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“In the 20th century, any mathematical theory was built upon set theory.
In the 21th century, new mathematical theories will be built upon a homotopy theory.”’
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Abstract. These are lecture notes of a 5th-year course given at the universities of Paris in 2018-2020
and 2024-2025. The purpose is to develop the first two examples of homotopy theories: topological
spaces and simplicial sets. The approach chosen is to present them in a certain uniform way that will
lead to their abstractization, as performed by Quillen under the notion of a model category structure.
The second goal is to provide the audience with enough material on simplicial sets to open the gates to
the study of higher category theory via the notion of an ∞-category.
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Introduction

The study of topological spaces is that of sets equipped with a way to compare how points are close
from one another. We do not care here whether this can be done in a smooth way, so we will leave
geometry aside. Examples of topological spaces abound in nature: circle, surfaces, cup of co�ee,
doughnut, etc. One can study their properties like connectivity, number of holes, etc.

What does it mean to say that two topological spaces are “the same” or “equivalent”, which would
imply that they have the same properties? The general mathematical method to answer such a
question is to coin the group of “symmetries”, whose action encodes the way to pass from one to
another. Given such an action, one identifies the similar objects to be the ones lying in the same
orbit.

The first definition that comes to mind is rather categorical in nature: the canonical notion of maps
between topological spaces is the one of continuous maps, and one can consider the associated class
of “isomorphisms”, that is homeomorphisms. Alright ... but this is actually too strong. For instance,
a circle and a doughnut are actually the “same thing” for us since, when the latter one is made up
of dough before passing in the oven, one can shrink it to a circle. But, removing two distinct points
from the circle, one gets two connected components, which will never happen for the doughnut, so
they cannot be homeomorphic ...

A group action induces an equivalence relation, so we can try to weaken this tentative first definition
by considering a well chosen equivalence relation. Pursing the above analogy, we view topological
spaces as made up of clay that we can stretch, compress but not cut, namely as objects that we can
continuously deform. We would like to declare equivalent two spaces obtained from one another in
this way and this would definitely preserve the connectivity, number of holes, etc.

In order to make this precise, one has to focus on maps, not on objects, and to introduce the notion
of a homotopy for continuous maps. This leads to the notion of homotopy equivalent spaces, that
are spaces related by a map which admits an inverse up to homotopy. We just opened Pandora’s box!
Indeed, this seemingly simple move from “strong” equivalence relation (homeomorphism) to “weak”
equivalence relation (homotopy equivalence) will have drastic and exciting consequences.

When one says equivalence relation, one often tries to classify the associated equivalence classes.
A proper mathematical way to do this is by introducing invariants, that is “something” (number,
group, vector spaces, etc.) which is invariant under the equivalence relation. Then one hopes to
get a complete set of invariants. For instance, a complete set of invariant of finite dimensional vector
spaces under isomorphisms is given by the dimensions. Since at least Poincaré, algebraic topologists
have tried to coin such faithful invariants characterising the homotopy type of topological spaces
like Betti numbers, (co)homology groups, homotopy groups, etc. Over the 20th century ... they
failed! Then they considered some higher algebraic structures made up of collections of operations
of any arity, now called E∞-algebras. And, at the beginning of the 21st century, they showed [Man06]
that they have reached here a rich enough world which detects with accuracy the homotopy type of
topological spaces.

Does this “solve” the entire question of classifying topological spaces? No! And, in some sense, it
cannot: keep in mind that nobody knows how to compute the homotopy groups of the first topo-
logical spaces that are the spheres. So there was no hope to turn this transcendental problem into
a simple one. However, since this was a relevant programme of study, algebraic topologists de-
veloped many revolutionary mathematical tools along the way. First, category theory, created by
Eilenberg–MacLane [EM45] in 1942-45, provides us with the right setting to express the functoriality
of constructions, like the invariants of topological spaces. (Grothendieck, the master of categories,
introduced and developed extensively this notion in algebraic geometry). In order to uniformise alge-
braically homotopy theories (topological spaces, simplicial sets, di�erential graded algebras, rational
homotopy theory, etc.), Quillen came up with the conceptual notion of a model category [Qui67].
Operad theory [LV12] (shameless self promotion) arose from the study of iterated loop spaces. At the
beginning of the 21th century, it was finally understood how a certain homotopy property imposed on
simplicial sets was giving rise to a suitable notion of higher category: ∞-categories [Lur09]. Notice
that already the work of Eilenberg–MacLane was motivated by higher categorical questions: they
came up with the notion of a category in order to compare topological invariants, which is achieved
by natural transformations that are some kind of 2-morphisms.
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The present course will not be viewed by its author as a way to teach once again any new material,
but rather as a way to introduce his young fellows to the current methods of mathematical research in
order to help them upgrade from students to researchers. We will present the two homotopy theories
of topological spaces and simplicial sets in order exhibit their commun underlying structures and
to ease the way to model category structures, that will be developed extensively in the forthcoming
course “Homotopy II” by Grégory Ginot. In Section 1, we will make explicit the main tools and
properties of the homotopy theory for topological spaces, for which we refer to classical references
like [May99, tD08, Hat02]. These three manuscripts have di�erent bright advantages. J.P. May’s
book [May99] provides the literature with a very concise treatment and focuses on the important
points. The long book [tD08] by T. tom Dieck gives full details and proofs. And the clear book
[Hat02] of A. Hatcher o�ers many pictures. In these notes, we tried to merge these respective three
main points. Also the categorical presentation giving here follows the development of the algebraic
topology during the second half of the 20th century. Category theory was created by algebraic
topologists as a need to have a suitable language to express their ideas. In the other way round,
algebraic topology was then developed using the universal properties of category theory. The way
Section 2 on the homotopy theory of simplicial sets is developed is rather new as it is guided by the
quest of a suitable definition of higher category. Here again, we tried to merge the various advantages
of the existing texts on the subject: introduce the notion of a simplicial set from simplicial complexes
with pictures, provide combinatorial descriptions, and fully use the categorical language.

Why should future algebraic geometers or representation theorists, for instance, follow this course:
because the recent developments of the ideas triggered by homotopy theory ultimately lead to suitable
notions of higher category theory which will provide them with the required framework for their
own domains of research. To name but a few, the notion of stable ∞-category bypasses that of a
triangulated category, the main goals of the Langlands programme can finally be formulated using
the language of ∞-categories, derived algebraic geometry can give a meaning to the notion of a
tangent space at a singular point, and algebraic ∞-groupoids give rise to the salient tools of Lie
theory and deformation theory.

Prerequisistes. The following notions have been studied in the previous course on “Homologie,
cohomologie et faisceaux” by Bernhard Keller and will thus be used without recollection here.

Category theory: category, functor, adjunction, limits and colimits, homotopy category (of
chain complexes).

Algebraic topology: topological space, homeomorphism, homotopy equivalence, funda-
mental group(oid).

Convention. To simplify the presentation of these notes, “space” will mean “topological space” and
“map” will mean “ continuous map”. In the core of these notes, we will go from the more general
to the more particular as we will start by working with any topological spaces, to restrict ourself to
locally compact or compactly generated weak Hausdor� spaces from Section 1.4. Finally, we will
consider CW-complexes and then simplicial complexes and simplicial sets. The main topic of the
present notes is algebraic topology. As a consequence, some point-set topology issues will arise but
the treatment we will give them will be far from being exhaustive.

Acknowledgement. These notes would not exist without Johan Leray who decided to type the first
version of Section 1. The numerous comments from many students helped correcting many mistakes
and to improve the text. We want to express our sincere appreciation to all of them.
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1. Homotopy theory of topological spaces
03/11/25

1.1. Homotopy equivalence and category theory.

1.1.1. Homotopy categories. The underlying category we will be working in is that of topological spaces
(objects) with continuous maps (morphisms). We will denote it by Top. In this category, the isomor-
phisms are the homeomorphisms, that is continuous maps f : X → Y which admit a continuous
inverse g : Y → X satisfying g f = idX and f g = idY .

Example. Let us recall the following classical topological spaces, for n ∈ N:
� the n-dimensional real vector space Rn,
� the n-dimensional disk Dn,
� the n-dimensional sphere ∂Dn+1 = Sn,
� the cubes In, where I B [0, 1] stands for the interval,
� the geometrical n-simplex |∆n |,
� the boundary of the geometrical n-simplex ∂ |∆n |,
� the n-dimensional real projective space PnR,
� the 2n-dimensional complex projective space PnC.

As explained in the introduction, comparing topological spaces under homeomorphisms is too re-
strictive. Instead, we will use the following more relaxed notion which will meets our needs.

De�nition 1.1.1 (Homotopy). Let f , g : X → Y be two continuous maps in Top(X,Y ). A homotopy
from f to g is a continuous map H : X × I → Y such that H(−, 0) = f and H(−, 1) = g, which is
equivalent to the following commutative diagram:

X
i0 //

f ))

X × I

H

��

X
i1oo

guuY .

Two maps f and g are homotopic if there exists a homotopy from f to g; in this case, we use the
notation f ∼ g. A continuous map f : X → Y is null homotopic if it is homotopic to a constant map.

We denote the homotopy equivalence class of a continuous map f by [ f ].
 

Proposition 1.1.2. For any pair of topological spaces X and Y , the homotopy relation ∼ is an equivalence
relation on the set Top(X,Y ).
Proof. A homotopy from a map f to itself is given by H(x, t) B f (x) . If H B X × I → Y stands for a
homotopy from f to g, then a homotopy from g to f is given by (x, t) 7→ H(x,−t) . Let H : X × I → Y
be a homotopy from f to g and let K : X × I → Y be a homotopy from g to h, then a direct homotopy
from f to h is given by

(x, t) 7−→
{

H(x, 2t) for 0 6 t 6 1
2 ,

K(x, 2t − 1) for 1
2 6 t 6 1 .

�

Here is the naive first definition of a category of topological spaces up to the homotopy equivalence
relations on continuous maps.
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De�nition-Proposition 1.1.3 (Homotopy category hoTop). The homotopy category hoTop is defined
by

Objects: topological spaces,
Morphisms: cosets [X,Y ] B Top(X,Y )/ ∼ .

The composite is defined on representatives of classes:

[X,Y ] × [Y, Z] ◦
−→ [X, Z]�[ f ], [g]� 7−→ [g f ] .

Proof. It is enough to show that the composite is well defined since then the associativity and unital
axioms are straightforward consequences of the associativity and unital axioms of the category Top.
It is well defined, because, if one considers f , f ′, g, g′ : X → Y such that [ f ] = [ f ′] and [g] = [g′],
then g f ∼ g′ f ′. Indeed, if we denote by H : X × I → Y a homotopy from f to f ′ and by K : Y × I → Z
a homotopy from g to g′, then (x, t) 7→ K(H(x, t), t) defines a homotopy from g f to g′ f ′ . �

Like in the definition of the group structure on the coset G/N of a group G by a normal subgroup N ,
the above definition satisfies the following property: the category structure on hoTop is the unique
one which makes the assignment Top→ hoTop given by

X X

Y Y

f [ f ]

into a functor.

One might now ask what are the isomorphisms in the homotopy category hoTop?

De�nition 1.1.4 (Homotopy equivalence). A homotopy equivalence is a continuous map denoted by
f : X ∼−→ Y such that the induced map [ f ] is an isomorphism in the homotopy category hoTop, i.e.
there exists a continuous map g : Y → X such that g f ∼ idX and f g ∼ idY .

De�nition 1.1.5 (Homotopy equivalent spaces). Two topological spaces X and Y are homotopy equiv-
alent if they are isomorphic in the homotopy category hoTop; this means that there exists a homotopy
equivalence f : X ∼−→ Y . In this case, we use the notation X ∼ Y and we say that X and Y have the
same homotopy type.

This defines an equivalence relation among topological spaces. A topological space X is contractible
if it is homotopy equivalent to a point: X ∼ ∗.

Example (Deformation retract). Here is a practical way to prove that two spaces are homotopy
equivalent. Let X ⊂ Y be a pair of topological spaces. The space X is a deformation retract of Y if
there exists a retraction r

X
i
↪→ Y

r
→ X,

satisfying

ri = idX and ir ∼ idY .

The most important example is that of the cylinder construction i0 : X ↪→ X × I, given by x 7→ (x, 0) .
The retraction r : X × I → X is given by (x, t) 7→ x and the homotopy H : (X × I)× I → X × I between
ior and idX×I is given by H(x, t, s) = (x, ts) .
A topological invariant is “a natural assignment which sends homotopy equivalences to isomorphisms”;
what a long and vague sentence to say: it is a functor F : Top→ C which factors through the canonical
“projection” functor

Top

F ((

// hoTop

∃!

��
C .

This is the case for the various topological invariants that you have encountered so far: homology
groups H•, cohomology groups H•, and homotopy groups π•, for instance. One can try to charac-
terise the homotopy category by this universal property.
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De�nition 1.1.6 (Universal homotopy property). A category HoTop satisfies the universal homotopy
property if it comes equipped with a functor Top→ HoTop which sends homotopy equivalences to iso-
morphisms and such that any functor f : Top→ C sending homotopy equivalences to isomorphisms
factors uniquely through it:

Top

F ((

// HoTop

∃!F̃
��

C .

As usual for universal property, when such a category HoTop exists, it is unique up to unique isomor-
phism. So far it is not obvious that the homotopy category hoTop satisfies the universal homotopy
property: why would two homotopy equivalent maps f , g : X → Y induce the same map F( f ) = F(g)
in C?

This raises the question how to build the category HoTop and the present situation is actually quite
general: given a category T and a class W of morphisms stable by composition and containing the
isomorphisms, one can study the existence of the category T[W−1] satisfying the universal property
with respect to W:

T

F ((

// T[W−1]
∃!F̃
��

C .

A tentative construction is given by a localisation process similar to the one which produces the ring
of rational numbers from the ring of integers by formally inverting non-zero elements. The objects
of T[W−1] are the same as the ones of T. The “sets” of morphisms T[W−1](X,Y ) are given by
considering strings of morphisms of T and formal inverse of morphisms from W

X // • // • // •
∼
ww // • · · · · · · • // • // •

∼
ww // •

∼
ww // Y

modulo the equivalence relation generated by

X
f // Y

g // Z ≈ X
gf // Z, X

f

∼ // Y // X

∼

f}} ≈ idX et Y // X

∼

f}}

f

∼ // Y ≈ idY .

Be careful that nothing ensures that such a construction renders actually a category as morphisms
might not form proper sets. But when it exists, it is called the localized category ot T at the class W.
In the previous course, you have already encountered such a general construction in the example of
the category dg-mod of di�erential graded modules, with W the class of quasi-isomorphisms. In this
case, the localized category dg-mod[W−1] is the derived category.

Proposition 1.1.7. The homotopy category hoTop satis�es the universal homotopy property; as a consequence
it is isomorphic to the localized category

hoTop � Top[h−eq−1] ,
where the notation h−eq stands for the class of homotopy equivalences.

Proof. Let F : Top→ C be a functor which sends homotopy equivalences to isomorphisms. It factors
through the homotopy category hoTop if and only if the assignment(

X
f
−→ Y

)
7→

(
F(X) F( f )

−−−−→ F(Y )
)

does not depend of f up to homotopy. In this case, the factorisation is unique. Let f , g : X → Y be
two maps related by a homotopy H : X × I → Y . The commutative diagram

X X × I X

Y

i0

∼

f
H

i1

∼

g
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induces the commutative diagram

F(X) F(X × I) F(X)

Y .

F(i0)
�

F( f )
F(H)

F(i1)
�

F(g)

We consider the abovementioned retract r : X × I → X of i0 defined by r(x, t) B x . Since F(i0) is
an isomorphism and since F(i0)F(r) = idF(X×I ), then F(r) is the inverse of F(i0) in the category C .
Since the retractions for i0 and i1 are equal to r, then F(r) is also the inverse of F(i1) . This prove
that

F( f ) = F(i0)F(i1)−1F(g) = F(i0)F(r)F(g) = F(g) ,
which concludes the proof. �

Remark. One can actually go one step further and show that the localized category and the homo-
topy category are equivalent to the sub-category of the latter one made up of CW-complexes only.
This will be the subject of Section 1.7.

1.1.2. Relative and pointed versions. In the sequel, we will actually need the following relative version
of the category of topological spaces.

De�nition 1.1.8 (The relative category Top(2)). The relative category Top(2) is defined by

Objects: pairs of spaces (X, A) such that A ⊂ X ,
Morphisms: a morphism f : (X, A)→ (Y, B) is a continuous map f : X → Y such that f (A) ⊂ B. 

This category admits a key sub-category where the sub-spaces A are all made up of one point.

De�nition 1.1.9 (The category of pointed topological spaces Top∗). The category Top∗ of pointed
topological spaces is defined by

Objects: pairs (X, x), where x ∈ X ,
Morphisms: a morphism f : (X, x0) → (Y, y0) is a continuous map f : X → Y such that y0 =

f (x0).
In order to compare maps in the relative category Top(2), we could consider the following notion
of homotopy: a continuous map H : X × I → Y such that H(A, t) ⊂ B, for all t ∈ I. in the same
way as above, this would define a relative homotopy category hoTop(2). This notion of a homotopy
once applied to the sub-category of pointed topological spaces gives the relevant notion of pointed
homotopy: a continuous map H : X × I → Y such that H(x0, t) = y0, for all t ∈ I. This defines the
pointed homotopy category hoTop∗.

Inspired by this latter case, we actually consider the following more strict version of a relative homo-
topy.

De�nition 1.1.10 (Relative homotopy). Let A be a subspace of X and let f , g : X → Y two continuous
maps such that f |A = g|A. The map f is homotopic to g relatively to A if there exists a homotopy
H : X × I → Y between f and g such that H(a, t) = f (a) = g(a), for all t ∈ I and for all a ∈ A. In this
case, we use the notation f ∼ g rel A.

Remark. By definition, this notion can compare only maps which agree on their given subspaces;
as such it is too narrow to compare the morphisms of the relative category hoTop(2).
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Example (Strong deformation retract). It turns out that many deformation retract actually
carry a stronger property. A subspace X ⊂ Y is a strong deformation retract of Y if there exists a
retraction r

X
i
↪→ Y

r
→ X ,

satisfying
ri = idX and ir ∼ idY rel X .

The example given above i0 : X ↪→ X × I is actually a strong deformation retract as H(x, 0, s) = (x, 0) .
Another classical example is given by X = S1 and Y = R2 − {0}, where the retraction is given by
r : y 7→ y/||y || .

•r

X = S1

Y = R2 − {0}

Remark. There exists further generalizations like Top(3) which is made up of triples A ⊂ B ⊂ X , etc.

1.1.3. Toward higher homotopy categories. One salient drawback of the homotopy category hoTop is
that it forgets the data of homotopies between maps. To bypass this, one might want to consider, for
any pair (X,Y ) of topological spaces, the tentative category Π(X,Y ) whose objects are maps from X
to Y and whose morphisms are homotopies between maps. But the composite of homotopies fails to
be associative since it implies two di�erent reparametrisations of the interval.

This phenomenon can already be seen of the level of the the fundamental groupoid, where is solved
as follows. Recall that a groupoid is a category where every morphism is an isomorphism and that
the fundamental groupoid Π(X) of a topological space X is the groupoid whose objects are the points
of X and whose morphisms are homotopy equivalences of paths from x to x ′, that is maps ϕ : I → X
such that ϕ(0) = x and ϕ(1) = x ′. Notice the crucial fact that: with the identification under the
homotopy equivalence relation, one now gets an associative and unital composition of paths.

