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Abstract. Using intersection theory in the context of Hilbert mani-
folds and geometric homology we show how to recover the main oper-
ations of string topology built by M. Chas and D. Sullivan. We also
study and build an action of the homology of reduced Sullivan’s chord
diagrams on the singular homology of free loop spaces, extending pre-
vious results of R. Cohen and V. Godin and unifying part of the rich
algebraic structure of string topology as an algebra over the partial Prop
of these reduced chord diagrams.

1. Introduction

The study of spaces of maps is an important and difficult task of algebraic
topology. Our aim is to study the algebraic structure of the homology of
free loop spaces. The discovery by M. Chas and D. Sullivan of a Batalin
Vilkovisky structure on the singular homology of free loop spaces [4] had a
deep impact on the subject and has revealed a part of a very rich algebraic
structure [5], [7]. The BV -structure consists of:
- A loop product − • −, which is commutative and associative; it can be
understood as an attempt to perform intersection theory of families of closed
curves,
- A loop bracket {−,−}, which comes from a symmetrization of the homo-
topy controling the graded commutativity of the loop product.
- An operator ∆ coming from the action of S1 on the free loop space (S1

acts by reparametrization of the loops).
M. Chas and D. Sullivan use (in [4]) ”classical intersection theory of chains
in a manifold”. This structure has also been defined in a purely homotopical
way by R. Cohen and J. Jones using a ring spectrum structure on a Thom
spectrum of a virtual bundle over free loop spaces [8]. As discovered by S.
Voronov [42], it comes in fact from a geometric operadic action of the cacti
operad. Very recently J. Klein in [25] has extended the homotopy theoretic
approach of R. Cohen and J. Jones to Poincaré duality spaces using A∞-ring
spectrum technology. For more algebraic approaches we refer the reader to
[12] and [34].
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In this paper we adopt a different approach to string topology, namely we
use a geometric version of singular homology introduced by M. Jakob [21].
We show how it is possible to define Gysin morphisms, exterior products
and intersection type products (such as the loop product of M. Chas and
D. Sullivan) in the setting of Hilbert manifolds. Let us point out that three
different types of free loop spaces are used in the mathematical literature:
- Spaces of continuous loops ([4] for example),
- Spaces of smooth loops, which are Fréchet manifolds but not Hilbert man-
ifolds ([3] for some details),
- Spaces of Sobolev class of loops [26],
These three spaces are very different from an analytical point of view, but
they are homotopy equivalent. For our purpose, we deal with Hilbert mani-
folds in order to have a nice theory of transversality. The last space of maps
is the one we use.

In order to perform such intersection theory we recall in section 2 what
is known about transversality in the context of Hilbert manifolds. We also
describe the manifold structure of free loop spaces used by W. Klingen-
berg [26] in order to study closed geodesics on Riemannian manifolds. The
cornerstone of all the constructions of the next sections will be the ”string
pull-back”, also used by R. Cohen and J. Jones [8, diagram 1.1].

Section 3 is devoted to the introduction and main properties of geometric ho-
mology. This theory is based upon bordism classes of singular manifolds. In
this setting families of closed strings in M , which are families parametrized
by smooth oriented compact manifolds, have a clear homological meaning.
Of particular interest and crucial importance for applications to the topol-
ogy of free loop spaces is the construction of an explicit Gysin morphism for
Hilbert manifolds in the context of geometric homology (section 3.3). This
construction does not use any Thom spaces and is based on the construction
of pull-backs for Hilbert manifolds. Such approach seems completely new in
this context. We give a comparison result of this geometric approach with
more classical ones, this result has an interpretation in terms of bivariant
theories over a topological categoryMHilb (I do not dare to write that this
a kind of ”motivic” interpretation).
We want to point out that all the constructions performed in this section
work with a generalized homology theory h∗ under some mild assumptions
([21]):
- the associated cohomology theory h∗ is multiplicative,
- h∗ satisfies the infinite wedge axioms.

In section 4 the operator ∆, the loop product, the loop bracket, the in-
tersection morphism and the string bracket are defined and studied using
the techniques introduced in section 2 and 3. This section is also concerned
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with string topology operations, these operations are parametrized by the
topological space of reduced Sullivan’s Chord diagrams CFµp,q(g), which is
closely related to the combinatorics of Riemann surfaces of genus g, with p-
incoming boundary components and q-outgoing. A. Voronov (private com-
munication) suggested introducing these spaces of diagrams because they
form a partial Prop and the cacti appear as a sub-operad. Pushing the work
of R. Cohen and V. Godin on the action of Sullivan’s chord diagrams on free
loop spaces further we prove our main result on free loop spaces:

Theorem: Let LM be the free loop space over a compact oriented d di-
mensional manifold M . For q > 0 there exist morphisms:

µn,p,q(g) : Hn(CFµp,q(g))→ Hom(H∗(LM×p),H∗+χ(Σ).d+n(LM×q)).

where χ(Σ) = 2− 2g − p− q.

Moreover as these operations are compatible with the partial gluing of re-
duced Sullivan’s diagrams, H∗(LM) appear as an algebra over this partial
Prop (when the homology is taken over a field). As a corollary one re-
covers the structure of Frobenius algebra on H∗+d(LM), build in [7], the
BV -structure of M. Chas and D. Sullivan [4]. This theorem captures all the
known algebraic structure of string topology under a same framework as an
algebra over a partial Prop. Let us point out that this structure makes also
appear new operations, for example we have a structure of coalgebra over
the BV -operad.

Acknowledgments: I would like to thank Andy Baker and Martin Jakob
for their help about infinite dimensional manifolds and geometric homology.
Discussions about string topology with Ralph Cohen, Yves Félix, Véronique
Godin and Jean-Claude Thomas and remarks of Muriel Livernet were also
very useful. I am also thankful to Sasha Voronov for a careful reading of a
preliminary draft of this paper and for many suggestions. I am very grateful
to the algebraic topology group of Barcelona (CRM, UAB and UB) for or-
ganizing a seminar on this subject, this was my main motivation for writing
this paper. Finally, I warmly thanks the ”Centre de Recerca de Matematica
de Barcelona” for its hospitality.

2. Infinite dimensional manifolds

2.1. Recollections on Hilbert manifolds. This section is mainly expos-
itory. We review basic facts about Hilbert manifolds. We refer to [31] (see
also [30] for a general introduction to infinite dimensional manifolds). More-
over all the manifolds we consider in this paper are Hausdorff and second
countable (we need these conditions in order to consider partitions of unity).
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2.1.1. Differential calculus. Let E and F be two normed vector spaces and
L(E,F ) the set of continuous linear maps of E into F . There is no difficulty
extending the notion of differentiability to the infinite dimensional context.
Let f : E → F be a continuous map we say that f is differentiable at x ∈ E
if there exists a continuous linear map λ of E into F such that:

(f(x+ v)− f(x)− λv)/|v|
tends to 0 as v ∈ E tends to 0. One can define differentials, C∞ morphisms,
diffeomorphisms and so on.

2.1.2. Hilbert manifolds. A topological space X is a manifold modelled on
a separable Hilbert space E if there exists an atlas {Ui, φi}i∈I such that:
i) each Ui is an open set of X and X =

⋃
i∈I Ui,

ii) φi : Ui → E is an homeomorphism to an open subset of E,
iii) φiφ−1

j is a diffeomorphism whenever Ui
⋂
Uj is not empty.

In this context one can define submanifolds, immersions, embeddings and
submersions ([31], chapter 2). Moreover we only consider C∞-Hilbert man-
ifolds.

2.1.3. Fredholm maps. A continuous linear map λ : E → F between two
normed vector spaces is a Fredholm operator if both kerλ and cokerλ are
finite dimensional. The index of the operator λ is defined by

index(λ) = dim(kerλ)− dim(cokerλ).

The set of Fredholm operators is a topological subspace of the space of linear
morphisms L(E,F ). The index is locally constant hence continuous.
A smooth map f : X → Y between two Hilbert manifolds is a Fredholm
map if for each x ∈ X the linear map

dfx : TxX −→ Tf(x)Y

is a Fredholm operator. Recall that the index of a Fredholm map

index : X → Z

x 7→ dim(kerdfx)− dim(cokerdfx)
is locally constant ([1, Prop 1.5]).

2.1.4. Oriented morphisms. Consider a Fredholm map f : X → Y between
two Hilbert manifolds and assume for simplicity that X is connected. Let
df be the map of vector bundles df : TX → f∗TY . We suppose that
dim(Kerdfx) and dim(cokerdfx) are constant, in this case one can define the
vector bundles Kerdf and Cokerdf . Two typical examples of this situation
are given by immersions of finite codimension and submersions of finite rank.
Now we want to define a virtual bundle associated to the map f . In order to
proceed we suppose that the bundle Cokerdf admits a finite trivialization
i.e. we suppose that X has a finite open cover that trivializes the bundle;
in this case we also say that Cokerdf is of finite type ([31], chapter III,
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section 5). By proposition 5.3 of [31] there exists a vector bundle α over X
such that df ⊕ α is trivializable.
The bundles Kerdf , Cokerdf and α are finite dimensional of dimension k,
c and l respectively. We define a virtual bundle of rank indexf = k− c over
X:

V (f) = Kerdf − Cokerdf = Kerdf ⊕ α.

The bundle V (f) defines a class [V (f)] in the K-theory group KO(X).

2.1.5. Definition. A proper Fredholm map f is oriented if:
i) dim(kerdf) is constant over the connected components of X,
ii) the bundle Cokerdf is of finite type,
under these hypotheses one can define a virtual bundle over X denoted by
V (f) and we suppose that it is oriented.

