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Abstract

In this paper, we initiate the study of the Givental group action on Cohomological Field Theories in
terms of homotopical algebra. More precisely, we show that the stabilisers of Topological Field Theories
in genus 0 (respectively in genera 0 and 1) are in one-to-one correspondence with commutative homotopy
Batalin–Vilkovisky algebras (respectively wheeled commutative homotopy BV-algebras).
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0. Introduction

The Deligne–Mumford–Knudsen compactificationsMg,n of the moduli spaces of curves with
marked points form a modular operad. This algebraic structure is defined via the mappings of
moduli spaces of curves that identify two marked points of one or two curves. This modular
operad structure passes to homology, and algebras over H•(Mg,n) are called Cohomological
Field Theories, or CohFTs for short. The notion of a CohFT was introduced by Kontsevich and
Manin in [23] in order to capture the main properties of Gromov–Witten invariants of target
varieties. Recently a new set of natural examples of CohFTs came from the quantum singularity
theory of Fan–Jarvis–Ruan–Witten [12].

Cohomological field theories also play a crucial role in the formulation of one of the versions
of the Mirror Symmetry conjecture. Namely, in [5], Bershadsky, Cecotti, Ooguri and Vafa
introduced a construction of a mirror partner (B-side) for the Gromov–Witten invariants (A-side)
of a mirror dual Calabi–Yau manifold. More precisely, they considered what is now called the
BCOV action on the Dolbeault complex of a Calabi–Yau manifold. Barannikov and Kontsevich
showed in [3] that the critical value of the BCOV action indeed provides a genus 0 CohFT
structure on the Dolbeault cohomology.

In the series of papers [16–18], Givental developed a particular group action on a special class
of formal power series (the “R-action”). Using this group action and some extra operators, he
proposed an explicit conjectural formula for the Gromov–Witten invariants of target varieties
with semi-simple quantum cohomology (e.g., projective spaces) in terms of the genus 0 data
and known Gromov–Witten invariants of a finite number of disjoint points. This conjecture was
proved by Teleman in [42] via a complete classification of semi-simple CohFTs.

The (co)homology ring of the Deligne–Mumford–Knudsen moduli space of stable curves
is an intricate subject of study. One way to approximate it is to look at the tautological rings
RH•(Mg,n) that are defined as the subalgebras of the cohomology algebras ofMg,n that contain
all natural cohomology classes (like the ψ-classes and the κ-classes). In fact, using the Poincaré
duality, one can define a structure of a modular operad on the collection of the cohomology
algebras {H•(Mg,n)} of the moduli spaces Mg,n . Then the collection {RH•(Mg,n)} can be
defined as the collection of the minimal system of subalgebras of H•(Mg,n) that forms a modular
suboperad of H•(Mg,n). In genus 0, the tautological ring coincides with the full cohomology
ring: RH•(M0,n) = H•(M0,n).

In [11], Faber, the second author and Zvonkine proved that the Givental group acts on
representations of the modular operad RH•(Mg,n) of a given dimension. Later Kazarian [21]
and Teleman [42] observed that there is a way to describe the Givental group action as an action
on CohFTs of a given dimension, that is, representations of the modular operad {H•(Mg,n)}.
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In the recent preprint [9], Drummond-Cole and the third author described, in terms of
the Homotopy Transfer Theorem, or HTT for short, how the underlying homology groups
of some differential graded Batalin–Vilkovisky algebras can be endowed with a natural
Frobenius manifold structure. In general, the HTT produces homotopy BV-algebra structures
on homology. But, it is proved in [9] that the transferred homotopy BV-algebra gives rise
to a Frobenius manifold when the induced operator ∆ and its higher homotopies vanish. (In
our definitions, a Frobenius manifold is just a genus 0 CohFT structure.) This generalises
the Barannikov–Kontsevich Frobenius manifold structure and it provides higher homotopical
invariants which allow one to reconstruct the homotopy type of the original dg BV-algebra, for
instance the Dolbeault complex.

The latter result hints at a certain role played by homotopy BV-algebras in the context of the
Mirror Symmetry conjecture and the Givental group action. The present paper initiates the study
of Givental group action in terms of homotopy BV-algebras, as follows.

In genus 0, on the one hand, we restrict ourselves to topological field theories, or TFT
for short, which are cohomological field theories concentrated in degree 0. A genus 0 TFT
is equivalent to a commutative algebra structure. On the other hand, we restrict ourselves to
commutative BV∞-algebras, which are BV∞-algebras where many higher operations vanish, so
that only the commutative product and a sequence of differential operators Dl of order at most l,
l ≥ 1, remain. Theorem 1 states that the data of a commutative BV∞-algebra structure on a TFT
is equivalent to the data of an element of the Lie algebra of the Givental group which preserves
the given TFT.

In genera 0 and 1, on the one hand, we restrict ourselves to genera 0 and 1 TFTs. This algebraic
structure is equivalent to a commutative algebra equipped with a compatible trace. On the other
hand, we restrict ourselves to wheeled commutative BV∞-algebras, which are generalisations
of the notion of commutative BV∞-algebras, but equipped with a coherent trace. Theorem 2
states that the data of a wheeled commutative BV∞-algebra structure on a genera 0 and 1 TFT is
equivalent to the data of an element of the Givental group which preserves the given TFT. This
theorem partly relies on a recent proof [38] of the Gorenstein conjecture for moduli spaces in
genus 1 [20,36].

An algebra over a modular operad has to be equipped with a scalar product and is, therefore,
finite dimensional. To get rid of the dimension assumption, we recall that algebras over an operad
or over a wheeled operad do not have to be finite dimensional, and consider, respectively, the
operad {H•(M0,n)} and the wheeled operad {H•(M≤1,n)} associated to the modular operad of
cohomology algebras {H•(Mg,n)}. It is worth mentioning that the main result of [9] relies on the
Koszul duality of the two operads {H•(M0,n)} and {H•(M0,n)}. The Koszul duality for the pair
of wheeled operads {H•(M≤1,n)} and {H•(M≤1,n)}, as well as the Koszul duality for the pair
of (wheeled) properads {H•(Mg,n)} and {H•(Mg,n)} are interesting open questions. In higher
genera, the study of the precise relationship between the full action on the Givental group on a
general CohFT with homotopy BV-algebras is yet to be finished. This will be the subject of a
future work.

The paper is organised as follows. In Section 1, we have accumulated all the necessary
background information on the intersection theory for moduli spaces of curves, on operads and
the Givental group action. In Section 2, we recall the definition of a differential operator on a
commutative algebra, introduce a new notion of compatibility with the trace, and prove some
auxiliary results on differential operators compatible with traces in the sense of that definition.
The first theorem, in genus 0, is proved in Section 3. The second theorem, in genera 0 and 1,
is proved in Section 4. The first appendix explains why differential operators arise naturally in
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the context of wheeled homotopy BV-algebras. The second appendix deals with a generalised
BCOV theory.

Conventions

Throughout the paper, all vector spaces, unless otherwise specified, are defined over the field
of complex numbers C. Most of our constructions implicitly assume that we work with the tensor
category of graded vector spaces (that is, “commutative” means “graded commutative”, “trace”
means “supertrace”, “commutator” means “supercommutator” etc.); for the convenience of the
reader, we write all the formulae for the elements of degree zero, keeping in mind that in general
signs will appear in formulae according to the Koszul sign rule for evaluating operations on
elements. The words “commutative algebra” always refer to a commutative associative algebra.
We use the “topologist’s notation” for finite sets, putting n := {1, . . . , n} and [n] := {0, 1, . . . , n}.
For a given product a1a2 · · · an of factors indexed by n, we denote by aI , for I ⊂ n, the product
of factors whose subscripts are in I .

1. Recollections

In this section, we recall only the most basic information. For more information on the
moduli spaces of curves, see the survey [43], for a detailed discussion of cohomological field
theories, correlators, and relations between them—the book [30], for information on operads—
the book [27].

1.1. The moduli spaces of curves

The moduli space of curves Mg,n parametrises smooth complex curves of genus g with n
ordered marked points. Under the usual assumption 2g − 2 + n > 0, it is a smooth complex
orbifold of dimension 3g − 3 + n. Its Deligne–Mumford–Knudsen compactification Mg,n
parametrises stable curves of genus g with n ordered marked points. A stable curve is a connected
curve with a finite automorphism group whose allowed singularities are simple nodes. The space
Mg,n is a smooth compact complex orbifold of (complex) dimension 3g − 3 + n.

Let us recall three kinds of “natural mappings” that can be defined between the different
moduli spaces of curves. First, there are projections

π : Mg,n+1 →Mg,n

that forget the last marked point. Second, the identification of the last two marked points gives
rise to the 2-to-1 mapping

σ : Mg−1,n+2 →Mg,n

whose image is the boundary divisor of irreducible curves with one node. Third, gluing together
two curves along their last marked points gives rise to the mapping

ρ : Mg1,n1+1 ×Mg2,n2+1 →Mg,n, g1 + g2 = g, n1 + n2 = n.

These mappings ρ produce the other irreducible boundary divisors of the compactification of
Mg,n .

The Deligne–Mumford–Knudsen compactification Mg,n has a natural stratification by the
topological type of stable curves. The images of the mappings σ and ρ give a complete
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description of strata in codimension 1. An irreducible boundary stratum of codimension k in
Mg,n is represented as an image p(S) of the product S =Mg1,n1 × · · · ×Mga ,na . Here p is a
composition of the k natural mappings (σ and/or ρ) described above.

The cohomology algebras of the moduli space of curves are complicated objects, and only
limited information about them is available. However, a special system of subalgebras, called
the tautological rings, is more accessible. The system of tautological rings R H•(Mg,n) ⊂
H•(Mg,n, C) is defined as the minimal system of subalgebras of the aforementioned
cohomology algebras that is closed under the push-forwards and the pull-backs via the natural
mappings. The cohomology classes in R H•(Mg,n) are called the tautological classes. The
elements of the tautological ring that will be of crucial importance for our computations are
the following “ψ-classes”.