One can merge the above two approaches by first considering all the topological spaces as objects,
continuous maps as 1-morphisms and homotopies as 2-morphisms. However, in order to get an
associative and unital composition for these latter ones, one has to impose a suitable homotopy
relation on homotopies: we consider the coset of homotopies, that is continuous maps X × I → Y ,
under the homotopy relation relative to X × ∂I, where ∂I = {0, 1} is the boundary of the interval I.
Namely, if H and K are two homotopies from f : X → Y to g : X → Y , then a homotopy from H to
K relative to X × ∂I preserves f and g.

De�nition-Proposition 1.1.11 (Homotopy 2-category of topological spaces). The following data

Objects: topological spaces X ,
1-Morphisms: continuous maps f : X → Y ,
2-Morphisms: classes of homotopies from f : X → Y to g : X → Y modulo homotopies relative

to X × ∂I,

forms a 2-category called the homotopy 2-category of topological spaces.

X Y
f

g

Proof. This definition-proposition is given as an enlightening example to show how works the quest for
higher structures. The details of the proof are neither uninteresting but nor expected here. We refer
the reader to any textbook containing the precise definition of a 2-category: a category enriched in
small categories. It is then straightforward to check the various axioms in the present case as we have
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settled the right definitions. On the way, notice that the compatibility axiom between the horizontal
and the vertical composite of 2-morphisms

X Y Z
H

K

H′

K′

amounts to the interchange law
�[H] ◦h [H ′]� ◦v �[K] ◦h [K ′]� = �[H] ◦v [K]� ◦v �[H ′] ◦v [K ′]� ,

which will play a key role later on in Section 1.3. �

How can one pursue this story higher up? On the one hand, it is rather obvious that considering
spaces, maps, homotopies, homotopies of homotopies, etc. is a good way to obtain a certain kind of
“∞-category” but how can one make this precise? What are exactly the higher coherences to expect
between n-morphisms and m-morphisms? And ... should one be doing this? Maybe because the full
data of all the higher homotopy groups characterises the homotopy type of well-behaved spaces like
the CW-complexes for instance, see Theorem 1.7.11.

X Y

1.2. Categorical topological constructions.

1.2.1. Categorical constructions in Top. Let us first recall basic categorical constructions. Consider
the diagram category D : • • made up of two objects and only the identity maps. The category
Func(D,Top) of functors from D to Top amounts to pairs of topological spaces. To any such functor,
we associate the category Cone(F) whose objects are the data X ← C → Y and whose morphisms
are given by continuous maps C → D such that the following diagram is commutative.

C

X Y

D

De�nition 1.2.1 (Product). The product X ×Y of two topological spaces is the terminal object in the
category Cone(F):

C

X Y

X × Y .

∃!

Set-theoretically, it is given by the cartesian product endowed with the product topology.

Dually, we consider the category Cocone(F) of cocones X → C ← Y .

De�nition 1.2.2 (Coproduct). The coproduct X q Y of two topological spaces is the initial object in
the category Cocone(F):

X q Y

X Y

C .

∃!

Set-theoretically, it is given by the union with the induced topology.
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Let us consider now the diagram category D : • → • ← • and the associated category of functors
Func(D,Top). An object in this latter category amounts to the data of three topological spaces related
by two maps X → Z ← Y . The category Cone(F) of cones over such a functor is made up of objects
and maps subject to the following commutative diagram.

C Y

X Z

De�nition 1.2.3 (Pullback). The pullback X×ZY of two topological spaces along twomaps f : X → Z
and g : Y → Z is the terminal object in the category Cone(F):

C

X ×
Z

Y Y

X Z

∃!

y g

f

Set-theoretically, it is given by
X ×

Z
Y =

�(x, y) | f (x) = g(y)	

endowed with the induced topology of a sub-space of a product.

Remark. The notion of a pullback is also called fibre product, fibered product, or Cartesian square,
in the literature. When the map g is a (canonical) epimorphism, we use the notation X ×

f
Y .

Passing to the opposite category, we now consider the diagram category Dop : • ← • → •, the
associated category of functors Func(Dop,Top), and the category Cocone(F) of cocones over such
functors.

De�nition 1.2.4 (Pushout). The pushout X q
Z

Y of two topological spaces along along two maps

f : X → Z and g : Y → Z is the initial object in the category Cocone(F):
Z Y

X X q
Z

Y

C

g

f
p

∃!

Set-theoretically, it is given by

X q
Z

Y =
X q Y

f (x) ∼ g(y)
endowed with the coset topology.

Remark. The notion of a pushout is also called fibered coproduct, fibered sum, cocartesian square
or amalgamated sum, in the literature. When the map f is a (canonical) monomorphism, we rather
use the notation X q

g
Y .

On a set-theoretical level, we have the following classical adjunction,

− × Y : Set Set : (−)Y⊥

given by the natural bijection

(1) Set(X × Y, Z) �
nat.

Set (X, Set(Y, Z)) .
Remark. Such a monoidal category is called cartesian since the monoidal product is the categorical
product. It is called closed since it admits internal homs. In cartesian closed monoidal categories,
the internal homs are usually called exponential objects and denoted under the exponential notation
ZY . When this is the case, the category is enriched over itself.
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We would like to promote this onto the topological level. In order to do so, we first need to endow
the mapping set Set(Y, Z) with a suitable topology that we will denote by ZY . The following one is
commonly used.

De�nition-Proposition 1.2.5 (Compact-open topology). Let X and Y be two topological spaces.
For any compact set K of X and any open set U of Y , we consider the set

W (K,U) := { f : X → Y | f (K) ⊂ U}.
The sets defined by finite intersections of such W (K,U) give us a basis of a topology for YX =

Set(X,Y ), called the compact-open topology.
Proof. This is an easy exercise of point-set topology. It is enough to see that the sets W (K,U), for
K ⊂ X compact and U ⊂ Y open, cover the entire mapping space YX . �

Exercise. Show that, for any continuous map f : X → Y , the pullback map f ∗ : ZY → ZX and the
push-forward map f∗ : XZ → Y Z are continuous.

The compact-open topology does not always behave nicely with respect to all topological spaces. As
a consequence, we will often have to restrict ourselves to some sub-categories.

De�nition 1.2.6 (Locally compact). A topological space is locally compact if any neighbourhood of
a point contains a compact neighbourhood.

Example. All the topological spaces considered in this course are locally compact: Rn, Dn, ∂Dn+1 =

Sn, In, |∆n |, ∂ |∆n |, PnR, PnC, etc.

Proposition 1.2.7 (Evaluation map). When X is a locally compact space, the evaluation map, de�ned by

ev : YX × X −→ Y
( f , x) 7−→ f (x)

is continuous.

Proof. Let U be an open set of Y and let ( f , x) ∈ YX × X be such that ev( f , x) = f (x) ∈ U. Since f is
continuous, f −1(U) is open in X and since X is locally compact, there exists a compact neighborhood
K of x in f −1(U). Let V be an open set of K containing x. Then ( f , x) lives in the open set W (K,U)×V
of YX × X which is included in ev−1(U). �

Theorem 1.2.8. For any locally compact space Y , the following pair of functors are adjoint.

− × Y : Top Top : (−)Y⊥

This means that the natural bijection (1) holds on the level of the topological categories

(2) Top(X × Y, Z) �
nat.

Top
�
X, ZY

�
.

Proof. It is enough to check that a map f : X × Y → Z is continuous if and only if the induced map
f̆ : X → ZY is continuous.

(⇒) Let K be a compact set of Y and let U be an open set of Z . Any element x ∈ f̆ −1(W (K,U)) =
{x ∈ X | f (x, K) ⊂ U} satisfies {x} × K ⊂ f −1(U). Since f in continuous, this latter set is
open, so there exists an open neighbourhood V of x in X such that V × K ⊂ f −1(U), by the
properties of the product topology.

(⇐) The map f : X × Y → Z is the composite of the following two maps

f : X × Y
f̆×id
−−−−→ ZY × Y

e
−→ Z ,

which are continuous by Proposition 1.2.7.

�

In other words, the category of locally compact topological spaces is cartesian closed monoidal. One
natural question to study from this situation is: can we internalize this adjunction, that is can we
have a natural homeomorphism between ZX×Y = Top(X ×Y, Z) and �

ZY
�X
= Top

�
X, ZY

�
? Otherwise

stated, is the category of topological spaces enriched over itself? This is actually the case for any
closed monoidal category. However, this cannot hold for the entire category Top but for a big
enough subcategory of it.
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Theorem 1.2.9 (Exponential law). Let X and Y be locally compact topological spaces. Then the natural
isomorphism (2) is an homeomorphism

ZX×Y �
nat.

homeo.

�
ZY

�X
.

Proof. The proof is categorial in nature as its states that in any closed monoidal category the natural
bijection is internal.

We first need to prove that the adjunction map

˘ : ZX×Y = Top(X × Y, Z)→ �
ZY

�X
= Top

�
X, ZY

�

which sends f : X × Y → Z to f̆ : X → ZY is continuous. This follows from the following steps.
Notice first that, since X and Y are locally compact, so does their product X × Y . This implies that
the evaluation map

evX×Y,Z : ZX×Y × (X × Y )→ Z

is continuous, by Proposition 1.2.7. The proof of Theorem 1.2.8 shows that, viewing it as a map from�
ZX×Y × X

�
× Y to Z , its first adjoint map

ĕvX×Y,Z : ZX×Y × X → ZY

is continuous and so does its second adjoint map

˘̆evX×Y,Z : ZX×Y →
�
ZY

�X
,

which is equal to the adjunction map ˘ .

Applying Theorem 1.2.8 to all these maps, one gets the following bijections, whose composite is
equal to the push-forward by the adjunction map ˘ :

Top
�
A, ZX×Y

�
� Top(A × X × Y, Z) � Top

�
A × X, ZY

�
� Top

(
A,

�
ZY

�X )
,

for any topological space A. Since the category Top of topological spaces is locally small, the Yoneda
functor Top → Fun (Topop, Set) given by W 7→ (A 7→ Top(A,W )) is fully faithful, which implies that
the continuous map ˘ : ZX×Y →

�
ZY

�X is an homeomorphism. �

Theorem 1.2.10. For any locally compact space Y , the following pair of functors are adjoint.

− × Y : hoTop hoTop : (−)Y .⊥

Proof. We first have to check that these functors are well defined. Let H : X × I → X ′ be a homotopy
between f : X → X ′ and g : X → X ′. The map X × Y × I → X ′ × Y defined by (x, y, t) 7→ (H(x, t), y)
is a homotopy between f × idY and g × idY . Similarly, the map XY × I → X ′Y defined by (ϕ, t) 7→�
y 7→ H(ϕ(y), t)� is a homotopy between f∗ and g∗ . This assignment defines a continuous map since
it corresponds to the composite

XY × I × Y � XY × Y × I
ev×idI
−−−−−→ X × I

H
−−→ Y,

under the adjunction of Theorem 1.2.8. So both functors − × Y and (−)Y pass to the homotopy
category.

It remains to show that the bijection of the adjunction of Theorem 1.2.8 also passes to the homotopy
category. This is giving by the fact that f , g : X × Y → Z are homotopic if and only if f̆ , ğ : X → ZY

are homotopic. Let H : X × Y × I → Z be a homotopy between f and g, then the assignment
X × I → ZY given by (x, t) 7→ �

y 7→ H(x, y, t)� is a homotopy between f̆ and ğ. In the other way
round, let K : X × I → ZY be a homotopy between f̆ and ğ, the assignment X × Y × I → Z given by
(x, y, t) 7→ K(x, t)(y) is a homotopy between f and g: it is equal to the composite

X × Y × I � X × I × Y
K×idY
−−−−−→ ZY × Y

ev
−−→ Z,

so it is continuous since Y is locally compact by Proposition 1.2.7. �
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There is exist a more relaxed notion, called compactly generated weak Hausdor� space under which the
above properties hold. We refer the reader to [May99, Chapter 5] for more details. Such spaces
form a subcategory of Top which is one of the favorite categories of algebraic topologists and
in which we will work implicitly here in order to avoid pathologies like the present one and
to get a clean presentation. The details of definitions are not relevant for this course. In order
to understand some assumptions that we will make later on, just have in mind that one needs to
consider a di�erent topology on the product X × Y of compactly generated weak Hausdor� spaces,
but this topology agrees with the classical one when X or Y is locally compact.

Theorem 1.2.8 gives in particular a natural bijection

Top(X × I,Y ) � Top
�
X,Y I

�
,

which is a natural homeomorphism when X is locally compact. This opens the door to a tentative
equivalent definition of a homotopy, originally defined with a cylinder object X × I, now by means of
a path object Y I .

De�nition 1.2.11 (Cohomotopy). Let f , g : X → Y be two continuous maps. A cohomotopy between
f and g is a continuous map H̆ : X → Y I such that the following diagram commutes

X
g

��

f

��
H̆
��

Y Y I
e1
//

e0
oo Y ,

where e0 B e(−0) and e1 B e(−, 1).
Proposition 1.2.12. Two maps are homotopic if and and only if they are cohomotopic.

Proof. This is a direct corollary of Theorem 1.2.8 since the interval I is locally compact. �

1.2.2. Categorical constructions in Top∗. Let us now try to settle similar constructions and results in
the category of pointed topological spaces Top∗. At the beginning, only the construction of the
coproduct has to be modified.

Proposition 1.2.13. In the category Top∗ of pointed topological spaces, the following objects provide us to
the relevant limits and colimits.

Product: (X, x0) × (Y, y0) = (X × Y, (x0, y0)).
Coproduct: the wedge or bouquet

(X, x0) ∨ (Y, y0) :=

(
X q Y

x0 ∼ y0
, x0 ∼ y0

)
.

Pullback: (X, x0) ×(Z,z0) (Y, y0) = (X ×
Z

Y, (x0, y0)).
Pushout: (X, x0) q(Z,z0) (Y, y0) = (X q

Z
Y, x0 ∼ y0).

Proof. The various verifications are straightforward and thus left to the reader. �

Remark. When the base point will be understood, we will lighten the notation and not write it all
the time; for instance, we will simply write X ∨ Y for the wedge.

Next question: what is the base point of Top∗(Y, Z), when (Y, y0) and (Z, z0) are pointed? The answer
is easy: the constant map cst : y 7→ z0. But then, the pointed product of spaces does not induce and
natural bijection between Set∗(X × Y, Z) and Set∗ (X, Set∗(Y, Z)); so we have to refine it.

De�nition 1.2.14 (Smash product). Let (X, x0) and (Y, y0) be two pointed spaces. The smash product
of X and Y is defined by

X ∧ Y :=
X × Y

X × {y0} ∪ {x0} × Y
.
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Remark. One can embed the wedge into the product X∨Y ↪→ X×Y under the assignment x 7→ (x, y0)
and y 7→ (x0, y). Under this embedding, the smash product is equivalently given by

X ∧ Y =
X × Y
X ∨ Y

.

The smash product is associative up to homeomorphism (for compactly generated weak Hausdor�
spaces), that is (X ∧ Y ) ∧ Z � X ∧ (Y ∧ Z) and the “point” S0 = {∗,?} is the unit of it S0 ∧ X � X .

In the pointed case, since the context is obvious, we denote by ZY = Top∗(Y, Z) the subspace of
Top(Y, Z) made up of pointed maps that we equipp with the compact-open topology.

Theorem 1.2.15 (Exponential law). For any locally compact pointed space (Y, y0), the following pair of
functors are adjoint

− ∧ Y : Top∗ Top∗ : (−)Y ,⊥

meaning that there exists a natural bijection

Top∗(X ∧ Y, Z) �
nat.

Top∗
�
X, ZY

�
.

Moreover, when (X, x0) is also locally compact, this induces a natural pointed homeomorphism

ZX∧Y �
nat.

homeo.

�
ZY

�X
.

Proof. By definition, the smash product provides us with a natural bijection

Set∗(X ∧ Y, Z) �
nat.

Set∗
�
X, ZY

�
,

which satifises all the required properties in the pointed case by the same arguments as given above.
�

Remark. If one compares the present situation with the one of vector spaces, then the smash product
should be viewed as a tensor product rather than a product, as the product in the category of pointed
topological spaces is given by the underlying product of sets.

Corollary 1.2.16. For any locally compact pointed space Y , the following pair of functors are adjoint.

− ∧ Y : hoTop∗ hoTop∗ : (−)Y .⊥

Proof. It is a direct corollary of Theorem 1.2.15 with the arguments given in the proof of Theo-
rem 1.2.10. �

We saw that the data of a homotopy amounts to a map in Top from the construction X × I to Y .
What is the analogous “cylinder” construction in the category Top∗ of pointed topological spaces?

De�nition 1.2.17 (Cylinder of a pointed topological space). The cylinder of a pointed topological
space (X, x0) is defined by:

Cyl(X) :=
X × I

{x0} × I
.
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Proposition 1.2.18. The data of a pointed homotopy between pointed maps from X to Y is equivalent to a
map in Top∗ from the cylinder Cyl(X) to Y :{

H : X × I → Y
H(x0, t) = y0

}
� Top∗ (Cyl(X),Y ) .

Proof. The proof is straightforward and thus left to the reader. �

Let us pursue one step further and try to find a universal construction which (co)represents the data
of a homotopy from the constant map.

De�nition 1.2.19 (Cone of a pointed topological space). The cone of a pointed topological space
(X, x0) is defined by:

Cone(X) :=
X × I

{x0} × I ∪ X × {0} .

 

Proposition 1.2.20. The data of a pointed homotopy from the constant map to a pointed map from X to Y
is equivalent to a map in Top∗ from the cone Cone(X) to Y :




H : X × I → Y
H(x0, t) = y0

H(x, 0) = y0



� Top∗ (Cone(X),Y ) .

Proof. The proof is straightforward and thus left to the reader. �

Let us now address the more symmetric question: what is the universal construction which (co)represents
the data of a homotopy from and to the constant map.

De�nition 1.2.21 (Suspension of a pointed topological space). The suspension of a pointed topolog-
ical space (X, x0) is defined by:

ΣX :=
X × I

{x0} × I ∪ X × ∂I
.
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Proposition 1.2.22. The data of a pointed homotopy from and to the constant map from X to Y is equivalent
to a map in Top∗ from the suspension ΣX to Y :




H : X × I → Y
H(x0, t) = y0

H(x, 0) = y0

H(x, 1) = y0




� Top∗ (ΣX,Y ) .

Proof. The proof is straightforward and thus left to the reader. �

These three constructions are functorial and, since they are defined by successive quotients, the
natural “projections”

Cyl(X)� Cone(X)� ΣX
induce natural transformations

Cyl =⇒ Cone =⇒ Σ .

Now one can start looking for the analogous constructions on the right-hand side of the adjunction of
Theorem 1.2.8 in the category of pointed spaces. Notice that one main drawback of the ubiquitous
interval I is that it is not canonically pointed. However the exponential object X I = Top(I, X) is
always pointed by the constant map as soon as X is.

Proposition 1.2.23. The cylinder and the exponential object form a pair of adjoint functors

Cyl : Top∗ Top∗ : (−)I ,⊥

whose natural bijection
Top∗(Cyl(X),Y ) �

nat.
homeo.

Top∗
�
X,Y I

�

is an homeomorphism as soon as the pointed space (X, x0) is locally compact.
Proof. By the definition of the cylinder, we get a natural bijection on the pointed set level

Set∗(Cyl(X),Y ) �
nat.

Set∗
�
X,Y I

�
.

The rest follows directly from the arguments given above since the interval i is locally compact. �

This shows that the data of a pointed homotopy between two pointed maps f , g : : (X, x0)→ (Y, y0)
is equivalent to a pointed map H̆ : (X, x0) → (Y I, cst) satisfying the following commutative diagram
in Top∗ :

X
g

��

f

��
H̆
��

Y Y I
e1
//

e0
oo Y .