If we specialize to the case of a closed embedding it is Fredholm if it is
proper by a result of S. Smale [38]. Hence the embedding is oriented if and
only if a normal bundle of the embedding is finite dimensional, of finite type
and oriented.

For convenience we have considered above the notion of oriented morphisms
with respect to singular cohomology but we could have chosen to work by
considering orientations with respect to a generalized cohomology theory. In
this case let us consider E a ring spectrum and E∗(−) the generalized coho-
mology theory associated to this spectrum. By adding trivial vector bundles
over X to the bundle Kerdf ⊕ α we define a Thom spectrum TV (f). Let
Fx be a fiber of V (f) over x and jx : Fx → V (f) the inclusion of this fiber.
The map jx induces a map of spectra Jx : S0 → TV (f) from the sphere
spectrum to the Thom spectrum of V (f). We say that f is E-oriented is
there is an element u ∈ Ẽ0(TV (f)) such that the morphism

J∗x : Ẽ0(TV (f))→ Ẽ0(S0) = π0(E)

sends u to ±1 for every x ∈ X.
For example, if we work with KO, a morphism f is KO-oriented if and only
if the bundle V (f) admits a Spin structure.

Example : Let us describe the following typical example of an oriented
morphism. We consider a smooth map f : M → N between two compact
differentiable manifolds and we suppose that this map is an embedding.
Moreover we suppose that the normal bundle of this embedding is oriented.
Now let X be a Hilbert manifold and p : X → N be a submersion or a
smooth fiber bundle, then the pull-back of f along p :

f∗ : X ×N M → X
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is an embedding of Hilbert manifolds.The pull-back of the normal bundle of
f gives a normal bundle for f∗, this vector bundle is clearly of finite type.
Hence f∗ is an oriented morphism.

2.1.6. Partitions of unity. A very nice feature of Hilbert manifolds is the
existence of partitions of unity (see [31, chapter II,3] for a proof). Partitions
of unity do not always exist in the case of Banach manifolds and other types
of infinite dimensional manifolds. As a consequence mimicking techniques
used in the finite dimensional case, one can prove that every continuous map

f : P → X

from a finite dimensional manifold P to a Hilbert manifold X is homotopic
to a smooth one. And we can also smooth homotopies.

2.2. Transversality. We follow the techniques developed by A. Baker and
C. Özel in [1] in order to deal with transversality in the infinite dimensional
context.

2.2.1. Transversal maps. Let f : X → Y and g : Z → Y be smooth maps
between two Hilbert manifolds. Then they are transverse at y ∈ Y if

df(TxX) + dg(TzZ) = TyY

for every pair (x, z) such that f(x) = g(z) = y. The maps are transverse if
they are tranverse at any point y ∈ Imf∩Img. It is also useful to notice that
f and g are transverse if and only if f × g is transverse to ∆ : Y → Y × Y .

2.2.2. Pull-backs. Let us recall the main results about pull-backs of Hilbert
manifolds. We consider the following diagram:

Z �
g∗f

Z ∩Y X

Y

g

?
�

f
X

φ

?

where Z is a finite dimensional manifold and f : X → Y is an oriented map.

Using an infinite dimensional version of the implicit function theorem [31,
Chapter I,5], one can prove the following result:
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2.2.3. Proposition. [1, prop. 1.17] If the map

f : X → Y

is an oriented morphism and

g : Z → Y

is a smooth map transverse to f , then Z ∩Y X is a smooth manifold and the
pull-back map:

g∗f : Z ∩Y X −→ Z

is an oriented morphism.

For the generecity of transversal maps in the context of Hilbert manifolds
we refer the reader to [1, ch. 2]. The following result will be implicitly
used throughout the proofs of this paper. It guarantees the existence of
transversal maps up to homotopy.

2.2.4. Theorem. [1, Th. 2.1, 2.4] Let

f : X → Y

be an oriented morphism and let

g : Z → Y

be a smooth map from a finite dimensional manifold Z. Then there exists a
smooth homotopy :

H : Z × I → Y

such that H(., 0) = g and H(., 1) = g′ is transverse to f .

2.3. Free loop spaces. In what follows we identify S1 with R/Z an element
of S1 is denoted by t.
If we want to do intersection theory with spaces of closed curves, we need
to consider them as smooth manifolds. Following [3, Chapter 3], one can
consider the space C∞(S1,M) of all piecewise smooth curves as a Frechet
manifold. But we prefer to enlarge this space and to consider for k ∈ N≥1

the spaces Hk(S1,M) of Hk curves.
They are spaces of Sobolev maps whose k−th-derivative is square integrable
with respect to the unique flat metric on S1 inducing the measure dt on S1.
These spaces have the advantage of being Hilbert manifolds as we will see
below for the case k = 1. With this choice we can apply all the techniques
described in the sections 2.1 and 2.2. Let us also notice that:

C∞(S1,M) =
⋂
k

Hk(S1,M).
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2.3.1. Proposition. The spaces Hk(S1,M) are homotopy equivalent to the
Frechet manifold C∞(S1,M) and to the space of continuous maps C0(S1,M)
equipped with the compact open topology.

Proof This certainly depends on a deeper result about mapping spaces,
but let us give a geometrical proof. PkM denotes for k = 0 the space of
continuous maps from [0, 1] to M i.e. continuous paths with the compact
open topology, for k = ∞ the space of piecewise C∞-paths in M and of
Hk-paths in M otherwise. We have:

P∞M ⊂ . . . ⊂ P1M ⊂ P0M

all these inclusions are continuous and as these spaces are all contractible
the inclusions are homotopy equivalences.
Let ev0,1 : PkM → M ×M be the evaluation map defined by ev0,1(c) =
(c(0), c(1)). Free loop spaces are obtained by taking the pull-back of this
map along the diagonal map ∆ : M → M ×M . The result follows from
the fact that every map ev0,1 is a fibration, pull-backs along fibrations being
homotopy invariant. �

2.3.2. Manifold structure. Let us fix k = 1. In order to define a Hilbert
manifold structure on free loop spaces we follow W. Klingenberg’s approach
[26].
Let M be a Riemannian manifold of dimension d. We set

LM = H1(S1,M).

The manifold LM is formed by the continuous curves γ : S1 → M of class
H1. The basic model is the Hilbert space LRd = H1(S1,Rd). The space
LRd can be viewed as the completion of the space C∞p (S1,Rd) of piecewise
differentiable curves with respect to the norm ‖ − ‖1. This norm is defined
via the scalar product:

< γ, γ′ >1=
∫
γ(t) � γ′(t)dt+

∫
δγ(t) � δγ′(t)dt,

where � is the canonical scalar product of Rd and δγ is the derivative of
γ with respect to the parameter t. As S1 is 1-dimensional, we notice that
by Sobolev’s embedding theorem elements of LRd can be represented by
continuous curves.
Let us describe an atlas {Uγ , uγ} of LM . This atlas is modeled on spaces
Γ(γ∗TM) of H1-sections of pull-back bundles along γ ∈ C∞p (S1,M) a piece-
wise differentiable curve in M (notice that C∞p (S1,M) ⊂ H1(S1,M)) hence



A BORDISM APPROACH TO STRING TOPOLOGY 9

consider the pullback:

γ∗TM - TM

S1
?

γ
- M.

πM

?

Choose a smooth Riemannian metric onM . Let exp : U →M be the smooth
exponential mapping of this Riemannian metric, defined on a suitable open
neighborhood U of the zero section. We may assume that U is chosen such
that

(πM , exp) : U →M ×M

is a smooth diffeomorphism onto an open neighborhood V of the diagonal.
Now define

Uγ = {g ∈ H1(S1,M) : ∀t ∈ S1, (γ(t), g(t)) ∈ V },

uγ : Uγ → Γ(γ∗(TM)),

uγ(g)(t) = (t, exp−1
γ(t)(g(t))) = (t, ((πM , exp)−1 ◦ (γ, g))(t)).

Then uγ is a bijective mapping from Uγ onto the set

{s ∈ Γ(γ∗TM) : s(S1) ⊂ f∗U}.

The set uγ(Uγ) is open in the Hilbert space Γ(γ∗TM). Hence an atlas is
given by {Uγ , uγ}γ .
In fact, the manifold structure on LM does not depend on a choice of a
particular Riemannian metric on M .

2.3.3. The tangent bundle. Let TM →M be the tangent bundle of M . The
tangent bundle of LM denoted by TLM can be identified with LTM , this
is an infinite dimensional vector bundle where each fiber is isomorphic to
the Hilbert space LRd. Let γ ∈ LM we have:

TLMγ = Γ(γ∗TM),

where Γ(γ∗TM) is the space of sections of the pullback of the tangent bundle
of M along γ (this is the space of H1 vector fields along the curve γ). A
trivialization ϕ of γ∗TM induces an isomorphism:

TLMγ
∼= LRd.

The tangent bundle of LM has been studied in [9] and [35].
The manifold LM has a natural Riemannian metric. The scalar product on
TLMγ

∼= LRd comes from < −,− >1.
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2.3.4. The S1-action. The circle acts on LM :

Θ : S1 × LM −→ LM

by reparametrization:

Θ(θ, γ) : t 7→ γ(t+ θ).

Of course this action is not free. If we fix an element θ ∈ S1 the map
Θ(θ, .) : LM → LM is smooth whereas the map Θ is continuous but not dif-
ferentiable (see [26]). In fact the infinite dimensional Lie group Diff+(S1)
of orientation preserving diffeomorphims of S1 acts continuously on LM by
reparametrization.

