element a such that
dax ∈ L ̂ L̂(V<n).

Theorem 8.12. Every free extension is a cofibration.

Proof. We need to prove that for every commutative square

L ��

��

A

p∼
����

(L ̂ L̂(V ), d) ϕ
��

φ

���
�

�
�

�
B

(8.1)

in which p is a trivial fibration, there exists a morphism φ making commutative
both triangles. We first observe that the injection

L ↪−−→ (L ̂ L̂(V−1 ⊕ V ′′
0 ), d)

is a cofibration. Indeed, this morphism is obtained by successive pushouts of dia-
grams of these two kinds:

L ←− 0 −→ LΔ0 ,

one for each generator of V−1, and

L ̂ L̂(V−1) ←− LΔ̇1 −→ LΔ1 ,

one for each generator of V ′′
0 . By definition, this is an L(I)-cell complex, and

therefore it is a cofibration. Thus, there exists a cdgl morphism

φ : (L ̂ L̂(V−1 ⊕ V ′′
0 ), d) −→ A

as in diagram (8.1).
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On the other hand, since dV ′
0 = 0, p is surjective in non-negative degrees,

and p0 : A0 → B0 is a quasi-isomorphism, it follows that φ is easily extended to

φ : (L ̂ L̂(V−1 ⊕ V0), d) −→ A.

We finish by defining φ inductively on V≥1. Assume φ is defined on V<n with
n ≥ 1 and let x ∈ Vn. We denote by a the Maurer–Cartan element for which
dax ∈ L ̂ L̂(V<n). In the restriction to the component of a,

Aφ(a)

p�
����(

L ̂ L̂(V<n)
)a ϕ �� Bϕ(a)

the element φda(x) is a cycle in Aφ(a) with p(φdax) = dϕ(a)ϕ(x). Therefore, since

p is surjective in non-negative degrees and the restriction p : Aφ(a) → Bϕ(a) is a
quasi-isomorphism, there exists y ∈ A with φdax = dφ(a)y and p(y) = ϕ(x). We
define φ(x) = y and observe that

φ(dx) = φ(dax)− φ([a, x]) = dφ(a)y − [φ(a), y] = dy = dφ(x). �

Corollary 8.13. The model LX of any simplicial set is a cofibrant cdgl.

Proof. Simply observe that 0 → LX is in fact a free extension in view of Proposi-
tion 7.8. �
Proposition 8.14. Every cdgl morphism f : L → L′ can be factored as

L
f ��

i

��		
			

			
		 L′

(L ̂ L̂(V ), d)

∼ ϕ

��

where i is a free extension and ϕ is a weak equivalence.

Proof. For each z ∈ M̃C(L′) not in Im M̃C(f) define a Maurer–Cartan element

v ∈ V−1 and set ϕ(v) = z. On the other hand, if M̃C(f)(a) = M̃C(f)(b) define
v ∈ V ′′

0 as a path from a to b and set ϕ(v) = x ∈ L′
0, which is a path from

MC(f)(a) to MC(f)(b). This produces a cdgl morphism

ϕ : (L ̂ L̂(V−1 ⊕ V ′′
0 ), d) −→ L′

for which M̃C(ϕ) is a bijection.

Next, to avoid excessive notation, write

M = (L ̂ L̂(V−1 ⊕ V ′
0), d).
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Then, for every a ∈ M̃C(M), the usual inductive argument enables us to construct
a quasi-isomorphism

(Ma ̂ L̂(W a), d)
�−→ L′ϕ(a)

extending ϕ and in which:

• W a is a non-negatively graded vector space and in particular dW a
0 = 0;

• dw ∈ Ma ̂ L̂(W a
<n) for every w ∈ W a

n .

Then, setting
V = V−1 ⊕ V ′

0 ⊕ (⊕a∈˜MC(M)W
a),

assembling these quasi-isomorphisms produces a weak equivalence

ϕ : (L ̂ L̂(V ), d)
∼−→ L′

extending f and in which (L ̂ L̂(V ), d) is a free extension. �
Corollary 8.15. Every cdgl L has a cofibrant replacement

(L̂(V ), d)
∼−→ L,

in which V = V≥−1, V−1 is generated by MC elements and dV0 = 0.

Proof. Simply apply Proposition 8.14 to 0 → L. �

Note that the minimal models of connected cdgl’s (see Definition 3.15) are
examples of such cofibrant replacements.

8.3 A path object, a cylinder object and
homotopy of morphisms

Staying with the analysis of the model structure in cdgl, we construct in this
section a functorial path object for any cdgl and a cylinder object for any free cdgl.
This in particular lets us describe the notion of homotopy between cdgl morphisms.
For a brief introduction to these concepts we refer the reader to Section 1.3.

Definition 8.16. Let L be a cdgl associated to the filtration {Fn}n≥1, that is,

L = lim←−
n

L/Fn.

Define the path object of L as the cdgl,

LI = L⊗̂ ∧ (t, dt) = lim←−
n

(
L/Fn⊗ ∧ (t, dt)

)
with |t| = 0, |dt| = −1. The inclusions L/Fn ↪→ L/Fn⊗∧(t, dt), n ≥ 1, induce an
injective morphism

j : L ↪−−→ LI .
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On the other hand, the projections L/Fn⊗∧(t, dt) → L/Fn, sending t to 0 and 1,
respectively, induce surjective morphisms

ε0, ε1 : L
I −→ L.

Then:

Proposition 8.17. For any cdgl L, the sequence

L ∼
j �� LI

(ε0,ε1)�� �� L× L

is in fact a functorial path object.

Proof. Obviously, the path construction is functorial on L.

Also, (ε0, ε1) is a fibration, as it is surjective, and (ε0, ε1)j is the diagonal. It
remains to show that j is a weak equivalence. For this, recall from (3.4) and (3.5),
that LI is naturally filtered by {Gn}n≥0, where

Gn = ker
(
LI → L/Fn ⊗ ∧(t, dt))

and

Gn/Gn+1 =
(
L/Fn ⊗ ∧(t, dt))/(L/Fn+1 ⊗ ∧(t, dt)) = Fn/Fn+1 ⊗ ∧(t, dt).

Therefore, for each n ≥ 1, the induced map

jn : Fn/Fn+1 �−→ Fn/Fn+1 ⊗ ∧(t, dt)
is a quasi-isomorphism. Now apply Theorem 8.9 to conclude that j is then a weak
equivalence. �
Definition 8.18. We say that two cdgl morphisms f, g : L → L′ are right homotopic,
and write f ∼r g, if there is a cdgl morphism Φ: L → L′I such that ε0Φ = f and
ε1Φ = f . The morphism Φ is called a right homotopy between f and g.

Since every cdgl is fibrant, as in any model category, the right homotopy is
an equivalence relation among cdgl morphisms.

Example 8.19. Consider the coproduct

L ̂ L̂(U ⊕ dU)

of a given cdgl with a contractible one, and denote by

ι : L −→ L ̂ L̂(U ⊕ dU) and p : L ̂ L̂(U ⊕ dU) −→ L

the inclusion and projection, respectively. Then,

ιp ∼r idL ̂� ̂L(U⊕dU)
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via the homotopy

Φ: L ̂ L̂(U ⊕ dU) −→ (L ̂ L̂(U ⊕ dU)
)I

defined by

Φ(x) = x⊗1, x ∈ L, Φ(u) = u⊗t, Φ(du) = du⊗t+(−1)|u|u⊗dt, u ∈ U.

Next, we construct a cylinder object for certain free cdgl’s along the same
line as the original Tanré cylinder defined for ordinary dgl’s in [130, II.5].

Let (L̂(V ), d) be a free cdgl and let

V ∼= U

be an isomorphism which maps the graded basis {vi} of V to the basis {ui}.
Construct the cdgl

(L̂(V ⊕ U ⊕ sU), d), where d|V = d, dsu = u and du = 0.

A derivation i of degree +1 is defined on (L̂(V ⊕ U ⊕ sU), d) by setting

i(v) = su and i(u) = i(su) = 0.

Then θ = i ◦ d + d ◦ i is a derivation commuting with d and thus, by Proposition
4.10,

eθ : (L̂(V ⊕ U ⊕ sU), d)
∼=−→ (L̂(V ⊕ U ⊕ sU), d)

is a cdgl automorphism. We introduce graded vector spaces V ′ and V isomorphic
to V and sV , respectively, and we define an isomorphism

ψ : L̂(V ⊕ V ′ ⊕ V )
∼=−→ L̂(V ⊕ U ⊕ sU)

of graded Lie algebras by ψ(v) = v, ψ(v′) = eθ(v) and ψ(v) = su. This induces a
differential

D = ψ−1dψ

on L̂(V ⊕V ′⊕V ) which makes ψ a cdgl isomorphism. Since eθ is an automorphism
commuting with d, we have:

Dv′ = ψ−1dψ(v′) = ψ−1eθdv ∈ L̂(V ′).

Therefore, (L̂(V ′), D) is a sub-cdgl of (L̂(V ⊕ V ′ ⊕ V ,D) isomorphic to (L̂(V ), d).

Definition 8.20. The cylinder construction on L = (L̂(V ), d) is the sequence of
cdgl’s

L ̂ L
ι0 ̂� ι1 �� Cyl L

p �� L,

where
Cyl L = (L̂(V ⊕ V ′ ⊕ V ), D),

ι0(v) = v, ι1(v) = v′, p(v) = p(v′) = v and p(v) = 0.
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Proposition 8.21. For any free cdgl L = (L̂(V ), d) in which V = V≥−1, the above
construction is a cylinder object for L.

Proof. Since V is non-negatively graded, and in view of the cdgl isomorphism ψ,
Proposition 8.10(i) guarantees that both ι0 and ι1 are trivial cofibrations. Thus,

ι0 ̂ ι1 is also a trivial cofibration. On the other hand, since p ◦ ι0 is the identity,
p is also a weak equivalence. �

Consider the LS interval L1 = (L̂(a, b, x), d) and recall from Theorem 5.7 the
cdgl isomorphism

ψ : L1

∼=−→ (L̂(a, u, su), d), where dsu = u,

defined by

ψ(a) = a, ψ(x) = su and ψ(b) = eθ(a) = ead−su(a) +
ead−su − 1

ad−su
(u).

This immediately translates to:

Corollary 8.22. L1
∼= Cyl L0. �

Remark 8.23. Observe that, in Proposition 8.21, for ι0 and ι1 to be cofibrations, it
is necessary to assume that V = V≥−1 (see (i) of Proposition 8.10). We will assume

that for the remaining of the section whenever a free cdgl (L̂(V ), d) is considered.
This assumption does not entail any restriction as, by Corollary 8.15, every cdgl
L admits a cofibrant replacement of this type. On the topological side, the global
model LX of any simplicial set X is also of this kind.

Definition 8.24. We say that two cdgl morphisms f, g : (L̂(V ), d) → L are left

homotopic, and write f ∼l g, if there is a cdgl morphism Ψ: Cyl (L̂(V ), d) → L
such that f = Ψ ◦ ι0 and g = Ψ ◦ ι1. The morphism Ψ is called a left homotopy
between f and g. As in any model category, the left homotopy is an equivalence
relation among cdgl morphisms with cofibrant domain.

The following is a useful application:

Proposition 8.25. Let f, g : (L̂(V ), d) → (L̂(W ), d) be left homotopic morphisms.
Then, the induced maps

f1, g1 : (V, d1) −→ (W,d1)

are homotopic morphisms of chain complexes.

Proof. Let H : Cyl (L̂(V ), d) → (L̂(W ), d) be a homotopy between f and g. Ob-
serve that in the cylinder,

D1(v) = v′ − v − d1v.
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Hence,

g1v − f1v = H1d1v + d1H1v .

Then, the morphism h : V → W defined by h(v) = H1v is a chain homotopy
between f1 and g1. �

The following is simply Proposition 1.13 in our context:

Proposition 8.26. Let f, g : (L̂(V ), d) → L be cdgl morphisms. Then, f ∼r g if and
only if f ∼l g. �

In what follows, for the class of cdgl morphisms of cofibrant domain, we
simply denote by ∼ either the right or left homotopy relation.

In particular, regarding a Maurer–Cartan element a ∈ MC(L) as a mor-
phism L0 → L, we expand the characterization in Corollary 5.4 of gauge related
Maurer–Cartan elements. For the following just take into account Corollary 8.22
and Proposition 8.26:

Corollary 8.27. Let L be a cdgl and a, b ∈ MC(L). Then, the following assertions
are equivalent:

(1) a ∼ b, that is, there exists x ∈ L0 such that xG a = b.

(2) There exists Φ ∈ MC(LI) such that ε0(Φ) = a and ε1(Φ) = b.

(3) There exists a morphism ϕ : L1 → L such that ϕ(a) = a and ϕ(b) = b. �
Proposition 8.28. Let f, g : L → L′ be homotopic morphisms with cofibrant domain.
Then, M̃C(f) = M̃C(g).

Proof. Let a ∈ MC(L) and consider the morphism ia : L0 → L, ia(a0) = a. Then,
fia ∼ gia. By the above corollary, this amounts to saying that f(a) ∼ g(a). In

other terms, M̃C(f)(a) = M̃C(g)(a). �

We finish the section introducing, by means of the cylinder object, the cone
and suspension of the model of any simplicial set. These are special cases of “ho-
motopy cofibres” in the category cdgl which, as observed in Proposition 8.3 for
general homotopy colimits, are preserved by the model functor. As a particular
instance, we give another inductive process for building the models of Δn.

Consider the projectionX → {∗} of any given simplicial set X to a 0-simplex
which is modeled by LX → L0.

Definition 8.29. The cone of LX is the cdgl Cone LX obtained as the pushout

LX
��

ι1

��

L0

��
Cyl LX

�� Cone LX
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If we write LX = (L̂(V ), d) and L0 = (L̂(a0), d), where a0 is an MC element,
a simple inspection shows that

Cone LX
∼= (L̂(V ⊕Qa0 ⊕ V ), D),

where the D is induced in this pushout by the differential of the cylinder.

Definition 8.30. The suspension of LX is the cdgl ΣLX obtained as the pushout

LX
��

ι0

��

L0

��
Cone LX

�� ΣLX

Again, if LX = (L̂(V ), d) and, to avoid confusion, we set L0 = (L̂(b0), d),
where b0 is an MC element, we have:

ΣLX
∼= (L̂(Qb0 ⊕Qa0 ⊕ V ), D).

Theorem 8.31. For any n ≥ 1, the cdgl Ln is isomorphic to the cone of Ln−1:

Ln
∼= Cone Ln−1.

Proof. Let

{ai0...ip}0≤i0<···<ip≤n−1

denote, as usual, the generators of Ln−1 = (L̂(s−1Δn−1), d) and consider

ι1 : Ln−1 ↪−−→ Cyl Ln−1, ι1(ai0...ip) = a′i0...ip ,

the injection of Definition 8.29. Denote by J the ideal generated by the elements
a′i − a′0 and the elements a′i0...ip for p > 0. Thus,

ConeLn−1 = Cyl Ln−1/J ∼= (L̂({ai0...ip} ⊕Qa′o ⊕ {ai0...ip}), D).

Finally, it is easy to check that the map

Ψ: ConeLn−1 = Cyl Ln−1/J
∼=−→ Ln,

defined by

Ψ(ai0...iq ) = ai0...iq , Ψai0...ip = (−1)pai0...ipn and Ψ(a′0) = an,

is an isomorphism. �
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8.4 Minimal models of simplicial sets

For this section it is convenient to keep in mind the main properties satisfied by the
minimal model of a connected cdgl (see Definition 3.15 and subsequent results).

Let X be a connected simplicial set and let a be any 0-simplex in X . As
usual, we also denote by a the corresponding Maurer–Cartan element in LX .

Definition 8.32. The minimal Lie model of X is the minimal Lie model of La
X .

This is a minimal cdgl mX = (L̂(V ), d), equipped with a quasi-isomorphism

ϕ : mX
�−→ La

X .

As for maps, let f : X → Y be a map of simplicial sets and let mX
�→ La

X ,

mY
�−→ L

f(a)
Y be the corresponding minimal models. By classical lifting arguments

in model category theory, there is a cdgl morphism mf : mX → mY , unique up to
homotopy, such that the diagram

La
X

Lf �� Lf(a)
Y

mX

�
��

mf

�� mY

�
��

commutes up to homotopy. The minimal Lie model of f is the cdgl morphism mf .

By Proposition 3.16 and Theorem 3.19, the minimal model of X exists and is
unique up to cdgl isomorphisms. Also, as observed at the end of Section 8.2, mX

is a cofibrant object and ϕ is a weak equivalence. Moreover, it is easy to see that
the minimal model is independent of the chosen 0-simplex and is an invariant of
the homotopy type of the given simplicial set:

Proposition 8.33. The minimal model of X does not depend on the chosen 0-
simplex.

Proof. Since X is connected, given 0-simplices a, b ∈ X0 there is a path in X
from a to b. Then, by construction, there is also a path in LX from a to b. Hence,
by Proposition 4.24, La

X
∼= Lb

X and thus mX is independent of the chosen 0-
simplex. �

Proposition 8.34. Homotopy equivalent simplicial sets have isomorphic minimal
models.

Proof. Let f : X
∼→ Y be a homotopy equivalence between simplicial sets. By

Corollary 8.2(iii),

Lf : LX
∼−→ LY
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is a weak equivalence. In particular, for any given 0-simplex a ∈ X0,

La
f : L

a
X

�−→ L
f(a)
Y

is a quasi-isomorphism. Hence,

mf : mX

∼=−→ mY

is a quasi-isomorphism between minimal models which, by Theorem 3.19, is nec-
essarily an isomorphism. �

Next, we show how to extract basic homotopy invariants from the minimal
model.

Proposition 8.35. Let (L̂(V ), d) be the minimal Lie model of a connected simplicial
set X. Then, there are natural isomorphisms,

V ∼= s−1H̃∗(X ;Q) and H∗(L̂(V ), d) ∼= s−1π∗〈La
X〉.

Proof. By Corollary 7.26, we get a sequence of quasi-isomorphisms

(L̂(V ), d)
�−→ (La

X , da)
�−→ (LX , da)

�−→ (LX/(a), d),

which in turn induces quasi-isomorphisms on the spaces of indecomposable el-
ements. From Corollary 7.9 it follows that V ∼= s−1H̃∗(X ;Q). For the second
identity simply apply Theorem 7.18. �

The following is just a simple but illustrative consequence.

Proposition 8.36. Let Y be a connected simplicial set and let i : X ↪→ Y be the
injection of a connected sub-simplicial set such that H∗(i;Q) is injective. Then,
the minimal Lie model mi : mX ↪→ mY is an injection and mY /mX is the minimal
Lie model of Y/X.

Proof. Since H(i;Q)) is injective, the first isomorphism in Proposition 8.35 guar-
antees thatmi : mX ↪→ mY induces an injective morphism at the indecomposables.
In particular, mi is injective and mY /mX is a minimal cdgl. On the other hand,
by Corollary 7.11,

La
Y/X = La

Y /L
a
X .

Hence, by the five lemma, the right vertical map in the following diagram

0 �� mX
mi ��

�
��

mY
��

�
��

mY /mX

�
��

�� 0

0 �� La
X

�� La
Y

�� La
Y/X

�� 0

is a quasi-isomorphism. In other words, mY /mX is the minimal Lie model of Y/X .
�
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We finish this section by deriving a special property of the minimal models
of a simplicial complex.

Proposition 8.37. Let X be a connected simplicial complex, a one of its 0-simplices,
and mX its minimal model. Then, there is an isomorphism of cdgl’s

LX/(a) ∼= mX ̂ L̂(R ⊕ dR).

Here, L̂(R ⊕ dR) simply denotes a contractible cdgl (see Definition 3.17).

Proof. Denote by Γ a maximal tree in the 1-skeleton of X . Then,

LΓ/(a) ⊂ LX/(a)

is an inclusion and both are free cdgls (see Proposition 7.22). We write, as cgl’s,

LX/(a) = LΓ/(a) ̂ L̂(V ).

Note that, since Γ contains all the vertices, V = V≥0. On the other hand, since Γ
is a tree, LΓ/(a) is contractible.

We now replace the set of generators of L̂(V ) so that the differential d of

LX/(a) preserve L̂(V ). We do it inductively so that dVn ⊂ L̂(V≤n) and, by an
abuse of notation, still use V to denote the new generators.

Assume this is the case up to n. This induction hypothesis, plus the fact that
LΓ is acyclic, imply that the projection

LΓ/(a) ̂ L̂(V≤n)
�−→ L̂(V≤n)

is a quasi-isomorphism. Let I be its kernel and let v ∈ Vn+1. Write

dv = α+ β, with α ∈ L̂(V≤n) and β ∈ I.

Then, dβ = 0 and thus β = dγ for some γ ∈ I. Replace then v by v − γ and the
assertion follows.

Now, by Proposition 3.18, we have a decomposition

(L̂(V ), d) ∼= mX ̂ L̂(S ⊕ dS).

Moreover, observe that LΓ/(a) can be written as

LΓ/(a) = L̂(T ⊕ dT ),

where T is generated by a set of 1-simplices of Γ. Hence, this time as cdgl’s,

LX/(a) = LΓ/(a) ̂ L̂(V ) ∼= mX ̂ L̂(R⊕ dR)

with R = S ⊕ T . �
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From the above result the following is immediate in light of Example 8.19:

Corollary 8.38. Let X be a connected simplicial complex and a be one of its vertices.
Then, there are quasi-isomorphisms

mX

ϕ

�
��
LX/(a)

ψ
��

such that ψϕ = idmX and ϕψ ∼ idLX/(a). �

Bibliographical notes

In [115] D. Quillen endowed the category dgl1 of simply connected dgl’s with a model
category in which fibrations and weak equivalences are surjections in degrees greater
than 1 and quasi-isomorphisms, respectively. This was extended later to the unbounded
category dgl by V. Hinich in [77, Theorem 2.2.1]. The general results in this reference
could also be used to set up the same model structure in cdgl: the pair of adjoint functors

dvect
F ��

cdgl ,
U

��

in which U is the forgetful functor and F (V, d) = L̂(V, d), satisfies the hypotheses of
Theorem 1.17, and therefore there is a model structure on cdgl for which fibrations and
weak equivalences are surjective morphisms and quasi-isomorphisms, respectively.

All fibrations in this structure are also fibrations in the model structure presented
in this chapter. However, the zero map 0 → L(a), where a is a Maurer–Cartan element, is
not surjective, but it is a fibration in our model structure. Scattered in this chapter there
are many examples of quasi-isomorphisms that are not weak equivalences. However, the
zero map (L, 0) → 0 with L = L≤−2, is a weak equivalence in our structure, but not

a quasi-isomorphism. Finally, 0 → L̂(u, du) is always a cofibration in the Hinich model
structure, but in ours it is a cofibration only when u is of non-negative degree (see (i) of
Proposition 8.10).

On the other hand, in [93, §9], A. Lazarev and M. Markl consider the adjoint
functors

cdga
Ef

��
pdgl

A f

��

given by A f (L) = A (L#), E f (A) = ( ̂(E (A))#
f
, d) which endow a model category

structure on the category pdgl of profinite dgls (see Definition 3.35) by transferring
the usual model structure on cdga. In this model structure, see [93, Theorem 9.16],
fibrations are surjections and weak equivalences are morphisms f such that A f are cdga
quasi-isomorphism. With this structure on pdgl and the usual model structure on cdga,
the pair of functors A f and E f form a Quillen equivalence, and therefore they induce
equivalences between the associated homotopy categories.