De�nition 1.2.24 (Path space). The path space of a pointed topological space (X, x0) is defined by

Path(X) B �
ϕ : I → X | ϕ(0) = x0

	
⊂ X I . 
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Proposition 1.2.25. The cone and the path space de�ne a pair of adjoint functors

Cone : Top∗ Top∗ : Path ,⊥

whose the natural bijection

Top∗(Cone(X),Y ) �
nat.

homeo.

Top∗ (X,Path(Y ))

is an homeomorphism as soon as the pointed space (X, x0) is locally compact.
Proof. The same arguments as above apply. �

So the data of a pointed homotopy from the constant map to a pointed map f : : X → Y is equivalent
to a pointed map H̆ : X → Path(Y ) such that e1

(
H̆

)
= f .

De�nition 1.2.26 (Loop space). The loop space of a pointed topological space (X, x0) is defined by

ΩX :=
�
ϕ : I → X | ϕ(0) = x0 = ϕ(1)	 ⊂ X I .

The loop space is equivalently defined by

ΩX � Top∗(S1, X) .
Proposition 1.2.27. The suspension and the loop space de�ne a pair of adjoint functors

Σ : Top∗ Top∗ : Ω ,⊥

whose the natural bijection
Top∗(ΣX,Y ) �

nat.
homeo.

Top∗ (X,ΩY )

is an homeomorphism as soon as the pointed space (X, x0) is locally compact.
Proof. The same arguments as above apply. �

This shows that the data of a pointed homotopy between from and to the constant map is equivalent
to a pointed map X → ΩY .

The canonical embeddings
X I ↪→ Path(X) ↪→ ΩX

induce natural transformations
(−)I =⇒ Path =⇒ Ω .

Corollary 1.2.28. The suspension and the loop space de�ne a pair of adjoint functors on the level of the
pointed homotopy category

Σ : hoTop∗ hoTop∗ : Ω .⊥

Proof. It is a direct corollary of Proposition 1.2.27 with the arguments given in the proof of Theo-
rem 1.2.10. �

05/11/25

1.3. Higher homotopy groups.

1.3.1. Suspension and smash product. Before to proceed even further, let us get more acquainted with
the notions of smash product and suspension. We already noticed that S0 := {∗,?} is the unit for
the smash product: S0 ∧ X � X .

 

The first computations of the suspension show

ΣS0 � S1 � I/∂I
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and
Σ

2S0 � ΣS1 � S2 � I2/∂I2 .
 

For any pointed topological space X , one notices that

ΣX � X ∧ I/∂I .

Proposition 1.3.1. The iterated suspension of any pointed topological space X is given by

Σ
nX � X ∧ In/∂In ,

for n > 1 .

Proof. Let us prove this assertion by induction on n > 1. The case n = 1 holds by the remark above.
Suppose now that the result holds for n, that is ΣnX � X ∧ In/∂In, and let us show it for n + 1 as
follows. We have

Σ
n+1X = Σ (ΣnX) �

ind.
Σ(X ∧ In/∂In)

� (X ∧ In/∂In) ∧ I/∂I

� X ∧ (In/∂In ∧ I/∂I)
� X ∧ In+1/∂In+1.

In the third line, we used the fact that I is (locally) compact for the associativity of the smash product.
In the last line, we used the identification

In

∂In
∧

I
∂I

�
In × I

∂In × I ∪ In × ∂I
�

In+1

∂In+1
.

�

Corollary 1.3.2. For any n > 1, the following pointed topological spaces are homeomorphic

Σ
nS0 � In/∂In � Sn .

Proof. The first pointed homeomorphism is a direct consequence of Proposition 1.3.1 and the fact
that S0 is the unit for the smash product. For the second homeomorphism, it remains to show that
In/∂In is a model for the n-dimensional sphere. Recall that this latter one is given by

Sn := ∂Dn+1 � ∂In+1 � In/∂In.

Indeed, the boundary ∂In+1 of the n+1-dimensional cube is made up of 2(n+1) faces homeomorphic
to In. Chose one of them and stretch its boundary to cover the 2(n + 1) − 1 other faces. This gives
the last displayed homeomorphism. �
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Remark (Sphere spectrum). Corollary 1.3.2 shows that the sequence of spheres can be obtained
by iterating the suspension operation:

S0 Σ // S1 Σ // S2 Σ // S3 Σ // · · · .

This universal object is called the sphere spectrum and it plays a seminal role in stable homotopy
theory. The category of spectra is the good category to represent cohomology theories, and the
sphere spectrum is the unit in this category.

By a slight abuse of notations, we still denote this induced functor by Σ : hoTop∗ → hoTop∗ .

1.3.2. De�nition of the higher homotopy groups. recall the definition of the fundamental group

De�nition 1.3.3 (Pinch map). The pinch map is the map

pin : ΣX −→ ΣX ∨ ΣX

where the image of (x, t) is (x, 2t) in the first copy of ΣX , when 0 6 t 6 1
2 , and (x, 2t−1) in the second

copy of ΣX , when 1
2 6 t 6 1.

 

Pulling back along the pinch map, one gets a “convolution type” binary product denoted · on the
space Top∗(ΣX,Y ):

Top∗(ΣX,Y ) × Top∗(ΣX,Y ) � //

· ,,

Top∗(ΣX ∨ ΣX,Y )
pin∗

��
Top∗(ΣX,Y ) ,

explicitly given by

(3) f · g : (x, t) 7−→
{

f (x, 2t) for 0 6 t 6 1
2 ,

g(x, 2t − 1) for 1
2 6 t 6 1 ,

for two pointed continuous map f , g : ΣX → Y .
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Due to the parametrization, the product · is neither associative nor unital on Top∗(ΣX,Y ), but it will
satisfies these properties in the level of the pointed homotopy category.

Proposition 1.3.4. The product · induces a group structure on
�[ΣX,Y ]∗, · , [cst]�, where [ΣX,Y ]∗ =

hoTop∗(ΣX,Y ).
Proof. Let us first show that the above formula (3) does not depend on the choice of representatives in
the homotopy category. Let H : ΣX × I → Y be a pointed homotopy from f : ΣX → Y to f ′ : ΣX → Y .
The assignment

ΣX × I −→ Y

(x, t, s) 7−→

{
H(x, 2t, s) for 0 6 t 6 1

2 ,
g(x, 2t − 1) for 1

2 6 t 6 1 ,

defines a pointed homotopy from f · g to f ′ · g . The proof of the same property on the right-hand
side is similar.

Let us now prove that this product defines a group structure.
Unit: For any pointed map f : ΣX → Y , the following assignment

ΣX × I −→ Y

(x, t, s) 7−→

{
f

�
x, 2

1+s t
�

for 0 6 t 6 1+s
2 ,

y0 for 1+s
2 6 t 6 1 ,

is a pointed homotopy from f · cst to f . The proof for the other side is similar.
Associativity: The assignment

ΣX × I −→ Y

(x, t, s) 7−→




f
�
x, 4

1+s t
�

for 0 6 t 6 1+s
4 ,

g
�
x, 4

�
t − 1+s

4

��
for 1+s

4 6 t 6 2+s
4 ,

h
�
x, 4

2−s

�
t − 2+s

4

��
for 2+s

4 6 t 6 1 ,

is a pointed homotopy from ( f · g) · h to f · (g · h) .

0

0

1

1

1
4

1
2

1
2

3
4

0

1

s f g h
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Inverse: For any pointed map f : ΣX → Y , we consider the pointed map f −1 : ΣX → Y defined
by (x, t) 7→ f (x, 1 − t) . The assignment

ΣX × I −→ Y

(x, t, s) 7−→



f (x, 2(1 − s)t) for 0 6 t 6 1
2 ,

f (x, 2(1 − s)(1 − t)) for 1
2 6 t 6 1 ,

is a pointed homotopy from f · f −1 to cst .

�

Remark. Recall that a map in Top∗(ΣX,Y ) is a pointed homotopy from and to the constant map
between X and Y and that the product · is a parametrized composite of them. One can see that
a pointed homotopy between such maps amounts to a homotopy relative to X × ∂I. Under this
interpretation, the above proposition is related to the 2-groupoid mentioned in Section 1.1.3.

The range of ideas used here might make the reader think at the definition of the fundamental group
as the loop spaces identified up to homotopy equipped with the concatenation of paths. This is not
a surprise as

��
ΣS0,Y

�
∗
�

�
S0,ΩY

�
∗
�

�
S1,Y

�
∗
, · , [cst]� � π1(Y, y0) ,

by the suspension-loop space adjunction of Corollary 1.2.28. However Proposition 1.3.4 allows us to
go further and to define the higher homotopy groups.

De�nition 1.3.5 (n-th homotopy group). For n > 1, the n-th homotopy group of a pointed topological
space X is defined by

�
πn(X, x0), · , 0�

:=
��
Σ
nS0, X

�
∗
� [Sn, X]∗ � [(In, ∂In) , (X, x0)] , · , [cst]� .

For n = 0, we consider the set π0(X) B �
S0, X

�
∗
of connected components of X . The suspension-loop

space adjunction of Corollary 1.2.28 shows that the underlying set of the nth homotopy group is
equivalently given by

πn(X, x0) � πn−1(ΩX) � · · · � π1(Ωn−1X) � π0(ΩnX) .
Proposition 1.3.6. The n-th homotopy group is a homotopy invariant: any pointed homotopy equivalence

f : X ∼−→ Y induces isomorphisms πn( f ) : πn(X, x0) �
−→ πn(Y, f (x0)), for n > 1, and a bijection, for n = 0.

Proof. This is straightforward from the definition. �

Example. When a space X is contractible, all its homotopy groups are trivial, i.e. πn(X) � 0, for
n > 0. When a space X is discrete, all its homotopy groups are trivial, i.e. πn(X) � 0, for n > 1, and
π0(X) � X .

Theorem 1.3.7. For any n > 2, the group ([ΣnX,Y ] , · , [cst]) is abelian. For instance, the n-homotopy group�
πn(X, x0), · , 0�

is abelian, for n > 2.

The proof relies on the following Eckmann–Hilton principle. Let us recall that a magma is a binary
product which is not required to satisfy any relation a priori.

Lemma 1.3.8 (Eckman-Hilton principle). Let (A,+1, u1) and (A,+2, u2) be two unital magmas on a set
A. If they satisfy the interchanging law

(x +1 y) +2 (x ′ +1 y′) = (x +2 x ′) +1 (y +2 y′)
then they are equal, that is +1 = +2 and u1 = u2, and the binary product is associative and commutative.

Proof. This follows from the following direct computations:

u2 = (u2 +1 u1) +2 (u1 +1 u2) = (u2 +2 u1) +1 (u1 +2 u2) = u1 ,

x +2 y = (x +1 u) +2 (u +1 y) = (x +2 u) +1 (u +2 y) = x +1 y ,

x + y = (u + x) + (y + u) = (u + y) + (x + u) = y + x ,

(x + y) + z = (x + y) + (u + z) = (x + u) + (y + z) = x + (y + z) .
�
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Proof of Theorem 1.3.7. Since the nth iteration of the suspension is a coset of X × In, any map from
ΣnX in the homotopy category can be represented by a map from X × In :

Top(X × In,Y ) Top∗(ΣnX,Y ) // //oo [ΣnX,Y ]∗ .
Given two maps f , g : X × In → Y , we consider the i-th sum, for 1 6 i 6 n, defined by

f +i g : (x, t1, . . . , ti, . . . , tn) 7−→
{

f (x, t1, . . . , 2ti, . . . , tn) , for 0 6 ti 6 1
2 ,

g(x, t1, . . . , 2ti − 1, . . . , tn) , for 1
2 6 ti 6 1 .

This induces well defined unital binary product on [ΣnX,Y ]∗ that satisfy the interchanging law:

( f +i g) +j ( f ′ +i g′) = ( f +j f ′) +i (g +j g′) ,
for all 1 6 i , j 6 n . Indeed, both side are equal to

(x, t1, . . . , ti, . . . , tn) 7−→



f (x, t1, . . . , 2ti, . . . , 2t j, . . . , tn) , for 0 6 ti 6 1
2 and 0 6 t j 6 1

2 ,

g(x, t1, . . . , 2ti − 1, . . . , 2t j, . . . , tn) , for 1
2 6 ti 6 1 and 0 6 t j 6 1

2 ,

f ′(x, t1, . . . , 2ti, . . . , 2t j − 1, . . . , tn) , for 0 6 ti 6 1
2 and 1

2 6 t j 6 1 ,

g′(x, t1, . . . , 2ti − 1, . . . , 2t j − 1, . . . , tn) , for 1
2 6 ti 6 1 and 1

2 6 t j 6 1 .

f g

f ′ g′

ti

t j

0 1
2 1

1
2

1

Finally, we conclude by applying the Eckmann–Hilton principle of Lemma 1.3.8. �

The fact that the fondamental group π1(X) is not abelian is a consequence of “low dimensional
pathology”, like the ones that we often encounter in mathematics. For n > 2, there is certain degree of
freedom which allows us to “move” elements around and to make the product + commutative. Indeed,
the lines of computation in the proof of the Eckmann–Hilton principle (Lemma 1.3.8) correspond
here to the the following picture.

f g '

f

g

'

f

g

'

f

g

' fg

Proposition 1.3.9. The map Σ : ([ΣX,Y ], · , [cst])→ ([Σ2X, ΣY ], · , [cst]) is a group morphism.
Proof. Since the suspension functor Σ coincides with the smash product with I/∂I, it preserves pointed
homotopies. Therefore it induces a endofunctor of the homotopy category, so this map is well defined.
The definition of the product · with the pinch map shows that this is a group morphism. �

1.4. Fibre and co�bre sequences. In this section, we work in the category of locally compact or
compactly generated weak Hausdor� pointed spaces.

1.4.1. Co�bre sequence. Pointed topological maps are in general not “exact”, so we will “derive” them
in a certain way.

De�nition 1.4.1 (Exact sequence). A short sequence (A, a) α
−→ (B, b) β

−→ (C, c) in Set∗ is exact if
α(A) = β−1(c) . A long sequence is exact when all its short sequences are exact.
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De�nition 1.4.2 (h-coexact sequence). A short sequence U
f
→ V

g
→ W of pointed continuous maps

is h-coexact if the short sequence

[U, Z]∗ [V, Z]∗f ∗oo [W, Z]∗g∗oo

is exact, for all pointed topological space Z . A long sequence is h-coexact when all its short sequences
are h-coexact.

Notice that this condition amounts to saying that, for all pointed continuous map ψ : V → Z , the
composition ψ f : U → V → Z is null homotopic if and only if there exists ϕ : W → Z such that
ψ ∼ ϕg rel {∗}. When it is the case, this implies that g f is null homotopic (consider Z = W and
ϕ = idW ) . In the other way round, this condition is su�sant to imply that g∗ ([W, Z]∗) ⊂ ( f ∗)−1 ([cst]) .
Nothing ensures that the canonical sequence X

f
→ Y � Y/X is h-coexact. So, let us refine the

construction on the right-hand side.

De�nition 1.4.3 (Mapping cone). The mapping cone Cone( f ) of a pointed continuous map f : X → Y
is defined by the following pushout:

X Y

Cone(X) Cone( f )

f

i1
p

f1 that is Cone( f ) = Cone(X) ∪
f

Y �
Cone(X) ∨ Y
(x, 1) ∼ f (x) .

 

Remark. Notice that f1 : Y ↪→ Cone( f ) is an embedding, i.e. a monomorphism which induces an
homeomorphism onto its image.

Notice that the composite f1 f is null homotopic: consider the homotopy H : X × I → Cone( f ) given
by H(x, t) B (x, t). The universal property of the pushout

X Y

Cone(X) Cone( f )

Z .

f

i1

p
f1

g

j

h

∃!Φ

implies that the data of a map Φ : Cone( f ) → Z is equivalent to the data of two maps g : Y → Z
and h : Cone( f ) → Z , such that g = Φ f1 and h = Φ j, which coincides with a homotopy from the

constant map to the composite g f . All together, this shows that the sequence X
f
→ Y

f1
→ Cone( f ) is

h-coexact.

The next theorem tells us how to pursue this h-coexact short sequence into a long one.
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Theorem 1.4.4 (Cofibre sequence). For any pointed continuous map f : X → Y , the following sequence
is h-coexact :

X
f // Y

f1 // Cone( f ) p( f ) // ΣX
Σ f // ΣY

Σ f1 // ΣCone( f ) Σp( f )// Σ2X
Σ2 f // Σ2Y

Σ2 f1 // Σ2Cone( f )Σ
2p( f )// · · · ,

where p( f ) : Cone( f ) � Cone( f )/ f1(Y ) � ΣX is the canonical map. For any pointed topological space
Z ∈ Top∗, the following sequence

[X, Z]∗ [Y, Z]∗ [Cone( f ), Z]∗

[ΣX, Z]∗ [ΣY, Z]∗ [ΣCone( f ), Z]∗

[Σ2X, Z] [Σ2Y, Z] [Σ2Cone( f ), Z] · · · .

is exact in the category of pointed sets for the �rst line, in the category of groups for the second line, and then
in the category of abelian groups.

Remark. The cofibre sequence of Theorem 1.4.4 lead D. Puppe and J.-L. Verdier to the notion of a
triangulated category and more recently J. Lurie to the notion of stable ∞-category.

Proof. We already proved above that any sequence of the form

X
f // Y

f1 // Cone( f )

is h-coexact. This implies that the sequence

X
f // Y

f1 // Cone( f ) f2 // Cone( f1) f3 // Cone( f2)

is h-coexact.

From the various definitions, it is straightforward to check that the following diagram is commutative
iX1

X
f //

i1

��

Y
i1 //

f1

��

Cone(Y )
j1

��
Cone(X) j //

p

����

Cone( f ) f2 //

p( f )
����

Cone( f1)
q( f )
����

ΣX � Cone(X)/i1(X) � // ΣX � Cone( f )/ f1(Y ) � // ΣX � Cone( f1)/ j1(Cone(Y ))

and that its bottom horizontal maps are homeomorphisms with the suspension ΣX of the space X .

Let us now show that the map q( f ) is a homotopy equivalence. Notice first that

Cone( f1) � Cone(X) q Cone(Y )
(x, 1) ∼ ( f (x), 1) �

X × I q Y × I
{x0} × I ∪ X × {0} ∪ {y0} × I ∪ Y × {0} ∪ {(x, 1) ∼ ( f (x), 1)} .

We consider the following homotopy H : Cone( f1)× I → Cone( f1) whose idea amounts to retracting
the cone of Y onto its s = 0 base point and in the same time expending the cone of X inside it.

24



 

Explicitly, the map H is defined by changer les roles de s et t

H((y, s), t) B (y, (1 − t)s) , for y ∈ Y, and s, t ∈ I ,

H((x, s), t) B



(x, (1 + t)s) , for x ∈ X, t ∈ I, and s ∈
�
0, 1

1+t

�
,

( f (x), 2 − (1 + t)s) , for x ∈ X, t ∈ I, and s ∈
�

1
1+t , 1

�
.

The abovementioned description of Cone( f1) shows that this assignment is compatible with the
various identifications, so it is continuous. At time t = 0, we get H(−, 0) = idCone( f1) . Considering
the map s( f ) : ΣX → Cone( f1) defined by s( f )(x, s) B H((x, s), 1)), we get H(−, 1) = s( f ) ◦ q( f ) at
time t = 1 . definir cette application avant Now the map K : ΣX × I → ΣX defined by

K((x, s), t) B



�
x, 2

1+t s
�
, for s ∈

�
0, 1+t

2

�
,

∗ , for s ∈
�

1+t
2 , 1

�
,

is a homotopy from q( f ) ◦ s( f ) to idΣX .