2.3.5. The string pullback. Let us consider the evaluation map

ev0 : LM →M

γ 7→ γ(0).

This is a smooth fiber bundle. As the map ev0 × ev0 is transverse to the
diagonal map ∆ (because ev0 × ev0 is a smooth fiber bundle), we can form
the string pull-back [8, (1.1)]:

LM × LM �̃
∆
LM ∩M LM

M ×M

ev0 × ev0

?
�

∆
M,

ev

?

by transversality this is a diagram of Hilbert manifolds. We have:

LM ∩M LM = {(α, β) ∈ LM × LM : α(0) = β(0)}.

This is the space of composable loops. The map

∆̃ : LM ∩M LM → LM × LM

is a closed embedding of codimension d.
As the normal bundle ν∆̃ is the pull-back of ν∆ and as this last one is
isomorphic to TM , we deduce that ∆̃ is an oriented morphism.

2.3.6. Definition. A family of closed strings in M is a smooth map

f : P → LM

from a compact oriented manifold P .
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2.3.7. Proposition. The family P ×Q f×g→ LM ×LM is transverse to ∆̃ if
and only if ev0f and ev0g are transverse in M .

Now we suppose that (P, f) and (Q, g) are two families of dimensions p
and q respectively. Moreover we suppose that they are such that f × g is
transverse to ∆̃. We denote by P ∗Q the pullback:

P ×Q � P ∗Q

LM × LM

f × g

?
�̃
∆
LM ∩M LM.

ψ

?

Then P ∗Q is a compact oriented submanifold of P×Q of dimension p+q−d.

2.3.8. Intersection of families of closed strings. Let us define the map:

Υ : LM ∩M LM −→ LM.

Let (α, β) be an element of LM ∩M LM then Υ(α, β) is the curve defined
by:
Υ(α, β)(t) = α(2t) if t ∈ [0, 1/2]
Υ(α, β)(t) = β(2t− 1) if t ∈ [1/2, 1].
We notice that this map is well defined because we compose piecewise dif-
ferential curves, hence no ”dampening” constructions are needed as in [8,
remark about construction (1.2)].
The construction of Υ comes from the co-H-space structure of S1 i.e. the
pinching map:

S1 −→ S1 ∨ S1.

Now consider two families of closed strings (P, f) and (Q, g), by deforming
f and g one can produce a new family of closed strings (P ∗Q,Υψ) in M .

3. Geometric homology theories

As R. Thom proved it is not possible in general to represent singular
homology classes of a topological space X by singular maps i.e continuous
maps:

f : P −→ X

from a closed oriented manifold to X. But, M. Jakob in [21], [22] proves that
if we add cohomological information to the map f (a singular cohomology
class of P ), then Steenrod’s realizability problem with this additional coho-
mological data has an affirmative answer. In these two papers he develops
a geometric version of homology. The geometric version seems to be very
nice to dealing with Gysin morphisms, intersection products and so on.

All the constructions we give below and also their applications to string
topology work out for more general homology theories: various theories of
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bordism, topological K-theory for example. We refer the reader to [21], [22]
and [23] for the definitions of these geometric theories.

3.1. An alternative description of singular homology.

3.1.1. Geometric cycles. Let X be a topological space. A geometric cycle is
a triple (P, a, f) where:

f : P −→ X

is a continuous map from a smooth compact connected oriented manifold
P to X (i.e a singular manifold over X, P is without boundary, and a ∈
H∗(P,Z). If P is of dimension p and a ∈ Hm(P,Z) then (P, a, f) is a
geometric cycle of degree p −m. Take the free abelian group generated by
all the geometric cycles and impose the following relation:

(P, λ.a+ µ.b, f) = λ.(P, a, f) + µ.(P, b, f).

Thus we get a graded abelian group.

3.1.2. Relations. In order to recover singular homology we must impose the
two following relations on geometric cycles:

i) Bordism relation Given a map h : W → X where W is an oriented
bordism between (P, f) and (Q, g) i.e.

∂W = P
⋃
Q−.

Let i1 : P ↪→ W and i2 : Q ↪→ W be the canonical inclusions, then for any
c ∈ H∗(W,Z) we impose:

(P, i∗1(c), f) = (Q, i∗2(c), g).

ii) Vector bundle modification Let (P, a, f) be a geometric cycle and con-
sider a smooth oriented vector bundle E π→ P equipped with a Riemannian
metric. Take the unit sphere bundle S(E⊕1) of the Whitney sum of E with
a copy of the trivial bundle over M . The bundle S(E ⊕ 1) admits a section
σ. Let σ! be the Gysin morphism in cohomology associated to this section.
Then we impose:

(P, a, f) = (S(E ⊕ 1), σ!(a), fπ).

An equivalence class of geometric cycle is denoted by [P, a, f ]. Let call it
a geometric class. And H ′

q(X) is the abelian group of geometric classes of
degree q.

3.1.3. Theorem. [21, Cor. 2.36] The morphism:

compar : H ′
q(X) −→ Hq(X,Z)

[P, a, f ] 7→ f∗(a ∩ [P ])
where [P ] is the fundamental class of P is an isomorphism of abelian groups.
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3.2. Cap product and Poincaré duality [22, 3.2]. The cap product be-
tween H∗(X,Z) and H ′

∗(X) is given by the following formula:

∩ : Hp(X,Z)⊗H ′
q(X) −→ H ′

q−p(X)

u ∩ [P, a, f ] = [P, f∗(u) ∪ a, f ].
Let M be a d-dimensional smooth compact orientable manifold without
boundary then the morphism:

Hp(M,Z) −→ H ′
d−p(M)

x 7→ [M,x, IdM ]
is an isomorphism.

3.3. Gysin morphisms. (see [23] for a finite dimensional version) We want
to consider Gysin morphisms in the context of infinite dimensional mani-
folds.
Let us recall two possible definitions for Gysin morphisms in the finite dimen-
sional context. The following one is only relevant to the finite dimensional
case. Let us take a morphism:

f : Mm −→ Nn

of oriented Poincaré duality spaces. Then we define:

f! : H∗(Nn) D→ Hn−∗(Nn)
f→ Hn−∗(Mn) D

−1

→ H∗+m−n(Mm),

where D is the Poncaré duality isomorphism.
For the second construction, we suppose that f is an embedding of smooth
oriented manifold then one can apply the Pontryagin-Thom collapse c to the
Thom space of the normal bundle of f and then apply the Thom isomor-
phism th:

f! : H∗(Nn) c→ H∗(Th(ν(f))) th→ H∗+m−n(Mm).

Now we consider an oriented embedding of Hilbert manifolds. One can use
the Pontryagin-Thom collapse and the Thom isomorphism in order to define
a Gysin map. Let us give some details of this construction:
let f : X → Y be an oriented embedding of Hilbert manifolds, a tubular
neighborhood of X in Y consists of a vector bundle π : E → X, an open
neighborhhod V of the zero section in the total space E, an open set U in
Y containing X and a diffeomorphism φ : V → U which commutes with the
zero section. The tubular neighborhood is total if V = E.
Using the notion of sprays ([31, ch. IV.3]), its associated exponential map
and restriction to the normal bundle of f one can prove the existence and
uniqueness up to isotopy of tubular neighborhoods in the context of infinite
dimensional manifolds ([31, ch. IV.5, IV.6]). Moreover, as Hilbert manifolds
admit partitions of unity they admit a Riemannian metric, in the case of
Riemannian manifolds one can always choose tubular neighborhoods to be
total. Hence as in the finite dimensional context, we use the normal bundle
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of the ambedding, a Pontryagin-Thom collapse and apply the Thom isomor-
phism.

In the framework of geometric homology we prefer to use a very geometrical
interpretation of the Gysin morphism which is to take pull backs of cycles
along the map f .
So, we take i : X → Y an oriented morphism of Hilbert manifolds and we
suppose that the virtual bundle V (i) is of rank −d. Let us define:

i! : H ′
p(Y ) −→ H ′

p−d(X).

Let [P, a, f ] be a geometric class in H ′
p(Y ), we can choose a representing

cycle (P, a, f). If f is not smooth, we know that it is homotopic to a smooth
map by the existence of partitions of unity on Y . Moreover we can choose it
transverse to i, by the bordism relation all these cycles represent the same
class. Now we can form the pull-back:

P �
f∗i

P ∩Y X

Y

f

?
�

i
X

φ

?

3.3.1. Theorem. Let i : X → Y be an oriented morphism of Hilbert mani-
folds of codimension d, and [P, a, f ] a geometric cycle of H ′

p−a(Y ) such that
f and i are transverse then we set

i!([P, a, f ]) = (−1)d.|a|[P ∩Y X, (f∗i)∗(a), φ],

this give a well defined morphism:

i! : H ′
∗(Y )→ H ′

∗−d(X)

which satisfies:
i) if we have a pull-back of Hilbert manifolds

X ′ j
- Y ′

X

ψ

?

i
- Y

φ

?

then i!φ∗ = ψ∗j!,
ii) let i and j be two oriented morphisms of Hilbert manifolds then i!j! =
(ji)!,
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iii) let iPT! be the composition of the Pontryagin-Thom collapse c and the
Thom isomorphism th then the following diagram commutes:

H ′
∗(Y )

i! - H ′
∗−d(X)

H∗(Y ; Z)

compar

?

iPT!

- H∗−d(X; Z).

compar

?