Chapter 9

The Global Model Functor
via Homotopy Transfer

In subsequent chapters we will be testing our global model functor by compar-
ing it with other known Lie and cdga models of simplicial sets, mainly designed
to algebraically mirror their rational homotopy types. On the geometrical side,
we will also be comparing our realization functor with other known realization
constructions of differential graded Lie and commutative algebras.

In this, the functor
APL : sset −→ cdga

of PL-forms (see Section 1.2.1) will play an essential role, as it serves as common
nexus in all these proposed comparisons. Our first task is then to obtain the global
model functor, which up to now has been meticulously and intentionally developed
in a self-contained manner, by means of the APL functor. This is attained by a
particular procedure which constitutes the core of this chapter.

The starting point is considering the so-called Dupont contraction

APL(Δ•)
p• ��

C∗(Δ•).
ι•

��

This is given by way of i• to regard the simplicial cochains on the standard sim-
plices inside their PL-forms and a projection p• from them to the cochains in a
simplicial way and such that

p•ι• = idC∗(Δ•) and ι•p• ∼ idAPL(Δ• ) .

Then, the homotopy transfer Theorem 1.8 readily produces a simplicial C∞-struc-
ture on C∗(Δ•). Next we apply the functor E to this C∞-algebra to obtain a
differential graded Lie coalgebra. Then, by dualizing, we obtain a cosimplicial cdgl
which is precisely L•.

A usual inductive limit procedure will let us obtain LX in the same manner
for any simplicial set X of finite type.
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For all of the above, we advise the reader to review the main homotopical
properties of the functors

E , E u : cdga∞ −→ dglc

listed in Section 2.2.

9.1 The Dupont calculus on APL(Δ
•)

Recall from formula (1.11) in Section 1.1.3 that

(N∗(Δ•), d) ∼= (C∗(Δ•), d)

and thus (C∗(Δ•), d) is a simplicial object in the category of cochain complexes.

The Dupont calculus [44, 45, 132] establishes a simplicial transfer diagram of
the form

κ• �� APL(Δ•)
p• ��

C∗(Δ•).
ι•

��

Except for its existence and the particular trivial case for Δ0, the general expres-
sion of the simplicial chain homotopy κ• will not be needed. However, the explicit
descriptions of ι• and p• are necessary to attain our goals and thus we outline their
construction here. For further details on this well-known subject we refer to [45].

We begin by describing the simplicial inclusion i•.

Definition 9.1. The Whitney elementary form ωi0...ik ∈ Ak
PL(Δ

n) is defined by

ωi0...ik = k!

k∑
j=0

(−1)jtijdti0 · · · d̂tij · · · dtik .

In particular, ωi0 = ti0 and

ω0...n = n! dt1 · · · dtn .

We denote by Cn the subspace of APL(Δ
n) generated by the Whitney ele-

mentary forms. It is a simple computation to check that the face and degeneracy
operators of APL(Δ•) given in (1.15) restrict to C•. In fact one obtains precisely
the expression in (1.14) replacing the α’s by the ω’s. Hence,

C• ⊂ APL(Δ•)

becomes a sub-simplicial cochain complex.
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Definition 9.2. For each n ≥ 0 consider the basis,

{αi0...ik}
of C∗(Δn) given in formula (1.12) of Section 1.1.3, and define,

ιn : C
∗(Δn) −→ Cn, ιn(αi0...ik) = ωi0...ik .

Proposition 9.3. For each n ≥ 0,

ι• : C∗(Δ•)
∼=−→ C•

is an isomorphism of simplicial cochain complexes.

Proof. By definition, ιn is a vector space isomorphism. Also, the faces and degen-
eracies of C∗(Δ•), given in formula (1.14), commute with ι• by the above obser-
vation. Hence, we only have to check that each ιn commutes with the differential.
Recall from (1.13) of Section 1.1.3 that

d(αi0...ik) =
∑
q

αqi0...ik ,

subject to the conventions mentioned in the referred formula. Hence, we have to
show that,

d(ωi0...ik) =
∑
q

ωqi0...ik .

On the one hand,
dωi0...ik = (k + 1)!dti0 · · · dtik .

On the other hand,

ωqi0...ik = (k + 1)!

⎛⎝tqdti0 · · · dtik + dtq

( k∑
j=0

(−1)j+1tijdti0 · · · d̂tij · · · dtik
)⎞⎠ .

It is an easy exercise to check that the two expressions coincide, based on the
identities

∑
tq = 1 and

∑
dtq = 0. �

Next, we construct the simplicial projection p• as originally done by Whitney
in [132].

Definition 9.4. For each n ≥ 0 define

pn : APL(Δ
n) −→ C∗(Δn)

by

pn(ω) =

n∑
k=0

∑
i0<···<ik

Ji0...ik(ω)αi0...ik
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where

Ji0...ik(t
a1

i1
· · · tak

ik
dti1 · · · dtik) =

a1! · · · ak!
(a1 + · · ·+ ak + k)!

and

Ji0...ik(t
a1

j1
· · · tak

jk
dt�1 · · · dt�k) = 0 if one of the jr or �r �∈ {i0, . . . , ik} .

Observe that
Ji0...ik : APL(Δ

n) −→ Q

is precisely the integral of the given form over the k-simplex generated by the
vertices i0, . . . , ik.

It is easily checked that

Ji0...ik(ωj0...jk) =

{
0, if {i0 . . . ik} �= {j0 . . . jk},
1, otherwise,

and thus, pnιn = idC∗(Δn) for each n ≥ 0. In particular, each pn is a projection.

In this context, it is proven in [44, 45, 60] that

p• : APL(Δ
•) −→ C∗(Δ•)

is a morphism of simplicial cochain complexes. Moreover, there exists a simplicial
cochain map κ• of degree 1 on APL(Δ

•) for which the following holds:

Theorem 9.5. [44, 45, 60] The diagram

κ• �� APL(Δ•)
p• ��

C∗(Δ•)
ι•

��

is a simplicial homotopy retraction. �

This means that p•, ι• and κ• are simplicial maps and

p•ι• = idC∗(Δ•), dκ• + κ•d = idAPL(Δ• ) −ι•p• and κ2
• = κ•ι• = p•κ• = 0.

Example 9.6. Consider the particular case n = 1. Then (see 1.2.1),

APL(Δ
1) ∼= ∧(t1, dt1),

and simply using the definitions, we have:

ω0 = t0 = 1− t1, ω1 = t1 and ω01 = t0dt1 − t1dt0 = dt1.

Moreover,

p1(t
n
1 ) =

{
ω0 + ω1, if n = 0,

ω1, if n > 0,
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and

p1(t
n
1dt1) =

ω01

n+ 1
, for n ≥ 0.

In this case there is only one choice for the operator κ1, namely,

κ1(t
n
1 ) = 0 and κ1(t

n
1dt1) =

tn+1
1 − t1
n+ 1

for n ≥ 0.

Theorem 9.5 has the following important generalization to any simplicial set.

Corollary 9.7. Let X be a simplicial set. Then, there is a transfer diagram of the
form,

κ �� APL(X)
p ��

N∗(X).
ι

��

Proof. Write the given simplicial set as

X = lim−→
σ∈X

Δ|σ|.

Since the contravariant functor APL is left adjoint of the realization functor (see
Theorem 1.2), it sends colimits to limits. The same applies to the functor N∗

of non-degenerate cochains. See for instance the proof of Proposition 7.8 where
a right adjoint of the functor N of non-degenerate chains is explicitly described.
Therefore,

APL(X) ∼= lim←−
σ∈X

APL(Δ
|σ|) and N∗(X) ∼= lim←−

σ∈X

N∗(Δ|σ|) = lim←−
σ∈X

C∗(Δ|σ|).

Hence, taking limits as σ runs through the simplices of X in the homotopy retrac-
tion of Theorem 9.5 the assertion follows. �

Remark 9.8. It is important to note the existence of an “augmented” version of
Corollary 9.7. Let X be a simplicial set and let a ∈ X0 be a 0-simplex. The
inclusion ∗ ↪→ X mapping the trivial simplicial set to a defines augmentations

ε : APL(X) −→ Q and ε : N∗(X) −→ Q,

whose kernels are denoted respectively by

APL(X) and N
∗
(X).

Observe that, for X = Δn and choosing the 0-simplex a0, the augmentations in
C∗(Δn) and APL(Δ

n) are given by,

ε(αi) =

{
1, if i = 0,

0, if i �= 0,
and ε(ti) =

{
1, if i = 0,

0, if i �= 0.
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Hence, the maps ι• and p• in the transfer diagram of Theorem 9.5 obviously
preserve augmentations. Thus, by construction, ι and p of the transfer diagram
in Corollary 9.7 also preserve augmentations for any simplicial set X with a fixed
0-simplex. In particular, there is a transfer diagram of the form

κ �� APL(X)
p ��

N
∗
(X).

ι
��

9.2 Obtaining L• and LX by transfer

The Dupont calculus and the functors

E , E u : cdga∞ −→ cdgl

defined in (2.4) of Section 2.2 are the basic tools to obtain the cosimplicial cdgl
L• by means of the APL functor, as we explain in this section.

First, apply Theorem 1.8 to the transfer diagram of Theorem 9.5 to obtain
a simplicial C∞ structure on C∗(Δ•) and a quasi-isomorphism of simplicial C∞-
algebras

C∗(Δ•) �−→ APL(Δ
•).

whose linear part is ι•.
Next, apply the functor E u to this map to obtain a morphism of simplicial

dglc’s

E u
(
C∗(Δ•)

) �−→ E u
(
APL(Δ

•)
)

which is necessarily a quasi-isomorphism by Proposition 2.10(1). From now on, we
denote

Lc
• = E u

(
C∗(Δ•)

)
which, by definition, has the form

Lc
• =
(
Lc
(
sC∗(Δ•)

)
, d
)
, (9.1)

and whose dual is clearly a cosimplicial cdgl.

Finally, we have:

Theorem 9.9. As cosimplicial cdgl’s,

L• ∼= (Lc
•)

#.

Proof. First, notice that for each n ≥ 0,(
sC∗(Δn)

)#
= s−1C∗(Δn) = s−1Δn.

Hence, by Proposition 3.23, and using the notation in (9.1), we get an isomorphism
of cgl’s:

(Lc
n)

# ∼= L̂(s−1Δn) = Ln.
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Moreover, by construction, the linear parts of the differentials in both sides coin-
cide.

On the other hand, the face operators in (Lc•) are defined as follows: first,
extend “tensor-wise” to T c(sC∗Δ•) the usual face maps of C∗(Δ•). Then quotient
out the resulting maps by the indecomposables of the shuffle product to obtain
the faces of Lc

(
sC∗(Δ•)

)
. By dualizing, we then get precisely the cofaces of L•

given in (6.2).

Next, we prove that for n ≥ 0 and i = 0, . . . , n, any generator

ai ∈ (Lc(sC∗Δn))#

of degree −1 is a Maurer–Cartan element. By naturality, it is enough to check it
for n = 0. In this case, the inclusion of the transfer diagram in Theorem 9.5 is
given by

ι0 : C
∗(Δ0) −→ APL(Δ

0), ι(α0) = ω0,

with α0 the only generator of C∗(Δ0) which is of degree 0. But notice that ω0 =
t0 = 1 is a unit,

ω2
0 = ω0.

Hence, see (1.29), for the multiplication of the C∞ structure in C∗(Δ0) induced
by Theorem 9.5, we have:

α2
0 = α0.

Thus, in the corresponding bar construction T c
(
sC∗(Δ0)

)
, check formula (1.24),

d(sα0 ⊗ sα0) = −sα0.

Notice however (see Section 1.2.4 and particularly Example 1.4), that for the Lie
coalgebra structure on Lc

(
sC∗(Δ0)

)
,

ΔL(sα0 ⊗ sα0) = 2[sα0, sα0]
c,

where [ , ]c denotes the Lie cobracket. Hence, in the dual Lie algebra

(Lc
0)

# = (L̂(s−1Δ0), d)

this produces

da0 = −1

2
[a0, a0],

where a0 is dual to α0.

Summarizing, the cosimplicial cdgl (Lc
•)

# shares with L• the underlying cgl
structure, the linear differential and the coface operators. Moreover, all the genera-
tors of degree −1 are Maurer–Cartan elements. Hence, by the uniqueness property
of Theorem 6.7(2),

L• ∼= (Lc
•)

#. �
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The same procedure can be followed, replacing Δ• by any simplicial set X :
start by applying Theorem 1.8, this time to the transfer diagram of Corollary 9.7,
to obtain a C∞ structure on N∗(X) and a quasi-isomorphism of C∞-algebras

N∗(X)
�−→ APL(X). (9.2)

Applying the functor E u we obtain then a quasi-isomorphism of dglc’s

E u
(
N∗(X)

) �−→ E u
(
APL(X)

)
,

which again is a quasi-isomorphism by Proposition 2.10(1). We denote

Lc
X = E u

(
N∗(X)

)
which is of the form

Lc
X =
(
Lc
(
sN∗(X)

)
, d
)
.

Then, the analogue of the previous theorem reads:

Theorem 9.10. Let X be a finite type simplicial set. Then, there is an isomorphism
of cdgl’s

LX
∼= (Lc

X)#.

Proof. The proof is completely analogous to the previous one. Since X is of finite
type, sN∗(X) is a finite type cochain complex whose dual is precisely s−1X , with
the notation of Section 7.2. Hence, by Proposition 3.23, and as cgl’s

(Lc
X)# ∼= L̂(s−1X) = LX .

Moreover, the linear parts of the differentials in both sides coincide. The same
argument used in the proof of Theorem 9.9 shows that every generator of (Lc

X)#

of degree −1 corresponding to a 0 simplex of X is a Maurer–Cartan element. To
finish, apply Proposition 7.8. �

An “augmented” version of this result is easily obtained, again using the
same process: Let X be a simplicial set and let a ∈ X0 be any of its 0-simplices. in
view of Remark 9.8, the C∞ quasi-isomorphism (9.2) respects the augmentations.
Hence, we may apply the “reduced” functor E to obtain, via Proposition 2.10(1),
a quasi-isomorphism of cdgl’s:

E
(
N∗(X)

) �−→ E
(
APL(X)

)
. (9.3)

Denote the Lie coalgebra

L
c

X = E
(
N∗(X)

)
(9.4)

which is of the form
L
c

X =
(
Lc
(
sN

∗
(X)
)
, d
)
.

where N
∗
(X) denotes the augmentation ideal of N∗(X). Then, the same argument

in the proof of the two previous theorems shows:
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Theorem 9.11. Let X be a finite type simplicial set X and let a be a 0-simplex.
Then, there is an isomorphism of cdgl’s

LX/(a) ∼= (L
c

X)#. �

In particular,

Corollary 9.12. There is an isomorphism of cosimplicial cdgl’s,

L•/(a0) ∼= (L
c

•)
#. �

Remark 9.13. In the augmented case it will be more convenient later on to give
now a more precise reformulation of (9.3) whenever X = Δn and for any n ≥ 0.
Indeed, in that case, and as we proceeded above, first apply Theorem 1.8 to the
simplicial diagram of Theorem 9.5, and then the functor E to obtain simplicial
dglc quasi-isomorphisms

L
c

•
jn

�
��
E
(
APL(Δ

•)
)

q•
��

such that
q•i• = idLc

n
and i•q• ∼ id

E
(
APL(Δ•)

) .
In particular, this exhibits L

c

• as a simplicial deformation retract of E
(
APL(Δ

•)
)
.
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Proposition 5.4].



Chapter 10

Extracting the Sullivan, Quillen
and Neisendorfer Models
from the Global Model

One of the main goals in this chapter is to show that our global model functor

L : sset −→ cdgl

effectively provides the (homotopy type of the) Quillen functor

λ : sset1 −→ dgl1

when restricted to 1-reduced simplicial sets of finite type. Let X be such a simpli-
cial set and let a ∈ X0 be a 0-simplex. Then,

La
X 	 λ(X).

More generally, if X is nilpotent, La
X has the homotopy type of the Neisendorfer

model of X (see Definition 3.28).

The key ingredient to attain this result is the existence of a quasi-isomorphism

E
(
APL(X)

)# �−→ LX/(a),

easily deduced from the machinery developed in the past chapter, which relates,
by means of the functor E , the component of the global model of a connected
simplicial set X at a given 0-simplex with APL(X).

On the other hand, this weak equivalence also constitutes the starting point
for the construction of a bridge linking Sullivan models with Lie models. In fact,
we provide explicit algorithms to obtain a Sullivan model from the minimal Lie
model of a given connected simplicial set, and vice versa.

As a result of all of the above we can show, for instance, that the homotopy Lie
algebra π(∧,V,d) associated to the minimal model (∧V, d) of a connected simplicial
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set X of finite type is isomorphic to the graded Lie algebra H(La
X). In particular

H0(L
a
X), with the group structure given by the BCH product, is isomorphic to the

Malcev Q-completion of π1(X).

The explicit link between the Sullivan and the Lie model also enables us to
introduce the notion of coformality by means of the following result: for a given
connected simplicial set of finite type, the differential on its Sullivan minimal model
is purely quadratic if and only if its minimal Lie model is quasi-isomorphic to a
cdgl with zero differential.

10.1 Connecting the global model with the

Sullivan, Quillen and Neisendorfer models

In this section and as usual, a will denote a 0-simplex of the simplicial set X or a
degree −1 generator of LX .

We also note that, in what follows, given a cdga A, the nomenclature EA#

is not ambiguous as it can only denote the cdgl dual of the dglc EA. In the same
way, if A is of finite type, LA# does not lead to confusion as can only denote the
Quillen functor L applied to the cdgc A#.

Recall also (see Corollary 7.26) the injective quasi-isomorphism

La
X

�
↪−−→ LX/(a)

which is also a weak equivalence, as observed in Proposition 8.7. Thus, in the
forthcoming results any of these cdgl’s can be chosen if one is just interested on
its homotopy type. The following crucial observation precisely relates these cdgl’s
with the PL-forms and therefore, with a given Sullivan model of X .

Theorem 10.1. Let X be a connected simplicial set of finite type and let (∧V, d) be
a Sullivan model of X. Then, there are cdgl quasi-isomorphisms

E (∧V, d)# �←− E
(
APL(X)

)# �−→ LX/(a).

That is, in terms of the model category in cdgl, the cdgl’s E (∧V, d)# and
LX/(a) have the same homotopy type.

Proof. For the first quasi-isomorphism choose a cdga quasi-isomorphism,

(∧V, d) �−→ APL(X),

apply the functor E and Proposition 2.10(1) to obtain a dglc quasi-isomorphism

E (∧V, d) �−→ E
(
APL(X)

)
,

and finally, take its dual.
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For the second quasi-isomorphism consider the dglc quasi-isomorphism in
formula (9.3),

L
c

X
�−→ E
(
APL(X)

)
.

By taking duals and applying Theorem 9.11 we get the desired map

E
(
APL(X)

)# �−→ LX/(a). �

We see now that the previous result is all we need to show that, whenever X
is a nilpotent simplicial set of finite type, then La

X has the same homotopy type
as the Neisendorfer model of X . In particular, if X is simply connected, we also
recover λ(X), the Quillen functor on X .

Recall from Definition 3.28 that, given the minimal Sullivan model (∧V, d)
of a nilpotent simplicial set of finite type, the Neisendorfer model of X is the dgl

L (∧V, d)#.

Recall also that, when X is simply connected, a well-known theorem of M. Ma-
jewski in [97] connects λ(X) with the Neisendorfer model of X by a sequence of
quasi-isomorphisms, and thus, these two dgl’s have the same homotopy type.

Theorem 10.2. Let X be a nilpotent, finite type simplicial set. Then, La
X is quasi-

isomorphic to the Neisendorfer model of X. In particular, if X is simply connected,

La
X 	 λ(X).

Proof. By Proposition 3.27, together with Theorem 10.1, we have the following
chain of weak equivalences:

La
X 	 E (∧V, d)# ∼= L̂ (∧V, d)# 	 L (∧V, d)#. �

Remark 10.3. Observe that this result partially justifies working with complete
cdgl’s, or more generally (see Remark 3.9) with pronilpotent dgl’s, instead of
profinite dgl’s. For instance, if X is an infinite wedge of spheres of dimension 2,
then λ(X) is the free graded Lie algebra L(V ) on an infinite-dimensional vector
space V concentrated in degree 1. As for any other simply connected dgl, λ(X) is
equal to its completion, and weakly equivalent to La

X by the previous result. On
the other hand however, the profinite completion λ(X)f is much bigger than λ(X).

Next, we give another important geometrical consequence of Theorem 10.1.
Given the Sullivan minimal model (∧V, d) of a connected simplicial set of finite
type, we denote by π(∧V,d) its homotopy Lie algebra. See Section 1.2.2 and in
particular formula (1.21) for an explicit description of this graded Lie algebra.

Theorem 10.4. Let X be a connected simplicial set of finite type and let (∧V, d) be
its Sullivan minimal model. Then, as graded Lie algebras,

π(∧V,d)
∼= H(La

X).
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Proof. Recall from Lemma 2.13 that

H(E
(∧V, d)) ∼= sV (10.1)

as graded Lie coalgebras, where the Lie coalgebra structure in sV is given in
Example 1.5. In the same example it is also shown that the dual graded Lie algebra
is precisely the homotopy Lie algebra of (∧V, d). Hence, taking duals in equation
(10.1) and applying Theorem 10.1 we obtain the following chain of isomorphisms
of graded Lie algebras:

H(La
X) ∼= H(E

(∧V, d))# ∼= π(∧V,d). �

As a corollary, we obtain:

Theorem 10.5. Let X be a connected simplicial set of finite type. Then, H0(L
a
X)

is the Malcev completion of the fundamental group π1(X).

Proof. Let (∧V, d) be the Sullivan minimal model of X . Then, by the previous

theorem, H0(L
a
X) is isomorphic to the Lie algebra V #

1 , which is the Malcev com-
pletion of π1(X) by [51, Theorem 7.5]. �

Recall from Theorem 10.1 that, for any connected simplicial set of finite
type X ,

E
(
APL(X)

)# 	 LX/(a). (10.2)

We finish the section by detecting a dglc inside E
(
APL(X)

)#
whose dual is pre-

cisely the minimal Lie model of X :

Theorem 10.6. Let X be a connected simplicial set. Then, there is a free dglc

mc
X =
(
Lc
(
sH̃∗(X)

)
, d
)
,

in which the linear part of the differential is zero, which is quasi-isomorphic to
E
(
APL(X)

)
.

Moreover, whenever X is of finite type, the dual of mc
X is the minimal Lie

model mX of X.

Proof. As in Remark 9.8 fix a 0-simplex a ∈ X and its corresponding augmentation
in N∗(X). This induces an augmentation in H∗(X) whose augmentation ideal is

precisely the reduced homology H̃∗(X). Choose an augmentation transfer diagram
of the form

�� N∗(X)
��
(H∗(X), 0),��

whose existence is guaranteed by Proposition 1.9. Also, consider the transfer dia-
gram of Corollary 9.7,

κ �� APL(X)
p ��

N∗(X),
ι

��



10.2. From the Lie minimal model to the Sullivan model and vice versa 217

in which again we assume that all maps preserve the corresponding augmenta-
tions. Composing both homotopy retractions via Proposition 1.10 produces a new
transfer diagram of augmented maps,

�� APL(X)
��
(H∗(X), 0).��

Then, by Theorem 1.8, there is a quasi-isomorphism of C∞-algebras

(H∗(X), 0)
�−→ APL(X),

to which we apply the functor E obtaining in this way a dglc quasi-isomorphism:(
Lc
(
sH̃∗(X)

)
, d
) �−→ E

(
APL(X)

)
.