We denote by τ : ΣX → ΣX the orientation reversing homeomorphism defined by (x, t) 7→ (x, 1 − t)
and we consider the following diagram

Cone( f ) f2 //

p( f )

%%

Cone( f1) f3 //

p( f1)

%%

∼ q( f )

��

Cone( f2)

∼ q( f1)

��
ΣX

Σ f ◦τ // ΣY .

We have already seen that the triangles on the left-hand side and on the right-hand side are commu-
tative. The middle triangle is homotopy commutative, that is Σ f ◦ τ ◦ q( f ) ∼ p( f1) . Since s( f ) is
homotopy inverse to q( f ) and since τ is its own inverse, this latter fact is equivalent to Σ f homotopy
equivalent to p( f1) ◦ s( f ) ◦ τ. One proves this with a homotopy L : ΣX × I → ΣY , analogous to K :

L((x, s), t) B



�
f (x), 2

1+t s
�
, for s ∈

�
0, 1+t

2

�
,

∗ , for s ∈
�

1+t
2 , 1

�
.

So we get the following commutative diagram

[Y, Z]∗ [Cone( f ), Z]∗f ∗1oo [Cone( f1), Z]∗f ∗2oo [Cone( f2), Z]∗f ∗3oo

[ΣX, Z]∗

p( f )∗
gg

� q( f )∗

OO

[ΣY, Z]∗ ,

p( f1)∗
gg

(Σ f ◦τ)∗oo

� q( f1)∗

OO

for any Z ∈ Top∗ . Since the top sequence is exact, so is the bottom sequence. Finally, this proves
that the sequence

X
f // Y

f1 // Cone( f ) p( f ) // ΣX
Σ f // ΣY
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is h-coexact.

Finally, we apply this result to Σ f , Σ2 f , etc. In order to be able to conclude the proof with this, we

need the existence of an homeomorphism χ : Cone(Σ f ) �
−→ ΣCone( f ), which satisfies

χ ◦ (Σ f )1 = Σ f1 and (12) ◦ p(Σ f ) = Σp( f ) ◦ χ ,
where (12) B Σ2X

�
−→ Σ2X defined by (x, s, t) 7→ (x, t, s) . We begin by noticing that the assignment

(x, s, t) 7→ (x, t, s) defines an homeomorphism

χ : Cone(ΣX) �
−→ ΣCone(X)

which satisfies χ ◦ iΣX1 = ΣiX1 . Considering the diagram defining the cone of Σ f and the image under
Σ of the diagram defining the cone of f

ΣX ΣY

Cone(ΣX) Cone(Σ f )

ΣCone(X) ΣCone( f ) ,

Σ f

iΣX1

pΣiX1

(Σ f )1
Σ f1

χ
∃!χ

Σ j

we get a map χ : Cone(Σ f ) → ΣCone( f ) satisfying χ ◦ (Σ f )1 = Σ f1 . Since the suspension functor
Σ is a left adjoint by Proposition 1.2.27, it preserves colimits and thus pushouts. This implies that χ
is an homeomorphism. It remains to check (12) ◦ p(Σ f ) = Σp( f ) ◦ χ, which is straightforward since
both are given by (x, s, t) 7→ (x, t, s) . �

1.4.2. Fibre sequence. A dual fibre sequence is obtained by the same arguments applied to dual con-
structions under the adjunction Σ a Ω .

De�nition 1.4.5 (h-exact sequence). A short sequence U
f
→ V

g
→ W of pointed continuous maps is

h-exact if the short sequence

[Z,U]∗ f∗ // [Z,V ]∗ g∗ // [Z,W ]∗
is exact, for all topological space Z . A long sequence is h-exact when all its short sequences are
h-exact.

Nothing ensures that the canonical sequence ( f −1(y0), x0) ↪→ (X, x0) f
→ (Y, y0) is h-exact. So let us

refine the construction on the left-hand side.

De�nition 1.4.6 (Path space of a map). The path space Path( f ) of a pointed continuous map f : X →
Y is defined by the following pullback:

Path( f ) Path(Y )

X Y

f 1
y

e1

f

that is Path( f ) � X ×
f

Path(Y ) � {(x, ϕ : I → Y ) | f (x) = ϕ(1)} .
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Remark. The map f 1 : Path( f ) � X is a quotient map, i.e. a set U in X is open if and only if its
inverse image is an open of Path( f ) .
Notice that the composite f f 1 is null homotopic. The universal property of the pullback

Z

Path( f ) Path(Y )

X Y

∃!Ψ

g

h

q

f 1
y

e1

f

implies that the data of a map Ψ : Z → Path( f ) is equivalent to the data of two maps g : Z → X
and h : Z → Path( f ), such that g = f 1Ψ and h = qΨ, which coincides with a homotopy from the

constant map to the composite f g . All together, this shows that the sequence Path( f )→ X
f
→ Y is

h-exact.

The next theorem tells us how to pursue this h-exact short sequence into a long one, in a way dual
to Theorem 1.4.4.

Theorem 1.4.7 (Fibre sequence). For any pointed continuous map f : X → Y , the following sequence is
h-exact:

· · · // Ω2Path( f ) Ω
2 f1 // Ω2X

Ω2 f // Ω2Y
Ωi( f )// ΩPath( f ) Ω f1 // ΩX

Ω f // ΩY
i( f ) // Path( f ) f 1 // X

f // Y ,

where i( f ) : ΩY → Path( f ) is the map which sends a loop ϕ onto (x0, ϕ) . , For any pointed topological space
Z ∈ Top∗, the following sequence

[Z,Path( f )]∗ [Z, X]∗ [Z,Y ]∗

[Z,ΩPath( f )]∗ [Z,ΩX]∗ [Z,ΩY ]∗

· · · [Z,Ω2Path( f )]∗ [Z,Ω2X]∗ [Z,Ω2Y ]∗
is exact in the category of pointed sets for the �rst line, in the category of groups for the second line, and then
in the category of abelian groups.

Proof. The proof is dual that of Theorem 1.4.4. �
10/11/25

1.5. Fibrations and co�brations. We introduce here two classes of maps, cofibrations and fibra-
tions, which are the fundamental tools of homotopy theory. The (co)fibre sequence applies e�ciently
to them and they lie at the core of the modern axiomatic treatment of homotopical algebra.

1.5.1. Co�brations. Let us “come back” to the general non-necessarily pointed world. The following
construction provides us with a non-pointed notion analogous to the mapping cone.

De�nition 1.5.1 (Mapping cylinder). The mapping cylinder Cyl( f ) of a continuous map f : X → Y
is defined by the following pushout:

X Y

X × I Cyl( f )

f

i0
p

f0

j

that is Cyl( f ) � (X × I) q Y
(x, 0) ∼ f (x) .
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The space X naturally embeds into the mapping cylinder under i1 : X ↪→ Cyl( f ) ; so does Y under
f0 : Y ↪→ Cyl( f ) . This latter map admits the retraction P : Cyl( f )→ Y defined by (x, t) 7→ f (x) and
y 7→ y . Considering the homotopy H : Cyl( f ) × I → I given by (x, s, t) 7→ (x, st) and (y, t) 7→ y , one
can see that this actually forms a strong deformation retract. Hence the canonical retraction

P : Cyl( f ) Y∼

is a quotient map and a homotopy equivalence. In the end, this shows that any map f : X → X
factors through an embedding followed by a quotient map which is a homotopy equivalence:

X Cyl( f ) Y
i1

f

P

∼
.

This is a remarkable property, but one might want to go further and look for a universal property
satisfied by the map i1.

De�nition 1.5.2 (Homotopy extension property (HEP)). A map i : A → X satisfies the homotopy
extension property (HEP) with respect to a space Z if, for any pair of maps g : X → Z and h : A× I → Z
such that h iA0 = g i, there exists a map H : X × I → Z such that the following diagram commutes:

A A × I

X X × I

Z .

iA0

i i×id

h

iX0

g

∃H

 

As it is obvious from the above picture, the data of the map H needs not be unique. We say that
the map H extends h with initial condition g . Recall that a map F : X → Y is said to extend a map
f : A→ Y along a map i : A→ X when f = Fi .

A Y

X

f

i
F

Proposition 1.5.3. The homotopy extension property for i : A→ X with respect to a space Z and for a pair
of maps g : X → Z and h̆ : A → Z I is equivalent to the existence of a map H̆ : X → Z I factorising the
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following commutative diagram.

A Z I

X Z

h̆

i e0

g

∃H̆

Proof. This is a direct corollary of the (− × I) a (−)I -adjonction of Theorem 1.2.8. �

In this case, the map H̆ extends h̆ along i, which explains the chosen terminology.

De�nition 1.5.4 (Cofibration). A map i : A→ X is a co�bration if it satisfies the homotopy extension
property with respect to any space. In this case, we denote it by

i : A� X .

Example. One can directly see from the definition that homeomorphisms are cofibrations and that
cofibrations are stable under composition.

In order to have a practical way to settle that more maps are cofibrations, let us analyse the homotopy
extension property on the test space provided by the mapping cylinder Z = Cyl(i):

A A × I

X X × I

Cyl(i) .

iA0

i i×id
j

iX0

i0

∃ r
∃!s

By the pushout property, there exists a unique map s: Cyl(i) → X × I. When it is satisfied, the
homotopy extension property provides us with a retraction r of it. 

This example indicates that it is enough to check the homotopy extension property on the mapping
cylinder only.

Proposition 1.5.5. Let i : A→ X be a continuous map. The following assertions are equivalent.

(1) The map i is a co�bration.
(2) The map i satis�es the homotopy extension property with respect to its mapping cylinder Cyl(i).
(3) The map s: Cyl(i) ↪→ X × I admits a retraction.

Proof. From the arguments given above, it remains to prove (3) ⇒ (1). Suppose that the map s

admits a retraction r and that we are giving a space Z and maps g : X → Z and h : A × X → Z
such that h iA0 = g i . The pushout property defining the mapping cylinder provides us with a map
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Φ : Cyl(i)→ Z such that h = Φ j and g = Φi0 .

A A × I

X X × I

Cyl(i).

Z .

iA0

i i×id

j
h

iX0

i0

g

∃ r

∃Φ

∃!s

We claim that the map H B Φr satisfies the homotopy extension property. Indeed, we have

h = Φ j = Φ r sj = H(i × id) and g = Φi0 = Φ r si0 = H iX0 .

�

Proposition 1.5.6. Any co�bration i : A� X is an embedding. Moreover, its image i(A) is closed when X
is Hausdor�.

Proof. Since i : A � X is a cofibration, it satisfies the homotopy extension property with respect to
its mapping cylinder and its canonical maps, under the dual form: there exists a map H̆ factorising
the commutative square

A Cyl(i)I

X Cyl(i)

h̆

i e0

i0

∃H̆

The map λ : A ↪→ Cyl(i) defined by a 7→ h̆(a) �
1
2

�
is an embedding, that is an injection which induces

an homeomorphism onto its image. The map Λ : X → Cyl(i) defined by x 7→ H̆(x) �
1
2

�
satisfies

Λi = λ, which implies that i is injective and thus bijective onto its image. Under the following tilde
notations for the various restrictions

ĩ : A→ i(A) , λ̃ : A→ λ(A) , Λ̃ : i(A)→ λ(A) ,
we get λ̃−1Λ̃ ĩ = idA. This shows that the inverse of ĩ is the composite λ̃−1Λ̃, which is continuous; so
ĩ is an homeomorphism onto its image.

Since X is Hausdor�, then so does X×I. Since i : A� X is a cofibration, the section s: Cyl(i)� X×I
admits a retraction r : : X × I → Cyl(i) by Proposition 1.5.5. Recall that the set of points on which
two maps f , g : Y → Z agree is closed in Y when Z is Hausdor�. Here the identity of X × I and sr
agree on the image of s, which is thus closed in X × I. This shows that i(A) is closed in X . Indeed,
given any point x < i(A), we consider the point �

x, 1
2

�
< s(Cyl(i)) and an open neighbourhood of it of

the form U × V , where U is an open set of X and V an open set in I, in the complement of s(Cyl(i))
in X × I. So U is an open neighbourhood of x in the complement of i(A) in X . �

This property justifies a posteriori the notation chosen for a cofibration. It also shows that being a
cofibration is not a homotopy equivalent notion: the identity map of a contractible space is homotopy
equivalent to a constant map, which is not a cofibration since not injective in general.

Remark. The result of Proposition 1.5.6 holds in more generality for compactly generated weak
Hausdor� spaces, see https://mathoverflow.net/questions/221183.

This result raises the question: when is the inclusion i : A ↪→ X associated to a sub-set A ⊂ X a
cofibration? Here we would like to consider the subset X × {0} ∪ A × I of X × I but we have to be
careful: it is indeed in bijection with the mapping cylinder Cyl(i) but it fails to be homeomorphic to
it. Nevertheless, the criterion similar to Point (3) of Proposition 1.5.5 holds here.

Proposition 1.5.7. Let A ⊂ X be a set of X . The inclusion i : A ↪→ X is a co�bration if and only if there
exists a retraction r : X × I → X × {0} ∪ A × I to the canonical inclusion : X × {0} ∪ A × I ↪→ X × I .
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Proof.

(⇒) The canonical map X × {0} t A × I → X × {0} ∪ A × I induces a continuous bijection
Ψ : Cyl(i) → X × {0} ∪ A × I, which fails to be an homeomorphism in general. Since i is
a cofibration, the inclusion s: Cyl(i) ↪→ X × I admits a retraction r : X × I → Cyl(i) by
Point (3) of Proposition 1.5.5. Finally the composite Ψr is a retraction to the canonical
inclusion : X × {0} ∪ A × I ↪→ X × I .

(⇐) Let us prove it when A is closed. Suppose that there exists a retraction r : X × I → X ×
{0} ∪ A × I . We consider the map Φ : X × {0} ∪ A × I → Z defined by (x, 0) 7→ g(x), for
(x, 0) ∈ X × {0}, and by (a, t) 7−→ h(a, t), for (a, t) ∈ A × I . When A is closed, this map is
continuous since it is given by two continuous maps defined on two closed subsets that agree
on their intersection. The composite Φr is a solution to the homotopy extension property.

A A × I

X X × I

X × {0} ∪ A × I .

Z .

iA0

i i×id

j h

iX0

i0

g

r

∃Φ

A clear proof of the general case is given in [Sm68, Theorem 2].

�

Example. Proposition 1.5.7 allows us to prove that the maps Sn−1 ↪→ Dn and ∂In ↪→ In, for n > 1,
are cofibrations. They are important cofibrations since they satisfy a certain generating property; we
refer the reader to the Quillen model structures [Qui67] on topological spaces and simplicial sets for
more details.

Theorem 1.5.8. Any continuous map f : X → Y factors canonically through

X Cyl( f ) Y
i1

f

P

∼
.

where P is a homotopy equivalence and i1 is a co�bration.

Proof. It remains to prove that i1 is a cofibration. Since X ↪→ Cyl( f ) is a (closed) embedding, we can
use of Proposition 1.5.7: the map Cyl( f ) × {0} ∪ X × I ↪→ Cyl( f ) × I admits a retraction given by:

r : Cyl( f ) × I −→ Cyl( f ) × {0} ∪ X × I

(x, s, t) 7−→

{ �
x, s

1−t , 0
�
∈ Cyl( f ) × {0} , for x ∈ X , 0 6 s 6 1 − t ,

(x, s − 1 + t) ∈ X × I , for x ∈ X , 1 − t 6 s 6 1 ,

(y, t) 7−→ (y, 0) ∈ Cyl( f ) × {0} , for y ∈ Y .
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�

Remark. Theorem 1.5.8 shows that, up to homotopy, one can canonically replace any map by a
cofibration.

Proposition 1.5.9 (Cobase change). For any co�bration i : A � X and any map f : A → B, the map
j : B� X ∪ f B obtained by cobase change under the pushout is a co�bration.

A B

X X ∪ f B

f

i

p
j

Proof. We check directly the definition under the dual form of the homotopy extension property given
in Proposition 1.5.3. Let Z be a space and let g : X → Z and h̆ : B × X → Z be two maps such that
e0 h̆ = g j. Since i is a cofibration, the homotopy extension property applied to the outer square of
the following diagram provides us with a map K : X → Z I satisfying Ki = h̆ f and e0K = gk.

A B Z I

X X ∪ f B Z

i

f

p

h̆

j
e0

k

∃K

g

∃!H̆

Then the pushout property defining X ∪ f B produces a (unique) map H̆ : X ∪ f B → Z I satisfying
H̆k = K and H̆ j = h̆. Since e0H̆ j = e0 h̆ = g j and e0H̆k = e0K = gk , we get g = e0H̆, by the
uniqueness property of the pushout X ∪ f B. �

12/11/25
1.5.2. Fibrations. Let us now look for a notion dual to cofibrations under the (−× I) a (−)I -adjunction
of Theorem 1.2.8.

The first step amounts to defining a notion of mapping path space in the non-necessarily pointed
case and dual to the mapping cylinder.

De�nition 1.5.10 (Mapping path space). The mapping path space Path( f ) of a continuous map
f : X → Y is defined by the following pullback:

Path( f ) Y I

X Y

y
e0

f

that is Path( f ) � X ×
f

Y I � {(x, ϕ : I → Y ) | f (x) = ϕ(0)} .

 

Any map f : X → Y factors through

X Path( f ) Y
i

f

p ,
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where i is defined by x 7→
�
x, cst f (x)

�
, the latter element stands for the constant map equal to f (x),

and where p is defined by (x, ϕ) 7→ ϕ(1) . Considering the retraction r : Path( f ) → X , given by
(x, ϕ) 7→ x, and the homotopy H : Path( f )× I → Path( f ), given by (x, ϕ, t) 7→ (x, s 7→ ϕ(st)), one can
see that the map i is a strong deformation retract and thus a homotopy equivalence. Now one might
want to go further and look for a universal property satisfied by the map p .

De�nition 1.5.11 (Homotopy Lifting Property (HLP)). A map p : E → B satisfies the homotopy
lifting property (HLP) with respect to a space Z if, for any pair of maps g : Z → E and h̆ : Z → BI ,
such that p g = e0 h̆, there exists a map H̆ : Z → EI such that the following diagram commutes.

Z

EI E

BI B

g

h̆

∃H̆

e0

p∗ p

e0

In this case, the data of the map H̆ is in general not unique. We say that “the map H̆ is a lifting of h̆
with initial condition g” . Recall that a map F : X → E is said to lift a map f : X → B along a map
p : E → B when f = pF .

E

X B

p

f

F

Proposition 1.5.12. The homotopy lifting property for p : E → B with respect to a space Z and for a pair of
maps g : Z → E and h : Z → BI is equivalent to the existence of a map H : X → Z I factorising the following
commutative diagram.

Z E

Z × I B

g

i0 p

h

∃H

Proof. This is a direct corollary of the (− × I) a (−)I -adjonction of Theorem 1.2.8. �

In this case, the map H lifts h along p, which explains the chosen terminology.

De�nition 1.5.13 (Hurewicz and Serre fibrations). A continuous map p : E → B is a

� (Hurewicz) �bration if it satisfies the homotopy lifting property with respect to any space Z ,
� Serre �bration if it satisfies the homotopy lifting property with respect to any cube In, n > 0 .

The first case is simply called a �bration and denoted by p : E � B .

Obviously a fibration is a Serre fibration; this latter notion is enough to treat the case of homotopy
groups, see Theorem 1.6.3.

Example. One can directly see from the definition that homeomorphisms, projections B × F → B,
and constant maps E � {∗} are fibrations. It is also straightforward to check that fibrations are
stable under composition.

Theorem 1.5.14. Any continuous map f : X → Y factors canonically through

X Path( f ) Y
i

∼

f

p ,

where i is a homotopy equivalence and where p is a �bration.