Proof First notice that the sign of i! is taken from [23, 3.2c)], the Gysin
morphism can be viewed as a product for bivariant theories [13].
In order to prove that the morphism i! is well defined, one easily see that the
only thing to verify is that i! respects bordisms (taking pull-backs clearly
respects vector bundle modifications), this is exactly [1, theorem 2.4] (we
also notice that this result is proved in the finite dimensional case in [23]).
i) and ii) follow easily from the properties of pull-backs.
iii) M. Jakob proved this result for compact manifolds in [23]. The result
follows from the fact that each cycle is represented by a singular manifold
f : P → X whith f transverse to i then we apply i) to the pull-back

P ∩Y X
j

- P

X

ψ

?

i
- Y

φ

?

then apply Jakob’s comparison result for compact manifolds to P ∩Y X → P
and we conclude thanks to the commutativity of iPT! with respect to pull-
backs. �

Remarks: Let MHilb be the category whose objects are oriented mor-
phisms of Hilbert manifolds and morphisms are pull-backs diagrams:

X ′ j
- Y ′

X

ψ

?

i
- Y

φ

?

where φ and i are transverse. On MHilb there are two ways of producing
bivariant theories (bifunctors fromMHilb to Z-graded abelian groups). The
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first bivariant theory denoted by bHPT uses singular homology and cohomol-
ogy together with Gysin maps obtained by Pontryagin-Thom constructions.
The second one bHGeom uses geometric homology and singular homology
and the geometric version of Gysin maps (we refer the reader to [23] for
more precise definitions). The preceding theorem extends M. Jakob’s com-
parison results of the restriction of bHPT and bHgeom to the full subcategory
Mcomp of oriented morphisms of compact manifolds to the whole category
MHilb. As M. Jakob proved, bordisms theories are also universal among bi-
variant theories forMHilb. Chas and Sullivan constructions are of bivariant
nature as we will see from their geometric definitions, hence the bordism is
in some sense universal for the Chas and Sullivan structure.
The preceding theorem also enables us to compare directly our geometric
approach to Cohen-Jones’one [8] where the authors work with bHPT . R. Co-
hen and J.D.S. Jones work in fact at the level of spectra, it is certainly worth
to consider stable bivariant theories as functors fromMHilb to the homotopy
category of spectra, among stable bivariant theories there is a universal one
obtained by considering the Thom spectra of the oriented morphisms, then
bHPT factors through this spectral universal bivariant theory. This is the
bivariant interpretation of Cohen-Jones’approach to string topology.
The author wonders if there exists chain bivariant theories which factorize
bHPT or bHgeom. Even at level ofMcomp, that seems to be a rather difficult
task which of course depends heavily on the modelization of Gysin maps.
One can make such constructions at the level of the homotopy category of
chain complexes, this is the road chosen by S.A. Merkulov in [34] who uses
iterated integrals and by Y. Félix, J.-C. Thomas, M. Vigué in [12] who use
rational models. But it seems worthwile to the author having such construc-
tions at a strict level. Suppose that such a chain bivariant theory bC exists
then bC(M id→ M) should compute the cohomology of M , bC(M → pt)
should compute the homology of M .

3.4. The cross product [22, 3.1]. The cross product is given by the pair-
ing:

× : H ′
q(X)⊗H ′

p(Y ) −→ H ′
p+q(X × Y )

[P, a, f ]× [Q, b, g] = (−1)dim(P ).|b|[P ×Q, a× b, f × g].
The sign makes the cross product commutative. Let

τ : X × Y → Y ×X

be the interchanging morphism. Then we have the formula :

τ∗(α× β) = (−1)|α||β|β × α.

3.5. The intersection product([23, sect.3]). Let us return to the finite
dimensional case and consider M an oriented compact d-dimensional mani-
fold. Let [P, x, f ] ∈ H ′

n1
(M) and [Q, y, g] ∈ H ′

n2
(M), we suppose that f and
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g are transverse in M , then we form the pull back:

P ×Q �
j

P ∩M Q

M ×M

f × g

?
�
∆

M

φ

?

and define the pairing:

− • − : H ′
n1

(M)⊗H ′
n2

(M) ×→ H ′
n1+n2

(M ×M) ∆!

→ H ′
n1+n2−d(M).

Hence, we set:

[P, a, f ] • [Q, b, g] = (−1)d.(|a|+|b|)+dim(P ).|b|[P ∩M Q, j∗(a× b), φ].

Let l : P ∩M Q → P and r : P ∩M Q → Q be the canonical maps, then we
also have:

[P, a, f ] • [Q, b, g] = (−1)d.(|a|+|b|)+dim(P ).|b|[P ∩M Q, l∗(a) ∪ r∗(b), φ].

With this sign convention the intersection product • makes H ′
∗+d(M) into

a graded commutative algebra:

[P∩MQ, l∗(a)∪r∗(b), φ] = (−1)(d−dim(P )−|a|)(d−dim(Q)−|b|)[Q∩MP, l∗(b)∪r∗(a), φ].

4. String topology

In this section, using the theory of geometric cycles we show how to
recover the BV -structure on

H∗(LM) := H ′
∗+d(LM,Z)

introduced in [4] and studied from a homotopical point of view in [8].
We also define the intersection morphism, the string bracket of [4] and string
topology operations (we extend the Frobenius structure given in [7] to a ho-
mological action of the space of Sullivan’s chord diagrams).

Remark: In this section we use the language of operads and algebras over
an operad in order to state some results in a nice and appropriate frame-
work. For definitions and examples of operads and algebras over an operad
we refer to [17], [18], [32] and [42].

4.1. The operator ∆. Let [P, a, f ] be geometric cycle representing a class
in H∗(LM). Let us consider the map :

Θf : S1 × P Id×f→ S1 × LM Θ→ LM.
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4.1.1. Definition. Define the operator

∆ : H ′
n+d(LM)→ H ′

n+d+1(LM)

by the following formula:

∆([P, a, f ]) = (−1)|a|[S1 × P, 1× a,Θf ].

Notice, that the operator ∆ is well defined, the construction is obviously
invariant by bordism and vector bundles modifications. The operator ∆ is
the cross-product with the class [S1, 1, Id] followed by Θ∗. Later we will see
that the operator δ has a very nice interpretation in term of S1-equivariant
geometric homology.

4.1.2. Proposition [4, prop. 5.1]. The operator verifies: ∆2 = 0.

Proof This follows from the associativity of the cross product and the nullity
of [S1 × S1, 1× 1, µ] ∈ H ′

2(S
1) where µ is the product on S1. �

4.2. Loop product. Let us take [P, a, f ] ∈ H ′
n1+d(LM) and [Q, b, g] ∈

H ′
n2+d(LM). We can smooth f and g and make them transverse to ∆̃ then

we form the pull-back P ∗Q.

4.2.1. Definition. Let j : P ∗Q→ P ×Q be the canonical maps. Then we
have the pairing:

− • − : H ′
n1+d(LM)⊗H ′

n2+d(LM) −→ H ′
n1+n2+d(LM)

[P, a, f ] • [Q, b, g] = (−1)d.(|a|+|b|)+dim(P ).|b|[P ∗Q, j∗(a× b),Υψ],

let call it the loop product.

4.2.2. Proposition [4, Thm. 3.3]. The loop product is associative and com-
mutative.

Proof The associativity of the loop product follows from the associativ-
ity of the intersection product, the cup product and the fact that Υ is also
associative up to homotopy.
In order to prove the commutativity of • we follow the strategy of [4, Lemma
3.2].
Let us consider the map:

Ev1 : I × LM × LM →M ×M
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given by Ev1(t, γ1, γ2) = (γ(0), γ(t)). let us take the pullback

map(8t,M)
∆̃t

- I × LM × LM

M
?

∆
- M ×M

Ev1

?

where map(8t,M) = {(t, γ1, γ2) : γ1(0) = γ2(t)}. We have a map

comp1 : map(8t,M)→ LM
which is given by:

comp1(t, γ1, γ2) =


γ2(2θ), θ ∈ [o, t2)

γ1(2θ − t), θ ∈ [ t2 ,
t+1
2 )

γ2(2θ), θ ∈ [ t+1
2 , 1).

There is a smooth interchanging map:

τ : LM ∩M LM → LM ∩M LM.

Let [P, a, f ] and [Q, b, g] be two geometric classes. By pulling back the family

I × P ×Q Id×f×g→ I × LM × LM over ∆̃ we get a bordism between:

P ∗Q ψ→ LM ∩M LM
Υ→ LM

and
P ∗Q ψ→ LM ∩M LM

Υτ→ LM.

This bordism identifies the geometric class

[P ∗Q, j∗(a× b),Υψ]

and the geometric class

[P ∗Q, τ∗(j∗(a× b)),Υτψ]

which is also equal to:

(−1)(dim(P )−d−a)(dim(P )−d−b)[Q ∗ P, j∗(b× a),Υψ].

�

4.3. Loop bracket. Let [P, a, f ] and [Q, b, g] be two geometric classes. In
the preceding section we have defined a bordism between

P ∗Q ψ→ LM ∩M LM
Υ→ LM

and
P ∗Q ψ→ LM ∩M LM

Υτ→ LM.

Using the same construction one can define another bordism between

P ∗Q ψ→ LM ∩M LM
Υτ→ LM
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and
P ∗Q ψ→ LM ∩M LM

Υτ2

→ LM
by considering the map

Ev2 : I × LM × LM →M ×M
given by Ev2 = (γ1(s), γ2(0)) and a map comp2 : map(8s,M) → LM given
by the formula:

comp2(s, γ1, γ2) =


γ1(2θ), θ ∈ [0, s2)

γ2(2θ − s), θ ∈ [ s2 ,
s+1
2 )

γ1(2θ), θ ∈ [ s+1
2 , 1).