Definition 1 (ψ-Classes). Both the moduli space Mg,n and its compactification Mg,n have n
tautological line bundles Li . The fibre of Li over a point represented by a curve Cg with marked
points x1, . . . , xn is equal to the cotangent line T ∗

xi
Cg . The cohomology class ψi of Mg,n is

defined as the first Chern class of the line bundle Li :

ψi = c1(Li ) ∈ H2(Mg,n, Q). (1.1)

Using the Poincaré duality and the push-forward on the homology, one can define the push-
forward maps π∗, σ∗, and ρ∗ on the cohomology as follows: π∗ is the composite

H•(Mg,n+1) → H6g−6+2n+2−•(Mg,n+1) → H6g−6+2n+2−•(Mg,n)

→ H•−2(Mg,n), (1.2)

σ∗ is the composite

H•(Mg−1,n+2) → H6g−12+2n+4−•(Mg−1,n+2) → H6g−12+2n+4−•(Mg,n)

→ H•+2(Mg,n), (1.3)

and ρ∗ is the composite

H•(Mg1,n1+1) ⊗ H•(Mg2,n2+1) → H•(Mg1,n1+1 ×Mg2,n2+1)

→ H6g1+6g2−12+2n1+2n2+4−•(Mg1,n1+1 ×Mg2,n2+1)

→ H6g1+6g2−12+2n1+2n2+4−•(Mg1+g2,n1+n2+1) → H•+2(Mg1+g2,n1+n2+1). (1.4)

1.2. Operads

The various notions of operads encode the algebraic structures defined by various types of
operations. The toy model of operads is the endomorphism operad EndV whose components
Hom(V ⊗n, V ) consist of multilinear maps defined on a given vector space. In particular, EndV (1)

is the space of all linear operators on V ; we shall keep the usual notation End(V ) for it, hoping
that no confusion would arise.

Definition 2 (Operad). An operad is an S-module P , that is a collection of right Sn-modules
{P(n)}n∈N, endowed with equivariant partial compositions

◦i : P(m) ⊗ P(n) → P(m + n − 1), for 1 ≤ i ≤ m, (1.5)



Author's personal copy

V. Dotsenko et al. / Advances in Mathematics 236 (2013) 224–256 229

satisfying

(µ ◦i ν) ◦i−1+ j ω = µ ◦i (ν ◦ j ω), for 1 ≤ i ≤ l, 1 ≤ j ≤ m,

(µ ◦i ν) ◦k−1+m ω = (µ ◦k ω) ◦i ν, for 1 ≤ i < k ≤ l,

for any µ ∈ P(l), ν ∈ P(m), ω ∈ P(n). An operad is required to be unital, that is equipped with
an element I ∈ P(1) acting as a unit for the partial compositions.

Elements of an operad model operations with n inputs and one output. The partial composition
◦i amounts to composing one operation at the i th input of another one, as the next figure shows.

The category of S-modules is equivalent to the category VectBijop
of contravariant functors

from the groupoid Bij of finite sets and bijections to the category Vect of vector spaces:

S-modules ∼= VectBijop

{P(n)}n∈N �→ P(X) :=
� �

f :n→X
P(n)

�

Sn

P(n) �→ P(−) ,

(1.6)

where in the space of coinvariants on the right-hand side the sum is over all the bijections
from n to X and where the right action of σ ∈ Sn on ( f ; µ) for µ ∈ P(n) is given by
( f ; µ)σ := ( f σ ; µσ ). So, from now on, we freely identify them.

Definition 3 (Modular Operad [15]). A modular operad is a graded S-moduleP , that is a graded
collection of right Sn-modules {Pg(n)}g,n∈N, endowed with equivariant partial compositions

◦ j
i : Pg(m) ⊗ Pg�(n) → Pg+g�(m + n − 2), for 1 ≤ i ≤ m and 1 ≤ j ≤ n (1.7)



Author's personal copy

230 V. Dotsenko et al. / Advances in Mathematics 236 (2013) 224–256

and equivariant contractions

ξi j : Pg(n) → Pg+1(n − 2), for 1 ≤ i �= j ≤ n. (1.8)

These structure maps are required to satisfy the following properties, for every choice of
µ ∈ Pg(X), ν ∈ Pg�(Y ), and ω ∈ Pg��(Z):

(µ ◦ j
i ν) ◦l

k ω =
�

µ ◦ j
i (ν ◦l

k ω), when k ∈ Y,

(µ ◦l
k ω) ◦ j

i ν, when k ∈ X,

for any i ∈ X , j ∈ Y , and l ∈ Z ;

ξi jξkl µ = ξklξi j µ (1.9)

for any distinct i , j , k, and l in X ;

ξi j (µ ◦l
k ν) =






ξi j (µ) ◦l
k ν, when i, j ∈ X,

µ ◦l
k ξi j (ν), when i, j ∈ Y,

ξkl(µ ◦ j
i ν), when i ∈ X and j ∈ Y,

ξkl(ν ◦ j
i µ), when i ∈ Y and j ∈ X,

for any k ∈ X , and l ∈ Y .
The modular endomorphism operad of a vector space V with a scalar product has the

vector space V ⊗n as its component of genus g and arity n. It is endowed with both the partial
compositions and the contractions defined using the scalar product on V . The homology groups
H•(Mg,n) of the Deligne–Mumford–Knudsen moduli space of curves also form a modular
operad. In the latter case, the partial compositions are given by the pushforwards of the maps
ρ and the contractions are given by the pushforwards of the maps σ .

The genus 0 part of a modular operad is faithfully encoded into the following operad.

Proposition 1 ([15]). Let (Pg(n), ◦ j
i , ξi j ) be a modular operad. The S-module

P(n) := P0(n + 1) ∼= P0([n]), (1.10)

and the partial compositions ◦i := ◦0
i define a functor

modular operads → operads,

which sends the endomorphism modular operad V ⊗n to the endomorphism operad EndV .

The genus 0 operad H•(M0,n) encodes hypercommutative algebras. It contains the operad
Com ∼= H0(M0,n) encoding commutative algebras and it is Koszul dual to the genus 0 operad
H•(M0,n); see [14].
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Definition 4 (Wheeled Operad [32]). A datum of a wheeled operad is a pair of S-modules,
{P(1, n)}n∈N and {P(0, n)}n∈N, endowed with equivariant partial compositions

◦i : P(ε, m) ⊗ P(1, n) → P(ε, m + n − 1), for 1 ≤ i ≤ m and 0 ≤ ε ≤ 1

and equivariant wheel contractions

ξ i : P(1, n) → P(0, n − 1), for 1 ≤ i ≤ n .

These structure maps are required to satisfy the following properties for every choice of
µ ∈ P(ε, X), ν ∈ P(1, Y ), and ω ∈ P(1, Z):

(µ ◦i ν) ◦ j ω =
�
µ ◦i (ν ◦ j ω), when j ∈ Y,

(µ ◦ j ω) ◦i ν, when j ∈ X,

for any i ∈ X ;

ξ i (ν ◦ j ω) =
�
ξ i (ν) ◦ j ω, when i ∈ Y,

ξ j (ω ◦i ν), when i ∈ Z ,

for any j ∈ Y .
The paradigm of wheeled operads is the endomorphism wheeled operad made up of the

two components {Hom(V ⊗n, V )}n∈N and {Hom(V ⊗n, Q)}n∈N associated to a vector space V
equipped with a trace, that is a map tr : Hom(V, V ) → C satisfying tr([ f, g]) = 0.

The genera 0 and 1 parts of a modular operad are faithfully encoded into the following
wheeled operad.

Proposition 2. Let (Pg(n), ◦ j
i , ξi j ) be a modular operad. The pair of S-modules

P(1, n) := P0(n + 1) ∼= P0([n]), and P(0, n) := P1(n) ∼= P1(n),

the partial compositions and the wheel contractions ◦i := ◦0
i and ξ i := ξi0 define a functor

modular operads → wheeled operads,
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which sends the endomorphism modular operad V ⊗n to the endomorphism wheeled operad
EndV .

Proof. It is straightforward to check the various axioms of a wheeled operad. Any scalar product
η of a vector space V induces a trace. Using the scalar product η, one makes the identifications

V ⊗(n+1) ∼= Hom(V ⊗n, V ) and V ⊗n ∼= Hom(V ⊗n, C),

which proves the last statement. �
Therefore, an algebra over a modular operad, that is a vector space V together with the

morphism of modular operads P → EndV , induces, under the aforementioned functor, an
algebra over the associated wheeled operad. The latter notion is more general than the former
one: as opposed to modular operads, a wheeled operad can act on infinite dimensional vector
spaces.

We conclude this section with a natural open question.

Question 1. Are the two wheeled operads, made up of the genera 0 and 1 parts of the modular
operads H•(Mg,n) and of H•(Mg,n), Koszul dual to one another? Are they Koszul wheeled
operads?

1.3. Cohomological field theories

Roughly speaking, a cohomological field theory on a graded vector space V is a system of
cohomology classes on the moduli spaces of curves with values in tensor powers of V compatible
with all natural mappings between the moduli spaces. Expressed formally, this means that a
cohomological field theory is a representation of the modular operad formed by the cohomology
algebras of moduli spaces of curves. Let us use the previous section to make this precise. To
conform with the usual conventions, we use cohomology classes: even though a naı̈ve translation
of what was just said suggests to think of a cohomological field theory as of a collection
of elements ag,n : Hom(H•(Mg,n), V ⊗n), we replace the dual space to the homology by the
cohomology, and let our elements belong to H•(Mg,n) ⊗ V ⊗n .

Definition 5 (CohFT). Given a graded vector space V with a basis {e1, . . . , es} (e1 plays the role
of a unit) with a scalar product η, a cohomological field theory (CohFT) on V is defined as a
system of classes αg,n ∈ H•(Mg,n) ⊗ V ⊗n satisfying the following properties.

� The classes αg,n is equivariant with respect to the actions of the symmetric group Sn on the
labels of marked points and on the factors of V ⊗n .