The linear part of the differential d is 0, by construction. By Proposition 3.23, if
X is of finite type, the dual dgl,(

Lc
(
sH̃∗(X)

)
, d
)# ∼= (L̂(s−1H̃∗(X)

)
, d
)
,

is a minimal cdgl which is then quasi-isomorphic to E
(
APL(X)

)#
. In view of

(10.2), it follows that (
L̂
(
s−1H̃∗(X)

)
, d
) 	 La

X ,

and thus, by the uniqueness of the minimal model of X ,(
L̂
(
s−1H̃∗(X)

)
, d
) ∼= mX . �

Definition 10.7. Given a connected simplicial set X , the dglc mc
X obtained in the

preceding theorem is called the minimal dglc model of X .

10.2 From the Lie minimal model to
the Sullivan model and vice versa

Let X be a simplicial set of finite type. It is quite easy to construct a Sullivan
model of X from its minimal Lie model.

Theorem 10.8. Let mX be the minimal Lie model of the connected, finite type
simplicial set X. Then, the cdga

lim−→
n

C ∗(mX/mn
X)

is a Sullivan model of X.
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Proof. Let mX = (L̂(V ), d) and mc
X = (Lc(W ), d) be the minimal Lie model and

minimal dglc model of X , respectively. Hence, by Theorem 10.6,

E
(
APL(X)

) 	 mc
X and (mc

X)# ∼= mX .

First apply the functor A to the above quasi-isomorphism so that, in view of
Propositions 2.10(2) and 2.15, we obtain,

APL(X) 	 A E
(
APL(X)

) 	 A (mc
X). (10.3)

Note that
mc

X = lim−→
n

mc
n, with mc

n =
(
(Lc)≤n(W ), d

)
. (10.4)

Since A is a left adjoint functor, it commutes with inductive limits, and therefore

APL(X) 	 A (lim−→
n

mc
n) 	 lim−→

n

A (mc
n).

Now, since X is of finite type, each mc
n is also of finite type and its dual cdgl is

mc
n
# = mX/mn

X . (10.5)

Hence, as observed in Remark 2.8,

A (mc
n) = C ∗(mc

n
#) = C ∗(mX/mn

X),

and therefore,
APL(X) 	 lim−→

n

C ∗(mX/mn
X).

Finally, observe that the right-hand side of this equation is a Sullivan algebra
which, being quasi-isomorphic to APL(X), is a Sullivan model of X . �

Recovering the minimal Lie model of a simplicial set from a given Sullivan
model is more complicated. We first need the following.

Lemma 10.9. Any cdga A whose cohomology is of finite type with H0(A) = Q has
a Sullivan model (∧W,d) in which the differential has only linear and quadratic
terms and each W (n) is of finite type.

Proof. Consider first H(A) with trivial differential and also, with trivial multipli-
cation, except onH0(A). We then construct, in the standard and classical bigraded
way (see, for instance, Example 7 of [50, §12(d)]), the minimal model of H(A),

ρ : (∧W,d2)
�−→ H(A).

By construction, d2 is quadratic and W inherits a second lower gradation

W =
⊕
q≥0

Wq such that d2Wq ⊂ (∧2W )q−1.
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Moreover, for each n ≥ 0,

W (n) =
⊕
q≤n

Wq

is a finite type graded vector space. Starting from ρ we now construct a cdga
morphism

ϕ : (∧W,d)−→A,

in which d = d1 + d2 with d1W ⊂ W and d2 exactly as before. For this, we define
d0 and ϕ(n) inductively on ∧W (n) so that

ϕ(n) : (∧W (n), d1 + d2) −→ A

is a cdga morphism. For n = 0, set

ϕ(0) : ∧W (0) −→ A

by declaring ϕ(0)(w) to be a cycle representing ρ(w). Suppose we have constructed

ϕ(n− 1): (∧W (n− 1), d1 + d2) −→ (A, d),

and let w be an element of a given basis of Wn. Since d22 = 0 in W and d2 =
(d1 + d2)

2 = 0 in W (n− 1), we have d2d1d2w = −d1d
2
2w = 0. Therefore, d1d2w is

a d2-cycle in ∧2W . Since ρ is a quasi-isomorphism, this is a d2-boundary:

d1d2w = d2z, with z ∈ W1 ⊕ · · · ⊕Wn−1.

Moreover, d2d1z = −d1d2z = −d21d2w = 0. Therefore, d1z is a d2-cycle in W1 ⊕
· · · ⊕Wn−1, so that d1z = 0.

It follows that d2w − z is a (d1 + d2)-cycle in ∧W (n − 1) and there are an
element u in W0 and an x ∈ A such that

ϕ(n− 1)(d2w − z − u) = dx.

We define
d1w = −z − u and ϕ(n)(w) = x.

This defines a differential d = d1+d2 on ∧W and the cdga morphism ϕ : (∧W,d) →
A. Finally, Since ρ is a quasi-isomorphism, a spectral sequence argument shows
that ϕ is also a quasi-isomorphism. Hence, (∧W,d) is the Sullivan model with the
desired properties. �

Observe that, for each n ≥ 0, since W (n) is of finite type and the differential
in (∧W,d) only has linear and quadratic terms, then

(∧W (n), d) ∼= C ∗(Ln)

for a finite-dimensional nilpotent dgl Ln. Indeed, if V = W#
0 , one easily checks

that
Ln = (L(V )/L>n(V ), d).



220 Chapter 10. Extracting the Sullivan, Quillen and Neisendorfer Models

Consider the cdgl

L = lim←−
n

Ln = (L̂(V ), d).

With the above notation, let X be a connected simplicial set of finite type and let
A be its Sullivan minimal model. Then:

Proposition 10.10. L is the minimal Lie model of X.

Proof. By construction,

L = (Lc(V ), d)#,

where (Lc(V ), d) is a Sullivan dglc (see Definition 2.14). Therefore, by Proposition
2.15, we have a quasi-isomorphism

(Lc(V ), d)
�−→ EA (Lc(V ), d). (10.6)

The functor A is a left adjoint functor and thus commutes with inductive limits.
Take also into account Remark 2.8, by which C ∗(M) = A (M#) whenever M is
finite type and connected. Finally, recall from Theorem 10.1 that

E (∧W,d)# 	 LX/(a).

With all this in mind, plus equation (10.6), we obtain the following sequence of
quasi-isomorphisms:

L = (Lc(V ), d)# 	 (EA (Lc(V ), d))
#

=
(
EA lim−→

n

(Lc≤n(V ), d)
)#

=
(
E lim−→

n

A (Lc≤n(V ), d)
)#

∼= (E lim−→
n

C ∗(L/L>n)
)# ∼= (E lim−→(∧W (n), d)

)#
= E (∧W,d)# 	 La

X .

Thus, L is necessarily the minimal Lie model of X . �

10.3 Coformal spaces

Let X be a connected simplicial set of finite type, with minimal Lie model mX

and minimal Sullivan model (∧V, d).
Proposition 10.11. With the above notations, the following assertions are equiva-
lent:

(1) The differential d in (∧V, d) is quadratic, d : V → ∧2V .

(2) mX is quasi-isomorphic to (H(mX), 0).
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Proof. First assume that the differential in the Sullivan minimal model (∧V, d) is
quadratic and, as in (1.20), denote by

L = π(∧V,d)

the rational homotopy Lie algebra of (∧V, d), which is considered henceforth as
cdgl with zero differential. Since X is of finite type, L is isomorphic to H(La

X) (see
Theorem 10.4) and in particular, each L/Ln is also of finite type. In view of the
explicit form of the bracket in L given in (1.21), one readily sees that,

(∧V, d) = lim−→
n

C ∗(L/Ln).

Note also that in view of Remark 2.8, for each n ≥ 1,

C ∗(L/Ln) = A
(
(L/Ln)#

)
.

Let mc
X be the minimal dglc model of X (see Definition 10.7) and recall that, as

noted in (10.3),

APL(X) 	 A (mc
X).

Finally, take into account that A preserves inductive limits as it is left adjoint.

By all of the above, we have the identities

A (mc
X) 	 APL(X) 	 (∧V, d) = lim−→

n

C ∗(L/Ln) = lim−→
n

A
(
(L/Ln)#

)
= A
(
lim−→
n

(L/Ln)#
)
.

In particular,

A (mc
X) 	 A

(
lim−→
n

(L/Ln)#
)
.

Now we apply the functor E to both sides and take into account Proposition
2.10(1) together with Proposition 2.15 to obtain:

mc
X 	 EA (mc

X) 	 EA (lim−→
n

(L/Ln)#
) 	 (lim−→

n

(L/Ln)#
)
.

By taking duals, it follows that

mX 	 (lim←−L/Ln, 0) = (L, 0) (10.7)

and thus, mX is quasi-isomorphic to (H(mx), 0).
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Conversely, assume that there is a quasi-isomorphism

mX
�−→ (L, 0), with L = H(mX).

Consider, for each n ≥ 1, the induced morphism,

mX/mn
X

�−→ L/Ln

and the corresponding dual

(L/Ln)#
�−→ (mX/mn

X)#.

Take inductive limits to obtain a quasi-isomorphism,

lim−→
n

(L/Ln)#
�−→ lim−→

n

(mX/mn
X)#.

In view of the identities (10.4) and (10.5), the codomain of this map is

lim−→(mX/mn
X)# = mc

X ,

that is, the minimal dglc model of X .

Hence, if we denote by Lc the dglc lim−→n
(L/Ln)# with zero differential, we

have a quasi-isomorphism

Lc �−→ mc
X .

By Proposition 2.10(2), the functor A preserves quasi-isomorphisms in dglc0 and,
as observed above, A (mc

X) 	 APL(X). Hence,

A (Lc) 	 A (mc
X) 	 APL(X) 	 (∧V, d).

But, since the differential in the dglc Lc is 0, we have that A (Lc) is a minimal
cdga and its differential is purely quadratic. Hence, A must be isomorphic to
(∧V, d). �
Definition 10.12. A connected simplicial set of finite type satisfying any of the
equivalent conditions of the above proposition is called coformal.

The following is an immediate consequence of the identity (10.7) in the proof
of Proposition 10.11.

Corollary 10.13. Let X be coformal space. Then, the minimal Lie model of X is
the minimal Lie model of (L, 0), where L is the rational homotopy Lie algebra of
the minimal Sullilvan model of X. �



Chapter 11

The Deligne–Getzler–Hinich Functor
MC• and Equivalence of Realizations

Recall from Section 1.2.1 that the Sullivan geometrical realization of a given cdga
A is given by the simplicial set

〈A〉S = Homcdga

(
A,APL(Δ

•)
)
.

In the case where the cdga is of the particular form A = C ∗(L) for a connected
finite type dgl L, we start by showing that

〈C ∗(L)〉S ∼= MC
(
APL(Δ

•)⊗ L
)
.

The latter simplicial set however makes sense for any cdgl, considering the com-
plete tensor product,

MC•(L) = MC
(
APL(Δ

•)⊗̂L
)

and it is known as the Deligne–Getzler–Hinich ∞-groupoid of L. This is a well-
studied realization functor of cdgl’s whose main features are collected here in
detail.

After that we present one of the main results in this text: for any connected
cdgl L whose indecomposables L/[L,L] are of finite type,

〈L〉 	 MC•(L).

Then, we show the following, which constitutes another highlight of this book.
Let X be a connected simplicial set of finite type, let a be one of its 0-simplices,
and let (∧V, d) be a Sullivan model of X . Then, there is a sequence of homotopy
equivalences of simplicial sets,

Q∞X 	 〈∧V, d〉 	 MC•(La
X) 	 〈La

X〉,
where Q∞X denotes the Bousfield–Kan Q-completion of X . In particular,

〈LX〉 	 Q∞X+,

where Q∞X+ denotes the disjoint union of Q∞X with an external point.
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An immediate consequence is that, in the simply connected finite type con-
text, the realization functor coincides with the classical Quillen realization: if L is
a simply connected dgl of finite type, then

〈L〉 	 〈L〉Q.

11.1 The set of Maurer–Cartan elements

as a set of morphisms

Let L be a connected dgl and let A be a cdga. We assume that either L is finite-
dimensional, or that it has finite type and Aq = 0 unless 0 ≤ q ≤ N for some N .
Let

C ∗(L) = (∧(sL)#, d)

be the cochain algebra on L (see Definition 2.7), and choose a graded basis {xi}
for L which provides a basis {xi} for (sL)# via the pairing

〈xi, sxj〉 = −δij .

Finally, consider the linear isomorphism

Hom0((sL)
#, A) = Homcga(C

∗(L), A)
ϕ−→ (A⊗ L)−1,

defined by

ϕ(f) =
∑
i

(−1)|xi|f(xi)⊗ xi.

Proposition 11.1. Under the above hypotheses on L and A,

(i) The morphism ϕ restricts to a natural bijection

Homcdga(C
∗(L), A) ∼= MC(A⊗ L) .

(ii) Moreover, ϕ sends homotopic maps to gauge equivalent MC elements and
induces a bijection

[C ∗(L), A] ∼= M̃C(A⊗ L) .

Proof. (i) We use the structure coefficients αj
i and ckij , defined by

dxi =
∑
j

αj
ixj and [xi, xj ] =

∑
k

ckij xk .

Recall from (2.3) the description of the differential on the cochain functor. From
the expression of the linear part 〈d1g, c〉 = −(−1)|g|〈g, dc〉 we deduce that

d1xi = (−1)|xi|
∑
r

αi
r xr .
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On the other hand, the form of the quadratic part 〈d2xi, sxj ∧ sxk〉 =
(−1)|xk|〈xi, s[xj , xk]〉 shows that

d2xi = −
∑
j≤k

(−1)|xk|cijkxk xj .

A straightforward computation yields that

ϕ(f) =
∑

(−1)|xi|f(xi)⊗ xi

is an MC element.

Conversely, if
∑

ai ⊗ xi is an MC element, consider the cdga morphism

f : C ∗(L) −→ A, defined by f(xi) = ai.

In fact, another straightforward computation, similar to the one above, shows that
f commutes with the differentials.

(ii) Let
Φ: C ∗(L) −→ A⊗ ∧(t, dt)

be a homotopy between the morphisms f, g : C ∗(L) → A. Then, by (i),

ϕ(Φ) ∈ MC(A⊗ ∧(t, dt) ⊗ L)

and satisfies
ε0ϕ(Φ) = ϕ(f) and ε1ϕ(Φ) = ϕ(f).

Since A⊗∧(t, dt)⊗L is the path object of A⊗L (Proposition 8.17), by Corollary
8.27 this implies that ϕ(f) and ϕ(g) are gauge equivalent.

For the converse, if u and v are gauge equivalent Maurer–Cartan elements in
A⊗ L, then by Corollary 8.27, there is a Maurer–Cartan element

z ∈ MC(A⊗ ∧(t, dt)⊗ L) such that ε0(z) = u, ε1(z) = v.

By (i), this yields a cdga morphism

Φ: C ∗(L) −→ A⊗ ∧(t, dt) such that ϕ(Φ) = z.

Then u = ϕ(ε0 ◦ Φ) and v = ϕ(ε1 ◦ Φ). Therefore ϕ−1u and ϕ−1v are homotopic
morphisms. �

If we want to extend this result to cdgl we need to be precise on the bound-
edness and/or finiteness assumptions. Let

L = lim←−
n

L/Fn

be a connected cdgl and let A be a cdga. We assume that either each L/Fn is
finite-dimensional, or each L/Fn has finite type and Aq = 0 unless 0 ≤ q ≤ N
for some N . Note, for instance, that each L/Fn is finite-dimensional or has finite
type if that is the case for L/[L,L].
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Proposition 11.2. Under the above hypotheses on L and A there is a natural bi-
jection

ϕ : Homcdga(lim−→
n

C ∗(L/Fn), A)
∼=−→ MC(A⊗̂L) .

Moreover, ϕ sends homotopic maps to gauge equivalent MC elements and induces
a bijection

[lim−→
n

C ∗(L/Fn), A] ∼= M̃C(A⊗̂L) .

Proof. For each n ≥ 1 consider the bijection given by Proposition 11.1,

ϕn : Homcdga(C
∗(L/Fn), A)

∼=−→ MC(A⊗ L/Fn)

whose hypotheses are clearly fulfilled. Take the inverse limit of these bijections to
obtain in this case another bijection

ϕ : lim←−
n

Homcdga(C
∗(L/Fn), A)

∼=−→ lim←−
n

MC(A⊗ L/Fn).

But,

lim←−
n

Homcdga(C
∗(L/Fn), A) ∼= Homcdga(lim−→

n

C ∗(L/Fn), A)

and, since MC commutes with inverse limits,

lim←−
n

MC(A ⊗ L/Fn) ∼= MC(lim←−
n

A⊗ L/Fn) = MC(A⊗̂L).

Thus, ϕ is the asserted bijection.

The second part of the statement follows directly as in Proposition 11.1. �

It is convenient to note that, if we only care about the homotopy classes of
morphisms or the set M̃C, we can relax the hypotheses in the two previous results.

Let first L 	 L′ be connected, quasi-isomorphic cdgl’s and let A 	 B be
quasi-isomorphic cdga’s. Assume that L and A satisfy the conditions of Proposition
11.1. Then,

Corollary 11.3. [C ∗(L′), B] ∼= M̃C(B⊗̂L′).

Proof. This follows directly from Proposition 11.1 combined with Proposition 4.38
and the fact that C ∗ preserves quasi-isomorphisms (see Section 2.1). �

On the other hand, let A 	 B be quasi-isomorphic cdga’s and let f : L → L′

be a cdgl morphism such that the induced morphism fn : Fn/Fn+1 �−→ Gn/Gn+1

is a quasi-isomorphism for n ≥ 1. Assume that L and A satisfy the conditions of
Proposition 11.2. Then, the same argument applies to yield:

Corollary 11.4. [lim−→n
C ∗(L′/Gn), B] ∼= M̃C(B⊗̂L′). �
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Next, we analyze the “dual” situation. Given a cdgc C and a dgl L, we con-
sider the classical convolution dgl structure on Hom(C,L) in which the differential
and the bracket are given by

(df)(c) = d(fc)− (−1)|f |f(dc),

[f, g](c) =
∑
i

(−1)|g| |ci|[f(ci), g(c′i)] with Δc =
∑
i

ci ⊗ c′i .

We define the linear map

θ : Homcgc

(
C,C (L)

) −→ Hom−1(C,L)

where θ(g) is the composition

C
g �� C (L)

ω �� L,

in which ω(sx) = −x, ω(1) = ω(∧≥2sL) = 0.

Proposition 11.5. Let C be a cdgc and L a cdgl. Then, with the above notation,

(i) θ induces a natural bijection

θ : Homcdgc

(
C,C (L)

) ∼= MC
(
Hom(C,L)

)
.

(ii) If moreover L and C# satisfy the condition of Proposition 11.2, we have a
commutative diagram

Homcdgc

(
C,C (L)

)
ρ1∼=
��

θ
∼=

�� MC
(
Hom(C,L)

)
ρ2∼=
��

Homcdga(lim−→n
C ∗(L/Fn), C#)

ϕ

∼=
�� MC(C#⊗̂L)

where {Fn} is the filtration associated to L and ρ1 and ρ2 are induced by
dualization and ϕ is the isomorphism of Proposition 11.2.

Proof. Part (i) follows from an easy computation. For (ii) note first that, with the
notation in the beginning of the section, we have

ω =
∑
i

xi xi,

considering each xi as a linear map in Hom(C (L),Q). Then,

ρ2θ(g) =
∑
i

xi ◦ g ⊗ xi =
∑
i

ρ1(g)(xi)⊗ xi = ϕρ1(g). �
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11.2 Simplicial contractions of APL(Δ
•)

Recall from Proposition 1.1 that APL(Δ
•) is a contractible simplicial cdga. How-

ever, in the next section we need to be much more precise and we will make use
of a particular contraction which is compatible with faces and degeneracies. The
purpose here is to present this contraction in detail along the lines of [45]. To this
end we first make some arrangements concerning notation:

Recall from the identity (1.16) in Section 1.2.1 that

APL(Δ
n) ∼= Ωn = (∧(t0, . . . , tn, dt0, . . . , dtn)/I, d),

where |ti| = 0, |dti| = 1, d(ti) = dti, and I is the ideal generated by (
∑n

i=0 ti)− 1
and
∑n

i=0 dti.

In particular

APL(Δ
1) = (∧(t0, t1, dt0, dt1)/I) ∼= ∧(t, dt).

On the other hand,

APL(Δ
n ×Δ1) ∼= APL(Δ

n)⊗APL(Δ
1),

whose elements can therefore be written as

ω = ω1(t) + ω2(t)dt, with ω1(t), ω2(t) ∈ APL(Δ
n)⊗ ∧t. (11.1)

We will rename this cdga as
APL(Δ

n × I).

Note that
APL(Δ

• × I)

is a simplicial cdga with the faces and degeneracies induced by those of APL(Δ
•).

Also, for any n ≥ 0 and any i = 0, . . . , n we define the evaluation at the
vertex i as the augmentation

evi : APL(Δ
n) −→ Q, evi(tj) =

{
1, if i = j,

0, otherwise.

Finally, and for simplicity of notation, we write f∗ to denote the morphism APL(f)
for any given simplicial map f .

The special simplicial contraction we need is given by the following:

Proposition 11.6. There are linear maps hi : APL(Δ
n) → APL(Δ

n) of degree 1,
with i = 0, . . . , n, such that

dhi + hid = id− evi, evi hi = h2
i = 0,

and the following identities are satisfied:

djhi =

{
hidj , ifi < j,

hi+1dj , ifi ≥ j,
hisj =

{
sjhi, ifi ≤ j,

sjhi−1, ifi > j.
(11.2)

Here we always consider Q = Im evi as a sub-cdga of APL(Δ
n).



11.2. Simplicial contractions of APL(Δ
•) 229

We begin by defining integration along the fibre as the following linear map
of degree 1:

μ : APL(Δ
n × I) −→ APL(Δ

n), μ(ω) = (−1)p−1

∫ 1

0

ω2(t)dt ,

with ω = ω1(t) + ω2(t)dt as in (11.1).

Next, consider the topological injections i0, i1 : Δ
n → Δn × I, ik(x) = (x, k),

and denote in the same way the corresponding induced injections

i0, i1 : Δ
n −→ Δn ×Δ1.

Then we have:

Lemma 11.7. Integration along the fibre is a simplicial map which satisfies

dμ+ μd = i∗1 − i∗0.

Proof. First, an easy computation shows that the map

i∗o − i∗1 : APL(Δ
n × I) −→ APL(Δ

n)

is given by
(i∗1 − i∗0)(ω) = ω1(1)− ω1(0).

Now, for ω ∈ APL(Δ
n),

dω = dω1(t) + (−1)p
∂ω1(t)

∂t
dt+ dω2(t) dt.

Therefore,

μdω =

∫ 1

0

∂ω1(t)

∂t
dt+ (−1)p

∫ 1

0

dω2(t)dt .

On the other hand,

dμ(ω) = (−1)p−1

∫ 1

0

dΔω2(t)dt.

Hence,

(dμ+ μd)(ω) =

∫ 1

0

∂ω1(t)

∂t
dt = ω1(1)− ω1(0) = (i∗1 − i∗0)(ω).