Proof. It remains to prove that p is a fibration. Let us check directly the homotopy lifting property with
respect to any space Z on the equivalent definition given in Proposition 1.5.12. So let g : Z → Path( f )
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and h : Z × I → Y be maps such that the following diagram commutes:

Z Path( f )

Z × I Y .

g

i0 p

h

H

We write the data of the map g by z 7→ (xz, ϕz), where ϕz(0) = f (xz) . Under these notations, the
commutativity of the above square amounts to ϕz(1) = h(z, 0). This shows that the map H : Z × I →
Path( f ) given by (z, t) 7→ �

xz,t, ϕz,t
�
, where

xz,t B xz ,

ϕz,t (s) B
{
ϕz((1 + t)s) , for 0 6 s 6 1

1+t ,

h(z, (1 + t)s − 1) , for 1
1+t 6 s 6 1 ,

is well defined and continuous.
 

(dessin à reprendre en changeant a 7→ z.) The commutativity of the upper left triangle amounts
to xz,0 = xz and ϕz,0 = ϕz , and the commutativity of the lower right triangle amounts to ϕz,t (1) =
h(z, t) . �

Remark. Theorem 1.5.14 shows that, up to homotopy, one can canonically replace any map by a
fibration.

The above definition of a fibration can be simplified by looking only at the case of the test space
provided by the mapping path space Z = Path(p):

Path(p)

EI E

BI B

pr1

pr2

∃σ
e0

p∗

∃!ρ

p

e0

where pr1(x, ϕ) B x and pr2(x, ϕ) B ϕ stand for the respective projections. By the pullback property,
there exists a unique map ρ : EI → Path(p) making the diagram commutative. When it is satisfied,
the homotopy lifting property provides us with a section of it, that is a map σ : Path(p) → EI

satisfying ρσ = idPath(p) .

Proposition 1.5.15. Let p : E → B be a continuous map. The following assertions are equivalent.

(1) The map p is a �bration.
(2) The map p satis�es the homotopy lifting property with respect to its path space Path(p).
(3) The map ρ : EI → Path(p) admits a section.

Proof. It remains to prove (3) ⇒ (1) which can be archived using the dual form of the arguments
given in the proof of Proposition 1.5.5. �
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It is straightforward to see that a fibration p : E → B with B path connected is surjective. It is
moreover a quotient map by [Sm68, Theorem 1]. This justifies a posteriori the notation� chosen for
fibrations. This also shows that being a fibration is not a homotopy equivalent notion: the identity
map of a contractible space is homotopy equivalent to a constant map, which is not a fibration since
not surjective in general.

We do not have at hand an easy characterisation of fibrations as Proposition 1.5.7 for cofibrations.
However, we will give below several ways to produce automatically fibrations and then two classical
classes of maps (coverings and fibre bundles) which are known to be fibrations.

Proposition 1.5.16 (Base change). For any �bration p : E � B and any map f : A → B, the map
q : B� X ∪ f B obtained by base change under the pullback is a �bration.

A × f E E

A B

q

y
p

f

Proof. The proof is completely dual to that of Proposition 1.5.9. �

Proposition 1.5.17.
(1) Let i : A� X be a co�bration between locally compact spaces. The map i∗ : ZX � ZA is a �bration,

for any space Z .
(2) Let p : E � B be a �bration. The map p∗ : EZ � BZ is �bration, for any locally compact space Z .

Proof. The proof is left as an exercise. �

Example.
� Since i : ∂I � I is a cofibration between locally compact spaces, the map X I � X∂I � X×X ,
given by ϕ 7→ (ϕ(0), ϕ(1)), is a fibration.

� Similarly, the evaluation map et : Y I � Y , is a fibration, for any t ∈ I and any Y locally
compact, since the embedding it : {∗} ↪→ I is a cofibration. For any map f : X → Y , the
projection map pr1 : Path( f ) � X onto the first component is a fibration by base change
(Proposition 1.5.16).

Path( f ) Y I

X Y

pr1

y
e0

f

De�nition 1.5.18 (Covering). A covering (cover or covering space) of a space B is a surjective map
p : E � B satisfying the property: for all b in B, there exists an open neighbourhood U of b such that

the restriction p|C : C
�
→ U of p to any connected component C of p−1(U) is an homeomorphism.

In this case, E is called the total space, B the base space, and Fb B p−1b the �bre of the covering at b.

Remark. A covering is called a revêtement in French.

Example. The paradigm of coverings is the exponential map from the real line onto the circle:

 

R S1 ,

θ e2iπθ .

35



In this case, the fibre is constant and equal to Z.

Another classical covering is provided by the map p : Sn � PnR which sends a point x ∈ Sn ⊂ Rn+1

to the line [x] ∈ PnR supported by x. In this case, the fibre is constant and equal to Z/2Z since the
real projective space is homeomorphic to PnR � Sn/{±1}.
The universal property satisfied by coverings is the following one.

Proposition 1.5.19 (Unique path lifting property). Let p : E � B be a covering. For any path ϕ : I → B
and for any x ∈ E satisfying ϕ(0) = p(x), there exists a unique path ψ : I → E lifting ϕ and starting at x,
that is pψ = ϕ and ψ(0) = x.

We will need the following point-set topological property.

Lemma 1.5.20 (Lebesgue’s number lemma). Let (X, d) be a metric compact space and let {Ui}i∈I be an
open cover of X . There exist a positive real number ε > 0 such that for any x ∈ X , there exists i ∈ I satisfying
B(x, ε) ⊂ Ui .

Proof of Lemma 1.5.20. The proof of this point-set topological property is left as an exercise. �

Proof of Proposition 1.5.19. Let ϕ : I → B be a path in B such that ϕ(0) = p(x), with x ∈ E. For any
point t ∈ I, we consider an open neighbourhood Uϕ(t) of ϕ(t) in B satisfying the defining property
of a covering. Since ϕ is continuous,

�
ϕ−1

�
Uϕ(t)

�	
t∈I

is an open cover of the metric compact space
I. Therefore, it admits a Lebesgue number ε > 0. We divide the interval I = [0, 1] into t0 B 0 <
t1 < · · · < tn−1 < tn B 1 such that tk − tk−1 < ε, for any 1 6 k 6 n. It is then straightforward to
prove by induction on k that there exists a unique map ψk : [0, tk] → E satisfying ψk(0) = x and
pψk = ϕ|[0,tk ]. Indeed for k = 0, this is trivial. Suppose that the result holds for k and let us prove
it for k + 1. We consider s ∈ t such B(tk, ε) ⊂ ϕ−1

�
Uϕ(s)

�
. Let C be the connected component of

p−1
�
Uϕ(s)

�
containing ψk(tk). So the restriction p|C : C � Uϕ(s) is an homeomorphism. This proves

that the following map

ψk+1(t) B
{
ψk(t) , for 0 6 t 6 tk ,
(p|C)−1 (ϕ(t)) , for tk 6 s 6 tk+1 ,

defines a unique lifting. �

Theorem 1.5.21. Any covering p : E → B is a �bration with a unique section σ : Path(p)→ EI .

Proof. Proposition 1.5.19 shows that Point (3) of Proposition 1.5.15 is satisfied by a unique section σ
of the map ρ : EI → Path(p) . �

Notice that each fiber of a covering is discrete. In the next case, we will relax this assumption and
require instead the fibre to be constant.

De�nition 1.5.22 (Fibre bundle). A �bre bundle structure on a space E with �bre F is a surjective map
p : E � B such that for all b in B, there exist an open neighbourhood U of b and an homeomorphism

h : p−1(U) �
−→ U × F satisfying the following commutative diagram:

p−1(U) U × F

U .

p

h

�

proj

Each homeomorphism h is called a local trivialisation. Fiber bundles are often denoted simply by
F → E → B.

Products B × F � B are trivial fibre bundle; their local trivialisation maps are equal to the identity
on U × F .
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Example. The first non-trivial example of a fibre bundle is given by the Möbius strip 

[−1, 1] I × [−1, 1]
(0, v) ∼ (1,−v) S1 .

Notice that any fibre bundle with a discrete fibre F is a covering. In the other way round, a covering
with fibres of same cardinality is a fibre bundle; this is for instance the case when B is connected.

The next result shows that these two classes of maps provide us with fibrations. Let us recall that a
space is paracompact when every open cover admits a locally finite refinement: at every point, there
exists an open neighbourhood that intersects only of finite numbers of its elements. Compact spaces
and CW-complexes are paracompact.

Theorem 1.5.23. Any �bre bundle f : E � B with a paracompact base B is a �bration.

Proof. The non-trivial proof of this theorem relies on point-set topology; it is thus skipped here. We
refer the reader to [May99, Chapter 7, Section 4] for full details. �

The relationship between these various notions is summarized into the following table.

covering ⊂
discrete
fibre

fibre bundle ⊂
constant
fibre

fibration ⊂
HLP
wrt In

Serre fibration

This raises the question of the shape of the fibres in any fibration.

Proposition 1.5.24. For any �bration p : E � B, the �bers p−1(b) over each path component are all
homotopy equivalent.

Proof. [Hat02, Proposition 4.61]. TBC �

1.6. Computations of homotopy groups. The homotopy groups are paradoxal objects as they are
easily defined, see Section 1.3.2, but hardly computable. So this makes them exciting objects of study.
In this section, we apply the preceeding notions of a fibration and fiber sequence in order to get a
powerful tool to compute some of them.

The fiber sequence of Theorem 1.4.7 associated to the embedding i : A ↪→ X of a pair (A, ∗) ⊂ (X, ∗)
of pointed spaces provides us with the following long h-exact sequence:

· · · // Ω2Path(i) // Ω2 A Ω2i // Ω2X // ΩPath(i) // ΩA Ωi // ΩX // Path(i) // A i // X .

In this case, the path space of i is equal to

Path(X, A) B Path(i) = �
ϕ ∈ X I | ϕ(0) = ∗ , ϕ(1) ∈ A

	
. 

De�nition 1.6.1 (Relative homotopy groups). For any n > 1, we consider

πn(X, A) := πn−1(Path(X, A)) � π0

�
Ω

n−1Path(X, A)� ,
with their group structure, for n = 2, and their abelian group structure, for n > 3 . They are called
the relative homotopy groups of a pair (X, A) .
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Remark. When A = {∗} is made up of the sole base point, the definition coincides with the classical
one πn (X, {∗}) � πn(X, ∗) as Path (X, {∗}) = ΩX .

Theorem 1.6.2 (Long exact sequence associated to a pair). For any pair ∗ ∈ A ⊂ X of pointed
topological spaces, there exists a long exact sequence:

· · · // π2(A) π2(i) // π2(X) // π2(X, A) // π1(A) π1(i) // π1(X) // π1(X, A) // π0(A) π0(i) // π0(X) .
Proof. This long exact sequence is obtained from the aforementioned h-exact sequence by applying
the functor [S0,−]∗ . �

The long exact sequence of Theorem 1.6.2 admits the following more amenable form.

Theorem 1.6.3 (Long exact sequence associated to a fibration). Let p : E � B be a Serre �bration,
with (B, b0), a path connected pointed space. Denoting by F := p−1(b0) the �bre of p, there exists a long exact
sequence:

· · · // π2(F) // π2(E) // π2(B) // π1(F) // π1(E) // π1(B) // π0(F) // π0(E) // {∗} .
Remark. Notice the similarity with the long exact sequence of homology groups associated to a
short exact sequence of chain complexes: the Serre fibration F → E � B plays the role of the short
exact sequence of topological spaces which induces a long exact sequence of homotopy groups this
time.

Proof. TBC �

Corollary 1.6.4. Any pointed covering p : E � B induces isomorphisms πn(p) : πn(E) � πn(B), for n > 2 .

Proof. This is a direct corollary of Theorem 1.5.21 and Theorem 1.6.3 as the long exact sequence is
equal to

· · · // π3(F) � 0 // π3(E) � // π3(B) // π2(F) � 0 // π2(E) � // π2(B) // π1(F) � 0 // .

�

Proposition 1.6.5. We have πn
�
S1

�
� 0, for any n > 2 .

Proof. This is proved using the covering R � S1 given by θ 7→ eiθ , where R is contractible. So by
Corollary 1.6.4, we get πn(S1) � πn(R) � 0, for n > 2 . �

One can endow coverings over a fixed base B with a category structure where morphisms from
p : E � B to p′ : E ′ � B are are continuous map f : E → E ′ such that p′ f = p:

E E ′

B .

p

f

p′

In this context, we consider the group Aut(p) of automorphisms of a covering p.

Theorem 1.6.6. Let p : E � B be a pointed covering from a simply connected and locally path connected
space E. The �bre F = p−1(∗) is in bijection with Aut(p) and

π1(B) � Aut(p) .
Proof. [GH81, Theorem 5.8] TBC �

Corollary 1.6.7. The fundamental group of S1 is isomorphic to Z:

π1(S1) � Z .

Proof. This is a direct corollary of Theorem 1.6.6 applied to the covering p : R� S1. The fiber is Z
and any automorphism of p is of the form R→ R, x 7→ x + 2πk, with k ∈ Z. �

Proposition 1.6.8. We have πn
�
Sd

�
� 0, for any n < d .

Proof. TBC �

To go further, we need to consider more elaborate fibrations.
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De�nition 1.6.9 (Complex Hopf fibration). For any d > 1, the complex Hopf �bration is the fiber
bundle

S1 → S2d+1 → PdC

defined by (x0, y0, . . . , xd, yd) 7→ [x0 + iy0 : · · · : xd + iyd], for any d > 1.

The classical Hopf fibration coincides to the case d = 1:

S1 → S3 → S2 � P1C .

Proposition 1.6.10. For any d > 1, we have

π1

�
PdC

�
� 0 , π2

�
PdC

�
� Z ,

πn
�
PdC

�
� 0 , for 3 6 n 6 2d ,

πn
�
PdC

�
� πn

�
S2d+1

�
, for n > 2d + 1 .

Proof. By the preceding results, the long exact sequence of Theorem 1.6.3 associated to the complex
Hopf fibration is equal to

· · · // π2d+3

�
S2d+1

� � // π2d+3

�
PdC

� // π2d+2

�
S1

�︸      ︷︷      ︸
0

// π2d+2

�
S2d+1

� � // π2d+2

�
PdC

� // π2d+1

�
S1

�︸      ︷︷      ︸
0

//

// π2d+1

�
S2d+1

� � // π2d+1

�
PdC

� // π2d

�
S1

�︸   ︷︷   ︸
0

// π2d

�
S2d+1

�︸       ︷︷       ︸
0

� // π2d

�
PdC

� // π2d−1

�
S1

�︸      ︷︷      ︸
0

// · · ·

· · · // π2

�
S1

�︸ ︷︷ ︸
0

// π2

�
S2d+1

�︸      ︷︷      ︸
0

// π2

�
PdC

� � // π1

�
S1

�︸ ︷︷ ︸
Z

// π1

�
S2d+1

�︸      ︷︷      ︸
0

// π1

�
PdC

� // {∗} ,

where the isomorphism on the level of the fundamental group is given by Theorem 1.6.6. �

Corollary 1.6.11. We have π2

�
S2

�
� Z and πn

�
S2

�
� πn

�
S3

�
, for n > 3 .

Proof. This is the direct application of Proposition 1.6.10 to the case d = 1. �

The complex Hopf fibration admits the following real analogue.

De�nition 1.6.12 (Real Hopf fibration). For any d > 1, the real Hopf �bration is the covering

Z/2Z→ Sd → PdR

defined by (x1, . . . , xd) 7→ [x1 : · · · : xd], for any d > 1 .

Proposition 1.6.13. For any d > 1, we have

π1

�
PdR

�
� Z/2Z ,

πn
�
PdR

�
� 0 , for 2 6 n 6 d − 1 ,

πn
�
PdR

�
� πn

�
Sd

�
, for n > d .

Proof. By the preceding results, the long exact sequence of Theorem 1.6.3 associated to the real Hopf
fibration is equal to

· · · // πd+2
�
Sd

� � // πd+2
�
PdR

� // 0 // πd+1
�
Sd

� � // πd+1
�
PdR

� // 0 //

// πd
�
Sd

� � // πd
�
PdR

� // 0 // 0 // πd−1

�
PdR

� // 0 // · · ·

· · · // 0 // π2

�
PdR

� // 0 // 0 // π1

�
PdR

� � // Z/2Z // {∗} .
�

Since the 1-dimensional real projective space P1R � S1 is homeomorphic to the circle, it shares with
it the same homotopy groups.

Theorem 1.6.14. For any n > 1, we have πn
�
Sn

�
� πn

�
PnR

�
� π2n+1

�
PnC

�
� Z .

Proof. TBC.
The last two isomorphisms come from Proposition 1.6.10 and Proposition 1.6.13 respectively. �

Here is a first “concrete” application of these computations of homotopy groups.

Corollary 1.6.15. For 0 < k < n , the embedding PkR ↪→ PnR does not admit a retraction.
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Proof. Let us denote by i the embedding and let us suppose that it admits a retraction r : PnR� PkR.
This implies that πk(r)◦πk(i) = idπk (PkR). So πk(i) : πk

�
PkR

�
� Z ↪→ πk (PnR) � 0 is injective, which

is impossible by Proposition 1.6.13 and Theorem 1.6.14. �

1.7. Cell complexes. So far we have been studying topological spaces from top to bottom, that is
we considered all of them, established general properties, and ultimately looked at some examples.
Let us now take the dual bottom-to-top approach and consider the particular case of topological
spaces which are obtained by consecutive cells gluing. Historical, one of the first motivating example
is the Euler characteristic (1752): for all polygonal decomposition of the sphere S2, the alternating
sum of the number of vertices, edges, and polygons is invariantly equal to

χ
�
S2

�
= η(0) − η(1) + η(2) = 2.

In this section, we will focus of the type of such cell complexes given by CW-complexes. There is
actually no loss of generality as any space can be approximated by a CW-complex. However their
homotopy theory is much more simple since, in some sense, their homotopy groups provide us with
a complete collection of invariants.

1.7.1. De�nitions. The following key example will pave the way to a precise definition for “consecutive
cells gluing”.

Example (Toy model). Let us consider the real projective spaces, which are defined as the sets
PnR = PRn+1 of lines of Rn+1, for any n > 0. Since there are equivalently defined as the cosets of
non-zero points of Rn+1 under the action of R\{0}, its is equipped with the coset topology. So, one
can see that P0R is a point, that P1R is a line glued to this point at each extremities forming a circle,
that P2R is a plane glued along this circle, etc.

 

De�nition 1.7.1 (CW complex). A CW complex is a topological space X equipped with an homeo-
morphism to a colimit

∅ C X (−1) ⊂ X (0) ⊂ · · · ⊂ X (n) ⊂ · · ·
⋃
n∈N

X (n) = colim
n∈N

X (n) � X ,

where ∐
Jn

Sn−1 = Jn × Sn−1 X (n−1)

∐
Jn

Dn = Jn × Dn X (n) = X (n−1)∐
ϕn

(Jn × Dn) � X (n−1) ∐ (Jn × Dn)
ϕn( j, x) ∼ ( j, x) ,

ϕn

p
Φn

with discrete spaces Jn, for any n ∈ N. The maps ϕn are called the attaching maps and the maps Φn

are called the characteristic maps. The sub-space X (n) is called the n-skeleton of X . A CW-complex is
�nite dimensional if X = X (n) for some n > 0 , and it is �nite when

∐
n∈N Jn is finite.