� The pullbacks via the natural mappings σ and ρ correspond to the pairings with η of the
factors in tensor powers corresponding to the points in the preimage of the node:

σ ∗αg,n =
�
αg−1,n+2, η

−1
�

, (1.11)

ρ∗αg,n =
�
αg1,n1+1 ⊗ αg2,n2+1, η

−1
�

. (1.12)

� The unital conditions for the element e1:
�
α0,3, e1 ⊗ ei ⊗ e j

�
= η(ei , e j ), (1.13)

π∗αg,n = η(n+1)
�
αg,n+1, e1

�
(1.14)
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(the superscript in η(n+1) refers to the fact that we use η to compute the scalar product of e1
with the factor of V ⊗n corresponding to the last marked point).

A topological field theory (TFT) is a special case of a cohomological field theory for which all
the classes αg,n are of homological degree 0, that is belong to H0(Mg,n)⊗ V ⊗n . One can easily
show that in this case the whole system {αg,n} is determined by the class α0,3 ∈ V ⊗3. A CohFT
is a TFT if and only if α0,3 determines a structure of a unital commutative Frobenius algebra on
the vector space V ; see [10].

The definition of a CohFT and thus of a TFT includes an element e1 playing the role of a
unit of V . However, this unit is not of an operadic nature (because of the stability condition,
M0,2 = ∅).

Throughout this paper, we shall consider possibly infinite dimensional genus 0 (respectively
genera 0 and 1) CohFTs without a unit as algebras over the operad (respectively wheeled operad)
associated to the modular operad H•(Mg,n). For practical purposes, this means that a genus 0
CohFT is encoded by a collection of classes αn := α0,n+1 ∈ H•(M0,n+1) ⊗ EndV (n), and a
CohFT in the genera 0 and 1 is encoded by a collection of classes

αn = α0,n+1 ∈ H•(M0,n+1) ⊗ EndV (n) and
βn = α1,n ∈ H•(M1,n) ⊗ Hom(V ⊗n, C).

Observe our choice of notation: the class αn = α0,n+1 represents an n-ary operation; it is a
cohomology class of the moduli space of curves with n + 1 marked points, since we need n
inputs and one output. In the same spirit, βn = α1,n represents an operation with n inputs and no
outputs.

1.4. Correlators

Using the ψ-classes, it is possible to extract certain numerical information from a
cohomological field theory.

Definition 6 (Correlators). Let d1, . . . , dn be a sequence of nonnegative integers. The correlator
�τd1 · · · τdn �g,V associated to this sequence is defined by the formula

�τd1 · · · τdn �g,V :=
�

Mg,n

αg,n ·
n�

j=0
ψ

d j
j ∈ V ⊗n . (1.15)

In the computations below, we shall express the correlators as particular elements of EndV
with correlators for V = C as coefficients. The latter correlators are just numbers denoted by
�τd1 · · · τdn �g . For a genus zero topological field theory, it is known that

�τd1 · · · τdn �0 =






(n − 3)!
d1! · · · dn ! if d1 + · · · + dn = n − 3,

0 otherwise.
(1.16)

By a standard argument, see for instance [39], the correlators contain all the information
necessary to compute the restriction of a cohomological field theory on the tautological rings
of the moduli spaces.

One of the key technical tools in our proofs will be the following relations; see for in-
stance [30].
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Proposition 3 (Topological Recursion Relations). The following relations between the
correlators hold.

� The genus zero relations at the points i, j, k

�τd1τd2 · · · τdi +1 · · · τdn �0 =
�

I�J=n
i∈I ; j,k∈J

�τdI τ0�0�τ0τdJ �0. (1.17)

� A more symmetric version of the genus zero relations at the points i, j that follows immediately
from the previous ones

�τd1τd2 · · · τdi +1 · · · τdn �0 + �τd1τd2 · · · τd j +1 · · · τdn �0 =
�

I�J=n
i∈I, j∈J

�τdI τ0�0�τ0τdJ �0. (1.18)

� The genus 1 relations at the point i

�τd1τd2 · · · τdi +1 · · · τdn �1 =
�

I�J=n,
i∈I

�τdI τ0�0�τ0τdJ �1

+ 1
24

�τd1τd2 · · · τdi · · · τdn τ
2
0 �0. (1.19)

1.5. Givental group action

In this section, we describe a part of the Givental theory of a certain group action on
CohFTs [16,18].

Definition 7 (Givental Group and Lie Algebra). Let V be a vector space with a scalar product
η as above. The group that plays the key role in Givental’s construction is the (upper triangular
group of the) group of symplectomorphisms of Laurent series with coefficients in V . It is the
group of formal power series with coefficients in the space of endomorphisms of V consisting of
all series R(z) = I d + R1z + R2z2 + · · · satisfying R∗(−z)R(z) = I d. Its Lie algebra consists
of all series r1z + r2z2 +· · · , where rl ∈ End(V ) is symmetric for odd l and skew-symmetric for
even l (with respect to the scalar product η).

Following [21,42], we associate to an element
�∞

l=1 rl zl as above an infinitesimal deformation
of CohFT.

Definition 8 (Givental Lie Algebra Action). The Givental Lie algebra action on cohomological
field theories takes the system of classes αg,n ∈ H•(Mg,n) ⊗ V ⊗n to the system of classes
(�rl zl .α)g,n ∈ H•(Mg,n) ⊗ V ⊗n given by the formula

(�rl zl .α)g,n := −
�
π∗(αg,n+1 · ψ l+1

n+1), rl(e1)
�

+
n�

m=1
(αg,n · ψ l

m) ◦m rl

+ 1
2

l−1�

i=0
(−1)i+1

�
σ∗(αg−1,n+2 · ψ i

n+1ψ
l−1−i
n+2 ), η−1rl

�

+ 1
2

�

I�J=n,
i+ j=l−1,
g1+g2=g

(−1) j+1
�
ρ∗(αg1,|I |+1 · ψ i

|I |+1 ⊗ αg2,|J |+1 · ψ
j
|J |+1), η

−1rl

�
. (1.20)
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In this formula, we assume that the points in the preimage of the node are the points labelled n+1
and n + 2 in the second sum, and the points |I | + 1 onMg1+1,|I |+1 and |J | + 1 onMg2+1,|J |+1
in the third sum.

Proposition 4 ([21,42]). The classes

α̃g,n :=
�

exp

� ∞�

l=1

�rl zl

�

.α

�

g,n

(1.21)

are well-defined cohomology classes with the values in the tensor powers of V that define a
CohFT.

If one chooses to ignore the unit e1, it is possible: the exact same formulae with the summand
containing e1 omitted provide a well defined Lie algebra action on CohFTs; see for example [22].
We shall be using Formula (1.20) only in the cases of genera 0 and 1 and without a unit, as
follows. To match the notation of the subsequent sections, we shall write the formula for the
action of the operator Dl zl−1, l ≥ 1. Note that Formula (1.20) makes sense even for l = 0, in
which case we get the usual action on the Lie algebra End(V ) by the Leibniz rule.

In the case of genus 0, we have the action

�Dl zl−1.{α} = {α�}, (1.22)

and the general formula (1.20) simplifies to

α�
n = (−1)l Dl ◦1 αn · ψ l−1

0 +
n�

m=1
αn · ψ l−1

m ◦m Dl

+
�

I�J=n,|I |≥2,
i+ j=l−2

(−1)i+1(α|J |+1 · ψ
j

1 )◦̃1(Dl ◦1 α|I | · ψ i
0). (1.23)

Here we assume that the output of every operadic element corresponds to the marked point x0
on the curve, and that, in the last sum, the points in the preimage of the node are the point x0 on
the curve with |I | + 1 marked points and the point x1 on the curve with |J | + 2 marked points.
The operation ◦̃1 in the last sum refers to using the push-forward ρ∗ on the cohomology and,
simultaneously, the composition ◦1 in the endomorphism operad. Because of our assumption
on the (skew-)symmetry of components of power series, the first summand acquires the sign
(−1)l : our translation into the operadic language requires us to identify V with its dual using
the scalar product η, so we have to replace the operator Dl acting on the output by its adjoint.
After that replacement, the assumptions on the (skew-)symmetry of components of power
series do not need to be used anymore: any element of z End(V )[[z]] provides a well defined
infinitesimal deformation of a given CohFT, viewed as an algebra over the corresponding operad
[22,40].

In the case of genus 1, we have the action

�Dl zl−1.{α, β} = {α�, β �}. (1.24)

The classes α�
n are defined by the genus zero formula (1.23). For the β-classes, we can simplify

the general formula (1.20) to
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β �
n =

n�

m=1
βn · ψ l−1

m ◦m Dl +
�

I�J=n,|I |≥2,
i+ j=l−2

(−1)i+1(β|J |+1 · ψ
j

1 )◦̃1(Dl ◦1 α|I | · ψ i
0)

+ 1
2

�

i+ j=l−2
(−1)i+1ξ̃n+1(αn+1 · ψ i

0 · ψ
j

n+1 ◦n+1 Dl). (1.25)

Here we assume that the points in the preimage of the node are the point x0 on the curve of
genus 0 and the point x1 on the curve of genus 1 in the second sum, and the points x0, xn+1
in the third sum. The operation ◦̃1 in the second sum refers to using the push-forward ρ∗ on
the cohomology and, simultaneously, the composition ◦1 in the wheeled endomorphism operad.
The operation ξ̃n+1 in the last sum refers to using the push-forward σ∗ on the cohomology and,
simultaneously, the contraction ξn+1 in the endomorphism operad. As above, once we pass to
wheeled operads, we may drop the assumptions on components of power series: any element of
z End(V )[[z]] provides a well defined infinitesimal deformation of a given CohFT, viewed as an
algebra over the corresponding wheeled operad.

2. Differential operators

In this section, we recall the definition and the properties of differential operators on
commutative algebras, and introduce a new notion of compatibility with the trace. Several new
results are proved, both for classical differential operators and for operators compatible with the
trace.