Finally, one easily checks the commutativity of these diagrams, which proves the
simplicial character of μ:

APL(Δ
n × I)

μ ��

APL(δ
i×id)

��

APL(Δ
n)

di

��
APL(Δ

n−1 × I)
μ �� APL(Δ

n−1) ,

APL(Δ
n × I)

μ ��

APL(σ
i×id)

��

APL(Δ
n)

si

��
APL(Δ

n+1 × I)
μ �� APL(Δ

n+1) .

�
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Proof of Proposition 11.6. For each i = 0, . . . , n, consider the (topological) map

bi : Δ
n × I −→ Δn, bi(x, t) = tx+ (1 − t)ei ,

where ei is the ith vertex of Δn and, as before, denote in the same way the induced
simplicial map bi : Δ

n ×Δ1 → Δn.

We remark that, as topological maps Δn → Δn, the composition bi ◦ i0 is
the constant map at the vertex ei and bi ◦ i1 is the identity on Δn. Therefore,

dhi + hid = dμb∗i + μb∗i d = (i∗1 − i∗0)b
∗
i = id− evi .

The identities in (11.2) are direct consequences of the definition of hi and the
simplicial character of μ.

It remains to prove that evi hi = 0 = h2
i . For the first identity, note that the

map

I
ei×id−→ Δn × I

bi−→ Δn

is the constant map at the vertex ei. Hence, (evi ⊗ id)b∗i = 0 on A≥1
PL(Δ

n), and so

evi μ b∗i = μ(evi⊗ id)b∗i = 0.

On the other hand, consider the map

ϕ = bi ◦ (bi × id) : Δn × I × I −→ Δn, ϕ(x, s, t) = tsx+ (1− ts)ei,

and denote in the same way the corresponding simplicial map. For ω ∈ Ap
PL(Δ

n),
write

ϕ∗(ω) = ω1 + ω2dt+ ω3ds+ ω4dsdt,

with
ωk ∈ APL(Δ

n)⊗ ∧(t, s) for k = 1, 2, 3, 4.

Then,

h2
i (ω) =

∫∫
I×I

ω4ds dt.

But observe that ϕ factorizes as the composition

Δn × I × I
ψ−→ Δn × I

bi−→ Δn,

with ψ(x, s, t) = (x, st). Hence, the double integral is equal to zero. �
Example 11.8. An easy computation shows that

b∗i (tj) =

{
ttj , if j �= i,

tti + (1− t), if j = i.

Hence, we have:

h0(dt1 · · · dtq) = 1

q

q∑
i=1

(−1)i−1tidt1 · · · d̂ti · · · dtq =
1

q!
ωi1...iq .



11.3. The Deligne–Getzler–Hinich ∞-groupoid 231

11.3 The Deligne–Getzler–Hinich ∞-groupoid

Given a cdgl L and any n ≥ 0, consider the cdgl

APL(Δ
n)⊗̂L.

The morphisms di ⊗ idL and sj ⊗ idL induce cdgl morphisms, which we also
denote by

di : APL(Δ
n)⊗̂L −→ APL(Δ

n−1)⊗̂L

and

sj : APL(Δ
n)⊗̂L −→ APL(Δ

n+1)⊗̂L,

which makes of
APL(Δ

•)⊗̂L

a simplicial cdgl.

Definition 11.9. The Deligne–Getzler–Hinich ∞-groupoid is the functor

MC• : cdgl −→ sset

which associates to each cdgl L the simplicial set

MC•(L) = MC(APL(Δ
•)⊗̂L).

This functor was introduced in [76] and then studied in depth in [60]. As we
will see later, this is in fact a generalization of the Deligne groupoid of L. Here,
we only collect two important properties of this functor that will be essential in
the next section.

The first one, which already appears in [76, Proposition 2.2.3] and then in [60,
Proposition 4.7] for L∞-algebras, asserts that MC• takes surjective cdgl morphisms
to Kan fibrations. In particular, it preserves fibrations of connected cdgl’s.

Proposition 11.10. If f : L → L′ is a cdgl surjective morphism, then

MC•(f) : MC•(L) −→ MC•(L′)

is a Kan fibration with fibre MC•(K), where K = ker f .

For the proof we need some preliminaries. Given any cdgl L, we extend the
degree −1 linear maps hi’s defined in Proposition 11.6 to

hi : APL(Δ
n)⊗̂L −→ APL(Δ

n)⊗̂L

by tensoring with the identity on L. Then, by the same result, we have

dhi + hid = id−evi ,
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where

evi : APL(Δ
n)⊗̂L −→ L, evi(ω ⊗ γ) = evi(ω)γ.

Denote

Ki = ker evi .

A first version of the following lemma can be found in [78, Section 8.2], while a
general statement for L∞-algebras is in [60, Lemma 4.6].

Lemma 11.11. For any i = 0, . . . , n, the map

Φ: MCn(L)
∼=−→ MC(L)× d(Ki)0, Φ(α) =

(
evi(α), dhi(α)

)
,

is a bijection.

Proof. Obviously, evi preserves MC elements, as it is a cdgl morphism. Also, since
evi hi = 0 (see Proposition 11.6), dhi(α) ∈ d(Ki)0 for any α ∈ MCn(L).

We first prove the surjectivity of Φ. Let μ ∈ MC(L) and ν ∈ d(Ki)0. For
each k ≥ 1 we inductively construct degree −1 elements αk ∈ APL(Δ

n)⊗̂L, not
necessarily Maurer–Cartan, such that

evi(αk) = μ and dhi(αk) = ν.

For k = 0, set

α1 = μ+ ν.

As evi commutes with differentials and ν ∈ dKi,

evi(α1) = evi(μ) = μ.

On the other hand, write ν = dγ with γ ∈ Ki to obtain,

dhi(α1) = dhi(μ+ ν) = dhi(ν) = d(γ − evi γ − dhiγ) = dγ = ν .

Suppose αk has been constructed and define

αk+1 = α1 − 1

2
hi[αk, αk].

By Proposition 11.6,

evi hi = h2
i = 0,

and so the required properties are trivially satisfied.

Now, since

αn+1 − αn = −1

2
hi[αn − αn−1, αn + αn−1],
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the element αn+1−αn belongs to Gn+1 being {Gn}n≥1 the filtration associated to
the cdgl APL(Δ

n)⊗̂L (see Definition 4.37). Indeed, note that each hi preserves the
filtration. Hence, recalling the expression in (3.1), we may consider the element

α = (αn)n≥1 ∈ APL(Δ
n)⊗̂L,

where each αn denotes the class of αn in (APL(Δ
n)⊗̂L)/Gn. This element trivially

satisfies
evi(α) = μ and dhi(α) = ν.

Moreover,

α = α0 − 1

2
hi[α, α] .

We finish by showing that α ∈ MCn(L). For this, set

F (α) = dα+
1

2
[α, α].

Then,

[α, Fα] = [α, dα] = −1

2
d[α, α].

Next, since evi(α) = μ, we have

F (α) = dα+
1

2
[α, α] = dα0 − 1

2
dhi[α, α] +

1

2
[α, α]

= dμ+
1

2
(hid[α, α] + evi[α, α] − [α, α]) +

1

2
[α, α]

= dμ+
1

2
hid[α, α] +

1

2
[μ, μ] =

1

2
hid[α, α] = −hi[α, F (α)] .

Therefore, F (α) ∈ ⋂n Gn = 0 and thus α is an MC element.

We now prove that Φ is injective. Let α and β in MCn(L) be such that
evi(α) = evi(β) and dhiα = dhiβ. Then,

α− β = hid(α − β) = −1

2
hi([α, α] − [β, β]) = −1

2
hi[α− β, α+ β] .

Thus α− β ∈ ⋂n G
n = 0 and α = β. �

Proof of Proposition 11.10. Let n ≥ 0 and i = 0, . . . , n. We have to find a lifting
for any given commutative square

Λn
i

��

β �� MC•(L)

MC•(f)
��

Δn

��

γ �� MC•(L′)
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In other words, if we denote

e = γ(0 . . . n) and βj = β(0 . . . ĵ . . . n) for j �= i,

and we assume that MC•(f)(βj) = f(βj) = dje, we have to find α ∈ MCn(L) such
that

djα = βj for j �= i and MCn(f)(α) = e.

Since id ⊗̂f : APL(Δ
•)⊗̂L → APL(Δ

•)⊗̂L′ is trivially a fibration, there is an ele-
ment ρ ∈ APL(Δ

n)⊗̂L such that

djρ = βj for j �= i and f(ρ) = e.

To shorten the argument, we regard each face map dj as the morphism

dj : APL(Δ
n)⊗̂L −→ APL(Δ

n)⊗̂L, dj(tk ⊗ x) =

{
tk ⊗ x, if k �= j,

0, if k = j.

With this convention notice that for j �= i,

evi dj = evi and hidj = djhi.

Indeed, the first identity is obvious and the second follows from the first identity
in (11.2) of Proposition 11.6.

In particular evi(ρ) = evi(βj) and, since βj is an MC element, evi(ρ) ∈
MC(L) is also Maurer–Cartan. On the other hand, again by Proposition 11.6,
hi(ρ) ∈ Ki. Hence, we use Lemma 11.11 to obtain an element α ∈ MCn(L) such
that

evi(α) = evi(ρ) and dhi(α) = dhi(ρ).

Thus, for j �= i,

dhi(djα) = djdhi(α) = djdhi(ρ) = dhi(djρ) = dhi(βj) .

On the other hand,

evi(djα) = evi(α) = evi(ρ) = evi(djρ) = evi(βj).

That is, djα and βj are MC elements for which Φ(djα) = Φ(βj). Therefore, by
Proposition 11.11, djα = βj for j �= i.

Similar calculations also show that

evi
(
f(α)
)
= evi(e) and dhi

(
f(α)
)
= dhi(e),

that is, Φ
(
f(α)
)
= Φ(e). Hence, once again in view of Proposition 11.11, f(α) = e,

and we have shown that MC•(f) is a fibration.

Finally, we identify the fibre as asserted. Let

ω =
∑

ωi ⊗ γi ∈ kerMC•(f),

where the ωi’s are linearly independent. Since MC•(f)(ω) =
∑

ωi⊗f(γi), it follows
that, for all i, f(γi) = 0 and ω ∈ MC•(K). �
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Along the lines of [60, Theorem 4.8], we also show that the Deligne–Getzler–
Hinich ∞-groupoid also preserves weak equivalences between connected cdgl’s.

Proposition 11.12. Let f : L
�→ L′ be a quasi-isomorphism of connected cdgl’s.

Then
MC•(f) : MC•(L)

�−→ MC•(L′)

is a weak equivalence of simplicial sets.

Proof. Denote by Zn (respectively, Bn) the vector space of cycles (respectively,
of boundaries) in Ln. We define a decreasing sequence F k of sub-cdgl’s of L, for
k ≥ 0, as follows.

F 2k
i =

⎧⎨⎩
0, if i < k,
Zk, if i = k,
Li, if i > k

and F 2k+1
i =

⎧⎨⎩
0, if i < k,
Bk, if i = k,
Li, if i > k.

In particular, L = F 0. Therefore,

(F 2k/F 2k+1)i =

{
0, if i �= k,
Hk(L), if i = k

and

(F 2k+1/F 2k+2)i =

⎧⎨⎩ 0, if i �= k, k + 1,
Bk, if i = k,
Si, if i = k + 1,

where Si is a complement of Zi in Li.

It follows then that

MC•(F 2k/F 2k+1) = MC(APL(Δ
•)⊗Hk(L)).

Analogous constructions are performed in L′ to obtain the sequence Gk of
sub-cdgl’s of L′, for k ≥ 0.

By the above discussion, since f is a quasi-isomorphism, the induced map,

MC•(F 2k/F 2k+1)
∼=−→ MC•(G2k/G2k+1)

is an isomorphism.

On the other hand, for k ≥ 1, notice that MC•(F 2k+1/F 2k+2) is the vector
space of cycles in APL(Δ

•)⊗ (F 2k+1/F 2k+2). For k ≥ 2, this is for degree reasons.
For k = 1, this follows from the fact that [B1, B1] ⊂ Z2. Thus, we have an
isomorphism of simplicial sets,

θ : APL(Δ
•)⊗ Bk(L)

∼=−→ MC•(F 2k+1/F 2k+2),

defined by
θ(ω ⊗ du) = ω ⊗ du+ (−1)|ω|dω ⊗ u.
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It follows from the Poincaré Lemma in Proposition 1.1 that both

MC•(F 2k+1/F 2k+2) and MC•(G2k+1/G2k+2),

are contractible. In particular, the morphism

MC•(F 2k+1/F 2k+2)
�−→ MC•(G2k+1/G2k+2)

induced by f is trivially a homotopy equivalence.

Now, for each k ≥ 0, applying MC• to the diagram,

0 �� F k/F k+1 ��

��

L/F k+1 ��

��

L/F k

��

�� 0

0 �� Gk/Gk+1 �� L′/Gk+1 �� L′/Gk �� 0

we get a commutative diagram of simplicial sets,

MC•(F k/F k+1) ��

�
��

MC•(L/F k+1) ��

��

MC•(L/F k)

��
MC•(Gk/Gk+1) �� MC•(L′/Gk+1) �� MC•(L′/Gk)

where, by Proposition 11.10, both horizontal lines are fibration sequences and, by
all of the above, the left vertical arrow is a homotopy equivalence. Hence, since
for k = 0 the left vertical map is the identity on a point, an inductive argument
shows that

MC•(L/F k)
�−→ MC•(L′/Gk)

is a homotopy equivalence for all k ≥ 0.

Finally, since MC preserves inverse limits,

MC•(L) = lim←−
n

MC•(L/Fn)

and therefore, by [13, Chapter IX, Theorem 3.1], we have a commutative diagram
of short exact sequences,

1→ lim←−
1

r
πn+1MC•(L/F r(L))

∼=
��

�� πn(MC•(L))

πn(MC•(f))

��

�� lim←−r
πn(MC•(L/F r(L)))→1

∼=
��

1→ lim←−
1

r
πn+1MC•(L′/F r(L′)) �� πn(MC•(L′)) �� lim←−r

πn(MC•(L′/F r(L′)))→1

Hence, MC•(f) is a homotopy equivalence. �
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11.4 Equivalence of realizations and
Bousfield–Kan completion

We first prove that the Deligne–Getzler–Hinich ∞-groupoid functor coincides, up
to homotopy, with the realization functor.

Theorem 11.13. Let L be a connected cdgl such that L/L2 is a finite type vector
space. Then the simplicial sets MC•(L) and 〈L 〉 are homotopy equivalent.

Proof. Since L/L2 is of finite type, each L/Ln is also of finite type (see the ar-
gument in the proof of 3.41). Hence, if {Fn}n≥1 is the filtration associated to L,
each L/Fn is also of finite type and thus

L = lim←−
n

L/Fn

is a profinite dgl (see Definition 3.35). Then, By Proposition 3.37,

L = E#,

where E is a conilpotent dglc.

Note that, since L is connected, for any n ≥ 0,

Homcdgl(Ln, L) = Homcdgl(Ln/(a0), L).

On the other hand, simply by taking duals and applying Corollary 9.12, we obtain
that

Homcdgl(Ln/(a0), L) = Homdglc(E,L
c

n).

Therefore, we have an isomorphism of simplicial sets

〈L〉 ∼= Homdglc(E,L
c

•). (11.3)

Next, by composing with the simplicial homotopy equivalence given in Remark
9.13,

L
c

•
�−→ E
(
APL(Δ

•)
)
,

we obtain a homotopy equivalence,

Homdglc(E,L
c

•)
�−→ Homdglc

(
E, E
(
APL(Δ

•)
))
. (11.4)

Now recall from Proposition 2.9 that E is right adjoint to the functor A .
Hence, we have a simplicial isomorphism,

Homdglc

(
E,E
(
APL(Δ

•)
)) ∼= Homcdga(A (E),APL(Δ

•)
)
. (11.5)

Note that, by Proposition 3.37, the conilpotent dglc E can be chosen to be the
increasing union of finite type dglc’s En, with n ≥ 1, such that

E#
n

∼= L/Fn, for n ≥ 1.
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Hence, since A is left adjoint, it preserves direct limits and

A (E) ∼= lim←−
n

A (En). (11.6)

But observe from Remark 2.8 that, since each En is connected and of finite type,

A (En) = C ∗(E#
n ) = C (L/Fn). (11.7)

Finally, taking into account the identities (11.6) and (11.7) together with Propo-
sition 11.2, we have a sequence of isomorphisms of simplicial sets

Homcdga

(
A (E), APL(Δ

•)
) ∼= Homcdga

(
lim−→
n

C ∗(L, Fn), APL(Δ
•)
)

∼= MC(APL(Δ
•)⊗̂L)

= MC•(L).

This, in view of (11.3), (11.4) and (11.5), produces a homotopy equivalence of
simplicial sets

〈L〉 	 MC•(L). �

With the above result we can easily show that, for any connected simplicial
set X of finite type, all known geometrical realizations of La

X have the homotopy
type of the Bousfield–Kan Q-completion of X (see Section 1.2.1).

Theorem 11.14. Let X be a connected simplicial set of finite type, a be a 0-simplex
and (∧V, d) be a Sullivan model of X. Then, there are homotopy equivalences

Q∞X 	 〈∧V, d 〉S 	 MC•(La
X) 	 〈La

X〉.
Proof. The equivalence between the Bousfield–Kan completion of X and the Sul-
livan realization of (∧V, d) is a classical result proved by Bousfield and Gugenheim
in [12, Theorem 12.2]. The third equivalence follows immediately from Theorem
11.13.

It remains to prove the second equivalence. LetmX be the minimal Lie model
of La

X . By Theorem 10.8, the cdga

lim−→
n

C ∗(mX/mn
X)

is a Sullivan model of X , which we denote by (∧W,d). Therefore, we have a
homotopy equivalence of the Sullivan realizations,

〈∧W,d 〉S 	 〈∧V, d 〉S.
Now, Proposition 11.2 provides a sequence of bijections,

〈∧W,d 〉Sn = Homcdga

(
(∧W,d),APL(Δ

n)
) ∼=−→ MC

(
APL(Δ

n)⊗̂mX

)
= MCn(mX)



11.4. Equivalence of realizations and Bousfield–Kan completion 239

which are compatible with the simplicial structures, and therefore

〈∧W,d 〉S ∼= MC•(mX).

Finally, by Proposition 11.12,

MC•(mX) 	 MC•(La
X). �

The first consequence of Theorem 11.14 is immediate in view of Theorem
7.18:

Corollary 11.15. Let X be a connected simplicial set of finite type and let a be a
0-simplex. Then, for any n ≥ 1,

πn(Q∞X) = Hn(L
a
X). �

Remark 11.16. In particular we recover Theorem 10.5, since the fundamental
group of the Bousfield–Kan completion of a finite type simplicial set X is the
Malcev completion of the fundamental group of X , see [51, Theorem 7.5].

Another important consequence of Theorem 11.14 shows that in the simply
connected finite type case, all known realizations of dgl’s coincide up to homotopy.

Corollary 11.17. Let L be a simply connected dgl of finite type. Then,

〈L〉 	 〈L〉Q

where the latter denotes the classical Quillen realization functor.

Proof. In view of the equivalence of homotopy categories given in Theorem 1.21,
there is a simply connected simplicial complex X of finite type such that

L 	 λ(X).

Using the aforementioned equivalence, together with Theorems 10.2 and 11.14, we
have:

〈L〉 	 〈λ(X)〉 	 〈La
X〉 	 XQ 	 〈λ(X)〉Q 	 〈L〉Q.

Recall from Section 1.2.1 that in the simply connected case the Bousfield–Kan
completion coincides with the rationalization. �

Another fundamental consequence of Theorem 11.14 is the following.

Corollary 11.18. Let X be a connected, finite type simplicial set. Then,

〈LX〉 	 Q∞X+,
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that is, 〈LX〉 has the homotopy type of the disjoint union of the Q-completion of
X with a point. Moreover, given a simplicial map f : X → Y there is a homotopy
commutative square of the form

Q∞X+ Q∞f+

�� Q∞Y +

〈LX〉 〈Lf 〉 ��

�
��

〈LY 〉
�
��

where the vertical arrows are homotopy equivalences, and Q∞f+ is defined as
Q∞f on Q∞X and preserves the external point.

Proof. Recall from Remark 7.33 that, for any connected simplicial set X and any
0-simplex a,

〈LX〉 = 〈L0
X〉  〈La

X〉.
On the one hand, by Corollary 7.25,

〈L0
X〉 	 ∗.

On the other hand, by Theorem 11.14,

〈La
X〉 	 Q∞X.

The second assertion follows from the naturality up to homotopy of all the involved
constructions. �
Remark 11.19. This is the right place to stress that our theory models the free
homotopy category of Q-complete spaces, but inside the pointed category:

The category sset of free simplicial set is fully embedded in the pointed
category sset∗ by means of the functor

ι : sset ↪−−→ sset∗,

defined as follows: ι(X) = X+ and ι sends the map f : X → Y to the pointed map
f+ : X+ → Y +, which preserves the external point and is f on X . Hence, what
the functors L and 〈 · 〉 faithfully model in view of Corollary 11.18 is the rational
homotopy category of Im ι.

Remark 11.20. Recall Theorem 8.9, which in turn is a reformulation of Theorem
4.33. Note that, in view of Theorem 11.13, any of these results is equivalent to
[42, Theorem 1.1] by which every cdgl morphism L → L′ which induces quasi-

isomorphisms L/Fn �→ L′/Gn, for each n ≥ 1, also induces a homotopy equiva-

lence MC•(L)
�→ MC•(L′).

Finally, we show the necessity of the finite type hypothesis in one of the
homotopy equivalences in Theorem 11.14.
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Proposition 11.21. Let (∧V, d) be the Sullivan minimal model of a simply connected
simplicial set X whose Betti numbers are countable and at least one of them is
infinite. Then, 〈∧V, d 〉S �= 〈La

X〉.

Proof. Let p be the smallest degree i such that Hi(X ;Q) is infinite-dimensional.
We decompose

(∧V ≤p, d) = (∧V <p ⊗ ∧V p, d).

As dimH(∧V <p, d) < ∞ and dimHp(∧V, d) = ∞, we have dimV p = ∞. This
implies that

dimπp〈 ∧V, d 〉S = dim
(
Hom(V p,Q)

)
is not countable. Therefore, the dimension of Hp〈∧V, d〉S is not countable. On the
other hand,

πp〈La
X〉 = Hp+1(L

a
X)

is countable by hypothesis. �

Bibliographical notes

A first sketch of the Deligne–Getzler–Hinich ∞-groupoid MC•(L), as a generalization of
the Deligne groupoid of L, already appears in a letter of P. Deligne to L. Breen [39].
In this letter, Deligne already poses the question of whether this simplicial set coincides
with the Quillen realization in the reduced case. Theorem 11.13 together with Corollary
11.17 constitute an answer to this question.

Later on, the Deligne–Getzler–Hinich ∞-groupoid was extended to L∞-algebras,
which can be roughly described as Lie algebras up to homotopy and have the advantage
of being stable by homotopy transfer. This extension was first done by E. Getzler for
nilpotent L∞-algebras in [60], where the nerve of L, a manageable deformation retract
γ•(L) of MC•(L), is also built for any nilpotent L∞-algebra. Explicitly,

γ•(L) = kerκ•⊗̂L,

where κ• is the simplicial chain homotopy of Theorem 9.5. Then, in his thesis [2, Chapter
5], R. Bandiera introduced MC•(L) for any complete L∞-algebra L through a clear and
detailed presentation.