Then by gluing Ev1 and Ev2 one gets a map

Ev : S1 × LM × LM →M ×M
and a pull-back diagram:

LM �
comp

map(8s,t,M) - S1 × LM × LM

M
?

∆
- M ×M

Ev

?

where the map comp is also obtain by putting comp1 and comp2 together.
Then one obtains a geometric class:

(−1)(d+1).(|a|+|b|)+dim(P ).|b|[S1 ∗ P ∗Q, j∗(1× a× b), comp ◦ (IdS1 ∗ f ∗ g)].

4.3.1. Definition. The loop bracket is the pairing:

{−,−} : H ′
n1+d(LM)⊗H ′

n2+d(LM) −→ H ′
n1+n2+d+1(LM)

{[P, a, f ], [Q, b, g]} =
(−1)(d+1).(|a|+|b|)+dim(P ).|b|[S1 ∗ P ∗Q, j∗(1× a× b), comp ◦ (IdS1 ∗ f ∗ g)].

Remark let us us notice that the loop bracket is anti-commutative, we
have the formula:

{a, b} = (−1)(|a|+1).(|b|+1){b, a}.

4.3.2. Proposition. For every elements a, b and c in H∗(LM) we have the
formula:

{a, b • c} = {a, b} • c+ (−1)|b|(|a|+1)b • {a, c}

Proof Let K be the simplex given by K = {(s, t) ∈ R2/0 ≤ t ≤ s ≤ 1}.
Consider the map f1 : K ×LM ×LM ×LM →M×4 given by the formula:

f1(s, t, γ1, γ2, γ3) = (γ1(0), γ2(0), γ3(s), γ3(t)).
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and the map ∆1,2,2,1 : M×2 →M×4 defined by the formula:

∆1,2,2,1(m,n) = (m,n, n,m)

Now we take the pull-back K1 of f1 along ∆1,2,2,1. The space K1 is the
space of loops (γ1, γ2, γ3) parametrized by (s, t) such that γ1(0) = γ3(t) and
γ2(0) = γ3(s).
We define a composition map comp1 : K1 → LM

comp1(s, t, γ1, γ2, γ3) =


γ3(3θ), θ ∈ [0, t3)

γ1(3θ − t), θ ∈ [ t3 ,
t+1
3 )

γ3(3θ − 1), θ ∈ [ t+1
3 , s+1

3 )
γ2(3θ − (s+ 1)), θ ∈ [ s+1

3 , s+2
3 )

γ3(3θ − 2), θ ∈ [ s+2
3 , 1)

Let us notice that such a construction is used in [4, lemma 4.6].
Let us consider the map f2 : K × LM × LM × LM → M×4 given by the
formula:

f2(s, t, γ1, γ2, γ3) =
{

(γ1(0), γ3(0), γ1(2− t− s), γ2(0)), t+ s ≥ 1
(γ1(0), γ3(0), γ2(1− t− s), γ2(0)), t+ s ≤ 1

take the pull-back K2 of f2 along ∆1,2,2,1. The space K2 is the space of
loops (γ1, γ2, γ3) parametrized by (s, t) such that γ1(0) = γ2(0) and γ3(0) =
γ1(2− t− s) if t+ s ≥ 1 and γ3(0) = γ2(1− t− s) if t+ s ≤ 1.
We define a composition map comp2 : K2 → LM by

comp2(s, t, γ1, γ2, γ3) =


γ1(3θ), θ ∈ [0, 1−t−s

3 )
γ3(3θ − (1− t− s)), θ ∈ [1−t−s3 , 2−t−s

3 )
γ1(3θ − 1), θ ∈ [2−t−s3 , 2

3)
γ2(3θ − 2), θ ∈ [23 , 1)

if t+ s ≤ 1 and

comp2(s, t, γ1, γ2, γ3) =


γ1(3θ), θ ∈ [0, 1

3)
γ2(3θ − 1), θ ∈ [13 ,

3−t−s
3 )

γ3(3θ − (3− t− s)), θ ∈ [3−t−s3 , 4−t−s
3 )

γ2(3θ − 2), θ ∈ [4−t−s3 , 1)

otherwise. At the points a = (0, 0), b = (1, 0) and c = (0, 1) we have f1 = f2

and comp1 = comp2.

a b

c

A B

C

(0,-1/4)

(5/4,1)

i -

K F
�

�
�

�
�

�

�
�

�
�

�
�

��

we extend this morphisms on F in the following way:
fi(s, t, ., .) = fi(1, t, ., .) if t ≥ 1
fi(s, t, ., .) = fi(s, 0, ., .) if t ≤ 0.
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We get maps that are equal when restricted to A, B and C. If we identify
two copies of K along A, B and C we obtain an oriented surface Σ of genus
zero with three boundary components together with a map f : Σ×LM×3 →
M×4, if S is the pull-back of this map along ∆1,2,2,1 we also have a map
comp : S → LM . Hence we have the maps of Hilbert manifolds:

LM comp← S i→ Σ× LM×4

where i is an oriented embedding.
We take [P1, c1, f1], [P2, c2, f2] [P3, c3, f3] three geometric classes in H∗(LM)
denoted by α, β and γ. The pull-back of the map

Σ× P1 × P2 × P3
Id×f1×f2×f3−→ Σ× LM×3

along i gives a bordism. The boundary of this bordism corresponds to:
{α • β, γ} at ti = −1/4,
{α, γ} • β at si = 5/4
and {α • β, γ} at ti − si = 0.
yielding the desired formula. The signs are given by the orientation of Σ. �

4.3.3. Proposition. The bracket and the operator ∆ are related by:

{α, β} = (−1)|α|∆(α • β)− (−1)|α|∆(α) • β − α •∆(β).

Proof Let K1 and K2 be two simplexes given by the equation {(s, t) ∈
R2/0 ≤ t ≤ s ≤ 1}. Consider the map f1 : K1 × LM × LM → M×2 given
by the formula:

f1(s, t, γ1, γ2) = (γ1(0), γ2(s)).

Now we take the pull-back K1 of f1 along the diagonal ∆. The space K1 is
the space of loops (γ1, γ2) parametrized by (s, t) such that γ1(0) = γ2(s).
We define a composition map comp1 : K1 → LM

comp1(s, t, γ1, γ2) =


γ2(2θ + t), θ ∈ [0, s−t2 )

γ1(2θ − s+ t), θ ∈ [ s−t2 , s−t+1
2 )

γ2(2θ + t), θ ∈ [ s−t+1
2 , 1)

Let us notice that such construction is used in [4, lemma 5.2].
Consider the map f2 : K2 × LM × LM →M×2 given by the formula:

f1(s, t, γ1, γ2) = (γ1(1− s), γ2(0)).

Now we take the pull-back K2 of f2 along the diagonal ∆. The space K2 is
the space of loops (γ1, γ2) parametrized by (s, t) such that γ2(0) = γ1(1−s).
We define a composition map comp2 : K2 → LM

comp2(s, t, γ1, γ2) =


γ1(2θ − t), θ ∈ [0, 1−s+t

2 )
γ2(2θ − (1− s+ t)), θ ∈ [1−s+t2 , 2−s+t

2 )
γ1(2θ − t), θ ∈ [2−s+t2 , 1)
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We extend the morphisms f1 on F1 and f2 on F2 as in the proof of the
previous proposition. .

a b

c

A

D B

C E

(0,-1/4)

(5/4,1)

i -

K F
�

�
�

�
�

�

�
�

�
�

�
�

��

We have fi(a) = fi(c) and f1(x) + f2(c) for x = a, b, c. Thus we can build
a surface Σ of genus zero with four boundary components. This surface is
obtained by gluing Ai and Ci, B1 and B2, D1 and D2, E1 and E2. Finally
we get maps of Hilbert manifolds:

LM comp← S i→ Σ× LM × LM.

By studying the boundary of S we get.
{α, β} at ti = −1/4
∆(α • β) at si = 5/4,
α •∆(β) on K1 at s1 = t1,
∆(α) • β on K2 at s2 = t2.
�

It follows from the last two propositions the following results:

4.3.4. Theorem [4, Th. 5.4]. The loop product • and the operator ∆ makes
H∗(LM) into a Batalin Vilkovisky algebra, we have the following relations:
i) (H∗(LM), •), is a graded commutative associative algebra.
ii) ∆2 = 0
iii) (−1)|α|∆(α • β) − (−1)|α|∆(α) • β − α • ∆(β) is a derivation of each
variable.

Proof We use the following alternative definition of a BV-algebra given
by Getzler in [16]:
A BV-algebra is a graded commutative algebra (A, •) with an operator ∆
of degree +1 such that ∆2 = 0 and for every α, β, γ ∈ A

∆(α • β • γ) = ∆(α • β) • γ+ (−1)|α|α •∆(β • γ) + (−1)(|α|−1).|β|β •∆(α • γ)

−∆(α) • β • γ − (−1)|α|α •∆(β) • γ − (−1)|α|+|β|α • β •∆(γ).

This relation follows from propositions 4.3.2 and 4.3.3. �

4.3.5. Corollary. [4, Thm. 4.7]The triple (H∗(LM), •, {−,−}) is a Ger-
stenhaber algebra:
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i) (H∗(LM), •) is a graded associative and commutative algebra.
ii) The loop bracket {−,−} is a Lie bracket of degree +1:

{α, β} = (−1)(|α|+1)(|β|+1){β, α},

{α, {β, γ}} = {{α, β}.γ}+ (−1)(|α|+1)(|β|+1){β, {α, γ}},

iii) {α, β • γ} = {α, β} • γ + (−1)|β|(|α|+1)β • {α, γ}.