Definition 9 (Order of an Operator [24]). Let D be a linear map on a commutative algebra V .
Let us define the Koszul bracket hierarchy

�−, −, . . . ,−�D
l : V ⊗l → V (2.1)

by � f �D
1 := D( f ) and, recursively, by

� f1, . . . , fl−1, fl , fl+1�D
l+1

= � f1, . . . , fl−1, fl fl+1�D
l − � f1, . . . , fl−1, fl�D

l fl+1 − fl� f1, . . . , fl−1, fl+1�D
l . (2.2)

The operator D is said to be a differential operator on V of order at most l if the bracket
�−, −, . . . ,−�D

l+1 is identically equal to zero.

We denote by D ∈ Diff≤l(V ) the set of all differential operators of order at most l, and by
Diff(V ) the set of differential operators of all possible orders:

Diff(V ) :=
�

l≥0
Diff≤l(V ). (2.3)

The composition of differential operators makes Diff(V ) an associative algebra. This algebra is
filtered by the order of operators:

Diff≤k(V ) ◦ Diff≤l(V ) ⊂ Diff≤k+l(V ). (2.4)

There are many definitions of differential operators on commutative associative algebras
that can be found in the literature. The oldest and the most known one is probably due to
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Grothendieck [19], requiring, for an operator of order at most l, that

[[. . . [[D, f1 · (−)], f2 · (−)], . . .], fl+1 · (−)] = 0, (2.5)

where each fi · (−) stands for the operator g �→ fi · g. Later, other definitions have appeared;
see for example [24,1]. For algebras with a unit, and operators which annihilate the unit, all these
definitions are equivalent to each other; see [2].

It is easy to see that the above recursive definition of the Koszul hierarchy results in the
following explicit formula for the higher brackets:

� f1, . . . , fl−1, fl�D
l =

�

I⊂l,
|I |≥1

(−1)l−|I | D( f I ) · fl\I . (2.6)

From this formula, it is clear that the Koszul brackets are graded symmetric, and the condition of
being a differential operator of order at most l becomes

D( f1 f2 · · · fl+1) =
�

I⊂l+1,
1≤|I |≤l

(−1)l−|I | D( f I ) fl+1\I . (2.7)

From calculus, it is well known that to compute the derivative (respectively the second
derivative) of a product of n factors, it is enough to know the derivative of each factor
(respectively the second derivative of each factor and each product of two factors):

( f1 f2 · · · fn)� =
�

1≤i≤n
f �
i fn\{i}, (2.8)

( f1 f2 · · · fn)�� =
�

1≤i< j≤n
( fi f j )

�� fn\{i, j} − (n − 2)
�

1≤i≤n
f ��
i fn\{i}. (2.9)

We shall need the following generalisation of these formulae for any commutative algebra and
any order of an operator.

Proposition 5. For a differential operator D of order at most l, and for every n ≥ l + 1 we
have

D( f1 f2 · · · fn) =
�

I⊂n,
1≤|I |≤l

(−1)l−|I |
�

n − 1 − |I |
l − |I |

�
D( f I ) fn\I . (2.10)

Proof. Let us prove this formula by induction on n − l. For the basis of the induction, that is
n − l = 1, Formula (2.10) coincides literally with Formula (2.7), so there is nothing to prove.
For inductive step, let us note that a differential operator of order at most l is automatically a
differential operator of order at most l + 1; therefore by the induction hypothesis,

D( f1 f2 · · · fn) =
�

J⊂n,
1≤|J |≤l+1

(−1)l+1−|J |
�

n − 1 − |J |
l + 1 − |J |

�
D( f J ) fn\J . (2.11)

To show that this identity is equivalent to (2.10), let us eliminate all the terms D( f J ) fn\J with
|J | = l + 1 using (2.7). This would replace these terms by a sum of terms (−1)k−|I | D( f I ) fn\I ,
and each of the latter terms will appear exactly

�
n−|I |

l+1−|I |
�

times (the number of choices of the
“new” factors in fn\I ). Therefore, we have
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D( f1 f2 · · · fn) =
�

I⊂n,|I |≤l
(−1)l+1−|I |

�
n − 1 − |I |
l + 1 − |I |

�
D( f I ) fn\I

+
�

I⊂n,|I |≤l
(−1)l−|I |

�
n − |I |

l + 1 − |I |

�
D( f I ) fn\I

=
�

I⊂n,|I |≤l
(−1)l−|I |

�
n − 1 − |I |

l − |I |

�
D( f I ) fn\I , (2.12)

which is exactly what we wanted to prove. �

The key property of higher brackets that we shall need in this paper is given by the following
proposition.

Proposition 6 ([4]). We have

� f1, . . . , fn−1, fn�[A,B]
n =

�

I�J=n,
|I |=r≥1

�� fi1 , . . . , fir �B
r , f j1 , . . . , f jn−r �A

n−r+1

− (−1)deg(A) deg(B)�� fi1 , . . . , fir �A
r , f j1 , . . . , f jn−r �B

n−r+1. (2.13)

This formula immediately implies the well known fact that the commutator “makes the order
of differential operators drop by 1”:

[Diff≤k(V ), Diff≤l(V )] ⊂ Diff≤k+l−1(V ). (2.14)

Further in this paper, we shall need a modification of this property for commutative algebras with
traces which we shall now present.

Definition 10. A commutative algebra V is said to be an algebra with a trace if it is equipped
with the linear functional tr : End(V ) → C that vanishes on commutators: tr([A, B]) = 0 for all
A, B ∈ End(V ).

Proposition 7. A differential operator A of order at most l on a commutative algebra V with a
trace satisfies the trace identity

tr
�
� f1, . . . , fl−1, fl�A

l · (−)
�

= 0, (2.15)

for all f1, . . . , fl ∈ V .

Proof. Since A is an operator of order at most l, the operator � f1, . . . , fl , −�A
l+1 vanishes

identically. This means that

0 = � f1, . . . , fl−1, fl , −�A
l+1

= � f1, . . . , fl−1, fl · (−)�A
l − � f1, . . . , fl−1, fl�A

l · (−) − fl� f1, . . . , fl−1, −�A
l . (2.16)

As a consequence, we see that

� f1, . . . , fl−1, fl�A
l · (−) = [ fl · (−), � f1, . . . , fl−1, −�A

l ], (2.17)

so the trace in question vanishes being the trace of a commutator. �
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Informally, this result means that “the order of a differential operator drops by 1 in the
presence of the trace”. A subclass of differential operators of particular interest to us consists
of operators whose order drops unexpectedly low in the presence of the trace.

Definition 11. Let V be a commutative algebra with a trace. A differential operator A of order
at most l ≥ 3 is said to be strongly compatible with the trace if it satisfies the trace identity

tr
�
� f1, . . . , fl−1�A

l−1 · (−)
�

= 0, (2.18)

for all f1, . . . , fl−1 ∈ V . Notation: A ∈ Difftr
≤l(V ), Difftr(V ) := �

l≥3 Difftr
≤l(V ).

Note that from the defining property � f1, . . . , fl−1, fl , fl+1�A
l+1 = 0 of a differential operator

one can instantly deduce � f1, . . . , fl−1, fl , fl+1�A
l+1 fl+2 = 0 for every fl+2 ∈ V . In the presence

of traces, the corresponding conclusion is not obvious, and we shall prove it now. It will be
frequently used in our proofs in the main part of the article.

Proposition 8. Let V be a commutative algebra with a trace. Suppose that A is a differential
operator of order at most l ≥ 3 which is strongly compatible with the trace. Then

tr
�
� f1, . . . , fl−1, fl�A

l fl+1 · (−)
�

= 0, (2.19)

tr
�
� f1, . . . , fl−1�A

l−1 fl · (−)
�

= 0 (2.20)

for all f1, . . . , fl ∈ V . The first of these statements holds for l = 1 and l = 2 as well.

Proof. Let us prove the second statement; the first one is proved analogously to how it is done in
Proposition 7. Since A is of order at most l, we have

tr
�
� f1, . . . , fl−1, fl�A

l · (−)
�

= 0

for all f1, . . . , fl−1, fl ∈ V . Because of the definition of the Koszul hierarchy, we have

tr
�
� f1, . . . , fl−1, fl�A

l · (−)
�

= tr
�
� f1, . . . , fl−2, fl−1 fl�A

l−1 · (−)
�

− tr
�
� f1, . . . , fl−2, fl−1�A

l−1 fl · (−)
�

− tr
�

fl−1� f1, . . . , fl−2, fl�A
l−1 · (−)

�
(2.21)

so since A is strongly compatible with the trace we have

tr
�
� f1, . . . , fl−2, fl−1�A

l−1 fl · (−)
�

+ tr
�

fl−1� f1, . . . , fl−2, fl�A
l−1 · (−)

�
= 0. (2.22)

Recalling that Koszul brackets are symmetric in their arguments, we see that

tr
�
� f1, . . . , fl−2, fl−1�A

l−1 fl · (−)
�

= − tr
�

fl−1� f1, . . . , fl−2, fl�A
l−1 · (−)

�

= tr
�

fl−2� f1, . . . , fl−1, fl�A
l−1 · (−)

�

= − tr
�

fl� f1, . . . , fl−2, fl−1�A
l−1 · (−)

�
, (2.23)
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so

tr
�
� f1, . . . , fl−2, fl−1�A

l−1 fl · (−)
�

= 0, (2.24)

which is what we need. �

Proposition 9. The subspace Difftr(V ) ⊂ Diff(V ) is a Lie subalgebra.