To keep the self-contained feature of this text, the homotopy equivalence between
〈L〉 and MC•(L) in Theorem 11.13 was stated for connected cdgl’s whose decomposables
L/[L, L] have finite type. However, the same result was proved for any connected cdgl L
independently by D. Robert-Nicoud in [118, Theorems 3.2 and 5.2] and by the authors
in [27, Theorem 0.1]. The common core of the proof is the following: tensor the simplicial
diagram in Theorem 9.5 with a given connected cdgl to obtain a simplicial transfer
diagram

κ• �� APL(Δ•)⊗̂L
p• ̂⊗L ��

C∗(Δ•)⊗̂L.
ι• ̂⊗L

��
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Then, by a Lie version of Theorem 1.8, the simplicial cdgl structure in APL(Δ
•)⊗̂L is

transferred through this diagram to a simplicial L∞-algebra structure on C∗(Δ•)⊗L for
which, as simplicial sets,

MC•(L) � MC(C∗(Δ•)⊗ L).

Finally, the existence of a simplicial isomorphism

MC(C∗(Δ•)⊗ L) ∼= 〈L〉
closes the argument. Moreover, it is proved in [27, Theorem 0.2] that, as simplicial sets,
〈L〉 is isomorphic to the nerve γ•(L).

Before that, A. Berglund had already proven in [8, Theorem 1.1] the existence of a
surprisingly manageable and explicit isomorphism,

Bn : Hn−1(L)
∼=−→,MC•(L), for n ≥ 1,

for any connected nilpotent dgl, or more generally, any connected nilpotent L∞-algebra.
This is defined by

Bn[α] = ω0...n ⊗ α,

where ω0...n ∈ APL
n(Δn) denotes the only Whitney elementary form of maximum degree

n (see Definition 9.1).

As a final remark, the fact arising from Proposition 11.1 that, for any connected
dgl L of finite type,

MC•(L) ∼= Homcdga

(
C ∗(L),APL(Δ

•)
)
,

is a classical result, see for instance [72], based on the concept of twisting cochains [15].
Indeed, the image of the inclusion

Homcdga

(
C ∗(L),APL(Δ

•)
)
↪→ Hom−1

(
L,APL(Δ

•)
) ∼= (

APL(Δ
•)⊗ L

)
−1

is precisely the set of twisting cochains, i.e., the set of Maurer–Cartan elements.



Chapter 12

Examples

In this chapter we use all the material collected up to this point to present a
considerable number of selected examples.

Since the rational homotopy theory of simply connected spaces is classical
and well understood, we have focused on examples that can be applied to the non-
simply connected, non-nilpotent setting. Nevertheless, as our theory extends the
classical Quillen approach, we refer the reader to standard references like [50] or
[130], where a large number of useful applications in the simply connected context
can be found.

We begin by constructing a Lie model of any 2-dimensional CW-complex as
follows: let X be obtained by attaching a family of 2-cells {ej}j∈J to a wedge of
circles

∨
i∈I S

1
i along the maps

ωj = y
rj1
j1

· · · yrqjjqj
, for j ∈ J.

Here, for i ∈ I, each yi denotes a generator of π1(S
1
i ). Then, X has a Lie model

of the form

(L̂(yi, ej), d), where each yi is a 0-cycle and dej = y
rj1
j1

∗· · ·∗yrqjjqj
, for j ∈ J.

As a particular instance, we construct a Lie model of any surface.

This approach also allows us to give an explicit description of the Malcev
completion of a finitely presented group as follows: let

G = 〈 a1, . . . , ap | b1, . . . , bk 〉, with bj = a
rj1
j1

· · ·arqjjqj
, for j = 1, . . . , k,

be a finitely presented group. The Malcev completion of G is the group

Q∞G = L̂(a1, . . . , ap)/(b1, . . . , bk)

where each ai is of degree zero and

bk = ar1i1 ∗ · · · ∗ arqiq , for j = 1, . . . , k.

243© Springer Nature Switzerland AG 2020
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From all of the above we will also deduce that for a finite 2-dimensional
complex X , its Q∞ completion is an Eilenberg–MacLane space. More precisely,

Q∞X 	 K(Q∞π1(X), 1).

As another particularly interesting example we also compute the Malcev
completion of any right-angled Artin group, starting with the minimal Lie model
of a torus.

Then, we will see that, up to homotopy, the model functor commutes with
products. Namely, given simplicial sets X and Y ,

L
(a,b)
X×Y 	 La

X × Lb
Y ,

for any choice of 0-simplices a and b. Moreover, given connected Lie models
(L̂(V ), d) and (L̂(W ), d) of X and Y , we give an explicit model of X × Y of the

form (L̂(V ⊕W ⊕ s(V ⊗W ), D). Various particular examples are also presented.

We then devote our attention to constructing Lie models of mapping spaces.
The general picture is the following: choose a cdgl model A of the connected
simplicial set X and a cdgl model L of another connected simplicial set Y . Then,
under mild finiteness conditions, A⊗̂L is a Lie model of the simplicial mapping
space Map(X,Q∞Y ), that is, there is a homotopy equivalence of simplicial sets,

Map(X,Q∞Y ) 	 〈A⊗̂L〉.

For pointed mappings we also provide a homotopy equivalence

Map∗(X,Q∞Y ) 	 〈A+⊗̂L〉.

In particular, the model of the component Mapf (X,Q∞Y ) of a given map f : X →
Q∞Y is simply (A⊗̂L, dz), where z is the MC element corresponding to f . As a
result, the homotopy groups of this component can be computed as

πn Mapf (X,Q∞Y ) ∼= Hn−1(A⊗̂L, dz), for n ≥ 1.

In the pointed setting we also give a procedure to obtain the homotopy groups of
a given component in terms of derivations. Namely, given � : L → L′, a model of
f : X → Y in which L is a free cdgl, then,

πn Map∗f (X,Q∞Y ) ∼= Hn Der�(L,L′), for n ≥ 1,

where Der� denotes the chain complex of �-derivations.

Based on these general results we present a list of interesting applications
including, for instance, the minimal model of free loop spaces on connected sim-
plicial sets. We finish the study of the rational homotopy type of mapping spaces
by simplicially enriching the category cdgl. For the enriched category cdglΔ we
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show that, given connected simplicial sets X and Y with Lie models L and L′,
respectively, there is a homotopy equivalence of simplicial sets,

Map(X,Q∞Y ) 	 HomcdglΔ(L,L′).

Notice that up to this point we have collected examples and explicit procedures to
algebraically model various geometrical objects. After that we explore the opposite
point of view and describe how to read some homotopy invariants in the realization
〈L〉 of a given cdgl. For instance, we show that given a connected cdgl L, the map

H0(L)×H(L) −→ H(L), (α, β) �−→ eadα(β),

is precisely the natural action

π1〈L〉 × π∗〈L〉 −→ π∗〈L〉.

Moreover, there is an isomorphism of Lie algebras

H(L) = π∗Ω〈L〉.

We finish with an easy description of the Postnikov decomposition of 〈L〉 for any
given connected cdgl.

12.1 Lie models of 2-dimensional complexes. Surfaces

Recall that if Y is a sub-simplicial set of the simplicial set X , the canonical map

|X |/|Y | ∼=−→ |X/Y |

is always a homeomorphism. Hence, in the following, a quotient of simplicial com-
plexes will always denote the quotient of the associated simplicial sets.

We first construct the minimal model of a finite wedge of circles. For n ≥ 3,
we denote by An the boundary of the n-gon. This is the 1-dimensional simplicial
complex having

{a0, . . . , an−1}
as vertices and whose 1-simplices are

{xj}nj=1, where xj = (aj−1, aj), j = 1, . . . , n− 1, and xn = (an−1, a0).

By Proposition 7.8, its global model is then

LAn = (L̂(a0, . . . , an−1, x1, . . . , xn), d)

where ai is a Maurer–Cartan element for i = 0, . . . , n− 1, xj is a path from aj−1

to aj for 1 ≤ j < n and xn is a path from an−1 to a0.
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Let Yn be the 0-dimensional subcomplex of An given by its vertices, whose
global model is the sub-cdgl of LAn ,

LYn = (L̂(a0, . . . , an−1), d)

From now on, to simplify the notation, we set a = a0. Also, we will write
L̂(ai) or L̂(xj) to denote L̂(a0, . . . , an−1) or L̂(x1, . . . , xn).

Consider the quotient simplicial set

Wn = An/Yn, (12.1)

whose realization is homeomorphic to a wedge of n circles.

Lemma 12.1. The minimal model of Wn is

(L̂(x1, . . . xn), 0), with |xi| = 0, i = 1, . . . , n.

Proof. By Corollary 7.11 applied to Yn ⊂ An we obtain that

La
Wn

= La
An

/La
Yn

= (L̂(xj), 0),

which is already a minimal cdgl and thus, it is the minimal model of Wn. �

On the other hand, let Kn be the n-gon, that is, An with a 2-cell attached
along the perimeter. For n = 3, this is the triangle. For n > 3, we consider the
simplicial complex structure in Kn given by drawing all possible diagonals (in fact
n − 3 diagonals) in An starting from the vertex a = a0 (see the picture below).
As a result, Kn has the same set of vertices as An, which we denote in the same
way: a = a0, a1, . . . , an−1. The edges x1, . . . , xn of An are also edges of Kn, which
contains n − 3 extra 1-simplices given by the diagonals v1, . . . , vn−3. Finally, Kn

has n− 2 2-simplices e1, . . . , en−2, where ek = (a0, ak, ak+1).

In the next result we keep the above notation and write

(LAn , da) = (L̂(ai, xj), da).

Lemma 12.2. There is a quasi-isomorphism

(L̂(ai, xj , e), da)
�−→ (LKn , da)

with dae = x1 ∗ · · · ∗ xn

Proof. First note that the argument of Proposition 5.14 shows that x1 ∗ · · · ∗ xn

is a da-cycle, so that (L̂(ai, xj , e), da) is in fact a cdgl. Next, consider the map

ϕ : (L̂(ai, xj , e), da)
�−→ (LKn , da), (12.2)

defined by

ϕ(ai) = ai, ϕ(xj) = xj and ϕ(e) = e1 � · · · �en−2.

This map can be thought as the “subdivision of the n-gon” into n− 2 triangles.
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By construction (see Definition 6.14),

da(e1 � · · · �en−2) = dae1 ∗ · · · ∗ daen−2.

On the other hand, each ek is a triangle inside LKn and thus (see Proposition
5.14),

dae1 = x1 ∗ x2 ∗ v−1
1 , dae2 = v1 ∗ x2 ∗ v−1

2 , . . . , daen−2 = vn−3 ∗ xn−1 ∗ xn.

Therefore,

daϕ(e) = dae1 ∗ · · · ∗ daen−2 = x1 ∗ · · · ∗ xn = ϕ(dae),

and thus ϕ is a cdgl morphism. An easy computation shows that the linear part ϕ1

is a quasi-isomorphism. Hence, by Proposition 3.12, ϕ is also a quasi-isomorphism.
�

−→
ϕ

a = a0

a1

a2 . . .

an−1

e

a = a0

a1

a2 . . .

an−1

e1 e2 . . .

en−2x1

x2

x1

x2

Finally, consider the quotient

Zn = Kn/Yn,

whose realization is homeomorphic to a wedge of n circles with a 2-cell attached
along the product of the circles. Again, we keep the notation for LKn .

Lemma 12.3. Zn has a Lie model of the form

(L̂(xj , e), d)

where each xj is a 0-cycle, j = 1, . . . , n, and

de = x1 ∗ · · · ∗ xn.

Proof. Restricting to the component of a both sides of the quasi-isomorphism
given in Lemma 12.2 we get another quasi-isomorphism,

(L̂(xj , e), d)
�−→ La

Kn
.

But, by Corollary 7.11,
La
Zn

∼= La
Kn

/La
Yn

= La
Kn

,

and the lemma holds. �
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We will follow an analogous procedure to obtain a Lie model of the simplicial
set X whose realization is the CW-complex

(S1∨ p. . . ∨S1) ∪w e

obtained by attaching a 2-cell e to a wedge of p circles y1, . . . , yp along the map

ω = yr1i1 · · · yrqiq , where i� ∈ {1, . . . , p} and r� ∈ Z.

Here, for i = 1, . . . , p, each yi denotes a generator of the fundamental group of the
corresponding circle.

Theorem 12.4.

(i) X has a Lie model of the form

(L̂(y1, . . . , yp, e), d),

where each yk is a 0-cycle and

de = yr1i1 ∗ · · · ∗ yrqiq .

In particular, this is the minimal Lie model of X if and only if r1yi1 + · · ·+
rqyiq = 0.

(ii) If de �= 0, then

H>1(L̂(y1, . . . , yp, e), d) = 0.

Here, powers of degree 0 generators are also taken with respect to the BCH
product.

Proof. (i) Let n =
∑q

j=i |rj | and observe that X is the pushout,

Wn
� � ��

ρ

��

Zn

��
Wp

�� X

where ρ denotes the map drawing the word ω. As L preserves inductive limits,
this produces a cdgl pushout

La
Wn

� � ��

Lρ

��

La
Zn

��
La
Wp

�� La
X
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Note also that, in view of Lemma 12.2, a Lie model of ρ is given by

(L̂(xj), 0)
� ��

��

La
Wn

Lρ

��
(L̂(yk), 0) �

�� La
Wp

where the vertical map sends x1 ∗ · · · ∗ xn to yr1i1 ∗ · · · ∗ yrqiq .
To finish, consider the commutative diagram,

(L̂(xj), 0)�
������

�
��

��

(L̂(xj , e), d)

��

������
��

La
Wn

��

Lρ

��

La
Zn

��

(L̂(yk), 0)�
�����

��
�� (L̂(yk, e), d)

ψ

�
�����

��

La
Wp

�� La
X

where: j = 1, . . . , n; k = 1, . . . , p; the front face is the former pushout; the back
face is also a pushout whose vertical maps send x1 ∗· · ·∗xn to yr1i1 ∗· · ·∗y

rq
iq
; the top

right quasi-isomorphism is given by Lemma 12.3; and ψ is the morphism induced
by the pushout universality property, which is necessarily a quasi-isomorphism;
Note that in (L̂(yk, e), d) the differential is then as stated,

de = yr1i1 ∗ · · · ∗ yrqiq .

(ii) Write

de =
∑
m≥s

αm, with αm ∈ Lm(yk) and αs �= 0.

We then consider the differential graded Lie algebra

(L(yk, e), δ), where δyk = 0 and δe = αs,

and claim that
H>0(L(yk, e), δ) = 0. (12.3)

To see this, we modify the degrees, setting |yk| = 2 and |e| = 2s+ 1. We can now
use [73, Theorem 3.12] to get the isomorphism

H∗(L(yk, e), δ) ∼= L(yk)/(δe).

This proves (12.3) as, for the original degrees |yk| = 0, |e| = 1, the right-hand side
Lie algebra in this identity is concentrated in degree 0.
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Now, let β be a cycle of degree r ≥ 1 in (L̂(yk, e), d) and write

β =
∑
m≥�

βm, with βm ∈ Lm(yk, e) and β� �= 0.

Observe that as β is of degree r, each βm must contain r times the element
e in each bracket. Note also that each β� is a δ-cycle. By (12.3), there exists
μ� ∈ L�−s+1(yk, e) such that

β� = δμ�

and therefore,
β − dμ� ∈ L̂>�(yk, e).

We inductively construct in this way a sequence μm ∈ L̂m−s+1(yk, e), m ≥ �, such
that

β − d(
t∑

m=�

μm) ∈ L̂>t(yk, e).

Hence, the element

μ =
∑
m≥�

μm

satisfies dμ = β. �

The extension of Theorem 12.4 to any 2-dimensional complex is straightfor-
ward. Let X be the 2-dimensional CW-complex obtained by attaching a family,
not necessarily finite, of 2-cells {ej}j∈J , to a wedge, not necessarily finite, of circles∨

i∈I S
1
i , along the elements ωj ∈ π1(

∨
i∈I S

1), with j ∈ J .

As before, for each i ∈ I, denote by yi a generator of π1(S
1
i ) and write the

attaching map of each 2-cell as

ωj = y
rj1
j1

· · · yrqjjqj
, for j ∈ J.

Then, we have:

Theorem 12.5.

(i) X has a Lie model of the form

(L̂(yi, ej), d),

where each yi is a 0-cycle and

dej = y
rj1
j1

∗ · · · ∗ yrqjjqj
, for j ∈ J.

(ii) If dej �= 0 for every j ∈ J , then

H≥1(L̂(yi, ej), d) = 0.
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As before, by an abuse of notation, we denote by L̂(yi, ej) the complete free
Lie algebra generated by {yi, ej}i∈I,j∈J . Again, powers of degree-0 generators are
considered here with respect to the BCH product.

Proof. (i) First, note that
∨

i∈I S
1
i is the inductive limit of finite wedges. In others

words, it is the realization of the inductive limit of finite simplicial sets as in (12.1).
Therefore, as the global model functor preserves colimits, apply Lemma 12.1 to
conclude that a Lie model of

∨
i∈I S

1
i is

(L̂(yi), 0), with |yi| = 0 for i ∈ I.

Next, exactly the same proof of Theorem 12.4(i) permits us assert that, if we
attach a 2-cell e to

∨
i∈I S

1
i along the map ω = yr1i1 · · · yrqiq , the 2-dimensional

complex (
∨

i∈I S
1
i ) ∪ω e has a Lie model of the form

(L̂(yi, e), d), with |yi| = 0 and de = yr1i1 ∗ · · · ∗ yrqq .

Finally, since

X = lim−→
j∈J

(
∨
i∈I

S1
i ) ∪ωj ej ,

apply again that the model functor preserve colimits to obtain the desired Lie
model of X .

(ii) If dej �= 0 for any j ∈ J , apply Theorem 12.4(ii) to conclude that, for
any fixed j0 ∈ J ,

H≥1(L̂(yi, ej0), d) = 0.

The result follows by observing that (L̂(yi, ej), d) is the inductive limit of

(L̂(yi, ej0), d),

for j0 ∈ J , and that homology commutes with inductive limits. �

This result has important implications. The first one is algebraic:

Corollary 12.6. Let
G = 〈 a1, . . . , ap | b1, . . . , bk 〉

be a finitely presented group, where

bj = a
rj1
j1

· · ·arqjjqj
, for j = 1, . . . , k.

Then, the Malcev completion of G is the group

Q∞G = L̂(a1, . . . , ap)/(b1, . . . , bk),

where each ai is of degree zero,

bk = ar1i1 ∗ · · · ∗ arqiq , for j = 1, . . . , k,

and the group law is given by the Baker–Campbell–Hausdorff product.
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Proof. Let X be the 2-dimensional complex obtained by adding 2-cells e1, . . . , ek
to a wedge of p circles along the words b1, . . . , bk. Clearly, π1(X) = G.

On the one hand, by Theorem 12.5(i), and for any fixed 0-simplex a of X ,

H0(L
a
X) = H0(L̂(a1, . . . , ap, e1, . . . , ek), d) = L̂(a1, . . . , ap)/(b1, . . . , bk).

On the other hand, by Theorem 10.5, H0(L
a
X) is the Malcev completion of

π1(X). �

The second consequence of Theorem 12.5 is purely topological.

Corollary 12.7. Let X be obtained by attaching a non trivial 2-cell to a finite wedge
of circles. Then Q∞X is an Eilenberg–MacLane space. More, precisely,

Q∞X 	 K(Q∞π1(X), 1).

Proof. Recall from Corollary 11.15 that

Hn−1(L
a
X) ∼= πn(Q∞X), n ≥ 1.

The statement follows by the two assertions in Theorem 12.4 and Corollary 12.6.
�

This corollary was first proven in [47] and it generalizes the following result
of Lyndon [96]: If X is obtained by attaching a non-trivial 2-cell to a finite wedge
of circles and π1(X) has no torsion, then X is an Eilenberg–MacLane space.

As a final and immediate consequence of Theorem 12.4 we exhibit a Lie
model of any surface, which is minimal in the orientable case.

Corollary 12.8. A Lie model of the compact connected surface

S = T#m#(RP 2)#n, for m,n ≥ 0,

obtained as the connected sum of m copies of the torus T and n copies of RP 2, is
given by

(L̂(x1, . . . , xm, y1, . . . , ym, z1, . . . , zn, e), d),

where every generator except e is a 0-cycle and

de = x1 ∗ y1 ∗ x−1
1 ∗ y−1

1 ∗ · · · ∗ xm ∗ ym ∗ x−1
m ∗ y−1

m ∗ z21 ∗ · · · ∗ z2n.

Moreover, this model is minimal if and only if n = 0, that is, if and only if S is
orientable. �
Example 12.9. A Lie model of the Klein bottle

K = RP 2#RP 2
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is given by

(L̂(z1, z2, e), d), where dz1 = dz2 = 0 and de = z21 ∗ z22 .

However, the Klein bottle can be obtained from different attachments of the 2-cell.
These variations provide different Lie models and thus, different presentations of
the Malcev completion of its fundamental group. For instance,

(L̂(u, v, e), d), where du = dv = 0 and de = u ∗ v ∗ u ∗ v−1,

is such an alternative model.

12.2 Lie models of tori and classifying spaces
of right-angled Artin groups

An r-dimensional torus

T = S1
1 × · · · × S1

r

is a nilpotent space whose minimal Sullivan model is

(∧V, d) = (∧(x1, . . . , xr), 0), with |xi| = 1 for i = 1, . . . , r.

By Theorem 10.2, its minimal Lie model is

L̂ (∧V, d)#.

Using the definition of the functor L (see Section 2.1), and denoting

xi1...is = s−1(xi1 . . . xis)
#, with 1 ≤ i1 < · · · < is ≤ r,

this minimal Lie model can be written as,

(L̂(xi1...is)1≤i1<···<is≤r, d), (12.4)

where the differential is quadratic and is given as follows: fix integers 1 ≤ i1 <
· · · < is ≤ r and let E be the set of decompositions of {i1, . . . , is} into two disjoint
tuples, {j1, . . . , jp} and {k1, . . . , kq}, with j1 < · · · < jp and k1 < · · · < kq. Then,

d(xi1...is) =
1

2

∑
E

εE[xj1...jp , xk1...kq ],

where εE denotes the sign of the permutation

i1, . . . , is �−→ j1, . . . , jp, k1, . . . , kq.
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Recall that a right-angled Artin group A is a group with a presentation of
the form

A = 〈x1, . . . , xn |xixj = xjxi for a subset S of pairs (i, j)〉.

These groups include the finitely generated free abelian groups and finitely
generated free groups.

Every right-angled Artin group A acts freely on a particularly interesting
finite CW-complex called its Salvetti complex KA. Important consequences in ge-
ometric group theory arise from the study of this complex, see for instance [9].

The Salvetti complex KA is defined as follows: denote by Pr the subset of
r-tuples (xi1 , . . . , xir ) of generators of A that commute with each other. Then,

KA =
⋃
r

⋃
(xi1 ,...,xir )∈Pr

S1
i1 × S1

i1 × · · · × S1
ir .

That is, KA is a union of tori {Tγ}γ∈Γ of different dimensions. If we denote

by (L̂(Vγ), d) the minimal model of each such torus as in (12.4), then since the
global model commutes with inductive limits, the minimal models of KA is of the
form,

LKA = (L̂(
⋃
γ∈Γ

Vγ), d).

We use this to prove:

Proposition 12.10. The Malcev completion of the right-angled Artin group A is

Q∞A = L̂(x1, . . . , xn)/([xi, xj ], (i, j) ∈ S),

where the law group is given by the BCH product.