4.3.6. Remarks. Let us recall that there are two important examples of
Gerstenhaber algebras:
- The first one is the Hochschild cohomology of a differential graded asso-
ciative algebra A:

HH∗(A,A),
this goes back to M. Gerstenhaber [15].
- The second example is the singular homology of a double loop space:

H∗(Ω2X),

this is due to F. Cohen [6].
Both examples are related by the Deligne’s conjecture proved in many dif-
ferent ways ([2], [29], [33], [40], [41], [28]). This conjecture states that there
is a natural action of an operad C2 quasi-isomorphic to the chain operad of
little 2-discs on the Hochschild cochain complex of an associative algebra.
Hochschild homology enters the theory by the following results of R. Cohen
and J.D.S. Jones [8, Thm. 13] (this result was also proved by completely
different techniques in [12] and [34]):
C∗(M) denotes the singular cochains of a manifold M , then there is an
isomorphism of associative algebras:

HH∗(C∗(M), C∗(M)) ∼= H∗(LM).

E. Getzler introduced BV -algebras in the context of 2-dimensional topo-
logical field theories [16]. And he proved that H∗(Ω2M) is a BV -algebra if
M has a S1 action. Other examples are provided by the de Rham cohomol-
ogy of manifolds with S1-action.
The BV -structure on H∗(LM) comes in fact from a geometric action of the
cacti operad [8], [42] (normalized cacti with spines in the terminology of R.
Kaufmann [26]). Roughly speaking an element of cacti(n) is a tree-like con-
figuration of n-marked circles in the plane. The cacti operad is homotopy
equivalent to the little framed discs operad [42]. And we know from the
work of E. Getzler that the homology of the little framed discs operad gives
the BV operad [16].
Let us explain this geometric action. First let us define the space Lcacti(n)M
(denoted by LnM in [8]) as:

Lcacti(n)M = {(c, f) : c ∈ cacti(n), f : c→M}.
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We take the Gysin morphism associated to the map:

cacti(n)× LM×n ←− Lcacti(n)M

since to any element c ∈ cacti(n) one can associate a map:

S1 → c

we get:
Lcacti(n)M −→ LM.

For n = 1, 2 we know from R. Kaufmann’s description of cacti [24] that
cacti(n) is a smooth manifold. In that case all the maps defined above are
maps of Hilbert manifolds and they give also a very nice description of the
action of H ′

∗(cacti) on H ′
∗+d(LM).

So, it is certainly worth building a smooth structure on cacti or on an
operad homotopy equivalent that acts in the same way. This would give a
more conceptual proof of the preceding theorem.

4.4. Constant strings. We have a canonical embedding:

c : M ↪→ LM
c induces a map:

c∗ : H ′
n+d(M)→ H ′

n+d(LM).
The morphism c∗ is a morphism of commutative algebras. This follows from
the pullback diagram:

M
∆

- M ×M

LM ∩M LM
?

∆̃
- LM × LM.

c× c

?

4.5. Intersection morphism. Let recall that the map

ev0 : LM −→M

is a smooth fiber bundle of Hilbert manifolds. Hence if we choose a base
point m ∈ M the fiber of ev0 in m is the Hilbert manifold ΩM of based
loops in M . Consider the morphism:

i : ΩM ↪→ LM
from the based loops in M to the free loops in M , this is an orientable
morphism of codimension d.
Let us describe the intersection morphism:

I = i! : H∗(LM)→ H ′
∗(ΩM).

Let [P, a, f ] ∈ H ′
n+d(LM) be a geometric class, one can define I([P, a, f ]) in

two ways:
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i) using the Gysin morphism : I([P, a, f ]) = (−1)d.|a|[P∩LMΩM, (f∗i)∗(a), φ].

Notice that this is the same as doing the loop product with [cm, 1, c] where
cm is a point and c : cm → LM is the constant loop at the point m, then
we have:

ii) I([P, a, f ]) = (−1)d.|a|[P ∗ cm, l∗(a), ψ].

4.5.1. Proposition [4, Prop 3.4]. The intersection morphism I is a mor-
phism of associative algebras.

Proof. The algebra structure on H ′
∗(ΩM) comes from the Pontryagin prod-

uct which is the restriction of Υ to ΩM×ΩM , we have the following diagram:

ΩM × ΩM
ΥΩM×ΩM- ΩM

LM ∩M LM

i× i

? Υ
- LM.

i

?

The Pontryagin product is given by the formula:

[P, a, f ].[Q, b, g] = (−1)dim(P ).|b|[P ×Q, a× b,ΥΩM×ΩM (f × g)].
This product is associative but not commutative. The intersection mor-
phism is a morphism of algebras by commutativity of the diagram above. �

This morphism has been studied in detail in [11], in particular it is proved
that the kernel of I is nilpotent.

4.6. String bracket. Our goal in this section is to define, using geometric
homology theory, the morphisms occurring in the Gysin sequence. These
morphims were used By M. Chas and D. Sullivan to define a Lie algebra
structure on the S1-equivariant homology of free loop spaces.

4.6.1. G-equivariant geometric homology. Let G be a compact Lie group,
and consider a paracompact topological left G-space X. We consider the
locally trivial G-bundle:

G→ EG×X p→ EG×G X
where EG is a contractible free G-space. Let [P, a, f ] ∈ H ′

∗(EG×GX) then
one can take the pullback of f along p we get a locally trivial G-bundle:

G→ f∗P
f∗p→ P

and a geometric class (−1)dim(G).|a|[f∗P, φ∗(a), f ◦ f∗p] this defines a mor-
phism:

p! : H ′
∗(EG×G X)→ H ′

∗+dimG(X).
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Let p∗ : H ′
∗(X) → H ′

∗(EG ×G X) the morphism induced in geometric ho-
mology, as the action of G on EG×G X is free one has:

p!p∗([Q, a, f ]) = [G×Q, 1× a,Θf ]

where Θf : G×Q→ X is given by Θf (g, q) = g.f(q). This transfer appears
as a particular case of a gysin map in MHilb, EG can be considered as a
Hilbert manifold. There always exist faithful representations H of G such
that H is an infinite dimensional Hilbert space we take EG = H. Now
suppose that X is an Hilbert manifold, the space EG×GX is not a priori a
smooth Hilbert manifold because the action can be non-smooth, it is a topo-
logical manifold modelled on a Hilbert space E. But a topological manifold
modelled on an infinite dimensional Hilbert space is always homeomorphic
to a Hilbert manifold by the results of [10], thus we get a smooth locally
trivial G-bundle:

G→ EG×X p→ EG×G X
and from the results of section 3, the geometric gysin map associated to the
oriented morphism p coincides with the classical gysin map.

4.6.2. String homology. Let us specialize to the case:

S1 → ES1 × LM π→ ES1 ×S1 LM

and Let Hi be the homology group H ′
i+d(ES

1 ×S1 LM), this is the string
homology of M . In what follows we give explicit definitions of the morphism
c, M , E of [4, 9].

The morphism c. Let e ∈ H2(ES1 ×S1 LM) be the Euler class of the
S1-fibration defined above:

c : Hi → Hi−2

c([P, a, f ]) = [P, f∗(e) ∪ a, f ].

The morphism E. This morphism is E = π∗:

E : Hi(LM)→ Hi

E([P, a, f ]) = [P, a, πf ].

The morphism M. The morphism M is π!. We notice that M ◦ E = ∆.

We have the following exact sequence, which is the Gysin exact sequence
associated to the S1-fibration π:

. . .→ Hi(LM) E→ Hi
c→ Hi−2

M→ Hi−1(LM)→ . . .
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4.6.3. The bracket. The string bracket is given by the formula:

[α, β] = (−1)|a|E(M(α) •M(β)).

Together with this bracket (H∗, [−,−]) is a graded Lie algebra of degree
(2− d) [4, Th. 6.1].

4.7. Riemann surfaces operations. These operations were defined by R.
Cohen and V. Godin in [7] by means of Thom space technology.
Let Σ be an oriented surface of genus g with p+ q boundary components, p
incoming and q outgoing. We fix a parametrization of these components.
Hence we have two maps:

ρin :
∐
p

S1 → Σ,

and

ρout :
∐
q

S1 → Σ.

If we consider a nice analytic model map(Σ,M) for the space of maps of Σ
into M , we can get a Hilbert manifold and the diagram of Hilbert manifolds:

LM×q ρout←− map(Σ,M)
ρin−→ LM×p.

Because the codimension of the map ρin is infinite we will work with graphs
rather than surfaces.
Now, let χ(Σ) be the Euler characteristic of the surface. Using Sullivan’s
Chord diagrams it is proved in [7] that the morphism

map(Σ,M)
ρin−→ LM×p

has a homotopy model:

H1(c,M)
ρin−→ LM×p

that is an embedding of Hilbert manifolds of codimension −χ(Σ).d. The
space H1(c,M) is obtained as a pull-back of Hilbert manifolds, we will give
a definition of this space in the next sections.
Hence by using the Gysin morphism for Hilbert manifolds one can define
the operation:

µΣ : H ′
∗(LM×p)

ρ!in−→ H ′
∗+χ(Σ).d(H

2(Σ,M))
ρout∗−→ H ′

∗+χ(Σ).d(LM
×q).