Proof. Assume that A ∈ Difftr
≤k(V ) and B ∈ Difftr

≤l(V ). Let us examine the trace

tr
�

f � f1, . . . , fk+l−2�[A,B]
k+l−2 · (−)

�
, (2.25)

which we rewrite, using Formula (2.13), as
�

I�J=k+l−2,
|I |=r≥1

tr
�

f �� fi1 , . . . , fir �B
r , f j1 , . . . , f jk+l−2−r �A

k+l−1−r · (−)
�

− (−1)deg(A) deg(B) tr
�

f �� fi1 , . . . , fir �A
r , f j1 , . . . , f jk+l−2−r �B

k+l−1−r · (−)
�

. (2.26)

The first trace vanishes for r ≥ l+1 because B is of order at most l and also for k+l−1−r ≥ k−1
(that is, for l ≥ r ) because A is of order at most k and is strongly compatible with the trace. The
second trace vanishes for r ≥ k + 1 because A is of order at most k and for k + l − 1 − r ≥ l − 1
(that is, for k ≥ r ) because B is of order at most l and is strongly compatible with the trace. �

3. Stabilisers in genus 0

In this section, we make a very particular choice of a CohFT: we consider CohFTs in genus
zero, and moreover, we only work with TFTs, that is we assume we are given the classes

αn ∈ H0(M0,n+1, C) ⊗ EndV (n). (3.1)

The class α2 endows V with a structure of a graded commutative associative algebra. To simplify
the notation, we denote α2(x, y) by x · y, and by xy.

Let D = �
l≥1 Dl zl−1 ∈ End(V )[[z]] be an element of the Givental Lie algebra. It is natural

to ask when such an element preserves a given cohomological field theory.

Definition 12 (Commutative BV∞-Algebra [26]). A commutative algebra V is said to be a
commutative BV∞-algebra if it is equipped with a collection of operators Dl , l ≥ 1, each Dl

being a differential operator of order at most l and of degree 2l − 3, such that
��

l≥1 Dl
�2 = 0.

Definition 13 (Chain Multicomplex [35]). A chain multicomplex is a graded vector space V
together with a system of operators Dl : Vp → Vp+2l−3 satisfying the condition

�
�

l≥1
Dl

�2

= 0, (3.2)

or, after separating the homogeneous components,
�

i+ j=n
Di D j = 0. (3.3)
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Remark 3.1. This is the kind of structure that induces spectral sequences; see for example
[27, 10.3.16]. We are using the term “chain multicomplex” somewhat loosely: usually chain
multicomplexes are assumed to possess additional bi-gradings which are compatible with
the degrees of the operators Di , while our chain multicomplexes look like bigraded chain
multicomplexes with respect to the grading deg(Vp,q) = q − p.

We are now ready to formulate the main result of this section.

Theorem 1. Let V be a graded vector space. The Givental action of the element

D =
�

l≥1
Dl zl−1 ∈ End(V )[[z]]

preserves a given V -valued TFT in genus 0 if and only if each linear operator Dk is a differential
operator of order at most k on the commutative algebra V .

Corollary 1. Let V be a chain multicomplex with the structure maps Dl , l ≥ 1. The Givental
action of the element D = �

l≥1 Dl zl−1 ∈ End(V )[[z]] preserves a given V -valued TFT
in genus 0 if and only if the commutative algebra V equipped with the operators Di is a
commutative BV∞-algebra.

Proof. First of all, let us note that because of the choice (3.1), the images �Dl zl−1.αn of the classes
αn under the action of the individual components of D are in different cohomological degrees, so
the Givental action of D preserves a TFT if and only if its components preserve it, that is

�Dl zl−1.αn = 0, for l ≥ 1. (3.4)

Note that for n < l + 1 these conditions are satisfied trivially for cohomological degree reasons,
since dimCM0,n+1 = n − 2.

Second, we shall express our conditions via correlators: taking a sequence of nonnegative
integers d0, d1, . . . , dn with l − 1 + d0 + d1 + · · ·+ dn = n − 2, we can compute the intersection
of �Dl zl−1.αn with

�n
m=0 ψ

dm
m , thus obtaining the condition on an element of EndV (n) instead.

To take care of signs in subsequent computations, we introduce the n-ary operations

Fl

�
d1 d2 · · · dn
− − · · · −; d0

�
= (−1)l

�

M0,n+1

�Dl zl−1.αn ·
n�

m=0
ψdm

m . (3.5)

Substituting elements f1, . . . , fn ∈ V in such an operation, we get the system of identities

Fl

�
d1 d2 · · · dn
f1 f2 · · · fn

; d0

�
= 0, f1, . . . , fn ∈ V . (3.6)

In fact, Formula (1.23) implies that

Fl

�
d1 d2 · · · dn
f1 f2 · · · fn

; d0

�
= �τd0+l−1τd1 · · · τdn �0 Dl( f1 f2 · · · fn)

+ (−1)l
n�

m=1
�τd0τd1 · · · τdm+l−1 · · · τdn �0 f1 · · · Dl( fm) · · · fn

+
�

I�J=n,|I |≥2,
i+ j=l−2

(−1) j+1�τiτdI �0�τd0τ jτdJ �0 Dl( f I ) f J . (3.7)
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Showing, for every fixed l, that the system of identities (3.6) means precisely that Dl is a
differential operator of order at most l goes in several steps. First of all, we check that the identity
Fl(

0 0 · · · 0
f1 f2 · · · fn; 0) = 0 is precisely the definition of a differential operator of order at most

l for n = l + 1. Second, we check that for each n > l + 1 the “most symmetric” identity
Fl(

0 0 · · · 0
f1 f2 · · · fn; n − l − 1) = 0 coincides with Identity (2.10). To complete the proof, we use

the genus 0 topological recursion relations to prove the remaining identities by induction.
Let us use Formula (1.16) to make the formula (3.7) more explicit in the case d1 = · · · = dn =

0 (which is the case for the first two steps outlined above). Since �τpτn−2−pτ
n−2
0 �0 =

�
n−2

p

�
,

we see that

Fl

�
0 0 · · · 0
f1 f2 · · · fn

; d0

�
= Dl( f1 f2 · · · fn)

+ (−1)l
�

n − 2
l − 1

� n�

m=1
f1 · · · Dl( fm) · · · fn

+
�

I�J=n,|I |≥2,
i=|I |−2,

j+d0=|J |−1

(−1) j+1
� |J | − 1

j

�
Dl( f I ) f J , (3.8)

which, after putting d0 = n − l − 1 and eliminating J from the notation, becomes

Dl( f1 f2 · · · fn) =
�

I⊂n,|I |≤l
(−1)l−|I |

�
n − 1 − |I |

l − |I |

�
Dl( f I ) fn\I , (3.9)

which is Identity (2.10). Therefore the identity

Fl

�
0 0 · · · 0
f1 f2 · · · fn

; 0
�

= 0 (3.10)

coincides with Formula (2.7) that defines a differential operator of order at most l, and the
identities

Fl

�
0 0 · · · 0
f1 f2 · · · fn

; n − l − 1
�

= 0 (3.11)

follow from it; see Proposition 5.
It remains to complete the last step of the proof: the remaining identities follow from the

identities Fl(
0 0 · · · 0
f1 f2 · · · fn; n − l − 1) = 0. This will be deduced from the following lemma.

Lemma 1. We have

Fl

�
d1 + 1 d2 · · · dn

f1 f2 · · · fn
; d0

�
+ Fl

�
d1 d2 · · · dn
f1 f2 · · · fn

; d0 + 1
�

=
�

1∈I⊂n,
di1 +···+dir =|I |−2

�τ0τdI �0 Fl

�
0 d j1 · · · d js
f I f j1 · · · f js

; d0

�

+
�

1�∈I⊂n,
d0+di1 +···+dir =|I |−1

�τd0τ0τdI �0 f I Fl

�
d j1 · · · d js
f j1 · · · f js

; 0
�

. (3.12)
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Proof. To prove this lemma, we shall examine the sum

Fl

�
d1 + 1 d2 · · · dn

f1 f2 · · · fn
; d0

�
+ Fl

�
d1 d2 · · · dn
f1 f2 · · · fn

; d0 + 1
�

, (3.13)

having in mind the symmetrised version of the genus 0 topological recursion relation (1.18).
Let us split that sum into several parts, according to Formula (3.7) and to the position on the

label 1 in the summands of that formula:
�
�τd0+l−1τd1+1 · · · τdn �0 + �τd0+lτd1 · · · τdn �0

�
Dl( f1 f2 · · · fn), (3.14)

(−1)l �
�τd0τd1+l · · · τdm · · · τdn �0 + �τd0+1τd1+l−1 · · · τdm · · · τdn �0

�
Dl( f1) f2 · · · fn, (3.15)

(−1)l
n�

m=2

�
�τd0τd1+1 · · · τdm+l−1 · · · τdn �0

+ �τd0+1τd1 · · · τdm+l−1 · · · τdn �0
�

f1 · · · Dl( fm) · · · fn, (3.16)
�

{1}�I�J=n,|I |≥1,
i+ j=l−2

(−1) j+1 �
�τiτd1+1τdI �0�τd0τ jτdJ �0

+ �τiτd1τdI �0�τd0+1τ jτdJ �0
�

Dl( f1 f I ) f J , (3.17)

and
�

{1}�I�J=n,|I |≥2,
i+ j=l−2

(−1) j+1 �
�τiτdI �0�τd0τ jτd1+1τdJ �0

+ �τiτdI �0�τd0+1τ jτd1τdJ �0
�

Dl( f I ) f1 f J . (3.18)

Our goal now is to rewrite these sums so as to obtain directly the contributions from

�

1∈I⊂n,
di1 +···+dir =|I |−2

�τ0τdI �0 Fl

�
0 d j1 · · · d js
f I f j1 · · · f js

; d0

�
(3.19)

and from
�

1�∈I⊂n,
d0+di1 +···+dir =|I |−1

�τd0τ0τdI �0 f I Fl

�
d j1 · · · d js
f j1 · · · f js

; 0
�

. (3.20)

There are several cases where we can apply the topological recursion relation (1.18) directly.
Applying it to (3.14), (3.15), (3.16) and (3.18), we recognise the respective summands from
(3.19) and (3.20). The only part of our sum where (1.18) cannot be applied directly is (3.17),
where d0 and d1 appear in different correlators. In the remaining part of the proof, we shall
concentrate on analysing that part.