Remark. For infinite dimensional CW-complexes, we consider the colimit topology (also called weak
topology) where any set U ⊂ X is open if U ∩ X (n) is open for any n in N. The underling idea of this
topology is to test the properties on all components X (n): a map f : X → Y is continuous if and only
if all its restrictions f |X(n) : X (n) → Y are continuous, for n ∈ N. In this topology, one often only needs
to “approximate X with X (n) for n large enough”: a map f : K → X from a compact space K to X is
continuous if and only if f : K → X (n) ⊂ X is continuous for some n.
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Let us unfold this definition a little bit. One starts from a set J0 indexing the base points

∅ X (−1) = ∅

J0 × {∗} X (0) = J0 × {∗} ,

ϕ0

p
Φ0

as S−1 = ∅ by convention. Then one glues the endpoints of intervals indexed by J1 on them:

J1 × {0, 1} X (0)

J1 × I X (1) � X (0) ∐ (J1 × I)
ϕ1( j, 0) ∼ ( j, 0), ϕ1( j, 1) ∼ ( j, 1) ,

ϕ1

p
Φ1

as D1 = I and S0 = ∂D1 = {0, 1} . This produces a graph X (1) on which one glues J2 copies of disks
D2 along their boundary under the attaching map ϕ2:

J2 × S1 X (1)

J2 × D2 X (2) �
X (1) ∐ �

J2 × D2
�

ϕ2( j, x) ∼ ( j, 0) ,

ϕ2

p
Φ2

And so on, and so forth ... 

Example.

� Spheres: For any n > 1, the n-dimensional sphere is a finite CW-complex Sn � {∗} q f Dn

made up of two cells, a point and an n-dimensional disk Dn, with attaching map f : Sn−1 =

∂Dn → {∗}. (Notice that we have already seen this model previously when we considered
Sn � Dn/∂Dn � In/∂In.)

� Graphs: The definition of a graph is a 1-dimensional CW-complex. It is a tree when it is
simply connected.

� Real projective spaces: For any d > 0, the d-dimensional real projective space is a finite
CW-complex made up of one cell in each dimension from 0 to d:

PdR � D0 qϕ1
D1 qϕ2

· · · qϕd
Dd .

The infinite dimension real projective space is the colimit of the finite dimensional ones:
P∞R B colimn∈N PnR .

� Complex projective spaces: For any d > 0, the 2d+2-dimensional complex projective space
is a finite CW-complex made up of one cell in each dimension from 0 to d:

PdC � D0 qϕ2
D2 qϕ4

· · · qϕ2d+2
D2d+2 .
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where the complex Hopf fibration ϕ2n+2 : S2n+1 � PnC is the attaching map. The infinite
dimension complex projective space is the colimit of the finite dimensional ones: P∞C B
colimn∈N PnC .

� Torus: The torus S1 × S1 is a finite CW-complex made up of one vertex, two 1-cells, and one
2-cells.

Remark. The terminology “CW-complex” comes from “C” for “Closed finiteness”, as the boundary
of any cell intersects a finite number of other cells, and “W” for “Weak topology”.

Proposition 1.7.2. Let X,Y be two CW complexes such that either X or Y are locally compact either X and
Y have both a countable number of cells. In this case, the product X × Y is a CW complex.

Proof. exercise �

De�nition 1.7.3 (Relative CW complex). A pair (X, A) of topological spaces is a relative CW complex
if X is homeomorphic to a colimit

A C X (−1) ⊂ X (0) ⊂ · · · ⊂ X (n) ⊂ · · ·
⋃
n∈N

X (n) = colim
n∈N

X (n) � X ,

where each embedding X (n) ↪→ X (n+1) is obtained as in the definition of a CW complex.

 

revoir la figure : à la première étape, on ajoute des points de manière disjointe. This means that
instead of starting from the empty set and considering points, intervals, etc., one starts here from a
given topological space A on which one puts points, attach interval, etc. A relative CW complex of
the form (X,∅) is a CW complex. X .

De�nition 1.7.4 (CW subcomplex and CW pair). A subspace A ⊂ X of a CW complex X is a CW
subcomplex if it is obtained by the restrictions of the attaching maps of X to subcollections Kn × Sn−1,
with Kn ⊂ Jn, for any n > 0. A CW pair is a pair (X, A) where A is a CW subcomplex of X .

Remark. A CW pair (X, A) is also a relative CW complex, by the reverse does not hold true.

Exercise. Let (X, A) be a CW pair. Show that X/A is a CW complex.

Proposition 1.7.5. For any relative CW complex (X, A), the embedding A� X is a co�bration.

Proof. We saw in Section 1.5.1 that the embedding Sn−1 ↪→ Dn is a cofibration. Since cofibrations
are stable under coproducts (straightforward) and cobase change (Proposition 1.5.9), every map
X (n−1)� X (n) is a cofibration, for n > 0.

∐
Jn Sn−1 X (n−1)

∐
Jn Dn X (n)

ϕn

p
Φn

Since cofibrations are stable under composition, every map A � X (n) is a cofibration, for n > 0.
The arguments of the proof of the stablity under composition pass to the colimit, so A � X is a
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cofibration.

A Z I

X (0)

X (1)

...

X Z

h̆

e0

g

∃H̆

�

De�nition 1.7.6 (Euler characteristic). The Euler characteristic of a finite CW complex X is defined
by the alternating sum

χ(X) :=
∑
n∈N

(−1)n |Jn | .

Nothing guaranties a priori that two finite CW decomposition of a space X will carry the same Euler
characteristic.

Proposition 1.7.7. The Euler characteristic is well de�ned and homotopy invariant.

Proof. The most natural proof of these two facts relies on the cellular homology, see [tD08, Sec-
tion 12.4] for instance. �

Considering continuous maps between CW complexes, one gets a full subcategory of topological
spaces. It is however desirable to consider maps which respect the cellular structures.

De�nition 1.7.8 (Cellular map). A continuous map f : X → Y between CW complexes is cellular if
it satisfises

f
(
X (n)) ⊂ Y (n) ,

for all n ∈ N.

Proposition 1.7.9. For any cellular map f : X → Y between two CW complexes, the factorisation

X Cyl( f ) Y
i1

f

P

∼

considered in Section 1.5.1 is made up of cellular maps.

Proof. The point first amounts to endowing the cylinder construction Cyl( f ) with a CW complex
structure. TBC:exercise �

1.7.2. Whitehead theorem. We have seen in Proposition 1.3.6 that the notion of homotopy groups is
homotopy invariant, that is, if f : X → Y is a homotopy equivalence, then πn( f ) : πn(X) � πn(Y ) is
an isomorphism, for any n > 0. One can ask the reverse question, that is consider the continuous
maps which induces isomorphisms on the level of the homotopy groups. Since homotopy groups
detects a huge amount of the homotopy type of spaces, they should be of particular interest.

De�nition 1.7.10 (Weak homotopy equivalence). A continuous map f : X → Y is a weak homotopy
equivalence when the maps

πn( f ) : πn(X, x) �
−→ πn(Y, ( f (x))

are bijective for all n > 0 and x ∈ X . We denote them by f : X
∼w
−→ Y .
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When it is the case, we have isomorphisms of groups for n > 1 and a bijection between the respective
sets of connected components.

So a homotopy equivalence is a weak homotopy equivalence. The reverse is not true in general: let
us consider the Warsaw circle defined by

W B
��

x, sin
�

1
x

��
,− 1

2π 6 x 6 1
2π , x , 0

	
∪ {0} × [−1, 1] ∪ C ,

where C is a continuous arc from
�
− 1

2π , 0
�
to

�
1

2π , 0
�
disjoint from the other sets.

It is connected but has two path components. The map f : {a, b} → W which sends a to point
in {0} × [−1, 1] and b to a point in C is a weak homotopy equivalence. But it is not a homotopy
equivalence since this would imply the existence of a map g : W → {a, b} such that f g is homotopic
to the identity of W , which is impossible.

However the reverse holds true for CW-complexes.

Theorem 1.7.11 (Whitehead). Let X and Y be two CW complexes. Any map f : X → Y is an homotopy
equivalence if and only if it is a weak homotopy equivalence.

This theorem shows that the Warsaw circle cannot admit any CW complex structure.

Remark. Be careful that the data of a map f : X → Y is mandatory. Consider for instance the two
CW complexes X B S2 × P3R and Y B P2R × S3. They are both path-connected and they share
similar coverings

Z/2Z→ S2 × S3 → S2 × P3R and Z/2Z→ S2 × S3 → P2R × S3 .

So their homotopy groups are isomorphic. But there cannot exist any homotopy equivalence between
since their homology groups are di�erent, H5

�
S2 × P3R

�
� H5

�
P2R × S3×

�
for instance. Whitehead

theorem implies that there is no map S2×P3R→ P2R× S3 which realises the isomorphisms between
their homotopy groups.

The key ingredient in the proof of Whitehead theorem is the following lemma.

Lemma 1.7.12 (Compression). Let (X, A) be a relative CW complex and (Y, B) be a pair of topological
spaces, with B , ∅, such that, for any n > 1 satisfying X (n−1) ( X (n), then πn(Y, B) � 0 . Any continuous
map f : (X, A)→ (Y, B) of pairs of spaces is homotopic relative to A to a map g : X → B .

Proof. Let us denote by {nk}k∈N the increasing sequence of the dimensions of the cells of X , that
is Jn = ∅ if and only if n < {nk}k∈N . By convention, we set n−1 B −1 and f (−1) B f . Let us
prove, by induction on k ∈ N, i.e. on the dimension of the skeleton of X , that there exists a map
f (k) : X → Y homotopic to f (k−1) relative to X (nk−1) and whose restriction to X (nk ) has image in B,
that is f (k)

�
X (nk )� ⊂ B. We will denote such a homotopy by H (k) .

We initiate this induction with the case n0, which is the smallest dimension of cells in X . By definition,
the following diagram commutes.

Jn0
× Sn0−1 A B

Jn0
× Dn0 X (n0) Y

ϕn0

p

f

Φn0 f

So the composite fΦn0
is a map of pairs

�
Jn0
× Dn0, Jn0

× Sn0−1
�
→ (Y, B), which is equivalent to a

collection
��

Dn0, Sn0−1
�
→ (Y, B)	

Jn0
of maps of pairs. By assumption, the relative homotopy group

πn0
(Y, B) � 0 is trivial; recall that it is equivalent to

πn0
(Y, B) � [(In0, ∂In0 ) , (Y, B)] � ��

Dn0, Sn0−1
�
, (Y, B)� .
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This implies that the composite fΦn0
is homotopic to a map ψ : Jn0

× Dn0 → B ⊂ Y relative to
Jn0
× Sn0−1. Let us denote this homotopy by h̃ : Jn0

× Dn0 × I → Y , so that h̃(−, 0) = fΦn0
and

h̃(−, 1) = ψ. We consider the following diagram

Jn0
× Sn0−1 × I A × I B

Jn0
× Dn0 × I X (n0) × I

Y

ϕn0×idI

p

f̃

Φn0×idI

h̃

∃!h

where f̃ (a, t) B f (a) . Notice that X (n0) × I is the pushout of the upper left square. Since h̃ is a
homotopy relative to Jn0

× Sn0−1, the external square commutes and the pushout property provides
us with a (unique) map h : X (n0) × I → Y . We claim that h is a homotopy relative to A from f |X(n0)
to h(−, 1) : X (n0) → B ⊂ Y . First, the commutativity of the upper right square shows that h is a
homotopy relative to A and that the image of h(−, 1) lives in B. Then, the commutativity of the lower
left triangle gives h̃(−, 0) = fΦn0

= h(−, 0)Φn0
and the pushout property defining X (n0) shows that

h(−, 0) = f |X(n0) .

Finally, we consider the following diagram

X (n0) X (n0) × I

X X × I

Y ,

i0

hi0

f

∃H (0)

whose exterior square commutes since h(−, 0) = f |X(n0) . We have see in Proposition 1.7.5 that the
inclusions of CW subcomplex are cofibrations. Thus, the cofibration property applied to X (n0)� X
gives the existence of a map H (0) : X× I → Y . We claim that this provides us with a homotopy relative
to A from f to f (0) B H (0)(−, 1) : X → Y such that f (0)

�
X (n0)� ⊂ B. Indeed, the commutativity of

the upper right triangle shows that it is a homotopy relative to A since h is and that H (0)(−, 1) sends
elements of X (n0) to B since h does. The commutativity of the lower left triangle says H (0)(−, 0) = f .

Suppose now that the result holds up to k. We prove it for k + 1 by the exact same method replacing
A by X (nk ), X (nk ) by X (nk+1), and f by f (k) .

For finite dimensional CW complexes X , the proof is over. Otherwise, we introduce the following
homotopy H. For any k > 0, we define

H(x, t) B H (k) (x, 2k+1
(
t − 1 + 1

2k

))
, for t ∈

[
1 − 1

2k , 1 −
1

2k+1

]
.
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1

1
2

3
4

7
8

0

I

f

f (0)

f (1)

f (2)
.
.
.

g

.

.

.

f

f (0)

f (1)

H (0)

H (1)

H (2)

X

A X(n0) X(n1) · · ·

For any x ∈ X , there exists k ∈ N such that x ∈ X (nk ) . By construction, we have H (l)(x, s) = f (k)(x),
for any l > k and any s ∈ I . The assignment H(x, 1) B f (k)(x) finishes to define a continuous map
H: X × I → Y , which is a homotopy relative to A from f to a map g = H(−, 1) : X → B ⊂ Y . �

Proposition 1.7.13 (Whitehead). Let f : X → Y be a weak homotopy equivalence. The pushforward map

f∗ : [Z, B] �
→ [Z,Y ] is an isomorphism for any CW complex Z .

Proof. We consider the factorization X Cyl( f ) Y
i1 P

∼ of f given in Theorem 1.5.8. When

f is a weak homotopy equivalence, so is i1 since P is a homotopy equivalence. As a consequence, it
is enough to prove the statement for embeddings and even for inclusions X ↪→ Y since homeomor-
phisms are homotopy equivalences.

Surjectivity: We apply Theorem 1.6.2 to the inclusion X ↪→ Y which produces the following
long exact sequence of homotopy groups:

· · · // π2(X) � // π2(Y ) // π2(Y, X) // π1(X) � // π1(Y ) // π1(Y, X) // π0(X) � // π0(Y ) .
The isomorphisms πn(X) � πn(Y ), for n > 0, show that all the relative homotopy groups
πn(Y, X) � 0 are trivial. The compression lemma 1.7.12 implies that any map ϕ : (Z,∅) →
(Y, X) is homotopic to a map ψ : Z → X . This shows the surjectivity of the pushforward
map f∗ .

Injectivity: Let α, β : Z → X be two maps from a CW complex Z such that there exists
a homotopy H between f α and f β, where f : X ↪→ Y is the inclusion. Since I is locally
compact, the product Z × I is a CW complex and (Z × I, Z × ∂I) is a CW pair so a relative
pair. We apply the compression lemma 1.7.12 to H : (Z × I, Z × ∂I) → (Y, X); this produces
a map K : Z × I → X which is homotopic to H relative to Z × ∂I. This is a homotopy from
α to β and this shows the injectivity of the pushforward map f∗ .

�

With this result, we can now conclude the proof of the Whitehead theorem.

Proof of Whitehead theorem 1.7.11. Let f : X → Y be a weak homotopy equivalence between two CW
complexes. We apply Whitehead proposition 1.7.13 to to Z B Y to get the epimorphism [Y, X] �
[Y,Y ]. Pulling back the identity of Y , we get a map g : Y → X such that f g ∼ idY . This implies that g
is weak homotopy equivalence. We apply again Whitehead proposition 1.7.13 to g and Z = X . The
epimorphism [X,Y ]� [X,Y ] provides us with a map ϕ : X → Y satisfying ϕg ∼ idX . In the end, we
get ϕ ∼ f gϕ ∼ f and then g f ∼ gϕ ∼ idX , which concludes the proof. �

One can check from the proof of Whitehead theorem 1.7.11 that its statement holds as well for spaces
that only have the homotopy type of CW complexes, that is for spaces that are homotopy equivalent to
CW complexes.

Remark. The notion of a homotopy equivalence defines an equivalence relation on topological
spaces. The notion of weak homotopy equivalence fails to define an equivalence relation on all topo-
logical spaces as the above example of the Warsaw circle shows. However, Whitehead theorem 1.7.11
shows that weak homotopy equivalence actually defines an equivalence relation on CW complexes.
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Refining the aforementioned arguments, one can establish an connected version of Whitehead theo-
rem.

De�nition 1.7.14 (n-connected space). A topological space X is n-connected when πk(X) � 0, for
any k 6 n.

Under this terminology, a 0-connected space is a path-connected space and a 1-connected space is a
simply connected space.

De�nition 1.7.15 (n-connected map). A continuous map f : X → Y is n-connected when πk( f ) : πk(X)
�
−→ πk(Y ) is an isomorphism for any k < n and an epimorphism πn( f ) : πn(X)� πn(Y ) for k = n .

Proposition 1.7.16 (n-connected version). Let n > 1 and let f : X → Y be an n-connected map. The
pushforward map f∗ : [Z, X]→ [Z,Y ] is an isomorphism for any CW complex Z of dimension at most n − 1
and an epimorphism any CW complex Z of dimension at most n.

Proof. In the proof of Proposition 1.7.13, the surjectivity of f∗ holds for CW complexes Z of dimension
at most n and the injectivity holds for CW complexes Z of dimension at most n − 1. �

Theorem 1.7.17 (n-connected version). Let X and Y be two CW complexes of dimension at most n. Any

map f : X → Y is an homotopy equivalence if and only if it induces an isomorphism πk( f ) : πk(X) �
−→ πk(Y ),

for any k 6 n .

Proof. The proof of the Whitehead theorem 1.7.11 still holds here with the n-connected version 1.7.16
of Whitehead corollary. �

Remark. This statement is particularly strong: for finite dimensional CW complexes, it is enough to
check that a map induces isomorphisms up between homotopy groups to the top dimension of the
CW complexes to get isomorphisms in all dimension. This remark is far from being trivial since J.-P.
Serre proved in [Ser51] that any non-contractible simply-connected finite CW-complex has infinitely
many nontrivial homotopy groups.

Corollary 1.7.18. A CW complex X is contractible if and only if all its homotopy groups are trivial: πn(X) �
0, for all n ∈ N .

Proof. It is enough to apply Whitehead theorem 1.7.11 to the constant map X � {∗} . �

1.7.3. Cellular approximations. How far are topological spaces from CW complexes?

Theorem 1.7.19 (CW approximation). For any topological space X , there exists a CW complex XCW and
a weak homotopy equivalence

ωX : XCW
∼w
−→ X .

For any map f : X → Y and for any CW replacements ωX : XCW → X and ωY : YCW → Y , there exists a
map F : XCW → YCW , unique up to homotopy, such that the diagram

XCW X

YCW Y

ωX

F f

ωY

is homotopy commutative.

Proof. Regarding the first point, the idea amounts to working by induction on the dimension n ∈ N
and to create a CW complex X (n)

CW
with the same homotopy groups as X for k 6 n. In order to

do so, one considers a presentation of πn(X) by generators and relations. The generators give rise
to characteristic maps ϕn and the relations give rise to characteristic maps ϕn+1. At each step, this
construction is mapped X (n)

CW
→ X to the representative of the homotopy groups in X .

The second point is a direct application of Proposition 1.7.13 to the weak homotopy equivalence ωY

and to the CW complex Z = XCW : there exists a map F : XCW → YCW , unique up to homotopy, such
that ωYF ∼ fωX . �

Such cellular approximations do not hold only for spaces, but also for maps.

Theorem 1.7.20 (Cellular approximation). Any map f : X → Y between CW complexes is homotopic to
a cellular map.