Proof. It is known, see [35], that KA is a classifying space for A. In particular,
it is an Eilenberg–MacLane space, KA 	 K(A, 1). Moreover, Papadima and Su-
ciu proved in [111] that the minimal Sullivan model of KA has the form (∧V, d)
with V = V 1, see also [48]. In particular, the Sullivan realization 〈∧V, d〉S is the
Eilenberg–MacLane space K(Q∞A, 1).

Now, by Proposition 11.14, 〈∧V, d〉S = 〈LKA〉, and therefore,

H(L) = H0(LKA) = Q∞A.

But, in view of the general model of the torus and that of LKA one immediately
concludes that

H0(LKA) = L̂(x1, . . . , xn)/([xi, xj ], (i, j) ∈ S). �
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12.3 Lie model of a product

In this section we see that the model of a product of simplicial sets has the ho-
motopy type of the product of their models. Let X and Y be connected simplicial
sets, fix 0-simplices a and b in X and Y , and let e = (a, b) ∈ X × Y . Then,

Theorem 12.11. There is a natural quasi-isomorphism

LX×Y /(e)
�−→ LX/(a)× LY /(b) .

In particular, the minimal Lie model of X × Y is quasi-isomorphic to the product
of the minimal Lie models of X and Y .

Proof. We suppose first that X and Y are finite type simplicial sets. Consider the
Dupont transfer diagrams of Corollary 9.7 associated to X and Y ,

APL(X)
pX ��

N∗(X)
ιX

�� and APL(Y )
pY ��

N∗(Y )
ιY

�� , (12.5)

respectively. As observed in Remark 9.8, all the objects in these diagrams have
augmentations induced by the 0-simplices a ∈ X and b ∈ Y , and all the maps
preserve these augmentations. As usual, we denote by

N
∗
(X) ⊂ N∗(X) and N

∗
(Y ) ⊂ N∗(Y )

the augmentation ideals. Then, as in (9.4), consider then the dglc’s resulting from
applying the functor E ,

L
c

X =
(
Lc
(
sN

∗
(X)
)
, d
)

and L
c

Y =
(
Lc
(
sN

∗
(Y )
)
, d
)
,

whose respective duals are cdgl’s of the form

(L̂(V ), d) and (L̂(W ), d),

with

V = s−1N
∗
(X)

#
and W = s−1N

∗
(Y )

#
.

By Theorem 9.11, these cdgl’s are isomorphic to

LX/(a) and LY /(b),

respectively.

On the other hand, tensor both diagrams in (12.5) via Proposition 1.11 to
obtain another transfer diagram of augmented maps,

APL(X)⊗APL(Y )
p ��

N∗(X)⊗N∗(Y ),
ι

�� (12.6)
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where p = pX ⊗ pY and ι = ιX ⊗ ιY . Consider also the transfer diagram

APL(X × Y )
pX×Y ��

N∗(X × Y )
ιX×Y

�� (12.7)

given by Corollary 9.7, applied this time to X × Y . Note that the maps involved
also preserve the augmentations induced by the 0-simplex e = (a, b) ∈ X × Y .

Join (12.6) and (12.7) via the cdga isomorphism

APL(X)⊗APL(Y ) ∼= APL(X × Y )

to obtain the following diagram of augmented maps:

APL(X)⊗APL(Y )��
∼=
��

p ��
N∗(X)⊗N∗(Y )

i
��

APL(X × Y )
pX×Y ��

N∗(X × Y ).
ιX×Y

��

(12.8)

Via Theorem 1.8 we obtain augmented structures of C∞-algebras on N∗(X) ⊗
N∗(Y ) and N∗(X × Y ) so that all the maps in (12.8) become augmented C∞
quasi-isomorphisms.

In particular, we have an augmented C∞ quasi-isomorphism,

N∗(X)⊗N∗(Y )
�−→ N∗(X × Y ).

Apply E to this morphism to obtain, in view of (9.4) and via Proposition 2.10(1),
a dglc quasi-isomorphism,

E
(
N∗(X)⊗N∗(Y )

) �−→ L
c

X×Y .

Dualizing this morphism produces, by Theorem 9.11, a cdgl quasi-isomorphism of
the form

LX×Y /(e)
�−→ (L̂(s−1N∗(X)⊗N∗(Y )

#
), d
)
. (12.9)

Observe that the augmentation ideal of N∗(X)⊗N∗(Y ) is

N∗(X)⊗N∗(Y ) =
(
N

∗
(X)⊗Qβ

)⊕ (Qα⊗N
∗
(Y )
)⊕ (N∗

(X)⊗N
∗
(Y )
)
,

where α and β are the 0-cochains dual to a and b, respectively, and thus they are
unit elements in N∗(X) and N∗(Y ) respectively. Hence,

s−1N∗(X)⊗N∗(Y )
# ∼= V ⊕W ⊕ s(V ⊗W ),

because
V ∼= s−1

(
N

∗
(X)⊗Qβ

)#
, W ∼= s−1

(
Qα⊗N

∗
(Y )
)#
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and
s(V ⊗W ) ∼= s−1

(
N

∗
(X)⊗N

∗
(Y )
)#

.

Then, the quasi-isomorphism (12.9) takes the simpler form

LX×Y /(e)
�−→ (L̂(V ⊕W ⊕ s(V ⊗W )

)
, d
)
. (12.10)

On the other hand, consider the diagrams of augmented maps

APL(X)⊗APL(Y )
p ��

N∗(X)⊗N∗(Y )
i
�� APL(X)⊗APL(Y )

p ��
N∗(X)⊗N∗(Y )

i
��

APL(X)

��

pX ��
N∗(X),

ιX
�� APL(Y )

��

pY ��
N∗(Y ),

ιY
��

in which the vertical morphisms are the inclusions (along the units in APL(X)
and APL(Y ) induced by the 0-simplices a and b, respectively). Again use Theorem
1.8 to make them diagrams of augmented C∞-algebras. In particular, we have
morphisms of augmented C∞-algebras

N∗(X) −→ N∗(X)⊗N∗(Y ), N∗(Y ) −→ N∗(X)⊗N∗(Y ).

Applying again first the functor E , and then dualizing, we obtain cdgl morphisms
of the form(
L̂
(
V ⊕W⊕s(V ⊗W )

)
, d
)−→(L̂(V ), d),

(
L̂
(
V ⊕W⊕s(V ⊗W )

)
, d
)−→(L̂(W ), d).

which induce another cdgl morphism,

ϕ :
(
L̂
(
V ⊕W ⊕ s(V ⊗W )

)
, d
) �−→ (L̂(V ), d)× (L̂(W ), d). (12.11)

Note that, by construction, this morphism is the identity on V and W . We now
show that ϕ is a quasi-isomorphism. For this, define a new grading on these cdgl’s
by letting V and W be of degree 1, s(V ⊗ W ) of degree 2, and extending the
grading bracket-wise on the Lie algebras. With respect to this grading write the
differentials in both sides and the morphism ϕ as

d =
∑
i≥1

di, ϕ =
∑
i≥1

ϕi,

where each di and ϕi increases the degree by i− 1. Note that in the C∞ structure
on N∗(X)⊗N∗(Y ),

m2

(
(x⊗ 1)⊗ (1⊗ y)

)
= x⊗ y, for x ∈ N∗(X) and y ∈ N∗(Y ).

Thus, by construction, the linear part d1 in L̂
(
V ⊕W ⊕s(V ⊗W )

)
, which depends

only on m2, satisfies:

d1
(
s(v⊗w)

)
= −s(d1v⊗w)−(−1)|v|s(v⊗d1w)±[v, w], with v ∈ V and w ∈ W.
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Therefore, we may proceed as in the classical “reduced” case in [130, VII.1] to
show that

ϕ1 :
(
L̂
(
V ⊕W ⊕ s(V ⊗W )

)
, d1
) �−→ (L̂(V ), d1)× (L̂(W ), d1)

is a quasi-isomorphism. Then, a straightforward spectral sequence argument im-
plies that ϕ is also a quasi-isomorphism.

Hence, the composition of the quasi-isomorphisms in (12.10) and (12.11)
yields the desired quasi-isomorphism

LX×Y /(e)
�−→ LX/(a)× LY /(b).

Finally, for generic X and Y , not necessarily of finite type, write them, to-
gether with their product, as the colimit of their finite type sub-simplicial sets and
take the colimit of the corresponding quasi-isomorphisms as above. �

Observe that from the quasi-isomorphisms (12.10) and (12.11) in the preced-
ing proof one immediately deduces:

Corollary 12.12. Let (L̂(V ), d) and (L̂(W ), d) be connected Lie models of the con-
nected simplicial sets X and Y . Then, X × Y has a connected model of the form(

L̂
(
V ⊕W ⊕ s(V ⊗W )

)
, d
)
,

whose differential extends the one on (L̂(V ), d) and (L̂(W ), d). �

As an application, we construct the minimal Lie model ofX×Sn, for any connected
simplicial set X and any n ≥ 1. Let (L̂(V ), d) be the minimal Lie model of X . We
form the cgl

L = L̂(V ⊕Qy ⊕ snV ), where |y| = n− 1,

and we define on it the derivations i of degree n and D of degree −1 by

i(v) = snv, i(y) = i(snv) = 0,

Dy = 0, Dv = dv and Dsnv = (−1)nidv + [y, v].

In the simply connected case, the following is [95, Theorem 3.3].

Proposition 12.13. With the above notations, (L,D) is the minimal Lie model of
X × Sn. Moreover, the injection

(L̂(V ), d) ̂ (L(y), 0) −→ (L,D)

is a Lie model for the injection X ∨ Sn → X × Sn.
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Proof. We first show that D2 = 0. This is obviously the case for y and V . On the
other hand, by definition, [D, i] = ady on V . Then,

(−1)n−1[y, dv] = D[D, i](v) = D2i(v)− (−1)nDi(Dv)

= D2iv − (−1)n
(
(−1)niDDv + ady Dv

)
= D2iv + (−1)n−1[y, dv].

Therefore, D2iv = D2snv = 0, and thus D is indeed a differential. Notice also
that D is decomposable, so (L,D) is a minimal free cdgl.

On the other hand, consider the quasi-isomorphism

(L̂(V ), d)× (L(y), 0)
�−→ La

X × Lb
Sn

given by choosing the minimal models of both factors. By Theorem 12.11, the first
assertion is thus proved once we show that the cdgl morphism,

ϕ : (L,D)
�−→ (L̂(V ), d)× (L(y), 0), (12.12)

defined by

ϕ(v) = v, ϕ(y) = y and ϕ(snv) = 0,

is in fact a quasi-isomorphism.

We define decreasing filtrations in L and in (L̂(V ), d) × L(y) by defining in
both cases F p to be the linear span of the Lie brackets the sum of whose entries
in V and snV is ≥ p. Then D(F p) ⊂ F p and, in the induced spectral sequence,
d0(s

nv) = [y, v]. The morphism ϕ is compatible with the filtrations and, since
E0(ϕ) is an isomorphism, ϕ is a quasi-isomorphism.

The last assertion follows directly from Proposition 8.36. �

Again, let (L̂(V ), d) be the minimal Lie model of the connected simplicial set
X . Consider the cdgl

L = (L̂(V ⊕Qy1 ⊕Qy2 ⊕ V ′ ⊕ V ′′), D),

in which V ′ ∼= V ′′ ∼= snV and D is defined as follows: let i′ and i′′ be degree-n
derivations given by i′(v) = v′, i′′(v) = v′′, and are zero on the rest of generators.
Define,

Dv = dv, Dy1 = Dy2 = 0, D(v′) = (−1)ni′(dv) + [y1, v]

and

D(v′′) = (−1)ni′′(dv) + [y2, v].

As a consequence of the above proposition we obtain:

Corollary 12.14. For any n ≥ 1, L is the minimal Lie model of X × (Sn ∨ Sn).
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Proof. Note that
X × (Sn ∨ Sn)

is the colimit of
X × Sn ←−−↩ X × ∗ ↪−−→ X × Sn

which, in view of Proposition 12.13, is modeled by

(L̂(V ⊕Qy1 ⊕ snV ), D) ←−−↩ (L̂(V ), s) ↪−−→ (L̂(V ⊕Qy2 ⊕ snV ), D).

To complete the proof, recall that L preserves colimits and observe that the colimit
of this diagram is precisely L. �

We finish with another illustrative example in the same direction for which
we need the following observation.

Proposition 12.15. For n ≥ 1, the minimal model of the pinching map

∇ : Sn −→ Sn ∨ Sn

is given by

ν : (L(y), 0) −→ (L(y1, y2), 0), |y| = |y1| = |y2| = n− 1,

ν(y) =

{
y1 + y2, if n ≥ 2,

y1 ∗ y2, if n = 1.

Proof. Let f1, f2 : S
n ∨ Sn → Sn be the maps which are the identity on one

factor and trivial on the other. Any minimal model of ∇ is necessarily of the

form ν : (L(y), 0)
�−→ (L(y1, y2), 0). Choose the generators y1 and y2 so that the

composition of ν with the projections on the first and the second generator are
minimal Lie models for f1 ◦ ∇ and f2 ◦ ∇, respectively. Since the linear part ν1
of ν is the desuspension of the map induced in homology, we get ν1(y) = y1 + y2.
Now, if n ≥ 2 then, for degree reasons, ν = ν1 and the result holds.

In the case n = 1 observe that the cdgl morphism given in Theorem 5.13, for
which we use the same notation,

γ : L1 −→ (L̂(a, u, b, y, z), d), γ(a) = a, γ(b) = b, γ(x) = y ∗ z,

is precisely the Lie model of the subdivision of the interval,

LΔ1 −→ LΔ1∨Δ1 .

Observe that the pinching map ∇ : S1 → S1∨S1 is obtained from the subdivision
of the interval by collapsing in both side the sub-simplicial complexes consisting
of the vertices. By Corollary 7.11, a model of ∇,

La
S1 −→ La

S1∨S1 ,
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which turns out to be minimal, is the morphism induced by γ on the quotients by
all the MC elements,

γ : (L̂(x), 0) −→ (L̂(y, z), 0), γ(x) = y ∗ z. �

Let again X be a connected simplicial set with minimal model (L̂(V ), d).
With the notation of Proposition 12.13 and Corollary 12.14, we have:

Proposition 12.16. For n ≥ 2, the minimal Lie model of the map

idX ×∇ : X × Sn −→ X × (Sn ∨ Sn)

is given by the cdgl morphism

ψ : (L̂(V ⊕Qy ⊕ snV ), D) −→ (L̂(V ⊕Qy1 ⊕Qy2 ⊕ V ′ ⊕ V ′′), D),

defined by

ψ(v) = v, ψ(y) = y1 + y2 and ψ(snv) = v′ + v′′.

Proof. Consider the morphism,

ϕ : (L̂(V ⊕Qy1 ⊕Qy2 ⊕ V ′ ⊕ V ′′), D)
�−→ (L̂(V ), d)× (L(y1, y2), d),

defined by

ϕ(v) = v, ϕ(y1) = y1, ϕ(y2) = y2 and ϕ(v′) = ϕ(v′′) = 0,

which is the analogue of that in (12.12). The same argument as in the proof of
Proposition 12.13 shows that ϕ is a quasi-isomorphism. On the other hand, the
following diagram is trivially commutative:

(L̂(V ⊕Qy ⊕ snV ), D)
ψ ��

ϕ �
��

(L̂(V ⊕Qy1 ⊕Qy2 ⊕ V ′ ⊕ V ′′), D)

ϕ �
��

(L̂(V ), d)× (L(y), 0)
id×ν

�� (L̂(V ), d) × (L(y1, y2), 0).

Here, the left vertical quasi-isomorphism is that in (12.12) and ν is the model of
∇ of Proposition 12.15.

As the bottom morphism is trivially a Lie model of idX ×∇, we only have
to check that ψ is indeed a cdgl morphism, that is, it commutes with differen-
tials. For that write on both sides D =

∑
i≥2 Di, where Di increases the bracket

length by i − 1, and check that Diψ(s
nv) = Di(v

′ + v′′) = ψ(Dis
nv) for any

snv ∈ snV . �
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12.4 Mapping spaces

In this section we give Lie models of mapping spaces arising from models of the in-
volved simplicial sets. We first fix some notation, make some general assumptions,
and prove an essential result.

Henceforth, we denote by Map(X,Y ) the simplicial mapping space,

Mapn(X,Y ) = Homsset(X ×Δn, Y ).

Also, in what follows, Theorem 11.14 and Proposition 11.2 will be key. Hence,
we will assume that any considered cdgl L is such that L/[L,L] is of finite type.
Moreover, we will assume that X is a connected finite simplicial set or else that
L/[L,L] is finite-dimensional. These assumptions remain in force throughout this
section. Given connected simplicial set X and Y , by a cdga model of X we mean,
as usual, a cdga of the same homotopy type of APL(X). In the same way, a cdgl
model of Y stands for any cdgl of the homotopy type of La

Y .

Theorem 12.17. Let X and Y be connected simplicial sets and let L be a cdgl model
of Y . Then, there is a homotopy equivalence of Kan complexes

MC•
(
APL(X)⊗̂L

) �−→ Map
(
X,MC•(L)

)
.

Proof. First of all, by definition,

MCn

(
APL(X)⊗̂L

)
= MC
(
(APL(X)⊗̂APL(Δ

n)) ⊗̂L
)
= MC
(
APL(X ×Δn)⊗̂L

)
.

Next, Let m
�→ L be the minimal model of L. Then, by Theorem 10.8,

lim−→
n

C ∗(m/mn)

is a Sullivan model of 〈L〉 which we denote by (∧V, d). Thus, by Proposition 11.2,
we have a natural bijection,

Homcdga

(
(∧V, d), APL(X ×Δn)

) ∼=−→ MC
(
APL(X ×Δn)⊗̂L

)
.

On the other hand, the adjunction of Theorem 1.2 gives a natural bijection

Homcdga

(
(∧V, d), APL(X ×Δn)

) ∼=−→ Homsset(X ×Δn, 〈∧V, d 〉S).
Finally, notice that, by Theorem 11.14,

〈∧V, d 〉S 	 MC•(L).

The combination of this homotopy equivalence with the above bijections gives a
homotopy equivalence of simplicial sets

MC•
(
APL(X)⊗̂L

) �−→ Map(X,MC•(L)
)
,

as stated. �
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12.4.1 Lie models of mapping spaces

Our main result in this section reads:

Theorem 12.18. Let X and Y be connected simplicial sets. Let A be a cdga model
of X and let L be a connected cdgl model of Y . Then, there are natural homotopy
equivalences,

〈A⊗̂L〉 	 Map(X, 〈L〉) 	 Map(X,Q∞Y ).

Proof. The second equivalence follows immediately from Theorem 11.14. For the
first equivalence, use this result and Theorem 12.17 to obtain,

Map(X, 〈L〉) 	 Map
(
X,MC•(L)

) ∼= MC•(APL(X)⊗̂L) 	 〈APL(X)⊗̂L〉 . (12.13)

Now, since A and APL(X) are connected by a sequence of quasi-isomorphisms,
Proposition 4.38 shows that

A⊗̂L 	 APL(X)⊗̂L.

Again, since the realization functor preserves weak equivalences,

〈A⊗̂L〉 	 〈APL(X)⊗̂L〉.
With this and (12.13), the result follows. �

An interesting particular situation is the following: recall that a connected
simplicial set is formal if APL(X) has the same homotopy type as H∗(X ;Q). On
the other hand (see Definition 10.12), recall that a connected simplicial set of
finite type Y is coformal if the differential on its Sullivan minimal model (∧V, d) is
quadratic, or, its minimal Lie model mX is quasi-isomorphic to a connected cdgl L
with zero differential. In particular, L can be chosen to be H(mX) or, as observed
in Corollary 10.13, the homotopy Lie algebra of (∧V, d). By Theorem 12.18, the
following is an immediate consequence:

Corollary 12.19. Let X be a formal simplicial set and let Y be a coformal simplicial
set of finite type. Write H = H∗(X ;Q) and L = (L, 0) a cdgl model of Y . Then,

Map(X,Q∞Y ) 	 〈H⊗̂L〉. �

We now see how to extract from Theorem 12.18 Lie models for each path
component of a given mapping space. Again, Let A and L be, respectively, a cdga
model and a cdgl model of the connected simplicial sets X and Y . We begin by
noticing that, in view of Theorem 12.18 and Proposition 7.14, we have bijections

π0 Map(X,Q∞Y ) ∼= π0〈A⊗̂L〉 ∼= M̃C(A⊗̂L).

Thus, a simplicial map f : X → Q∞Y , regarded as a 0-simplex

f ∈ Map(X,Q∞Y )0,
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corresponds to a Maurer–Cartan element

z ∈ MC(A⊗̂L).

With this notation, Theorems 7.16 and 7.18 immediately lead to

Corollary 12.20. Let X be a connected simplicial set with cdga model A and let
Y be a connected simplicial set with cdga model L. Then, there is a homotopy
equivalence of simplicial sets,

〈(A⊗̂L)z〉 	 Mapf (X,Q∞Y ),

where Mapf (X,Q∞) denotes the path component of Map(X,Q∞Y ) containing f .
In particular,

πn Mapf (X,Q∞) ∼= Hn−1(A⊗̂L, dz). �

As an immediate consequence we obtain:

Corollary 12.21. Let c : X → Q∞Y denote the constant map. Then, for any n ≥ 1,

πn Mapc(X,Q∞Y ) ∼= Hn−1(A⊗̂L).

Moreover, if X is a finite simplicial set or Y is nilpotent,

πn Mapc(X,Q∞Y ) ∼=
⊕

p+q=n−1

Hp(X ;Q)⊗ πq(Q∞Y ).

Proof. The first assertion is immediate since the Maurer–Cartan element in A⊗̂L
associated to c is 0. For the second, choose either a finite-dimensional cdga model
A of X if it is finite, or else, a nilpotent dgl model of Y if it is nilpotent. In this
case,

A⊗̂L = lim←−
n

(A⊗ L/Fn) ∼= A⊗ lim←−
n

L/Fn = A⊗ L.

Therefore, in view of Corollary 11.15,

H(A⊗̂L) ∼= H(A⊗ L) ∼= H∗(X ;Q)⊗ π∗(Q∞Y ). �

To illustrate the above results we now present a list of interesting examples.

Example 12.22. Let X be a connected simplicial set which has a connected Lie
model L of finite type. Then,

C ∗(L) = (∧V, d)

is a Sullivan model of X and, by Theorem 12.18, (∧V, d)⊗̂L is a Lie model of
Map(X,Q∞X), that is,

Map(X,Q∞X) 	 〈∧V ⊗̂L〉.
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Assume now that L is finite-dimensional. Note that in this case ∧V ⊗̂L =
∧V ⊗L. As at the beginning of Section 11.1, choose a graded basis {xi} for L and
the corresponding basis {xi} of (sL)# via the usual pairing 〈xi, sxj〉 = −δij . In
this particular case, the bijection in Proposition 11.1,

Homcdga

(
(∧V, d), (∧V, d)) ∼=−→ MC(∧V ⊗ L

)
,

sends the identity to z =
∑

i xi ⊗ xi. Then, by Corollary 12.20,

Mapι(X,Q∞X) 	 〈(∧V ⊗ L)z〉
where ι : X → Q∞X is the completion map. Moreover, by Corollary 12.21,

πn Mapι(X,Q∞X) ∼= Hn−1(∧V ⊗ L, dz), for n ≥ 1.

In particular, if X is a finite nilpotent simplicial set and, as usual, autX denotes
the self homotopy equivalences of X , then

πn(autX, idX)Q ∼= Hn−1(∧V ⊗ L, dz), for n ≥ 1.