Let us rewrite (3.17) using the topological recursion relation (1.18) in the forms

�τiτd1+1τdI �0 = −�τi+1τd1τdI �0 +
�

K�L=I
�τiτ0τdL �0�τ0τd1τdK �0 (3.21)

and

�τd0+1τ jτdJ �0 = −�τd0τ j+1τdJ �0 +
�

K�L=J
�τd0τ0τdL �0�τ0τ jτdK �0. (3.22)
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The sums on the right hand sides of (3.21) and (3.22) give most of the missing summands in
(3.19) and (3.20) respectively. The terms −�τi+1τd1τdI �0 and −�τd0τ j+1τdJ �0, on the other hand,
give rise to the terms

(−1) j �τi+1τd1τdI �0�τd0τ jτdJ �0 Dl( f1 f I ) f J (3.23)

and

(−1) j �τiτd1τdI �0�τd0τ j+1τdJ �0 Dl( f1 f I ) f J (3.24)

almost all of which can be grouped into pairs appearing with opposite signs and cancelling one
another. The two terms that remain are the first and the last one,

(−1)l�τ0τd1τdI �0�τd0τl−1τdJ �0 Dl( f1 f I ) f J , (3.25)

and

�τl−1τd1τdI �0�τd0τ0τdJ �0 Dl( f1 f I ) f J (3.26)

which are precisely the missing terms from (3.19) and (3.20) respectively. �
Using this lemma, we complete the proof by induction. Indeed, (3.12) allows us to make one

of the di , for i > 0, smaller at the cost of either increasing d0 (keeping the sum d0 +d1 +· · ·+dn
fixed) or decreasing n. Since we know, for a fixed l, that the identities hold for small n and for
d1 = d2 = · · · = dn = 0 for all n, this is enough to complete the third (and the last) step of the
proof by induction. �

4. Stabilisers in genera 0 and 1

In this section, we shall explore the property of an operator to preserve a CohFT a bit further,
examining the conditions imposed by considering a TFT in genera 0 and 1. As we remarked
earlier, this corresponds to dealing with wheeled operads. Thus, we assume we are given the
classes

αn = α0,n+1 ∈ H0(M0,n+1, C) ⊗ EndV (n), (4.1)

βn = α1,n ∈ H0(M1,n, C) ⊗ EndV (n). (4.2)

Let us define a wheeled version of commutative BV∞-algebras; the reasoning behind this
definition can be recovered from homotopical calculations in Appendix A. We want to emphasise
that our definition of wheeled BV-algebras includes the Getzler relation (also known as “1/12-
axiom” for cyclic dg BV-algebras); Getzler was probably the first to have understood the
significance of that relation equation in the wheeled version of the operad BV.

Definition 14 (Wheeled Commutative BV∞-Algebra). A graded commutative algebra V with
a trace is said to be a wheeled commutative BV∞-algebra if it is equipped with a collection of
operators Dl , l ≥ 1, making it a commutative BV∞-algebra, for which, in addition, the Getzler
relation

1
12

tr(D2( f1) · (−)) = tr(D2( f1 · (−))) (4.3)

holds, and the operators Dk for k ≥ 3 are strongly compatible with the trace.

We are now ready to formulate the main result of this section.
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Theorem 2. Let V be a graded vector space. The Givental action of the element

D =
�

l≥1
Dl zl−1 ∈ End(V )[[z]]

preserves a given V -valued TFT in genera 0 and 1 if and only if each linear operator Dk is a
differential operator of order at most k strongly compatible with the trace on the commutative
algebra V .

Corollary 2. Let V be a chain multicomplex with structure maps Dl , l ≥ 1. The Givental
action of the element D = �

l≥1 Dl zl−1 ∈ End(V )[[z]] preserves a given V -valued TFT in
genera 0 and 1 if and only if the commutative algebra V with a trace equipped with the operators
Di is a wheeled commutative BV∞-algebra.

Proof. Let us first outline the main new feature of this proof, in comparison to the genus 0
case. Following the same strategy as for the genus 0 result, we shall be able to prove that the
wheeled commutative BV∞-algebra constraints are satisfied if and only if the Givental action of
the element D = �

l≥1 Dl zl−1 ∈ End(V )[[z]] preserves the correlators of the corresponding V -
valued TFT in genera 0 and 1. In the genus 0 case, the whole cohomology ring ofM0,n coincides
with the tautological ring, so preserving a TFT in genus 0 is equivalent to preserving all its
correlators. For the genus 1, this is not the case, and extra arguments are needed to conclude that
preserving the correlators of a TFT is sufficient for a Givental Lie algebra element to preserve that
TFT. First of all, a standard argument (see e.g. [11]) shows that the intersection of the deformed
classes defining the TFT with any tautological class is equal to zero. It remains to note that
Formula (1.20) for the Givental Lie algebra action implies that the deformations are given by
tautological classes, and the Gorenstein conjecture for the moduli spacesM1,n , n ≥ 1 [20,36],
proved recently in [38], ensures that the tautological rings in genus 1 have perfect pairings, that
is, if the intersection of a given tautological class ξ with any other tautological class is equal to
zero, then ξ = 0. Therefore, it is sufficient to mimic the genus 0 approach, and to work with
correlators only.

Because the TFT data consists of degree 0 classes, we conclude, as in the genus 0 case, that
the Givental action of D preserves a given TFT if and only if its components preserve it, so we
examine the vanishing conditions

{α�(l), β �(l)} := �Dl .{α, β} = 0, for l ≥ 1. (4.4)

Because of Theorem 1, we already know that the genus 0 conditions mean that we obtain
a commutative BV∞-algebra structure. The genus one part of the proof begins similarly to the
proof of Theorem 1, but in fact follows largely from what we already know in genus zero. By
Proposition 7, the genus zero conditions guarantee that “in the presence of the trace, Dl is of
order at most l − 1”.

Similarly to the genus zero case, the vanishing conditions for the classes β �
n(l) are satisfied

trivially for n < l − 1 for cohomological degree reasons, since dimCM1,n = n. For n ≥ l − 1,
we shall express our conditions via correlators. For every sequence of nonnegative integers
d1, . . . , dn with l − 1 + d1 + · · · + dn = n, we compute the intersection of β �

n(l) with�n
m=1 ψ

dm
m , thus obtaining the condition on an element of EndV (n) instead. To take care of

signs in subsequent computations, we introduce the operations with n inputs and no outputs

Gl

�
d1 d2 · · · dn
− − · · · −

�
:= (−1)l

�

M1,n

β �
n(l) ·

n�

m=1
ψdm

m . (4.5)
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Substituting elements f1, . . . , fn ∈ V in such an operation, we get the system of identities

Gl

�
d1 d2 · · · dn
f1 f2 · · · fn

�
= 0. (4.6)

Moreover, Formula (1.25) implies that

Gl

�
d1 d2 · · · dn
f1 f2 · · · fn

�

= (−1)l
n�

m=1
�τd1 · · · τdm+l−1 · · · τdn �1 tr( f1 · · · Dl( fm) · · · fn · (−))

+
�

I�J=n,|I |≥2,
i+ j=l−2

(−1) j+1�τiτdI �0�τ jτdJ �1 tr(Dl( f I ) f J · (−))

+ 1
2

�

i+ j=l−2
(−1) j+1�τiτd1 · · · τdn τ j �0 tr(Dl( f1 . . . fn · (−))). (4.7)

Examining the sum

1
2

�

i+ j=l−2
(−1) j+1�τiτd1 · · · τdn τ j �0 tr(Dl( f1 . . . fn · (−))), (4.8)

we see that the formula in the case l = 2 is substantially different from the case l > 2 (which
accounts for the difference between the Getzler relation and the compatibility with the trace): in
the former case, this sum is just one summand

−1
2
�τ 2

0 τd1 · · · τdn �0 tr(Dl( f1 . . . fn · (−))), (4.9)

while in the latter case it is an alternating sum of binomial coefficients (1.16) and therefore
vanishes. Hence we shall consider these cases separately.

Let us first consider the case l = 2. We first examine this identity in the case d1 = · · · = dn =
0 (this forces n = l − 1):

G2

�
0
f1

�
= �τ1�1 tr(D2( f1) · (−)) − 1

2
�τ 3

0 �0 tr(D2( f1 · (−)))

= 1
24

tr(D2( f1) · (−)) − 1
2

tr(D2( f1 · (−))), (4.10)

so we recover the Getzler 1/12-relation.
Now we proceed with arbitrary d1, . . . , dn . Formula (4.7) in this case becomes

G2

�
d1 d2 · · · dn
f1 f2 · · · fn

�
=

n�

m=1
�τd1 · · · τdm+1 · · · τdn �1 tr( f1 · · · D2( fm) · · · fn · (−))

−
�

I�J=n,|I |≥2
�τ0τdI �0�τ0τdJ �1 tr(D2( f I ) f J · (−))

− 1
2
�τ 2

0 τd1 · · · τdn �0 tr(D2( f1 . . . fn · (−))). (4.11)
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Let us rewrite the mth summand in the first sum using the genus one topological recursion
relation (1.19) at the point m, obtaining

�τd1 · · · τdm+1 · · · τdn �1 =



 1
24

�τ 2
0 τd1 · · · τdn �0 +

�

I�J�{m}=n
�τdI τdm τ0�0�τ0τdJ �1



 . (4.12)

If we apply the Getzler 1/12-relation (which we already obtained examining (4.10)) to the last
term of (4.11), and group the result with the sum of the first terms of (4.12), the result cancels
because of Identities (2.15) and (2.19) (applied to the operator D2 of order 2, those equations
imply that it becomes an operator of order 1 in the presence of the trace). Grouping together the
remaining terms with the same J , we see that each of the groups vanishes because of Identities
(2.15) and (2.19).