All these operations are parametrized by the topological space of marked,
metric chord diagrams CFµp,q(g) [7, sect1]. In the next section we intro-
duce a reduced version of Sullivan’s chord diagrams and give some algebraic
properties of the associated operations.
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4.7.1. Sullivan chord diagrams. In the preceding morphism c ∈ CFµp,q(g) is
the Sullivan chord diagram associated to to the surface Σ. Let us recall the
definitions of [7]. A metric fat graph is a graph whose vertices are at least
trivalent such that the incoming edges at each vertex are equipped with a
cyclic ordering, Moreover it has the structure of a compact metric space
(details are given in [7, def. 1] and [20, chapter 8]),
This fat graph represents a surface of genus g with p+ q boundary compo-
nents. The set of metric fat graphs is denoted by Fatp,q(g).
The cyclic ordering of the edges defines ”boundary cycles”. Pick an edge
and an orientation on it, then traverse it in the direction of the orientation,
this leads to a vertex, at this vertex take the next edge coming from the
cycling ordering and so on. Then we get a cycle in the set of edges wich
represent a boundary component of the Riemann surface associated to the
fat graph. Hence on an element of Fatp,q(g) we have a partition of the cycles
into p incoming cycles and q outgoing cycles.

Fat graphs (also called ribbon graphs) are a nice combinatoric tool in order
to study Riemann surfaces [27], [36], [37] and [39].

4.7.2. Definition. A metric Sullivan chord diagram c of type (g;p,q) con-
sists in a metric fat graph c ∈ Fatp,q(g). c is a disjoint union of p para-
metrized circles of varying radii that are exactly the p incoming cycles of c,
joined at a finite number of points by disjoint trees.

On a metric Sullivan chord diagram the edges and the vertices lying on
the incoming cycles are called the circular edges and the circular vertices.
The other edges are the ghost edges.
If we contract all the ghost edges of a Sullivan chord diagram c ∈ CFp,q(g)
one gets a fat graph S(c) ∈ Fatp,q(g).

4.7.3. Definition. A marking of a metric Sullivan chord diagram is a
choice of a point on each boundary cycle of S(c). Let us denote CFµp,q(g)
the space of marked metric Sullivan chord diagrams.

Following a suggestion of A. Voronov rather than using the space CFµp,q(g),
we introduce the space of reduced metric marked Sullivan chord diagrams
(in fact the utilisation of such daigrams is already implicit in the work of R.
Cohen and V. Godin) .

4.7.4. Definition. The space of reduced marked Sullivan chord diagram de-
noted by CFµp,q(g) is the quotient of CFµp,q(g) by the following equivalence
relation:
let us consider the continuous map

S : c 7→ S(c)
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that collapses each ghost edge of a Sullivan chord diagram to a vertex,
c, c′ ∈ CFµp,q(g) are equivalent if and only if S(c) = S(c′). CFµp,q(g) is
equipped with the quotient topology.

As proved by V. Godin the spaces CFµp,q(g) and CFµp,q(g) are homotopy
equivalent [19].

4.7.5. Proposition. The spaces of reduced and unreduced chord diagrams
are homotopy equivalent.

Proof. We sketch the proof of V. Godin. Let us consider the map

π : CFµp,q(g)→ CFµp,q(g).

This map can be viewed as the realization of the nerve of a functor:

πcat : CFatµp,q(g)→ CFatµp,q(g)

Let us describe these categorical constructions (see [7] and [20]). The ob-
jects of the category CFatµp,q(g) (respectively CFatµp,q(g)) are combinatorial
Sullivan’s chord diagrams with no length assigned to the edges (resp. com-
binatorial reduced Sullivan’s chord diagrams with no length assigned to the
edges). The morphisms of these categories are ”collapse maps” i.e. a mor-
phism f : G→ H is such that:
- f is a map of graphs that preserve the cycling ordering, the p distinguished
incoming edges and the marking,
- the inverse of a vertex is a tree,
- the inverse of an open edge is also an open edge.
In order to prove that π is a homotopy equivalence, it suffices to prove
that for any reduced chord diagram c the over category πcat/c is a retract
of the fibre category π−1

cat(c), hence the realization of the fibre category is
contractible. To conclude we apply Quillen’s theorem A. �

4.7.6. Definition. A collection {Pp,q}p,q∈N of topological spaces is a partial
PROP if we have :
horizontal composition maps φp,q,p′,q′ : Pp,q × Pp′,q′ → Pp+p′,q+q′,
partial vertical composition maps:

Pp,q × Pq,r
i←− Up,q,r

ψp,q,r−→ Pp,r

where Up,q,r is a sub-topological space of Pp,q × Pq,r.
These composition maps satisfy:
Unit. For every l ∈ N there is an element 1l ∈ Pl,l together with two maps:
j1 : Pp,l × {1l} → Up,l,l and j2 : {1l} × Pl,p → Ul,l,p such that ψp,l,lj1 = Id
and ψl,l,pj2 = Id. We also have φl,l,m,m(1l, 1m) = 1l+m.
Associativity. The horizontal composition maps are associative. Vertical
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composition maps verify a partial associativity condition:

Pp,q × Pq,r × Pr,s � Pp,q × Uq,r,s - Pp,q × Pq,s

Up.q.r × Pr,s

6

Up,q,s

6

Pp,r × Pr,s
?

� Up,r,s - Pp,s
?

Interchange. For every p, q, r, p′, q′, r′ we have

(Pp,q × Pq,r)× (Pp′,q′ × Pq′,r′) � Up,q,r × Up′,q′,r′ - Pp,r × Pp′,r′

Pp+p′,q+q′ × Pq+q′,r+r′
?

� Up+p′,q+q′.r+r′ - Pp+p′,r+r′ .
?

Remarks - We have given a definition of partial PROPs in a non-symmetric
framework, of course symmetric partial PROPs can be defined by requiring
an action of the product of the symmmetric groups Σp×Σq on Pp,q and the
equivariance of vertical and horizontal composition maps.
- The case of PROPs is recovered when Up,q,r = Pp,q × Pq,r.
- This definition can be adapted to every monoidal category. In particular
for graded modules.
- In what follows we assume that q > 0.

4.7.7. Proposition. The space CFµp,q(g) is a partial PROP.

Proof. The structure of partial PROP is obtained via two kind of com-
patible composition products.
A horizontal composition∐

: CFµp,q(g)× CFµp′,q′(g′)→ CFµp+p′,q+q′(g + g′)

which is obtained by taking the disjoint union of the chord diagrams.
A partial vertical composition

] : CFµp,q(g)× CFµq,r(g′)→ CFµp,r(g + g′ + q − 1)

obtained by identifying the incoming boundary components of elements of
c1 ∈ CFµq,r(g′) to the outgoing boundary components of c2 ∈ CFµp,q(g),
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At the level of unreduced diagrams this gluing is not continuous nor well-
defined [7]. Let us recall the issues of this procedure for unreduced diagrams.
Consider u, u′ two Sullivan chord diagrams, and suppose that a circular
vertex x of u′ lying on an ingoing cycle coincides under the gluing procedure
with a circular vertex v of u lying on a ghost edge of an outgoing cycle. We
can put x at v or at the other vertex of the ghost edge. We get two different
chord diagrams (u]u′)1 and (u]u′)2. Moreover, these chord diagrams may
not be Sullivan chord diagrams because diagrams (u]u′)1 and (u]u′)2 can
have a non-contractible connected component in their ghost edges, in that
case the contraction S(−) is not defined. When the gluing is a Sullivan chord
diagram the quotient construction give a well-defined gluing operation at the
level of reduced diagrans.
Let Up,q,r ⊂ CFµp,q(g) × CFµq,r(g′) be the open set of composable diagrams.
We notice that the gluing is continuous. We also remark that if we take
(c1, c2) ∈ Up,q,r then S(c1]c2) is homeomorphic to the push-out of the maps

S(c1)← (S1)
`
q → S(c2).

It follows easily that {
∐
g CF

µ
p,q(g)}p,q is a partial PROP. �

Remark. As noticed in the proof of the preceding proposition, the glu-
ing is not possible when we have two ghost edges α and β with circular
vertices α1, α2 lying on an outgoing cycle and β1, β2 lying on an ingoing
cycle, if they are identified by the gluing procedure we can get a cycle in the
ghost edges.
Take for example u ∈ CFµ1,2(0) and u′ ∈ CFµ2,1(0)

u

α

u’

β

&%
'$

&%
'$

&%
'$

The gluing of u and u′ depends on the markings of the incoming cycles of
u′ and of the outgoing cycles of u. These markings are parametrized by
(S1)×4. One can easily show that the gluing is not defined on a closed sub-
set of (S1)×4 homeomorphic to (S1)×2.

At the homological we get:

4.7.8. Proposition. i) Over a field, the collection H ′
∗(CF

µ
p,q(g)) is a partial

PROP.
ii) Moreover {H ′

∗(CF
µ
1,1(0)),H ′

∗(CF
µ
p,1(g))}p>1 form an operad.

Proof. i) We have a partial vertical composition morphism

H ′
∗(CF

µ
p,q(g))⊗H ′

∗(CF
µ
q,r(g′))← AUp,q,r → H ′

∗(CF
µ
p,r(g + g′ + q − 1))
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where AUp,q,r is the sub-group of H ′
∗(CF

µ
p,q(g)) ⊗H ′

∗(CF
µ
q,r(g′)) generated

by the elements [M, c, f ]⊗ [N, d, g] such that f × g factorizes through Up,q,r.
ii) The composition product defining the structure comes from a topological
operadic structure. We define C(1) = CFµ1,1(0) and C(p) =

∐
g CF

µ
p,1(g) if

p > 1, we have a continuous map:

γ : C(p)× C(i1)× . . .× C(ip)→ C(i1 + . . .+ ip)

(c, c1, . . . , cp) 7→ (c1
∐

. . .
∐

cp)]c.