Indeed, if X is nilpotent, its Q-completion Q∞X coincides with its rationalization

XQ. Also, since X is finite, the canonical map Mapf (X,X)Q
�→ Mapιf (X,XQ) is

a homotopy equivalence for any map f [75, Theorem 3.11].

Example 12.23. Here we describe Map(Tg,Q∞Tg), where Tg denotes an orientable
surface of genus g. It is well known that

H = H∗(Tq;Q) ∼= ∧(ai, bj)1≤i,j≤g/I, with |ai| = |bi| = 1,

where I is the ideal generated by the elements aiaj , bibj, aibi − a1b1 and the
elements aibj for i �= j. On the other hand, see Corollary 12.8,

π1(Q∞Tg) = L̂(αi, βj)1≤i,j≤g/
∑

αi ∗ βi ∗ α−1
i ∗ β−1

i , where |αi| = |βj | = 0.

Denote this Lie algebra by L. As Tg is formal and coformal, via Corollary 12.19
the space Map(Tg,Q∞Tg) is homotopy equivalent to the realization of the cdgl
H ⊗ L. A straightforward computation shows that an element

ω =
∑
i

ai ⊗ ωi +
∑
j

bj ⊗ ω′
j ∈ (H ⊗ L)−1

is an MC element if and only if ∑
i

[ωi, ω
′
i] = 0.

The gauge action of an element 1⊗ ρ ∈ (H ⊗ L)0 is given by

(1⊗ ρ)Gω =
∑
i

ai ⊗ eadρωi +
∑
j

bj ⊗ eadρω′
j.

For instance, the MC element associated to the identity is
∑

ai ⊗ αi +
∑

bi ⊗ βi.
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Example 12.24. Given a connected simplicial set X , consider the mapping spaces

Map(X,Sn
Q), for n ≥ 1.

If A is a cdga model for X , then a Lie model of Map(X,Sn
Q) is given by the cdgl

(A⊗ (L(y), 0), with |y| = n− 1.

Whenever n is odd, [y, y] = 0 and we immediately observe that an MC element of
this cdgl is an element a ⊗ y of degree −1 such that da = 0. Moreover, two such
elements a⊗ y and b⊗ y are gauge equivalent if and only if [a] = [b]. That is,

M̃C(A⊗ L(y)) ∼= Hn(A) ⊗Q y.

Moreover, all perturbed differentials coincide with the original differential in A⊗
L(y). Hence, all the components have the same homotopy type [108, Theorem 2.1].

12.4.2 Lie models of pointed mapping spaces

We now describe how to obtain Lie models of pointed mapping spaces. Let X and
Y be pointed simplicial sets and denote by

Map∗(X,Y )

the sub-simplicial set of Map(X,Y ) of pointed maps. Notice that Map∗(X,Y ) is
the homotopy fiber of the evaluation map at the base point of X ,

Map∗(X,Y ) −→ Map(X,Y )
ev−→ Y.

Then, we have:

Proposition 12.25. Let X be a connected simplicial set with cdga model A and let
Y be a connected simplicial set with cdgl model L. Then, there is a commutative
diagram of the form

Map∗(X,Q∞Y ) �� Map(X,Q∞Y )
ev �� Q∞Y

〈A+⊗̂L〉
�
��

�� 〈A⊗̂L〉
�
��

�� 〈L〉
�
��

where the vertical maps are homotopy equivalences.

Proof. The existence of a homotopy commutative square on the right is clear by
all the material presented in this section. As ev is a fibration, we can then make
it strictly commutative.
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On the other hand, by Corollary 8.4, the bottom horizontal maps form a
fibration sequence since it is the realization of the cdgl fibration sequence,

0 −→ A+⊗̂L −→ A⊗̂L −→ L −→ 0.

Hence, the left vertical arrow exists and it is necessarily a homotopy equivalence.
�

As in the preceding section, any pointed map f : X → Q∞Y corresponds in
this case to an element z ∈ MC(A+⊗̂L). Then, the analogue of Corollary 12.20
reads:

Corollary 12.26. There is a homotopy equivalence of simplicial sets,

〈(A+⊗̂L)z〉 	 Map∗f (X,Q∞Y ).

In particular,
πn Map∗f (X,Q∞Y ) ∼= Hn−1(A

+⊗̂L, dz). �

12.4.3 Lie models of free loop spaces

The space of free loops on a given simplicial set is a particularly rich object which
provides many interesting geometrical invariants of that simplicial set. Here, we
describe in detail a Lie model of the free loops on the realization of any connected
cdgl L.

By Theorem 12.18, 〈L〉S1

= Map(S1, 〈L〉) is homotopy equivalent to the
realization of the cdgl

(∧x ⊗ L, d)

with |x| = −1, d(x⊗ a) = −x⊗ da, and

[1⊗ a+ x⊗ b, 1⊗ c+ x⊗ e] = 1⊗ [a, c] + x⊗ [b, c] + (−1)|x||a|x⊗ [a, e] .

As L is connected, one trivially obtains

MC(∧x⊗ L, d) = {x⊗ a, a ∈ L0}.

On the other hand, (∧x⊗L)0 = {1⊗ b0+x⊗ b1, b0 ∈ L0, b1 ∈ L1}. Then, a direct
computation shows that the gauge action is given by:

Lemma 12.27. (1⊗ b0 + x⊗ b1)G (x⊗ a) = x⊗ (eadb0 (a) + e
adb0 −1
adb0

(db1)
)
. �

From this, we can explicitly determine the path components of 〈L〉S1

.

Proposition 12.28. There is a bijection:

cl
(
π1〈L〉
) ∼= π0〈L〉S1

.
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Here, cl
(
π1〈L〉
)
denotes the set of conjugacy classes of the group π1〈L〉.

Proof. As M̃C(∧x ⊗ L, d) = π0〈L〉S1

and π1〈L〉 ∼= H0(L), the statement amounts
to finding a bijective map

φ : cl
(
H0(L)
) ∼=−→ M̃C(∧x ⊗ L, d).

We set

φ(α ∗H0(L) ∗ α−1) = x⊗ a, for α ∗H0(L) ∗ α−1 ∈ cl
(
H0(L)
)

and [a] = α.

First, we see that this map is well defined: let α, γ ∈ H0(L) be in the same
conjugacy class. Write [a] = α, [c] = γ and γ = α ∗ β ∗ α−1 with β = [b0]. This
translates to

a ∗ b0 ∗ a−1 = c− db′, with b′ ∈ L1.

Define,

b1 =
adb0

eadb0 − 1
(b′).

Then, by Proposition 4.13 and taking into account that b0 is a cycle, we see that

(1⊗ b0 + x⊗ b1)G (x⊗ a) = x⊗ (eadb0 (a) +
eadb0 − 1

adb0
(db1)
)

= x⊗
(
a ∗ b0 ∗ a−1 + d

(eadb0 − 1

adb0
(b1)
))

= x⊗ (a ∗ b0 ∗ a−1 + db′) = x⊗ c.

That is, x⊗ a and x⊗ c are gauge related and thus φ is well defined.

A similar argument shows that φ is also injective, while the surjectivity is
obvious. �
Example 12.29. Consider the minimal Lie model of a wedge of circles S1∨ n. . . ∨S1

which, by Lemma 12.1 is,

L = (L̂(x1, . . . , xn), 0), where |xi| = 0 for all i = 1, . . . , n.

By Theorem 12.18,
〈L〉 ∼= Q∞(S1∨ n. . . ∨S1),

and by Proposition 12.28 the path components of 〈L〉S1

correspond to the conju-
gacy classes of L with respect to the BCH product.

Let 〈L〉S1

ω be the component of 〈L〉S1

associated to the MC element ω ∈
MC(∧x⊗ L, 0) = ∧+x⊗ L.

When ω = 0, 〈L〉S1

ω is the component of homotopically trivial maps, and

π1〈L〉S1

0 = H0(∧x⊗ L, 0) ∼= L.
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On the other hand, when ω �= 0, write ω = x ⊗ a and observe that, for any
c ∈ L,

dω(1⊗ c) = x⊗ [a, c] and dw(x⊗ c) = 0.

In particular, dω(1⊗ c) = 0 if and only if a is a multiple of c. Therefore,

π1〈L〉S1

ω
∼= H0(∧x ⊗ L, dω) ∼= Q · (1⊗ a).

12.4.4 Simplicial enrichment of cdgl and cdga

Here we notice that, as in the cdga setting, the category cdgl is simplicially en-
riched. With that in mind, we show that rationally, a mapping space of simplicial
sets is homotopy equivalent to the simplicially enriched morphisms between cdgl
models of the given simplicial sets.

Recall that a category is simplicially enriched if the set of morphisms between
any two given objects is a simplicial set.

Definition 12.30. Given cdgl’s L and L′, define the simplicial set

HomcdglΔ(L,L′) = Homcdgl

(
L,APL(Δ

•)⊗̂L′).
Similarly, given cdga’s A and A′, define the simplicial set

HomcdgaΔ(A,A′) = Homcdga(A,APL

(
Δ•)⊗A′).

We denote by cdglΔ and cdgaΔ the corresponding enriched categories.

The category sset of simplicial sets is obviously simplicially enriched by the
usual simplicial mapping

Map•(X,Y ) = Homsset(X ×Δ•, Y ).

We first observe that the classical Sullivan adjunction of Theorem 1.2 extends
to the enriched categories. In other words:

Proposition 12.31. Let X be a simplicial set and let A be a cdga. Then, there is
an equivalence of simplicial sets

Map(X, 〈A〉S) ∼= HomcdgaΔ

(
A,APL(X)

)
.

Proof. This result follows from the naturality of the “unenriched” adjunction:

Map(X, 〈A〉S) = Homsset(X ×Δn, 〈A〉S) ∼= Homcdga

(
A,APL(X ×Δn)

)
= Homcdga

(
A,APL(X)⊗APL(Δ

n)
)

= HomcdgaΔ

(
A,APL(X)

)
. �
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An important consequence, that the reader can also find in [16], is the fol-
lowing:

Theorem 12.32. Let X and Y be connected simplicial sets of finite type with respec-
tive Sullivan minimal models (∧VX , d) and (∧VY , d). Then, there is an equivalence
of simplicial sets

Map(X,Q∞Y ) ∼= HomcdgaΔ

(
(∧VY , d), (∧VX , d)

)
.

Proof. This is deduced from Proposition 12.31 and the following sequence of equiv-
alences:

Map(X,Q∞Y ) = HomssetΔ(X,Q∞Y ) 	 HomssetΔ(X, 〈∧VY , d〉S)
∼= HomcdgaΔ

(
(∧VY , d), APL(X)

)
	 HomcdgaΔ

(
(∧VY , d), (∧VX , d)

)
. �

We now translate all of the above to the Lie setting. We begin by extending
the adjunction given by the global model and realization functors to the homotopy
enriched categories:

Theorem 12.33. Let X be a connected simplicial set and let L be a connected cdgl
for which L/[L,L] has finite type. Then, there is a natural homotopy equivalence
of simplicial sets

Map(X, 〈L〉) 	 HomcdglΔ(LX , L).

Proof. By Theorems 7.4, 11.13 and 12.17, we have the following sequence of ho-
motopy equivalences for each n ≥ 0:

HomcdglΔ(LX , L)n = Homcdgl

(
LX , APL(Δ

n)⊗̂L
) ∼= Homsset

(
X, 〈APL(Δ

n)⊗̂L〉)
	 Homsset(X,MC•(APL(Δ

n)⊗̂L))

	 Homsset(X,Map(Δn,MC•(L))
= Map0(X,Map(Δn, 〈L〉)) = Map0(X ×Δn, 〈L〉)
∼= Homsset(X ×Δn,MC•(L)) ∼= Mapn(X,MC•(L))
= Mapn(X, 〈L〉).

All the homotopy equivalences of this sequence are compatible with the cosimpli-
cial structure of Δ• and thus, with the simplicial structure on APL(Δ

•). Therefore,
it induces a homotopy equivalence of simplicial sets. �

Finally, we prove the following analogue of Theorem 12.32:

Theorem 12.34. Let X and Y be connected simplicial sets of finite type with min-
imal Lie models L and L′. Then, there is a homotopy equivalence of simplicial
sets

Map(X,Q∞Y ) 	 HomcdglΔ(L,L′).
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Proof. Indeed, using Theorems 12.17 and 12.33, we have

Map(X,Q∞Y ) = Map(X, 〈L′〉) 	 HomcdglΔ(LX , L′).

Since L′ is connected, given any 0 simplex a of X ,

HomcdglΔ(LX , L′) ∼= HomcdglΔ(LX/(a), L′).

Finally, the quasi-isomorphism L
�→ Lx/(a) induces a homotopy equivalence of

simplicial sets,

HomcdglΔ(LX/(a), L′) �−→ HomcdglΔ(L,L′). �

12.4.5 Complexes of derivations and homotopy groups
of mapping spaces

Corollary 12.26 offers a way to compute the homotopy groups of a given component
of a pointed mapping space. Here, we exhibit these groups as the homology of
certain complexes of derivations.

Let f : X → 〈L〉 be a pointed simplicial map from a connected simplicial
set X to the realization of a connected cdgl L. By adjunction, f corresponds to a
cdgl morphism � : Lx → L, which, since L is connected, it restricts to a morphism
� : La

X → L.

Theorem 12.35. Let X be a nilpotent simplicial set of finite type. For any n ≥ 1,
there is an isomorphism,

πn Map∗f (X, 〈L〉) ∼= Hn Der�(La
X , L).

Recall that Map∗f (X, 〈L〉) denotes the simplicial set of pointed maps from X
to 〈L〉 that are homotopic to f .

On the other hand, Der�(La
X , L) is the chain complex of �-derivations, which

we now carefully analyze.

Let f : L → L′ be a cdgl morphism. A linear map θ : L → L′ of degree n is
an f -derivation if for each a, b ∈ L, we have

θ[a, b] = [θ(a), f(b)] + (−1)n|a|[f(a), θ(b)].

Denote by (Derf∗ , [d,−]) the chain complex in which Derfn is the vector space of
the f -derivations of degree n and the differential is given as usual by

D = [d,−] : Derfn −→Derfn−1, where [d, θ] = d ◦ θ − (−1)|θ|θ ◦ d.
If g : L′ → L′′ is another cdgl morphism, composition with g induces a mor-

phism of chain complexes

g∗ : Derf∗ −→ Dergf∗ , g∗(θ) = g ◦ θ.
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Lemma 12.36. Let f : (L̂(V ), d) → L′ be a cdgl morphism in which with V = V≥r

for some r ∈ Z, and dVn ⊂ L̂(V<n). If g : L
′ �→ L′′ is a quasi-isomorphism then,

g∗ : Derf∗
�→ Dergf∗ is also a quasi-isomorphism.

Proof. First, let θ be a cycle in Dergf∗ . We construct by induction on n an f -

derivation ψ : L̂(V≤n) → L′ and a gf -derivation ϕ : L̂(V≤n) → L′′ such that Dψ =
0 and g∗(ψ)− θ = Dϕ. Suppose this is done for some integer n and let {vi} be a
basis for Vn+1. Then ψdvi is a cycle and

gψdvi = d(ϕdvi + (−1)|θ|θvi).

Therefore, there exist elements ai ∈ L′ and bi ∈ L′′ with

ψdvi = dai and gai = ϕdvi + (−1)|θ|θvi + dbi.

We then define

ψ(vi) = (−1)|θ|ai and ϕ(vi) = (−1)|θ|bi.

Now, let θ be a cycle in Derf∗ such that g◦θ = Dψ. We construct by induction
on the degree an f -derivation ϕ and a gf -derivation ρ such that θ = Dϕ and
gϕ− ψ = Dρ. Suppose this is done on V≤n and let again {vi} be a basis of Vn+1.
Then ωi = θ(vi) + (−1)|ϕ|ϕdvi is a cycle and, by the induction hypothesis,

gωi = d (ψvi + (−1)|ϕ|ρdvi).

Thus there exist elements βi ∈ L′ and γi ∈ L′′ such that ωi = dβi and

gβi − (ψvi + (−1)|ϕ|ρdvi) = dγi.

We define
ϕ(vi) = βi and ρ(vi) = γi.

This completes the induction process. �
Lemma 12.37. Let L = (L̂(V ), d) be a free cdgl with V = V≥r for some r ∈ Z, and
d(Vn) ⊂ L̂(V<n). If f, g : L → L′ are homotopic, then H∗(Derf∗) ∼= H∗(Derg∗).

Proof. Let
Ψ: L −→ L′I

be a homotopy between f and g (see Definition 8.18). That is, f = ε0 ◦ h and
g = ε1 ◦ h. Since ε0 and ε1 are quasi-isomorphisms, by Lemma 12.36 we have the
following quasi-isomorphisms

Derε1Ψ∗
�←− DerΨ∗

�−→ Derε0Ψ∗ ,

which imply the assertion. �
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Lemma 12.38. Let

L
i−→ L ̂ L̂(R ⊕ dR)

f−→ L′

be a sequence of cdgl morphism where i is the canonical injection. Then, precom-
position with i induces a quasi-isomorphism

i∗ : Derf∗
�−→ Derfi∗ .

Proof. Suppose that θ is a cycle in Derfi∗ . By setting

θ′(R) = θ′(dR) = 0 and θ′(x) = θ(x) for x ∈ L,

we define a cycle in Derf∗ satisfying i∗(θ′) = θ. Therefore H(i∗) is surjective.
Suppose now that θ is a cycle in Derf∗ and that i∗(θ) = Dψ. We define then

the f -derivation ϕ by

ϕ(x) = ψ(x) for x ∈ L, ϕ(r) = 0 and ϕ(dr) = (−1)|θ|θ(r).

Then, it is clear that θ = Dϕ. �

Now, let f : L → L′ be a morphism of cdgl’s and consider in C (L) the word
length filtration:

C (L) =
⊕
q≥0

Cq(L), with Cq(L) = ∧q(sL).

As in Proposition 11.5, we associate to f a Maurer–Cartan element

ω ∈ Hom(C≥1(L), L
′)

defined by

ω(sx) = −f(x), and ω(C≥2(L)) = 0.

Then, we define a linear map of degree +1,

Φ: Derf −→ Hom(C≥1(L), L
′),

Φ(g)(sx) = −(−1)|g|g(x), Φ(g)(C≥2(L)) = 0.

Lemma 12.39. With the above definitions and notation,

Φ: (Derf , D) −→ (Hom(C≥1(L), L
′), Dω)

is a morphism of complexes. Moreover, if L = (L̂(V ), d) is a free cdgl, then Φ is a
quasi-isomorphism.
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Proof. For the first assertion we have only to verify that DωΦ = −Φd. On sL, this
is immediate: (

DωΦ(g)
)
(sx) = d

(
Φ(g)(sx)

)− (−1)|Φ(g)|Φ(g)(dsx)

= −(−1)|g|dgx+ gdx = −(Φ(dg))(sx).
On elements in C≥3(L), this is also clear, since both sides of the equation are 0.
Now, taking into account that g is an f -derivation,(

DωΦ(g)
)
(sx ∧ sy)

= d
(
Φ(g)(sx ∧ sy

)− (−1)|Φ(g)|Φ(g)
(
d(sx ∧ sy)

)
+ [ω,Φ(g)](sx ∧ sy)

= −(−1)|Φ(g)|Φ(g)
(
(−1)|sx|s[x, y]

)
+ [ω,Φ(g)](sx ∧ sy)

= (−1)|x|g[x, y] + (−1)|Φ(g)||sx|[ω(sx),Φ(g)(sy)]

− (−1)|Φ(g)|+|sx|[Φ(g)(sx), ω(sy)] = 0.

Now assume that L = (L̂(V ), d) is a free cdgl and prove that Φ is a quasi-
isomorphism. Write

L′ = lim←−
n

L′/Mn,

and introduce decreasing filtrations

{Fn}n≥1 and {Gn}n≥1

on Derf and on Hom(C≥1(L), L
′) by

Fn = {g ∈ Derf | g(L) ⊂ Mn },

Gn = {h ∈ Hom(C≥1(L), L
′) |h(C (L)) ⊂ Mn }.

Clearly, the morphism Φ preserves the filtrations. On the other hand,

Derf = lim←−
n

Derf /Fn and Hom(C≥1(L), L
′) = lim←−

n

Hom(C≥1(L), L
′)/Gn.

We will prove that the quotient maps Φn : F
n/Fn+1 → Gn/Gn+1 are quasi-

isomorphisms. By Lemma 3.14, this will finish the proof.

We are therefore reduced to the case where L′ is abelian, and we have a short
exact sequence of complexes

0 −→ Derf −→ Hom(C≥1(L), L
′) −→ E −→ 0,

where E is the subset of Hom(C≥1(L), L
′) consisting of the maps h satisfying

h(sx) = 0. The space Derf is identified here with the space of maps sV → L′

that are 0 on sL≥2(V ), and E can be identified with the space of maps C≥2(L)⊕
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sL≥2(V ) → L′. Since L′ is abelian, the perturbed differential Dω is equal to the
original differential. Therefore, if h ∈ E,

Dωh = Dh+D′

with

Dh = d ◦ h− (−1)|h|h ◦ d
and

D′(h) ∈ Derf , D′(h)(x) = −(−1)|h|hd(sx).

Recall from Lemma 2.2(ii) that C≥2(L(V ))⊕ sL≥2(V ) is a contractible com-
plex. It follows that H(E,D) = 0 and so Φn is a quasi-isomorphism for any n. �

Proof of Theorem 12.35. By Proposition 12.25, there is a homotopy equivalence
of simplicial sets,

Map∗(X, 〈L〉) 	 〈∧+V ⊗̂L〉,
where (∧V, d) denotes the Sullivan minimal model of X . Since this simplicial set
is nilpotent and of finite type, we may apply Theorem 10.2 to conclude that its
Neisendorfer model L (∧V, d)# is quasi-isomorphic to La

X . Hence, see Proposition
2.3, the following cdgc’s are all quasi-isomorphic,

(∧V, d)# 	 CL (∧V, d)# 	 C (La
X).

In particular, there is a homotopy equivalence,

〈∧+V ⊗̂L〉 ∼= 〈Hom((∧+V )#, L
)〉 	 〈Hom(C≥1(L

a
X), L)〉.

Then, denoting by ω the MC element corresponding to �, we have a homotopy
equivalence

Map∗f (X, 〈L〉) 	 〈Hom(C≥1(L
a
X), L)〉ω

and now the result follows from Proposition 12.39 and Theorem 7.18. �

12.5 Homotopy invariants of the realization functor

Up to this point we have given examples of modeling various geometrical construc-
tions. Here, we reverse direction and characterize some homotopy invariants in the
realization 〈L〉 of a given cdgl. Our aim is not to cover an exhaustive list. Rather,
we just describe the most classical invariants, highlighting the methods used to
help the reader developing the right intuition to go further in this approach when
needed.
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12.5.1 Action of π1〈L〉 on π∗〈L〉
Given a connected cdgl L, we describe the action of π1〈L〉 on π∗〈L〉.
Definition 12.40. Let L be a complete graded Lie algebra. Then, the sub-Lie alge-
bra L0 with the group structure given by the BCH product acts on Ln by

x • v = eadx(v) ,

where x ∈ L0 and v ∈ Ln.

This is a group action since, by Corollary 4.12,

(x ∗ y) • v = eadx∗y(v) = eadxeady (v) = x • (y • v).

Note that

x • v = v +
eadx − 1

adx
[x, v].

Therefore, as the operator eadx−1
adx

is invertible, x • v = v if and only if [x, v] = 0.