Proof. TBC �
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1.7.4. Hurewicz theorem. Let n > 1 et let f : Sn → X be a continuous map. It induces a group
morphism Hn( f ) : Hn(Sn) = Hn(Sn,Z) → Hn(X) = Hn(X,Z) . Since Hn(Sn) � Z, we consider the
assignment

Hn : πn(X) −→ Hn(X)
[ f ] 7−→ Hn( f )(1) .

Lemma 1.7.21. The map Hn is well de�ned and is a group morphism.

Proof. TBC �

De�nition 1.7.22 (Hurewicz morphism). The morphism Hn : πn(X)→ Hn(X) is called the Hurewicz
morphism.

Example. For X = Sn, the upshot Hn( f ) ∈ Z of the Hurewicz morphism is the degree of the map
f : Sn → Sn, that is the number of times that the n-dimensional sphere wraps around itself under the
map f .

Theorem 1.7.23 (Hurewicz). Let X be a (n − 1)-connected topological space.
(1) The reduced homology groups vanish H̃k(X) � 0, for 0 6 k < n .
(2) When n = 1, the Hurewicz morphism is the abelianisation map

H1 : π1(X)� H1(X) � π1(X)
[π1(X), π1(X)]

and, when n > 2, the Hurewicz morphism

Hn : πn(X) � Hn(X)
is an isomorphism of abelian groups.

Proof. TBC �

Theorem 1.7.24 (Brouwer). For any n > 1, we have πn(Sn) � Z .

Proof. This is a direct corollary of the Hurewicz theorem 1.7.23 applied to the (n−1)-connected space
Sn. �

Corollary 1.7.25. Any map f : X → Y between two simply connected CW complexes which induces a
homology isomorphisms Hn(X) � Hn(Y ), for any n ∈ N, is a homotopy equivalence.

Proof. TBC �
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2. Simplicial sets

We have just seen that CW complexes provide a very large family of topological spaces (every topo-
logical space is weakly equivalent to a CW complex). Unfortunately, the data of a CW complex is
not “simple” (how would one encode that in a computer?). Here, the idea will be to move from a
model that uses disks (Dn, Sn−1) as building blocks to standard geometric n-simplices (|∆n |, ∂ |∆n |). In
this way, the attaching data for cells is much simpler because it is purely combinatorial. This gives
rise to the notion of simplicial sets. It is thus no coincidence that this field is often referred to as
“combinatorial homotopy theory”. The student in mathematics is lucky: the theory of simplicial sets
admits a paradigm, an example on which (almost) all definitions and properties can be easily read:
these are the standard simplices.

2.1. Triangulated topological spaces. Various notions from algebraic topology, such as (co)homology
groups or homotopy groups, generally prove di�cult to compute. As is always the case, any addi-
tional piece of information is welcome to simplify such calculations. In this section, we will consider
topological spaces equipped with a suitable decomposition into cells that will take the form of points,
intervals, triangles, tetrahedra, etc. More precisely, in every dimension, the basic building blocks will
be the geometric simplices.

De�nition 2.1.1 (Geometric simplex). A n-dimensional geometric simplex is the convex hull of n + 1
a�nely independent points in an a�ne space.

Example. The most natural example is the standard n-dimensional geometric simplex, which is the
convex hull of the n + 1 canonical basis vectors in Rn+1:

|∆n | :=


(x0, . . . , xn) ∈ Rn+1

������
xi > 0, ∀i ∈ {0, . . . , n}, and

n∑
i=0

xi = 1


.

•

|∆0 |
•

• |∆1 | •

••

|∆2 |
•

•

•

•

|∆3 |

Since only the combinatorial data of the n+1 points v0, . . . , vn interests us, we will denote a geometric
simplex by 〈v0, . . . , vn〉.
De�nition 2.1.2 (Face). Let I = {i0, . . . , ik} ⊂ {0, . . . , n}. The I -th face of a geometric simplex
〈v0, . . . , vn〉 is the geometric k-simplex 〈vi0, · · · , vik 〉. The j-th vertex of a geometric simplex is its
{ j}-th face 〈vj〉.
Example. The di�erent faces of the standard 2-simplex are as follows. In this text, we will note the
faces of standard geometric simplices simply by i0 . . . ik .

•0 • 2

•
1

01 12

02

012

A first notion of a topological space built from such elements is as follows.

De�nition 2.1.3 (Simplicial polyhedron). A simplicial polyhedron |X | ⊂ RN is given by a finite col-
lection of geometric simplices of arbitrary dimension, such that any intersection of two simplices is
a face of both of them.
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•

•

•

•

•

•

•

0

1

2

3

4

5

6
Equivalence classes up to homeomorphism of simplicial polyhedra are faithfully represented by sim-
ple combinatorial data.

De�nition 2.1.4 (Simplicial complex). A simplicial complex is a pair (V,X) where V is a set and X a
set of non-empty, finite subsets of V such that

� {v} ∈ X, for any v ∈ V ;
� for every Y ∈ X, we have Z ⊂ Y ⇒ Z ∈ X.

The elements of V are the vertices, and the elements of X are the faces.

By a small abuse of notation, we often denote a simplicial complex simply by X. Equivalence classes of
simplicial polyhedra up to cellular homeomorphism correspond bijectively to the equivalence classes
of finite simplicial complexes up to bijection of their vertices. In the example illustrated above, the
finite simplicial complex is

{0}, {1}, {2}, {3}, {4}, {5}, {6}, {0, 1}, {0, 2}, {0, 3}, {0, 5}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5},
{5, 6}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}{2, 3, 4}, {0, 1, 2, 3} .

Examples.
� Every geometric simplex 〈v0, . . . , vn〉 is a simplicial polyhedron. The associated combinatorial
data of the simplicial complex consists of all its subsets of {v0, . . . , vn}. This corresponds to
the set of all its faces.

� One may also consider a geometric simplex 〈v0, . . . , vn〉 with its maximal face removed;
we denote it by ∂〈v0, . . . , vn〉 because it corresponds to the boundary of 〈v0, . . . , vn〉. Its
combinatorial data is formed by all subsets of {v0, . . . , vn} except {v0, . . . , vn} itself. This
provides a model for the (n − 1)-sphere, for n > 1.
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•
1

01 12

02

|∂∆2 | = ∂ |∆2 |

� The k-th horn of dimension n is the simplicial complex Λn
k
obtained from ∂∆n by removing

the face 0 · · · k̂ · · · n.
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The n-skeleton of a simplicial complex X is the simplicial complex X(n) consisting of the elements of
X with cardinality at most n + 1. The notion of a simplicial complex makes it possible to consider
“infinite-dimensional” simplicial polyhedra.

De�nition 2.1.5 (Geometric realization). The geometric realization of a simplicial complex X is the
colimit

|X | B colim
n∈N

�
X
(n)�
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defined by

Xn × ∂ |∆n | �
X(n−1)�

Xn × |∆n | �
X(n)� ,

ϕn

p
Φn

where Xn B { X ∈ X | |X | = n + 1} is the set of elements of X of cardinality n + 1, and ϕn on
{x0, . . . , xn} × 〈v0, . . . , v̂j, . . . , vn〉 is defined by Φn−1 on {x0, . . . , x̂ j, . . . , xn} × 〈v0, . . . , v̂j, . . . , vn〉.
The geometric realization of a simplicial complex is a CW complex. The converse is provided by
the following result.

Theorem 2.1.6 (Simplicial approximation). Every CW complex is homotopy equivalent to the geometric
realization of a simplicial complex.

Proof. The definition of geometric realization given above is close to that of CW complexes. Hence
one simply needs to rewrite the cellular attaching maps of a CW complex in a more restrictive
(purely combinatorial) way of simplicial complexes. This can be done “as always” by induction on
the dimension of the skeleton. The details are left to the reader, as they do not teach us anything
further; see also [?, Lemma 2.2]. �

Hence, the two notions of CW complexes and simplicial complexes are homotopy equivalent.

De�nition 2.1.7 (Triangulation). A triangulation of a topological space X is the data of a simplicial

complex X together with a homeomorphism f : |X | �
−→ X .

Example.
� Any n-simplex with its maximal face removed gives a triangulation model for the (n − 1)-
sphere.

•

• •

|∂∆2 | �
−→ S1

� Every di�erentiable manifold is triangulable [?].

This combinatorially simple definition has one main pitfall: it is very rigid. The number of simplices
used to decompose a space can be far from optimal. Indeed, two distinct faces cannot share the
same set of vertices, and the vertices of a face must be all distinct. In the example of the circle, these
constraints mean that it cannot be described as two segments joined at both ends, or as a single
segment with identified endpoints. At least three segments are needed to obtain the circle. For the
torus, one needs at least 7 vertices, 21 edges, and 14 triangles.

Remark. This question is far from gratuitous, for example, when one wants to compute cellular
homology groups of a topological space, because the dimensions of the vector spaces involved are
equal to the numbers of simplices in the triangulation. For instance, in current shape recognition
methods on neuronal data using homological tools, the dimension of these spaces is on the order of
30,000.

Let us then try to find a more flexible and general notion. For that, we want to encode the manner
in which di�erent simplices glue along their faces.

De�nition 2.1.8 (Simplicial map). A simplicial map f : X → Y between simplicial complexes is a
set map between the sets of vertices of X and those of Y such that 〈 f (v0), . . . , f (vk)〉 is a simplex of
Y for every simplex 〈v0, . . . , vk〉 of X.
Such data induces a unique continuous map |X | → |Y| by linear interpolation using barycentric
coordinates.

Example. There are exactly two bijective simplicial maps from one 1-simplex onto another 1-simplex:

•0 • 1 •0 • 1 •0 • 1 •0 • 1
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As the above example shows, the number of simplicial maps is not optimal from a topological
viewpoint, for we have too many maps. Let us then be lazy (or clever) and impose an additional
condition.

De�nition 2.1.9 (Ordered simplicial complex). An ordered simplicial complex is a simplicial com-
plex endowed with a total order on its set of vertices. Simplicial maps between ordered simplicial
complexes are those that strictly preserve these total orders on vertices.

Remark. This additional data induces an orientation of every face of a simplicial complex.

•0

•
1

•
2

• 3

Example. There is now only one bijective simplicial map from one ordered 1-simplex onto another
ordered 1-simplex.

Simplicial maps between ordered simplicial complexes are characterized by the set map that is strictly
increasing between ordered sets of vertices. For instance, there are n + 1 injective simplicial maps
from a standard (n−1)-simplex to a standard n-simplex. Let us examine carefully the case of standard
ordered geometric simplices |∆n |. We denote

[n] := {0 < · · · < n}
the totally ordered set with n + 1 elements, for n ∈ N. There are n + 1 injections δi : [n − 1]→ [n] for
0 6 i 6 n, which omit i:

δi(k) :=

{
k if k < i,
k + 1 if k > i,

•

•

•

•

•

•

•

•

•

...

...

...

...

0

i − 1

i

n − 1

0

i − 1

i

i + 1

n .

They are called the cofaces and, by a slight abuse of notation, we still denote by δi the corresponding
simplicial maps between standard ordered geometric simplices |∆n−1 | and |∆n |.
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0

δ0

Lemma 2.1.10. These cofaces satisfy the relations: δ jδi = δiδ j−1 for i < j .

Remark. Since the context is clear, we do not use an index n in the notation of the cofaces; that
helps lighten the writing.

Dually, there are then n+1 ways to attach an ordered geometric n-simplex onto an ordered geometric
(n−1)-simplex. We now use these properties to describe an ordered simplicial complex X as a gluing
of ordered standard geometric simplices. For each n ∈ N, let Xn be the set of ordered geometric
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n-simplices that make up X. The ordered simplicial complex X is then completely characterized by
the set of data for how these n-simplices attach onto the (n−1)-simplices, which amounts to choosing
n + 1 maps di : Xn → Xn−1, for 0 6 i 6 n, satisfying the dual relations to those of the cofaces. This
yields the following definition.

De�nition 2.1.11 (∆-complex). A ∆-complex X is the data of a collection {Xn}n∈N of sets together
with maps, called faces, di : Xn → Xn−1 for 0 6 i 6 n, satisfying did j = d j−1di whenever i < j.

Example. The ∆-complex associated to the standard ordered geometric n-simplex corresponds to

X0 = {0, . . . , n}, X1 = {01, . . . , (n − 1)n}, · · · , Xn = {012 · · · n}, Xn+1 = ∅, · · · ,

together with the face maps d j(i0 · · · ik) = i0 · · · î j · · · ik .

012

02

d1

01
d2

12
d0

• •

•

0 2

1

d1 d0

d1 d0

d0 d1

Conversely, the cellular topological space so encoded combinatorially is obtained by the following
construction.

De�nition 2.1.12 (Geometric realization). The geometric realization of a ∆-complex X is the quotient
topological space

|X |∆ := *
,

∐
n∈N

Xn × |∆n |+
-
/ ∼ ,

by the equivalence relation generated by (x, δi(y)) ∼ (di(x), y), for x ∈ Xn, y ∈ |∆n−1 |, and (x, σi(z)) ∼
. . . (the higher simplicial degeneracies), where 0 6 i 6 n.

•0 • 2

•
1

•0 •
1

x ∈ X2

d1(x) ∈ X1y

δ1(y)

Every ordered simplicial complex induces a ∆-complex whose geometric realization is homeomor-
phic to the original |X |∆ � |X |. Conversely, the geometric realization of a ∆-complex X does not
necessarily form a simplicial complex for the same combinatorial data X. However, there always ex-
ists a simplicial complex homeomorphic to |X |∆, possibly after considering barycentric subdivisions.
In sum, the simple combinatorial notion of ∆-complex is broader and more flexible than that of a
simplicial complex. For instance, we can use fewer cells than before, as the following examples show.

Example.

� The ∆-complex

X0 = {x, y}, X1 = {a, b}, X2 = ∅, · · · ; d1(a) = d1(b) = x, d0(a) = d0(b) = y
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realizes the circle as the gluing of two segments.

•• yx

a

b

� The ∆-complex

X0 = {x}, X1 = {a}, X2 = ∅, · · · ; d0(a) = d1(a) = x,

realizes the circle by gluing one segment onto its two endpoints.

x a•

Two questions arise: how can we obtain the definition of a ∆-complex in a simpler manner, and
how should we define maps between ∆-complexes? The answers to these two questions come from
using category theory. The elements of a ∆-complex are indexed by the natural numbers, or equiva-
lently, by the ordered sets [n], n ∈ N, and the maps between consecutive elements correspond to the
“elementary” strictly increasing set maps. Hence, we consider the following category.

De�nition 2.1.13 (Category ∆̄). The category ∆̄ has as objects the totally ordered sets [n] = {0 <
· · · < n} for n ∈ N, and as morphisms the strictly increasing maps.

Remark. The notation ∆̄ for this category comes from the fact that it can be defined equivalently
as the category whose objects are the standard ordered geometric simplices, and whose morphisms
are the strictly increasing simplicial maps.

Proposition 2.1.14. The notion of a ∆-complex is equivalent to that of a contravariant functor from the
category ∆̄ to the category of sets: ∆̄op → Ens.

Proof. The proof relies exclusively on the fact that ∆̄ has a presentation whose generators are the
cofaces δi satisfying the relations of Lemma 2.1.10. We will detail all the arguments in the next
section when we consider the bigger category ∆. �

In the language of categories, we then speak of set-valued presheaves on ∆̄. Thanks to that description
of ∆-complexes as functors, we get a notion of morphism by taking natural transformations, leading
to the definition below. We denote the category of ∆-complexes by ∆Cx.

De�nition 2.1.15 (Morphism of ∆-complexes). A morphism f : X → Y of ∆-complexes is the data of
a collection of set maps fn : Xn → Yn that commute with their respective faces.

We have seen that moving from simplicial complexes to ∆-complexes gave us the ability to consider
more objects. What about the maps? We will see that the count is not (yet) correct.

Consider the surjective simplicial maps from an ordered (n+1)-simplex to an ordered n-simplex; such
maps correspond to collapsing an (n + 1)-simplex onto one of its dimension-n faces. As before, we
will describe the standard ordered geometric simplices. There are n + 1 such simplicial surjections,
given by σi : [n + 1]→ [n], for 0 6 i 6 n, which send i and i + 1 to i:

σi(k) =
{

k if k 6 i,
k − 1 if k > i,

•

•

•

•

•

•

•

...

...

...

...

0

i

i + 1

n + 1

0

i

n .

These are called the codegeneracies, and by a slight abuse of notation, we also denote by σi the
corresponding maps between standard ordered geometric simplices |∆n+1 | and |∆n |.
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Lemma 2.1.16. These codegeneracies satisfy the relations: σ jσi = σiσ j+1 for i 6 j .

Do these simplicial maps between simplicial complexes appear at the level of the associated ∆-
complexes? The answer is negative. Indeed, the ∆-complex associated to |∆n+1 | has a nontrivial set
in dimension n + 1, whereas the one associated to |∆n | has empty sets starting from dimension n.
Thus, there is no way to define a morphism from the first to the second.

We must then introduce a richer notion than that of a ∆-complex. To do so, let us consider a new
category that has the same objects as ∆̄ but all increasing maps as morphisms.

2.2. The simplex category.

De�nition 2.2.1 (Simplex category ∆). The simplex category ∆ has as objects the totally ordered sets
[n] = {0 < · · · < n} for n ∈ N, and as morphisms all non-decreasing maps.

Remark. The name “simplex category” is justified by the equivalent definition: it is the category
whose objects are the ordered standard geometric simplices, and whose morphisms are all increasing
simplicial maps.

The factorization of a set map into a surjection followed by an injection is refined here using the
cofaces and codegeneracies.

Proposition 2.2.2 (Normal form of morphisms in the simplex category). Every morphism ϕ : [n] →
[m] in the simplex category can be written uniquely in the form
(4) ϕ = δi1 · · · δir σ j1 · · ·σ js ,

with i1 6 · · · 6 ir and j1 < · · · < js , where m = n − s + r .

Proof. Let’s first show that any morphism ϕ : [n] → [m] can be written in the desired form. Let
p := |Imϕ| − 1 be the cardinal of the image of the application ϕ and consider the order-preserving
bijection [p] � Imϕ. The application ϕ factorizes into the compound ϕ = ιπ :

[n] π // // [p] ι // // [m] ,
where π is surjective and ι injective. If we note [m] = Imaϕt{i1, i2+1, . . . , ir+r−1}, with r = m−p and
i1 6 · · · 6 ir , then ι = δi1 . . . δir . Now let q0, . . . , qp be the largest antecedents of 0, . . . , p respectively.
If we note [n] = {q0, . . . , qp} t { j1, . . . , js}, with s = n− p and j1 < · · · < js, then π = sigma j1 . . . σ js .
In the end, we succeeded in factoring the ϕ application into the desired form:

ϕ = δi1 . . . δirσ j1 . . . σ js .

Now consider another factorization of the same form: ϕ = δk1 . . . δktσl1 . . . σlu , with k1 6 · · · 6 kt
and l1 < · · · < lu and m − t = n − u. Note the injection ι′ := δk1 . . . δkt and the overjection
π′ := σl1 . . . σlu . Since ι′ is injective, the image of π′ is in bijection with the image of ϕ, which
imposes p = m − r = n − s = m − t = n − u and therefore t = r and u = s. The injections ι and ι′ are
equal because they are both increasing injections of [p] into [m] whose image is that of ϕ. The equality
δi1 . . . δir = δk1 . . . δkr and the characterization of indices [m] = ϕt{i1, i2+1, . . . , ir+r−1} given above
show that {i1, . . . , ir } = {k1, . . . , kr }. In the end, as these indices are arranged in ascending order,
they are equal. We then proceed in the same way with the surjections π = σ j1 . . . σ js = π

′ = σl1 . . . σls

using the characterization of indices given above as [n] = {q0, . . . , qp} t { j1, . . . , js}. �

Lemma 2.2.3 (Relations among cofaces and codegeneracies). The cofaces and codegeneracies satisfy:

(5)
δ jδi = δiδ j−1 for i < j,
σ jσi = σiσ j+1 for i 6 j, σ jδi =

δiσ j−1 for i < j,
id for i = j and i = j + 1,
δi−1σ j for i > j + 1.
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Proof. All verifications are straightforward. �

Theorem 2.2.4 (Presentation of the simplex category). The simplex category ∆ admits a presentation
whose generators are the cofaces and codegeneracies, subject to the relations of Lemma 2.2.3.