Let us now consider the case l > 2. For d1 = d2 = · · · = dn = 0 (this forces n = l − 1), we
have

Gl

�
0 0 · · · 0
f1 f2 · · · fl−1

�
= (−1)l

n�

m=1
�τl−1τ

l−2
0 �1 tr( f1 · · · Dl( fm) · · · fl−1 · (−))

+
�

I�J=l−1
(−1)|J |+2�τ|I |−2τ

|I |
0 �0�τ|J |+1τ

|J |
0 �1 tr(Dl( f I ) f J · (−))

=
n�

m=1

(−1)l

24
tr(Dl( fm) fl−1\{m} · (−)) +

�

I�J=l−1,
|I |≥2

(−1)|J |+2

24
tr(Dl( f I ) f J · (−))

= 1
24

tr(� f1, . . . , fl−1�Dl
l−1 · (−)), (4.13)

and we obtain, up to a factor 1/24, Identity (2.18).
Let us show that all other identities Gl(

d1 d2 · · · dn
f1 f2 · · · fn) = 0 follow from Identities (2.18)

and (2.20). For that, we shall prove the following lemma.

Lemma 2. We have

Gl

�
d1 d2 · · · dn
f1 f2 · · · fn

�

= −
�

I�J=n,
di1 +···+dir =|I |+1

�τ0τdi1
· · · τdir �1 tr

�
f I El−1

�
d j1 d j2 · · · d js
f j1 f j2 · · · f js

; 0
�

.(−)

�

+ 1
24

�

I�J=n,
di1 +···+dir =|I |

�τ 3
0 τdI �0 tr

�
f I El−2

�
d j1 d j2 · · · d js
f j1 f j2 · · · f js

; 0
�

.(−)

�
. (4.14)

Here El−1 and El−2 denote the expressions analogous to Fl−1 and Fl−2 respectively (as defined
by Formula (3.7)), but based on the operator Dl , not Dl−1 and Dl−2.

Proof. Let us split (4.7) into separate parts, which we shall then treat individually. In the first
sum, we apply to the mth summand the genus one topological recursion relation (1.19) at point m,
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obtaining

�τd1 · · · τdm+l−1 · · · τdn �1 =



 1
24

�τd1 · · · τdm+l−2 · · · τdn τ
2
0 �0

+
�

A�B�{m}=n
�τdAτdm+l−2τ0�0�τ0τdB �1



 . (4.15)

We shall leave the sum unchanged, and only transform the first term, where we apply the
topological recursion relation (1.17) at the points m, n + 1, n + 2 to get

1
24

�τd1 · · · τdm+l−2 · · · τdn τ
2
0 �0 = 1

24

�

K�L�{m}=n
�τdK τdm+l−3τ0�0�τ 3

0 τdL �0. (4.16)

The second sum in (4.7) has the terms with j = 0 and j ≥ 1; we consider them separately.
The terms with j = 0 have the coefficient

−
�

I�J=n,|I |≥2
�τl−2τdI �0�τ0τdJ �1 = −

�

A�B=n,|A|≥2
�τl−2τdA �0�τ0τdB �1, (4.17)

which we shall keep intact, having only renamed the summation variables, while the terms with
j ≥ 1 are being rewritten using the genus one topological recursion relation (1.19) at the point
with label j , producing the coefficient

(−1) j+1�τiτdI �0

�
1
24

�τ j−1τdJ τ
2
0 �0 +

�

A�B=J
�τdAτ j−1τ0�0�τ0τdB �1

�

. (4.18)

In the latter formula, we do not transform the sum, but rewrite the first term (for every j ≥ 2),
where we apply the topological recursion relation (1.17) at the first point and the last two points,
replacing it by

(−1) j+1

24
�τiτdI �0

�
�

K�L=J
�τdK τ j−2τ0�0�τ 3

0 τdL �0

�

. (4.19)

For j = 1, this rewriting cannot be performed, and we keep the corresponding term, just
renaming the summation variables:

1
24

�τl−3τdI �0�τ 3
0 τdJ �0 = 1

24
�τl−3τdK �0�τ 3

0 τdL �0. (4.20)

Now, examining the formulae above, we observe that they can be joined into two groups, one
consisting of the terms having the common numeric coefficient 1

24 �τ 3
0 τdL �0, and the other one

having the common numeric coefficient �τ0τdB �1. Examining these groups, we obtain precisely
Formula (4.14). �

Using this lemma, we complete the proof of our theorem, observing that since we already
know that in the presence of the wheel the order of differential operators drops by two, the genus
zero result guarantees that all further identities are satisfied. �
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Appendix A. Differential operator conditions and (wheeled) homotopy BV-algebras

In this appendix, we shall explain why it is natural to expect the differential operator
conditions in the homotopy BV context.

The definition of [26] is beautiful but somewhat ad hoc; there, the story starts from an
assumption that the operator

�
l Dl zl−1 (defining the structure of a chain multicomplex on V , or,

more informally, “a resolution of the relation ∆2 = 0”) has homogeneous components that are
differential operators of finite orders, which generally does not have to be true. The paper [13],
where a free resolution of the operad BV is obtained, gives a conceptual explanation: it is shown
there that a homotopy BV-algebra in which all higher homotopical operations except for the
unary ones vanish is a commutative BV∞-algebra in the sense of [26].

In the wheeled case, a free resolution for BV is not readily available, so one has to
approach this problem from a different angle. The explanation below is along the lines of the
Koszul–Tate approach to minimal models [25,41]: to construct a minimal model, we resolve
cycles step by step, adding higher and higher homotopies killing the appearing new cycles.
It turns out that if we assume that all higher homotopies of arity two and more vanish,
the differential operator conditions for operators Dl acting on homotopy BV-algebras appear
naturally. This informal statement is formulated precisely and proved in the remaining part of this
section.

Recall that the operad BV is made up of the algebra of dual numbers

D := T (∆)/(∆2),

considered as an operad concentrated in arity 1, and the operad Com for commutative algebras as
follows. The operad BV is equal to the quotient of the coproduct (the free product) of the operad
D and the operad Com by the relation saying that ∆ is an order 2 operator:

BV = D ∨ Com
(∆ order 2)

. (A.1)

The cobar construction Ω D¡ ∼−→ D on the Koszul dual coalgebra D¡ of D is a resolution of D.
Its underlying algebra is the free algebra on a sequence of elements, also denoted {Dl}l≥2 by a
slight abuse of notation. Its differential is given by Formula (3.3).

Theorem 3. The differential of Ω D¡ induces a well defined differential on the quotient operad

Ω D¡ ∨ Com
(Dl order l, for l ≥ 2)

. (A.2)



Author's personal copy

250 V. Dotsenko et al. / Advances in Mathematics 236 (2013) 224–256

If a quotient dg operad

Ω D¡ ∨ Com
(R)

(A.3)

is quasi-isomorphic to the operad BV, then the space of relations R contains the order l relations
for the operators Dl .

Proof. We begin with the second part of the statement. From the definition of BV-algebras,
D2 corresponds to ∆ and therefore, it must be a second order differential operator in any the
resolutions of BV. Let us prove that Dl must be a differential operator of order at most l by
induction, using l = 2 as the basis. Let us make the inductive step; by the inductive hypothesis,
we may assume that l ≥ 2 and Di for i = 2, . . . , l is a differential operator of order i . Note that
because of the homological degrees Eq. (3.3) can be written in the form

�

i+ j=n
[Di , D j ] = 0, (A.4)

so

[D1, Dl+1] = −1
2

l�

i=2
[Di , Dl+2−i ]. (A.5)

Let us consider, as in Section 3, the composite of operations Fl+1(
0 0 · · · 0
− − · · · −; 0) but viewed

in the resolution Ω D¡ ∨ Com
(R)

∼−→ BV of BV this time. It vanishes exactly when Dl+1 is a
differential operator of order l + 1. We compute its differential in the resolution and we
denote the result by Rl+1. That amounts to replacing Dl+1 everywhere in that composite by
− 1

2
�l

i=2[Di , Dl+2−i ]. In the absence of homotopies of arity 2 and higher up, all the differential
operators in that sum are of order at most l + 1 because of Property (2.14), so Rl+1 = 0, and the
condition for Dl+1 to be a differential operator of order l + 1 is a cocycle. (This proves the first
statement.) Hence it has to be resolved using a homotopy of arity at least 2, and that homotopy
vanishes in the resolution by the assumption. �

In the genera 0 and 1 case, we work with the wheeled analogues of the aforementioned
operads. Let BV� denote the wheeled operad which encodes BV-algebras equipped with a
trace satisfying the Getzler 1/12-relation. The wheeled operads Com� and Ω� D¡ are the
wheelification of the corresponding operads, that is wheeled versions without any more relations.

Theorem 4. The differential of Ω D¡ induces a well defined differential on the quotient wheeled
operad

Ω� D¡ ∨ Com�

(Getzler 1/12 − relation; Dl order l & strongly compatible with the trace, for l ≥ 2)
.

(A.6)

If a quotient wheeled dg operad

Ω� D¡ ∨ Com
(R)

(A.7)

is quasi-isomorphic to the wheeled operad BV�, then the space of relations R contains the
Getzler 1/12-relation, the order l relations for the operators Dl and the strong compatibility
with the trace.
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Proof. For wheeled operads, the same strategy works, but instead of Property (2.14), we shall
use the notion of compatibility with the trace. Proposition 9 shows that to mimic the proof in
the operadic case, we need to deal with the basis of the induction carefully (since in wheeled
commutative BV∞-algebras the operator D2 is not strongly compatible with the trace), and deal
with the case [D2, Dl ] which is the only term not covered by the induction assumption. These
terms are handled by the following lemma.

Lemma 3. Let D2 be a differential operator of odd degree and of order at most 2 satisfying the
Getzler 1/12-relation, and let Dl be a differential operator of odd degree and of order at most l,
which is strongly compatible with the trace. Then both the operators [D2, D2] and [D2, Dl ] are
strongly compatible with the trace, as operators of order at most 3 and at most l +1 respectively.