The gluing is defined everywhere. passing to homology we get the operadic
structure. �

4.7.9. Proposition. The suboperads CFµ∗,1(0) and CFµ1,∗(0) are homeomor-
phic to the cacti operad.

Proof. The homeorphisms are given by the contraction maps S, the images
of this map in the space of metric fat graphs correspond exactly to cacti.
Let us notice that any element in the preimage π−1(c) where

π : CFµ1,q(0)→ CFµ1,q(0)

is a chord diagram associated to the cactus c as defined in [26]. �

4.7.10. Theorem. For q > 0 we have morphisms:

µn,p,q(g) : H ′
n(CF

µ
p,q(g))→ Hom(H ′

∗(LM×p),H ′
∗+χ(Σ).d+n(LM

×q))

Proof First, let us recall the construction of Cohen-Godin (Cohen-Jones
for cacti) of the space H1(c,M) where c is a reduced Sullivan chord dia-
gram. Let v(c) be the set of circular vertices of c and σ(c) the set of vertices
of S(c). We have a surjective map π∗ : v(c)→ σ(c) which induces a diagonal
map:

∆c : Mσ(c) →Mv(c).

Now if c has p ingoing cycles denoted by c1, . . . , cp we identify LM×p and
H1(c1

∐
. . .

∐
cp,M). We get an evaluation map:

ec : LM×p →Mv(c)

by evaluating at the circular vertices. This map is a smooth fiber bundle, the
pul-back of ∆c and ec is a Hilbert manifold denoted by H1(c,M). Moreover
as the diagonal map ∆c is an oriented embedding whose normal bundle is
isomorphic to TMv(c)−σ(c), we get an oriented embedding of Hilbert mani-
folds:

ρin(c) : H1(c,M)→ LM×p.
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We introduce a parametrized version of the preceding constructions, let us
define the space

map(CFµp,q(g),M) =
∐

c∈CFµ
p,q(g)

H1(c,M)

this space was first considered by R. Cohen and J. Jones for the case of
cacti. The topology of this space is induced by the topology of CFµp,q(g)
and of LM×p, an open neighborood of a point (c, γc) is the set of elements
(c′, γc′) ∈ map(CFµp,q(g),M) such that c′ is in an open neighbourhood of c
and ρin(c′)(γc′) is in an open neighbourhood of ρin(c)(γc). It follows from
this construction:
- a projection map p : map(CFµp,q(g),M)→ CFµp,q(g),
- a map ρout : map(CFµp,q(g),M)→ LM×q.

- and an embedding p× ρin : map(CFµp,q(g),M)→ CFµp,q(g)×LM×p which
corresponds to the map:∐

c∈CFµ
p,q(g)

H1(c,M)→
∐

c∈CFµ
p,q(g)

LM×p.

In order to define string topology operations we use the Thom collapse map

τ : CFµp,q(g)× LM×p → (map(CFµp,q(g),M))ν

associated to the preceding embedding where ν is an open neighborhood of
the embedding p× ρin and let th be the Thom isomorphism:

th : H ′
∗((map(CF

µ
p,q(g),M))ν)→ H ′

∗+χ(Σ).d(map(CF
µ
p,q(g),M)).

Finally in homology we get the operation:

H ′
∗(CF

µ
p,q(g))⊗H ′

∗(LM×p)→ H ′
∗+χ(Σ).d(map(CF

µ
p,q(g),M))→ H ′

∗(LM×q)

We give an alternative description of this construction using geometric cy-
cles. Consider an element of H ′

n(CF
µ
p,q(g)) and suppose that is represented

by a geometric cycle (S, α, g) where g : S → CFµp,q(g). And let us define:

map(g,M) = {(s, f) : s ∈ S, f ∈ H1(g(s),M)},
let us notice that we have a pull-back diagram:

map(g,M) - map(CFµp,q(g),M)

S
?

g
- CFµp,q(g)

p

?

we also have maps:
ρin : map(g,M)→ LM×p,

ρout : map(g,M)→ LM×q.
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we get an embedding of codimension −χ(Σ).d:

pg × ρin : map(g,M)→ S × LM×p.

Let use the Thom collapse map of [7, lemma5]:

τg : S × LM×p → (map(g,M))ν(g)

where ν(g) is an open neighborhood of the embedding p × ρin and let thg
be the Thom isomorphism:

thg : H ′
∗((map(g,M))ν(g))→ H ′

∗+χ(Σ).d(map(g,M)).

Let [Ni, αi, fi] be a geometric cycle of H ′
∗(LM) for i = 1, . . . , p. Then the

operation µn,p,q(g) is defined by:

[N1, α1, f1]⊗ . . .⊗ [Np, αp, fp]

±[S ×N1 × . . .×Np, α× α1 × . . .× αp, idS × f1 × . . .× fp]
?

±[S ×N1 × . . .×Np, α× α1 × . . .× αp, τg(idS × f1 × . . .× fp)]
?

±ρout∗thg([S ×N1 × . . .×Np, α× α1 × . . .× αp, τg(idS × f1 × . . .× fp)]).
?

The two constructions give the same operation in homology this follows from
the pull-back diagram:

map(g,M)
φ

- map(CFµp,q(g),M)

S × LM×p

pg × ρin
?

g × Id
- CFµp,q(g)× LM×p

p× ρin
?

and the commutativity of gysin morphism with pull-backs. We get:

φ∗(pg × ρin)!([S ×N1 × . . .×Np, α× α1 × . . .× αp, idS × f1 × . . .× fp]) =

(p× ρin)!([S ×N1 × . . .×Np, α× α1 × . . .× αp, g × f1 × . . .× fp]).
�
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4.7.11. Definition. An algebra over a partial PROP Ap,q is a graded vector
space V together with linear morphisms

ψp,q : Ap,q → Hom(V ⊗p, V ⊗q)

that respect the horizontal compositions. The compatibility with the partial
vertical compositions is defined in the following way:
we suppose that the vertical partial composition product is given by:

Ap,q ⊗Aq,r ← AUp,q,r → Ap,r

the following diagram

Ap,q ⊗Aq,r ⊗ V ⊗p - Aq,r ⊗ V ⊗q - V ⊗r

�
�

�
�

��

AUp,q,r ⊗ V ⊗p

6

- Ap,r ⊗ V ⊗p

commutes

4.7.12. Proposition. Over a fiald F the graded vector space H ′
∗(LM,F) is

an algebra over the partial PROP H ′
∗(CF

µ
p,q(g),F).

Proof We verify the compatibily of the operations µn,p,q(g) with the partial
vertical composition product. Consider the composition (A):

AUp,q,r ⊗H ′
∗(LM)⊗p

H ′
∗(CF

µ
p,r(g + g′ + q − 1))⊗H ′

∗(LM)⊗p

φ

?

H ′
∗(LM)⊗r.

µ∗,p,r

?
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Consider also the composition (B):

AUp,q,r ⊗H ′
∗(LM)⊗p

H ′
∗(CF

µ
p,q(g))⊗H ′

∗(CF
µ
q,r(g′))⊗H ′

∗(LM)⊗p
?

H ′
∗(CF

µ
q,r(g))⊗H ′

∗(LM)⊗q

Id⊗ µ′∗,p,q
?

H ′
∗(LM)⊗r

µ∗,q,r

?

with:

µ′∗,p,q(c⊗ c′ ⊗ a1 ⊗ . . .⊗ ap) = c′ ⊗ µ∗,p,q(c)(a1 ⊗ . . .⊗ ap).

Take [S, a, f ] ⊗ [S′, a′, f ′] ∈ AUp,q,r we have φ([S, a, f ] ⊗ [S′, a′, f ′]) = [S ×
S′, a× a′, f]f ′].
Consider also the diagram:

LM×p × S × S′

I@
@

@
@

@

ρin × p

map(f,M)× S′

ρin × p× IdS′

6

� map(f]f ′,M)

@
@

@
@

@

ρout

R

LM×q × S′

ρout

?
�
ρin × p

map(f ′,M)
? ρout- LM×r

this diagram is commutative and map(f]f ′,M) can be identified with the
pullback of the maps ρin × p and ρout. Moreover the maps:

LM×p × S × S′

I@
@

@
@

@

ρin × p

map(f,M)× S′

ρin × p× IdS′

6

� map(f]f ′,M)
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are all embeddings. As Gysin maps in homology commute with pull-backs,
it follows that composition (A) and composition (B) are the same, . �

This last result unifies some of the algebraic structures arising in string
topology, as corollaries we get:

4.7.13. Corollary [7]. If we fix n = 0 and if we work over a field, the action
of homological degree 0 string topology operations induces on H ′

∗+d(LM) a
structure of Frobenius algebra without co-unit.

Proof This follows from the connectivity of the spaces of Sullivan’s chord
diagrams assoxiated to a fixed surface. This is a highly non-trivial fact
proved by R. Cohen and V. Godin.. �

4.7.14. Corollary. When restricted to H ′
∗(CF

µ
p,1(0)) one recovers the BV-

structure on H ′
∗+d(LM) induced by the string product and the operator ∆.

Proof Let us notice that CFµ1,1(0) is homeomorphic to S1, the operator
∆ is given by the geometric cycle [S1, 1, IdS1 ] ∈ H ′

1(CF
µ
p,1(0)). The loop

product − • − is given by any cactus representing a pair of pants i.e a geo-
metric class in H ′

0(CF
µ
2,1(0))). �

let us conclude with new operations in fact cooperations in string topol-
ogy.

4.7.15. Corollary. Over a field, when restricted to H ′
∗(CF

µ
1,q(0)) one has

an operad isomorphic to BV and H ′
∗+d(LM) is a coalgebra over this operad.

Proof The proof uses the same arguments as the preceding corollary. �
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