Observe also that whenever L is a cdgl, • also induces an action, which is
denoted in the same way,

• : H0(L)×Hn(L) −→ Hn(L), n ≥ 1.

On the topological side, consider the wedge Sn ∨ [a, b] of the n-dimensional
sphere with an interval. Choose b as the base point and let

f : Sn ∨ [a, b] → Sn

be obtained by contracting [a, b] to b. There is clearly a continuous map g : Sn →
Sn ∨ [a, b] satisfying g(b) = a and such that f ◦ g is homotopic to the identity.

Now, a homotopy class α of a given curve c : [a, b] → X in a connected

topological space X induces a natural isomorphism πn

(
X, c(b)

) ∼=→ πn

(
X, c(a)

)
which assigns, to each β ∈ πn

(
X, c(b)

)
represented by h : Sn → X , the class

α • β ∈ πn

(
X, c(a)

)
represented by (h ∨ c) ◦ g.

In particular, if c is a loop having x0 ∈ X as endpoints, this construction
gives the classical action • of π1(X, x0) on πn(X, x0).

bv • −→g bv • • a

x
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Theorem 12.41. Let L be a connected cdgl and let n ≥ 1. Then, the following
diagram commutes:

π1〈L〉 × πn〈L〉 • ��

ρ1×ρn ∼=
��

πn〈L〉
∼= ρn

��
H0(L)×Hn−1(L)

• �� Hn−1(L)

where ρ1 and ρn are the isomorphisms of Theorem 7.18.

Proof. Recall that Sn can be thought of as the simplicial set with only two non-
degenerate simplices v and b in dimension 0 and n, respectively. Therefore, by
Proposition 7.8,

LSn = (L̂(v, b), d),

where b is a Maurer–Cartan element, |v| = n− 1 and dv = −[b, v]. On the other
hand, since L preserves colimits (see Proposition 7.5),

LSn∨[a,b] = (L̂(a, b, x, v), d),

where (L̂(a, b, x), d) is an LS interval. Moreover, as f is a retraction of the inclusion
Sn ↪→ Sn ∨ [a, b],

Lf : LSn∨[a,b] −→ LSn

is necessarily of the form

Lf (v) = v, Lf (b) = b, Lf (a) = b and Lf (x) = 0.

On the other hand observe that, for the perturbed models,

Hq(LSn , db) =

{
0, if q �= n− 1,

Q · [v], if q = n− 1,

while, by Proposition 4.24,

Hq(LSn∨[a,b], da) =

{
0, if q �= n− 1,

Q · [eadx(v)], if q = n− 1.

Hence, the morphism

Lg : (LSn , db) −→ (LSn∨[a,b], da)

is given by

Lg(b) = a and Lg(v) = λeadx(v) + dΦ, with λ ∈ Q.
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However, as L preserves homotopy (see (ii) of Corollary 8.2), we have Lf ◦Lg ∼ id
and therefore, it induces the identity in homology. In particular,

H(Lf ) ◦H(Lg)[v] = λ[v]

and thus λ = 1. Hence, up to homotopy, we may write,

Lg : LSn −→ LSn∨[a,b], Lg(b) = a, Lg(v) = eadx(v).

This guarantees the commutativity of the square,

[LSn∨[a,b], L]

∼=
��

Lg∗ �� [LSn , L]

∼=
��

H0(L)×Hn−1(L)
• �� Hn−1(L)

where the vertical bijections send the homotopy classes of the maps α : LSn∨[a,b] →
L and β : Ln → L to

(
α(x), α(v)

)
and β(v) respectively.

Insert this square as the bottom one in the following diagram, where the
middle square is commutative by Corollary 8.2(iv), and the upper one trivially
commutes:

π1〈L〉 × πn〈L〉
=

��

• �� πn〈L〉
=

��
[Sn ∨ [a, b], 〈L〉]

∼=
��

g∗ �� [Sn, 〈L〉]
∼=
��

[LSn∨[a,b], L]

∼=
��

Lg∗ �� [LSn , L]

∼=
��

H0(L)×Hn−1(L),
• �� Hn−1(L).

To finish, simply check that the composition of the left (respectively right) vertical
arrows is the morphism ρ1 × ρn (respectively ρn). �

12.5.2 The rational homotopy Lie algebra of 〈L〉
In this section we show that the natural Lie algebra structure on the homology
H(L) of a connected cdgl coincides with the Lie algebra on π≥1Ω〈L〉.

Recall that given a connected space X with base point a, the Whitehead
product is a natural bilinear transformation

πn(X)× πm(X) −→ πn+m−1(X), for n,m ≥ 2.
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This gives a structure of graded Lie algebra on π≥1(ΩX)⊗Q. In [115] it is proved
that, when X is simply connected, there is an isomorphism of Lie algebras,

π∗(ΩX)⊗Q ∼= H
(
λ(X)
)
,

where λ(X) denotes, as usual, the Quillen functor (see Sect. 1.2.2). We now prove:

Theorem 12.42. Let L be a connected cdgl. Then, there is an isomorphism of graded
Lie algebras

H≥1(L) ∼= π≥1Ω〈L〉.
Proof. Equivalently, we will show that, for any n,m ≥ 2, there is a commutative
diagram

πn〈L〉 × πm〈L〉
∼=
��

[ , ] �� πn+m−1〈L〉
∼=
��

Hn−1(L)×Hm−1(L)
[ , ] �� Hn+m−2(L)

where the upper bracket denotes the Whitehead product.

Let α ∈ πn〈L〉 and β ∈ πm〈L〉 be represented by maps f : Sn → 〈L〉 and
g : Sm → 〈L〉, which define f ∨ g : Sn ∨ Sm → 〈L〉. The universal Whitehead
bracket,

h = [idSn , idSm ] : Sn+m−1 −→ Sn ∨ Sm,

defines, by naturality, the Whitehead bracket [α, β] as the class of the composition

(f ∨ g) ◦ h : Sn+m−1 −→ 〈L〉.
By adjunction, f ∨ g and h correspond to maps

(L(a, b), 0) −→ L and ϕ : (L(u), 0) −→ (L(a, b), 0),

where |a| = n− 1, |b| = m− 1 and |u| = n+m− 2.

Since Sn and Sm are simply connected, we deduce from [115, Theorem I]
that ϕ(u) = [a, b]. We then have the following commutative diagram where all
vertical maps are bijections:

πn〈L〉 × πm〈L〉 [ , ] �� πn+m−1〈L〉

[Sn ∨ Sm, 〈L〉]

∼=
��

h∗ �� [Sn+m−1, 〈L〉]

∼=
��

[L(a, b), L]

∼=
��

∼=
��

ϕ∗ �� [L(u), L]

∼=
��

∼=
��

Hn−1(L)×Hm−1(L)
[ , ] �� Hn+m−2(L) �
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12.5.3 Postnikov decomposition of 〈L〉
Another direct application of this homotopy theoretical setting is the description
of the Postnikov decomposition of the realization 〈L〉 of a given connected cdgl.
For such a cdgl and for any n ≥ 0, consider the quotient cdgl

L[n] = L/(L>n ⊕ Zn),

where Zn ⊂ Ln denotes the subspace of cycles. Note that L[0] = 0 and for each
n ≥ 1 there is a commutative triangle of surjections,

L[n]

��

L

�����������

���
��

��
��

��

L[n− 1].

Proposition 12.43. The induced sequence

〈L〉

�����
���

���
�

�� ����
���

���
���

���
���

. . . �� 〈L[n]〉 �� 〈L[n−1]〉 �� . . . �� L[1]
�� ∗

is the Postnikov decomposition of 〈L〉
Proof. As 〈 · 〉 preserves fibrations all the maps in this diagram are Kan fibrations.
Moreover, in view of the short exact sequence,

0 −→ L>n ⊕ Zn −→ L −→ L[n] −→ 0, (12.14)

we deduce that

Hp(L[n] =

{
Hp(L), if p ≤ n− 1,

0, if p > n− 1.

That is,

πq〈L[n]〉 =
{
πq〈L〉, if q ≤ n,

0, if q > n.

Finally, since 〈 · 〉 preserves projective limits,

〈L〉 = lim←−
n

〈L[n]〉.

These properties characterize the above sequence as the Postnikov decomposition
of 〈L〉. �
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In particular, see for instance Corollary 8.4, as the realization of (12.14),

〈L>n ⊕ Zn〉 → 〈L〉 → 〈L[n]〉,

is a fibration sequence, we deduce:

Corollary 12.44. For any n ≥ 1, 〈L>n⊕Zn〉 is the nth connected cover of 〈L〉. �
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It is convenient to remark that Theorem 12.17 was proved by Berglund for an
arbitrary connected cdgl in [8, Theorem 6.6]. However, to keep the text self-contained
we have considered a slightly restricted version with a shorter proof. Hence, the first
equivalence of Theorem 12.18, and all its consequences, hold for any connected simplicial
set Y not necessarily of finite type. Whenever Y is nilpotent, this result was proved in
[8, Theorem 1.4]. A presentation of the same statement in a language that does not use
MC elements can be found in [20, Theorem 10].

Now suppose that Y is a nilpotent space with finite Betti numbers, X is a finite
connected CW-complex, and f : X → Y is a continuous map. We denote by (∧V, d) a
minimal Sullivan model of Y , by (A, d) a cdga quasi-isomorphic to the Sullivan minimal
model of X, and by g : (∧V, d) → (A,d) a Sullivan representative for f . The map g
makes (A, d) a (∧V, d)-module. The Harrison(–André–Quillen) complex of (∧V, d) with
coefficients in A is defined as

Cn
Harr(∧V,A) ⊂ Hom

(
(∧V )⊗n, A

)
,

where h ∈ C∗
Harr(∧V, A) if h vanishes on all shuffle products. The differential is the usual

Hochschild differential. Then, see [1, 10, 92], there is an isomorphism of complexes

C∗
Harr(∧V, A) ∼= (L (∧V )#⊗̂A, dω),

where ω is an MC element that corresponds to f . Since, by Theorem 10.1,

E (∧V, d)# � LY /(a),

we deduce that there are isomorphisms

H∗
Harr(∧V,A) ∼= H∗−1(LX/a)⊗̂A) ∼= π∗Map(X,YQ).
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General notation

di face operator, of C∗(Δ•) and of Ω•, pp. 18, 25 and 28 respectively

sj degeneracy operator, of C∗(Δ•) and of Ω•, pp. 18, 25 and 28 respectively

δi coface operator, of C∗(Δ•) and of L•, pp. 18, pp. 23 and 133 respectively

σi codegeneracy operator, of C∗(Δ•) and of L•, pp. 18, 23 and 133 respectively

Δ• cosimplicial object where Δn is the simplicial set given by Δn
p =HomΔ([p],[n]),

19

Δ̇
n

boundary of Δn, sub-simplicial set of Δn generated by all non-degenerate

simplices except 1[n] = (0, . . . , n), 19

Λn
i ith horn of Δn, sub-simplicial set of Δn generated by the non-degenerate

simplices except (0, . . . , n) and (0, . . . î . . . n), 19

Δn standard topological n-simplex and the simplicial complex formed by the non-

empty subsets of {0, . . . , n}, 20 and 21 respectively

C∗(X) complex of simplicial chains on a simplicial set X , 22

N∗(X) complex of non-degenerate simplicial chains on a simplicial set X , 22

C∗(K) complex of simplicial chains on a simplicial complex K, 22

C∗(Δ•) cosimplicial chain complex, 22

C∗(X) complex of simplicial cochains on a simplicial set X , 23

N∗(X) complex of non-degenerated simplicial cochains on a simplicial set X , 23

C∗(K) complex of simplicial cochains on a simplicial complex K, 23

C∗(Δ•) simplicial cochain complex, 23

αi0...ip basis of Cp(Δn), 24
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spV pth suspension of a graded vector space V , 26

# linear dual, 26

T (V ) tensor algebra on a graded vector space V , 27

∧V free commutative graded algebra generated by V , 27

Ω• simplicial cdga where Ωn = (∧(y0, . . . , tn, dt0, . . . , dtn)/I, d), 28
APL(X) cdga of PL-forms on the simplicial set X , 29

APL(Δ
•) simplicial cdga of PL-forms on Δ•, isomorphic to Ω•, 29

〈A 〉S Sullivan realization of a cdga, 29

Q∞X Q-completion functor on the simplicial set X , 30

XQ rationalization of a nilpotent simplicial set X , 30

L(V ) free Lie graded algebra generated by V , 32

UL universal enveloping algebra of a graded Lie algebra L, 32

Ln nth term of the central series of a dgl L, 32

A⊗L dgl obtained as the tensor product of a cdga A with a dgl L, 32

DerL dgl of derivations of a dgl L, 33

λ(X) Quillen functor of a simply connected space or a 2-reduced simplicial set X ,

33

〈L〉Q Quillen realization of a dgl L 33

π(∧V,d) rational homotopy Lie algebra of the Sullivan minimal model (∧V, d), 34
P(C) primitive elements of a coalgebra C, 35

T c(V ) tensor coalgebra on a graded vector space V , 35

BA reduced bar construction of a cdga or a A∞-algebra A, 36 or 40 respectively

BuA unreduced bar construction of a cdga or a A∞-algebra A, 36 or 40 respec-

tively

ΩC cobar construction on C, 36

Lc(V ) free Lie coalgebra generated by V , 38

HoC homotopy category associated to a model category C, 46

L (C) dgl associated to a cdgc C by the Quillen functor L , 54

C (L) chain coalgebra on a dgl L, 54
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C ∗(L) cochain algebra on a dgl L, 61

A (E) cdga associated to a dglc E by the functor A , 61

E (A) dglc associated to a cdga or a C∞-algebra A by the functor E , 62

E u(A) unreduced version of E (A), 62

L̂ completion of a filtered dgl L, 73

̂ coproduct in the categories cgl and cdgl, 74

L̂(V ) complete free Lie graded algebra generated by V , 76

L̂f profinite completion of a dgl L, 89

MC(L) set of Maurer–Cartan elements in a dgl L, 94

da differential of a dgl perturbed by a Maurer–Cartan element a, 95

La component of a dgl L at a Maurer–Cartan element a, 95

x ∗ y BCH product of two elements of degree 0 in a cdgl, 97

xG a gauge action of an element x ∈ L0 on an MC element a, 100

ÛL completion of the enveloping algebra of a Lie algebra L = L0, 96

M̃C(L) set of equivalence classes of Maurer–Cartan elements, 106

DerL derivations of a cdgl L which increase the filtration degree, 98

A⊗̂L cdgl obtained as the (complete) tensor product of a cdga A with a cdgl L,

114

L1, LΔ1 Lawrence–Sullivan model for the interval, 119

L2, LΔ2 Lie model for the triangle, 126

s−1Δ• short notation for the simplicial chain complex s−1C∗(Δ•), 132

ai0...ip basis of s−1Δn, generators of the model of the n-simplex Ln, 132

Ln, LΔn Lie model of Δn, a cdgl of the form (L̂(s−1Δn), d), 133

L• cosimplicial cdgl of Lie models of the standard simplices, 133

L3, LΔ3 Lie model for the tetrahedron, 148

x�y product of elements in L1 such that d(x� y) = dx ∗ dy, 148
LX global model of a simplicial set X , 159

〈L〉 realization of a cdgl L, 163

s−1X short notation for s−1N∗(X), 164
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X+ disjoint union of the simplicial set X with an external 0-simplex, 178

LI path object of the cdgl L, 193

Cyl L cylinder construction on a free cdgl L, 195

Cone LX cone of the cdgl LX , 197

ΣLX suspension of the cdgl LX , 197

mX minimal Lie model of a connected simplicial set, 199

mf minimal Lie model of a map f of simplicial set, 199

ωi0...ir Whitney elementary forms, 204

Lc
• simplicial dglc E u

(
C∗(Δ•)

)
=
(
Lc
(
sC∗(Δ•)

)
, d
)
whose dual is L•, 208

Lc
X dglc E u

(
N∗(X)

)
=
(
Lc
(
sN∗(X)

)
, d
)
whose dual (when X is finite type) is

LX , 210

L
c

• simplicial dglc E
(
C∗(Δ•)

)
whose dual is L•/(a), 211

L
c

X dglc E
(
N∗(X)

)
=
(
Lc
(
sN

∗
(X)
)
, d
)
whose dual (when X is finite type) is

LX/(a), 211

mc
X minimal dglc model of a connected simplicial set, 217

MC•(L) Deligne–Getzler–Hinich ∞-groupoid associated to a cdgl L, 231

Derf∗(L,L′) complex of f -derivations from L to L′, 271

Map(X,Y ) simplicial mapping Homsset(X × Δ•, Y ) between the simplicial sets

X and Y , 262

HomcdglΔ(L,L′) enriched simplicial cdgl morphisms Homcdgl(L,APL(Δ
•)⊗̂L′),

269

HomcdgaΔ(A,A′) enriched simplicial cdga morphisms Homcdga(L,APL(Δ
•)⊗A′),

269

L[n] nth Postnikov piece of L, 280

Categories

Δ simplicial category whose objects are the ordered sets [n] = {0, . . . , n}, and
whose morphisms HomΔ([n], [m]) are the non-decreasing maps, 18

sset simplicial sets, 19
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sset1 2-reduced simplicial sets, i.e., only one simplex in dimensions 0 and 1, 21

top topological spaces, 20

vect graded vector spaces, 25

dvect differential graded vector spaces, 26

cga commutative graded algebras, 26

dga differential graded algebras (assumed augmented by default), 27

cdga commutative differential graded algebras (assumed augmented by default),

27

cdga0 commutative differential graded algebras A with A = A≥0, 27

cdgan commutative differential graded algebras A with A0 = Q and Ap = 0 for

1 ≤ p ≤ n, 27

dgl differential graded Lie algebras, 32,

dgln differential graded Lie algebras L with L = L≥n, 32

sgp0 connected simplicial groups, i.e., G• with G0 = {1}, 34
sch0 connected simplicial complete Hopf algebras, 34

sla1 reduced simplicial Lie algebras, i.e., L• with L0 = 0, 34

cgc commutative graded coalgebras, 35

dgc differential graded coalgebras, 36

cdgc commutative differential graded coalgebras, 36,

dgcn differential graded coalgebras C with C = C≥n, 36

cdgcn commutative differential graded coalgebras C with C = C≥n, 36

dglc differential graded Lie coalgebras, 38

dglcn differential graded Lie coalgebras E with E = E≥n, 38

dga∞ A∞-algebras (assumed augmented by default), 40

cdga∞ C∞-algebras (assumed augmented by default), 41

cdgccf 1 subcategory of cdgc1 of cdgc’s admitting a fibrant model of finite type,

60

dglhf0 subcategory of dgl0 of dgl’s whose homology is nilpotent and of finite type,

60
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cdgahf 1 subcategory of cdga1 of cdga’s having a finite type minimal Sullivan

model, 60

cgl complete graded Lie algebras, 72

cdgl complete differential graded Lie algebras, 72

F-dgl filtered differential graded Lie algebras, 74

pro-dgl pronilpotent differential graded Lie algebras, 76

pvect profinite vector spaces, 87

pdgl profinite differential graded Lie algebras, 88

sAbGrp simplicial abelian groups, 165

set* pointed sets, 94

sset∗ pointed simplicial sets, 240

cdgaΔ simplicial enrichment of cdga, 269

cdglΔ simplicial enrichment of cdgl, 269
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differential, dga, 26

free commutative, 27

of PL-forms, 29

Baker–Campbell–Hausdorff product, 97
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bar construction, 36

of an A∞-algebra, 40

unreduced, 36

Bernoulli numbers, 118

Euler type identity, 130

Bousfield–Kan Q-completion, 30, 223, 238

of a finite 2-dimensional complex, 244,
252

C∞-algebra, 41

chain coalgebra on a dgl, 54

coalgebra, 34

cofree commutative, 35

commutative, 35

differential, dgc, cdgc, 36

locally conilpotent, 35

primitive elements, 35

reduced diagonal, 35

cobar construction, 36

cochain algebra on a dgl, 61

codegeneracy, 19

of L•, 133
of (C∗(Δ•), d), 23

coface, 19

of (C∗(Δ•), d), 23
of L•, 133

complete differential graded Lie algebra,
cdgl, 72

completion, 73

component at an MC element, 95

contractible, 79

free, 77

free extension, 191

minimal, 79

path, 128

path lifting Lemma, 128

complete graded Lie algebra, cgl, 72

free, 76

cone of LX , 197

cosimplicial

cdgl L•, 147
identities, 18

object, 19

cylinder construction on an MC element,
121

degeneracy, 18

of (C∗(Δ•), d), 25
of Ω•, 28

Deligne groupoid, 104

Deligne–Getzler–Hinich ∞-groupoid, 231,
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derivations of a cdgl

f -derivations, 271

increasing the filtration degree, 98

derivations of a dgl, 33

direct category, 45

Dupont calculus on APL(Δ
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297© Springer Nature Switzerland AG 2020

U. Buijs et al., Lie Models in Topology, Progress in Mathematics 335,

https://doi.org/10.1007/978-3-030-54430-0

https://doi.org/10.1007/978-3-030-54430-0


298 Index

face, 18

of (C∗(Δ•), d), 25
of Ω•, 28
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global model functor L, 162

Goldman–Millson theorem, 109

homotopy Lie algebra

of 〈L〉, 278
of a minimal Sullivan algebra, 34, 215

of a space, 34, 279

homotopy retraction, 42

simplicial, 206

homotopy transfer theorem, 42

integration along the fibre, 229

Kan extension, 161

Koszul convention, 26

Lawrence–Sullivan interval, L1, LΔ1 , 119

as a cylinder, 121

as a flow of a differential equation, 122

subdivision, 125

Lie algebra, 31

n-connected, 32

minimal dgl, 33

central series, 32

connected, 32

differential, dgl, 32

free, 32

free dgl, 33

nilpotent, 32

profinite, 88

profinite completion, 89

pronilpotent, 75

Lie coalgebra, 37

conilpotent, 88

differential, dglc, 38

free, 38

Lie model

of the n-gon, (LKn , da), 246

of Δn, Ln, LΔn , 133

of X × Sn, 258
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of a product, 255

of a surface, 252
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symmetric Lie model of the triangle,
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of a right-angled Artin group, 254
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symmetric, 152
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217

minimal Lie model, 220
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of a simplicial map, 199

of a simplicial set, 199, 217

model category, 44

cofibrant replacement, 45
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Quillen equivalence, 46

Quillen pair, 46
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cofibration, 184

model category on cdgl, 184
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cylinder object, 195

fibration, 184
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weak equivalence, 184

Neisendorfer Lie model, 85, 215

perturbed differential by an MC element,
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Poincaré Lemma, 28

Postnikov decomposition, 280
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Reedy category, 45

relative cell complex on a category, 51

right-angled Artin group, 254

Salvetti complex, 254
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equivariant, 144
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simplicial complex, 21

associated simplicial set, 22

simplicial chains, 22

simplicial cochains, 24

simplicial identities, 18

simplicial object, 18

simplicial set, 19

coformal, 222

finite, 19

finite type, 19

formal, 263

non-degenerate chains, 22

non-degenerate cochains, 24

realization functor, 20

simplicial chains, 22

simplicial cochains, 24

singular simplicial set, 20

small object argument, 51

Sullivan algebra, 28

Sullivan Lie coalgebra, 67

Sullivan model, 29, 214, 217

minimal, 29, 241

Sullivan realization, 29, 238

suspension of LX , 198

tensor algebra, 27

tensor coalgebra, 35

transfer diagram, 42, 255

simplicial, 207

universal enveloping algebra, 32
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