Proof. We shall prove these statements simultaneously, mimicking the proof of Proposition 9.
Namely, we rewrite tr( f � f1, . . . , fk�[D2,Dl ]

k · (−)) as
�

I�J=l,
|I |=r≥1

tr
�

f �� fi1 , . . . , fir �Dl
r , f j1 , . . . , f jl−r �D2

l+1−r · (−)
�

+ tr
�

f �� fi1 , . . . , fir �D2
r , f j1 , . . . , f jk−r �Dl

l+1−r · (−)
�

. (A.8)

The first of the summands in each of the terms of this sum vanishes for l + 1 − r ≥ 2 (that is for
l − 1 ≥ r ) by Proposition 7 because D2 is of order at most 2. The second one is equal to the first
one for l = 2, and for l > 2 vanishes for r ≥ 3 by Proposition 7 because D2 is of order at most
2 and for l + 1 − r ≥ l − 1 (that is for 2 ≥ r ) because Dl is of order at most l and is strongly
compatible with the trace. Therefore the only term that does not vanish a priori is

tr
�

f �� f1, . . . , fl�Dl
l �D2

1 · (−)
�

. (A.9)

Let us prove that this term vanishes. Both the operator D2 and the operator Dl are of order at
most l, so we write

�

∅�=I⊂l+1
(−1)l+1−|I | Dl( f I ) fl+1\I = 0 (A.10)

and
�

∅�=I⊂l+1
(−1)l+1−|I | D2( f I ) fl+1\I = 0. (A.11)

Let us apply D2 to Identity (A.10), apply (−1)l Dl to Identity (A.11), add the results, and compute
the traces with respect to the input fl+1. Using the fact that traces vanish on commutators, it is
possible to cancel all the terms tr(D2(Dl( f I · (−)) f J )) with the terms tr(Dl(D2( f I · (−)) f J )).
It follows that

tr



D2




�

∅�=I⊂l
(−1)l−|I | Dl( f I ) fl\I · (−)









+ (−1)l tr



Dl




�

∅�=I⊂l
(−1)l−|I | D2( f I ) fl\I · (−)







 = 0. (A.12)
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The latter identity can be rewritten as

tr
�
�� f1, . . . , fl�Dl

l · (−)�D2
1

�
+ (−1)l tr

�
�� f1, . . . , fl�D2

l · (−)�Dl
1

�
= 0. (A.13)

For l > 2, the second term vanishes since already � f1, . . . , fl�D2
l vanishes; for l = 2, the two

terms are the same. In either case, applying the Getzler 1/12-relation, we deduce that (A.9)
vanishes. �

Now everything is ready to finish the proof of Theorem 4. From the definition of wheeled
BV-algebras, D2 corresponds to ∆ and, hence, it should be a second order differential operator
satisfying the Getzler 1/12-relation in any resolution of BV� in the absence of higher homotopies
of arity ≥2. From the operadic proof, we already know that each operator Dl is a differential
operator of order at most l. Let us prove that, for l ≥ 3, these operators are strongly
compatible with the trace. We consider the composite of the operations Gl(

0 0 · · · 0
− − · · · −) and

Gl(
0 0 · · · 1
− − · · · −) in the resolution of the wheeled operad BV�. They vanish precisely when

Dl is strongly compatible with the trace. We compute their differentials in the resolution
and we denote the results by Sl and Tl respectively. Computing the differential amounts to
replacing Dl everywhere in that composite of operations by − 1

2
�l

i=2[Di , Dl+1−i ]. In the
absence of homotopies of arity 2 and higher, all the differential operators in that sum are strongly
compatible with the trace by Lemma 3, induction and Proposition 9 (and for the basis of induction
l = 3—by the first part of Lemma 3), so Sl = Tl = 0. (This proves the first statement.) Therefore
the condition for Dl to be strongly ‘compatible with the trace is a cocycle; so it has to be
resolved using a homotopy of arity at least 2. Finally that homotopy vanishes by assumption.
This completes the proof. �

Appendix B. Generalised BCOV theory

In this appendix, we explain a possible application of Corollaries 1 and 2.

B.1. Motivation: classical BCOV theory

BCOV theory is a way to construct cohomological field theories from a differential graded
BV-algebra, when the differential and the BV-operator satisfy the Hodge condition.

A dg BV-algebra is made up of a mixed chain complex

(A, d,∆), d2 = ∆2 = d∆ + ∆d = 0,

equipped with a compatible commutative product. Let us describe various types of Hodge
conditions that occur for this setup.

Definition 15 (Hodge Conditions).

� The compatibility relation

Ker d ∩ Ker ∆ ∩ (Im d + Im ∆) = Im d∆ (B.1)

is called the d∆-condition [7].
� The mixed chain complex is called semi-classical [37] if every homology class with respect

to the differential d has a representative in the kernel of ∆.
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� A Hodge-to-de Rham degeneration datum consists of a deformation retract

(A, d)h
�� p ��

(H(A), 0),
i

�� (B.2)

such that

p(∆h)m−1∆i = 0, for m ≥ 1. (B.3)

It is easy to see that the following implications hold

(d∆-condition) =⇒ (semi-classical) =⇒ (Hodge-to-de Rham degeneration datum) .

Theorem 5 ([9]). The underlying homology groups of a dg BV-algebra equipped with a Hodge-
to-de Rham degeneration datum is endowed with a genus 0 cohomological field theory structure
extending the induced commutative product.

This theorem was first proved under the d∆-condition in [3,31]. Explicit formulae were given
in [28]. It was shown under the semi-classical hypothesis in [37]. It was finally proved, in this
most general form, in [9], using the Homotopy Transfer Theorem (HTT) for the minimal model
of the operad BV: the homology groups of a dg BV-algebra can be endowed with a skeletal
homotopy BV-algebra structure extending the induced commutative product. Moreover, in the
presence of Hodge-to-de Rham degeneration datum, the transferred operator ∆ and its higher
homotopies vanish and one gets a homotopy genus 0 CohFT with trivial differential. Therefore,
its first stratum is a genus 0 CohFT.

The latter arguments can be applied to a commutative BV∞-algebra. The HTT says that the
transferred operators on homology are equal to

�

l1+l2+···+lk−k=n,
l1,...,lk≥2

(−1)k−1 pDl1 h Dl2 h . . . h Dlk i . (B.4)

Proposition 10. Let A be a commutative BV∞-algebra such that its operators {Dl}l≥1 satisfy
the following condition with the underlying deformation retract on the homology groups:

�

l1+l2+···+lk−k=n,
l1,...,lk≥2

(−1)k−1 pDl1 h Dl2 h . . . h Dlk i = 0 . (B.5)

In this case, the underlying homology groups are endowed with a genus 0 cohomological field
theory structure extending the induced commutative product.

It works like that only if we want to construct a CohFT on the operadic level; in the wheeled
operad case, we have to start with a finite dimensional wheeled BV-algebra with the Hodge
condition as an input (that is, we have to start with a finite-dimensional BV-algebra that satisfies
the Getzler relation), and in the modular operad case, we need again a finite dimensional BV-
algebra with the Hodge condition, satisfying the Getzler relation, and equipped with a scalar
product that is compatible with all the structure. The required algebraic formalism was developed
in [5,3,31,28,29,39].

The main problem of this approach in genera higher than 0 is the requirement for the input to
be finite dimensional, since the basic examples of BV-algebras with the Hodge condition [5,33]
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are infinite-dimensional. In fact, we do not know of any natural finite-dimensional example of a
wheeled BV-algebra satisfying the Hodge property.

There are different ways to resolve these kinds of problems. One of the possible approaches
is discussed in the recent preprint [6], where a renormalisation procedure is proposed. The price
for renormalisation is actually the loss of the algebraic elegancy of the BCOV theory. In the
vein of [9], one could use the HTT for the associated wheeled operad or, even better, wheeled
properad, as in [34].

Another possible strategy is to look for natural examples of a structure weaker than wheeled
BCOV theory, where the same simple algebraic formalism would give explicit formulae for the
induced CohFT. Here we explain the explicit formulae for the induced CohFT at the wheeled
operad level for the input recollected from Theorems 2 and 3. To this aim, we need an analogue
of the Hodge condition (B.3) or (B.5) but this time for wheeled commutative BV∞-algebras.

Of course, in genus 0, the formulae that we obtain must be specialisations of the HTT formulae
in [9], but, using our results one can present them in a very simple way.

B.2. The construction

We consider a wheeled commutative BV∞-algebra on a vector space V .
Its structure, according to Theorems 1 and 2, can be described by a V -valued TFT that consist

of classes

αn ∈ H0(M0,n+1, C) ⊗ Hom(V ⊗n, V ), n ≥ 3, (B.6)

and

βn ∈ H∗(M1,n, C) ⊗ Hom(V ⊗n, C), n ≥ 1, (B.7)

and the operators Dl of order at most l, for each l ≥ 1, such that the series

D(z) :=
∞�

l=1
Dl zl−1 (B.8)

satisfies D(z)2 = 0, and �D(z).{α, β} = 0.

Definition 16 (Gauge Hodge Condition). A wheeled commutative BV∞-algebra V is said to
satisfy the gauge Hodge condition if there exists a series A(z) = �∞

l=1 Al zl in End(V )[[z]] such
that

exp(−A(z))D1 exp(A(z)) = D(z). (B.9)

This definition relaxes the semi-classical Hodge condition: if we restrict ourselves to the
particular case D(z) = D1 + D2z, A(z) = A1z, and add the requirement A2

1 = 0, what we
obtain is precisely the semi-classical Hodge condition (see for example [39, Remark 5.4]). It
turns out that the conditions (B.5) and (B.9) are equivalent; see [8].

Theorem 6. The following formula gives the structure of a wheeled operadic CohFT on the
cohomology H(V, D1):

exp( �A(z)).{α, β}|H(V,D1) . (B.10)
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Proof. The proof is almost obvious. Indeed, general Givental theory implies that exp( �A(z)).
{α, β} is a wheeled operadic CohFT on V . Eq. (B.9) implies, after quantisation, that

�D1 exp( �A(z)) = exp( �A(z))�D. (B.11)

Therefore, exp( �A(z)).{α, β} consists of D1-closed cohomology classes, and therefore, it can
be restricted to the D1-cohomology preserving the property of being a wheeled operadic
CohFT. �
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