Proof. Lemma 2.2.3 shows that there exists a functor sending the free category generated by the δi
and σi modulo relations (5) onto the ∆ category of simplexes. In order to show that the latter is full
and faithful, i.e. an isomorphism because identity over objects, we’ll use Gröbner’s base rewriting
methods, see [LV12, Chapter 4] for example. To do this, we interpret the relations (5), read from
left to right, as rewriting rules. It’s automatic to check that all ambiguities are confluent. We now
have a Gröbner basis, and the normal form of the morphisms of the free category generated by δi
and σi modulo the relations expressed in Lemma 2.2.3 is δi1 . . . δirσ j1 . . . σ js with i1 6 · · · 6 ir and
j1 < · · · < js. We conclude with the uniqueness of the writing (4) of morphisms of the simplicial
category ∆ established at proposition 2.2.2. �

2.3. Simplicial sets.

De�nition 2.3.1 (Simplicial set). A simplicial set is a contravariant functor from the simplex category
to the category of sets: ∆op → Ens.
The category of simplicial sets, denoted ∆Ens = Fon(∆op,Ens), has as morphisms the natural trans-
formations of functors.

Remark. We also speak of set-valued presheaves over the simplex category. Some general results on
presheaf categories can be found in Appendix A.1; they are going to be used below when needed.

This definition is both conceptual and compact. However, in practice one often uses the more explicit
description below.

Proposition 2.3.2. Giving a simplicial set X is equivalent to giving a family of sets Xn, for n ∈ N, together
with maps di : Xn → Xn−1 and si : Xn → Xn+1, called respectively faces and degeneracies, for 0 6 i 6 n,
satisfying the duals of the simplicial relations (5) of the simplex category:

(6)
did j = d j−1di for i < j,

sis j = s j+1si for i 6 j, dis j =
s j−1di for i < j,
id for i = j and i = j + 1,
s jdi−1 for i > j + 1.

A morphism f : X → Y of simplicial sets is likewise given by a collection of set maps fn : Xn → Yn, commuting
with the respective faces and degeneracies of X and Y.

Proof. This is a direct corollary of Theorem refthm:CatSimpPres. To do this, note the image sets of
a functor X : ∆op → Ens by Xn := X[n] and the images of the opposites of cofaces and co-degrees
by di := X

�
δ

op
i

�
and si := X

�
σ

op
i

�
respectively. �

Thus one often depicts a simplicial set in the form of a diagram:

X0

s0 //
X1d0oo

d1oo

s0 //
s1 //

X2d0oo
d1oo
d2oo

////
//

X3oooooooo

////
////

X4oooooooooo

· · ·

Example. Let us try to associate a simplicial set to an n-dimensional ordered geometric simplex,
starting from its ∆-complex. For the degeneracy maps to exist, we need to adjoin extra elements. We
thus consider all non-decreasing sequences in [n]:

X0 = {0, . . . , n}, X1 = {00, 01, . . . , (n − 1)n, nn}, · · · , Xk = {i0 · · · ik | 0 6 i0 6 · · · 6 ik 6 n}, · · · ,
equipped with face and degeneracy maps

d j(i0 · · · ik) = i0 · · · î j · · · ik, s j(i0 · · · ik) = i0 · · · i ji j · · · ik .

De�nition 2.3.3 (Standard n-simplex). We call this fundamental simplicial set the standard n-simplex,
denoted ∆n.

Remark. This example provides a quick way to derive the simplicial relations (6).

De�nition 2.3.4 (n-simplex). Elements of Xn of a simplicial set X are called n-simplices. They split
into two parts: the degenerate simplices, i.e., those that lie in the image of at least one degeneracy
map, and the rest, called non-degenerate simplices. We denote by NXn the (possibly empty) set of
non-degenerate n-simplices.
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In the example of the standard simplex ∆n, the non-degenerate k-simplices are the ones from the
simplicial complex, while the degenerate ones are added anew. More generally, one may associate
a simplicial set to every ordered simplicial complex by considering the n-simplexes of the form
〈v0, . . . , v0, . . . , vm, . . . , vm〉, for any geometric simplex 〈v0, . . . , vm〉.
Examples.

� The simplicial set ∂∆n associated to the simplicial complex |∂∆n | has as d-simplices those of
the form i0 · · · i0 · · · im · · · im︸                   ︷︷                   ︸

d+1 elements

, with m < n and i0 < · · · < im in [n]. It is called the boundary of

the standard n-simplex.
� The simplicial set Λn

k
associated to the k-th horn |Λn

k
| has the same d-simplices as ∂∆n, except

for those coming from {i0, . . . , im} = {0, . . . , k̂, . . . , n}.
Looking for a functor from ∆-complexes to simplicial sets is less straightforward. The next example
shows there can be multiple choices for extending a ∆-complex to a simplicial set.

Example. Return to the example of a ∆-complex giving a two-cell model of the circle. Denoting the
unique 0-simplex x as 0 and the 1-simplex a as 01, attempts to adjoin enough degenerate n-simplices
by hand to create degeneracies lead to:

Xn := {0 · · · 0, 0 · · · 01, 0 · · · 011, . . . , 01 · · · 1},
with face and degeneracy maps

d j(i0 · · · ik) = i0 · · · î j · · · ik, s j(i0 · · · ik) = i0 · · · i ji j · · · ik,

except that d0(01 · · · 1) := 0 · · · 0. One checks that this forms a simplicial set.

The next result shows that every degenerate simplex of a simplicial set has a canonical form.

Lemma 2.3.5 (Eilenberg–Zilber). Every degenerate simplex x ∈ Xn of a simplicial set X can be written as
x = X(ϕop)(y) for a unique pair ϕ : [n]� [m] non-decreasing and y ∈ Xm non-degenerate.

Proof. As for the existence of such a writing, we start by writing x = X(σop
i )(y′), with y′ ∈ Xn−1, as

x is degenerate. We then iterate this process until we arrive at a non-degenerate y. For uniqueness,
suppose there’s another pair (z, ψ) with z ∈ Xk nondegenerate and ψ : [n]� [k] increasing such that
x = X(ψop)(z). Let’s assume, without loss of generality, that k 6 m. The normal form of morphisms
in the simplex category (Proposition 2.2.2) allows us to write ϕ as ϕ = σ j1 . . . σ js with j1 < · · · < js.
Consider χ := δ js . . . δ j1 , so that ϕχ = id. We then have y = X ((ψ χ)op) (z). Since y is non-degenerate,
the application ψ χ is a compound of cofaces, which implies that y is obtained from z by successive
applications of faces. The fact that k 6 m implies that ψ χ = id then k = m and y = z. As in the proof
of Proposition 2.2.2, let’s use the notations qi B max

�
ϕ−1(i)� and ri B max

�
ψ−1(i)�, for 0 6 i 6 m.

For 0 6 i 6 m, the image of i under the inclusion χ is equal to χ(i) = qi, which implies that qi 6 ri .
Since k = m, we can use the same arguments again, reversing the roles of ϕ and ψ. This proves that
ri = qi and therefore ri = qi, for ri = qi . This shows that ϕ = ψ and the proof is complete.

�

To describe a functor from ∆-complexes to simplicial sets, we can draw on the Eilenberg–Zilber
lemma. We can also reason as follows. In the other sense, every simplicial set induces a ∆-complex
by forgetting degeneracies. Said in the language of categories, any functor ∆op → Ens induces a
functor ∆̄op → Ens by drawing back along the subcategory inclusion Φop : ∆̄op ↪→ ∆op. One way of
describing a functor in the other direction is to look for an adjoint, for example on the left.

Proposition 2.3.6. The forgetful functor U B (Φop)∗ from ∆-complexes to simplicial sets admits a left
adjoint L

L : ∆Cx ∆Ens : U ,⊥

given explicitly by

(LX)n =
�(ϕ, x) �

ϕ : [n]� [m] non-decreasing, x ∈ Xm

	
,

with faces given by di(ϕ, x) = (ϕδi, x) if ϕδi is surjective, etc. Faces are given by di(ϕ, x) = (ϕδi, x), if ϕδi is
surjective, otherwise ϕδi is uniquely written δ jψ with ψ surjective and then di(ϕ, x) = (ψ, d j(x)); degeneracies
are given by si(ϕ, x) = (ϕσi, x).
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Proof. Let’s start by noting that the uniqueness of ϕδi = δ jψ, with ψ surjective, comes from the
normal form of morphisms in the category of simplexes (Proposition refprop:UnicCatSim). First, we
need to show that LX is a simplicial set. The case of degeneracies is straightforward: for i 6 j, we
have

sis j(ϕ, x) = si(ϕσ j, x) = (ϕσ jσi, x) = (ϕσiσ j+1, x) = s j+1(ϕσi, x) = s j+1si(ϕ, x) ,
grâce au Lemma 2.1.16. Le cas des faces est assez similaire mais il faut prendre en compte les
di�érents cas de figures; ceci est assez automatique mais la longueur fait qu’on laisse les détails aux
lecteur-trices. Pour ce qui est de la structure fonctorielle, à tout morphisme f : X → Y d’ensembles
simpliciaux, on associe l’application

(ϕ, x) 7→ �
ϕ, fm(x)�

dont il est automatique de vérifier qu’elle commute aux faces et dégénérescences respectives. Enfin,
pour montrer que le foncteur L est adjoint à gauche de U, on considère les deux transformations
naturelles suivantes

υ(X) : X 7→ ULX
x ∈ Xn 7→

�
id[n], x

� et
ε(Y) : LUY → Y

(ϕ, y) 7→ Y (ϕop) (y) .

La première est bien définie par des morphismes de ∆-complexes et la seconde par des morphismes
d’ensembles simpliciaux. On vérifie ensuite que les deux composées suivantes sont égales aux iden-
tités respectives.

L LUL L
idL◦υ

idL

ε◦idL
et U ULU U

υ◦idU

idU

idU◦ε
.

�

Remark. As it happens, this result is a direct corollary of a more general theory: that of presheaves
and Kan extensions, see Appendix A. In this language, the functor L is equal to the left Kan extension
along Φ, i.e. L = LanΦop . Indeed, we can apply the general results of Kan extensions to the left
here (corollary A.2.6 and proposition A.2.1) because the category ∆̄op is small, the category ∆op is
locally small and the category Ens is cocomplete. This would show readers how the author prefers to
work: find an object with a particular property by a universal construction and then make it explicit,
rather than the other way round, i.e. describe an object and spend hours showing that it verifies the
desired property.

Exercise. Using this proposition, show that the example above of the simplicial set modeling the
circle from the two-segment ∆-complex is given precisely by this functor L applied to that ∆-complex.

Remark. For any simplicial set, the n-simplices inject into the (n + 1)-simplices by s0 : Xn ↪→ Xn+1,
and the (n + 1)-simplices map onto Xn by d0 : Xn+1 � Xn, because d0s0 = idXn .

De�nition 2.3.7 (Simplicial subobject, quotient simplicial set). A sub-simplicial set Y of a simplicial
set X is a simplicial map Y ↪→ X that is injective in each degree Yn ↪→ Xn. A quotient simplicial set Y
of X is a simplicial map X � Y that is surjective in each degree Xn � Yn.

Examples.

� The simplicial sets given above embed into each other:

Λ
n
k ↪→ ∂∆n ↪→ ∆

n.

� Consider the quotient simplicial set ∆n/∂∆n for n > 1, whose d-simplices admit the repre-
sentatives

{
i0 · · · i0 · · · in · · · in︸                  ︷︷                  ︸

d+1 elements

| i0 = · · · = in = 0 or i0 = 0, i1 = 1, . . . , in = n
}
,

with faces and degeneracies given by deletion and duplication, except when faces do not
make sense (removing a number that appears only once), in which case they become 0 · · · 0.
The only non-degenerate simplices are 0 and 01 · · · n. We thus get the most economical
model, with two cells, for the n-sphere (for n > 1). (For n = 1, we recover the example from
above.) The obvious surjective map ∆n � ∆n/∂∆n shows it is a quotient of the standard
n-simplex.
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Remark. This example is instructive in that it displays a simplicial set that does not arise from
a ∆-complex: for instance, it is not in the image of the functor from Proposition 2.3.6. It shows
that degeneracies are essential and not gratuitous: this sphere model would not exist without the
degeneracies placed in dimensions 1 up to n − 1.

The examples above show that we often want to “generate” simplicial sets from small amounts of
data. The next proposition tells us how the smallest sub-simplicial set containing all simplices of
dimension at most n looks.

Proposition 2.3.8. Given a simplicial set X, the following simplices

(sqnX)m :=
{
x ∈ Xm | ∃ k 6 n, ∃ ϕ : [m]� [k] non-decreasing, ∃ y ∈ Xk with x = X(ϕop)(y)}

form the smallest sub-simplicial set of X containing all its k-simplices for k 6 n.

Proof. It’s easy to check that this is a simplicial subset; for example, stability for faces comes from :

di(x) = di (X (ϕop) (y)) = X ((ϕ ◦ δi)op) (y) .
This simplicial subset contains all k-simplexes for k 6 n: it su�ces to consider k = m, ϕ = id and
y = x. The normal form of morphisms in the simplex category (Proposition refprop:UnicCatSim)
shows that, for m > n :

(sqnX)m =
�
xinXm |∃ k 6 n, ∃ ϕ : [m]� [k] creasing and surjective, ∃, y ∈ Xk t.q. x = X(ϕop)(y)	 .

Let there now be a simplicial subset Y ⊂ X which contains all k-simplexes for k 6 n, then it contains
the images by the degeneracy composites of these k-simplexes. It therefore contains all sqmX, for
m > n, by the previous characterization. �

This sub-simplicial set is formed by the k-simplices for k 6 n and all images under compositions of
degeneracies for k > n.

De�nition 2.3.9 (Skeleton). The sub-simplicial set sqnX is called the n-skeleton of the simplicial set
X.

Example. The (n − 1)-skeleton of the standard n-simplex is its boundary: sqn−1∆
n = ∂∆n.

Exercise. Show that the 0-skeleton of a simplicial set X is the constant simplicial set

(sq0X)m = X0 , for m ∈ N ,

where the faces and degeneracies are all equal to the identity.

As with CW-complexes, the notion of the skeleton of a simplicial set can be used to demonstrate by
recurrence, see ??? for example.

De�nition 2.3.10 (Dimension). A simplicial set X has dimension n if

sqn−1X  sqnX = X,

that is, it has at least one non-degenerate simplex in dimension n and none in higher dimensions.

Examples. The earlier examples have dimensions:

dim∆
n = n, dim ∂∆n = n − 1, dimΛ

n
k = n − 1, and dim∆

n/∂∆n = n.

De�nition 2.3.11 ((Co)simplicial object). An object simplicial in a category C is a contravariant functor
∆op → C from the simplex category to C. We denote the corresponding category by ∆C. An object
cosimplicial in a category C is a covariant functor ∆→ C.

Examples.

� One can consider group objects in simplicial sets, ring objects in simplicial sets, etc. For
example, a simplicial group is the data of groups Gn, for n ∈ N, together with face and
degeneracy group morphisms di : Gn → Gn−1 and si : Gn → Gn+1 satisfying the same
simplicial relations.

� The collection of standard ordered geometric simplices |∆n | together with their increasing
simplicial maps form a cosimplicial topological space.
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2.4. Geometric realization.

De�nition 2.4.1 (Geometric realization). The geometric realization of a simplicial set X is the quotient
topological space

|X | := *
,

∐
n∈N

Xn × |∆n |+
-
/ ∼,

by the equivalence relation generated by

(x, δi(y)) ∼ (di(x), y), (x, σi(z)) ∼ (si(x), z),
for x ∈ Xn, y ∈ |∆n−1 |, z ∈ |∆n+1 |, 0 6 i 6 n.

At first glance, this construction may not look elementary, yet it is quite straightforward: we take the
geometric standard n-simplices indexed by non-degenerate n-simplices and glue them together via
the face identifications (the first type of relation). The degenerate simplices end up “not contributing
new cells” thanks to the second type of relation. Moreover, there are no additional identifications.
Before demonstrating this general result, we can try our hand at the previous examples.

Examples. The notations chosen from the outset find their coherence here.
� The geometric realization |∆n | of the n-standard geometric ∆n is the n-standard geometric

|∆n |.
� The |∂∆n | geometric realization of the ∂∆n edge of the n-standard ∆n-simplex is the |∂∆n | �

Sn−1 topological model for the n − 1-dimensional sphere.
� The geometric realization |Λn

k
| of the ke-cornet simplicial Λn

k
is the ke-cornet |Λn

k
|.

Remark. Note that we have lost some information in this case: we had started from simplicial
complexes, i.e. topological spaces canonically provided with a triangulation, and the passage to the
geometrical realization of the associated simplicial set caused us to lose the latter. (The notations
chosen here are therefore not absolutely perfect, but they have the advantage of simplicity).

Theorem 2.4.2. For any simplicial set X, the following map is a continuous bijection:∐
n∈N

NXn ×
˚|∆n | −→ |X | .

Proof. The idea of the demonstration is as follows. Existence in Eilenberg–Zilber’s lemma 2.3.5
shows that any point associated with a degenerate simplex can be identified with a point associ-
ated with a nondegenerate simplex. Uniqueness in Eilenberg–Zilber’s lemma 2.3.5 shows that these
identifications do not induce any further identification between points indexed by nondegenerate
simplexes. In the end, the continuous bijection is established as in the case of CW-complexes,see
Exercise 2 on sheet 3. For further details, please refer the reader to [?, Proposition I.2.10]. �

Note that this result is the analogue at the level of simplicial sets of for CW-complexes, see Exercise
2 on Sheet 3.

Corollary 2.4.3. The geometric realization of the simplicial set associated to a simplicial complex is homeo-
morphic to that simplicial complex itself.

Proof. Since the non-degenerate simplices of the simplicial set associated with a simplicial complex
are in bijection with the faces of that complex, this follows directly from Theorem 2.4.2 (and a similar
statement for realizations of simplicial complexes). �

Proposition 2.4.4. The geometric realization of a simplicial set is a CW complex with exactly one n-cell for
each non-degenerate n-simplex.

Proof. This is a direct corollary of Theorem 2.4.2. �

2.5. The category of simplicial sets. The category of simplicial sets is precisely the category of
presheaves on the simplex category. This conceptually explains why it possesses excellent categorical
properties. In this section, we show in detail how these standard results follow from the fact that it
is a presheaf category.

Proposition 2.5.1. The category ∆Ens of simplicial sets is complete and cocomplete. For any functor F :
D→ ∆Ens, let

Fn : D → Ens
d 7→ F(d)n
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be the associated functor for each n ∈ N. Then limD F and colimD F are computed degreewise by(
lim
D

F
)
n
= lim

D
Fn and

(
colim

D
F
)
n
= colim

D
Fn.

Proof. For any n ∈ N, consider the limit limD Fn whose universal property induces the existence of
face and degeneracy applications that raise those present at the level of simplicial sets F(d), for any
object d of D. They verify the simplicial relations (6) because the latter are verified at the level of
simplicial sets F(d), for any object d of D. The case of colimites is treated in the same way. �

The terminal object in ∆Ens is ∆0 = ∗, consisting of a single point in each dimension, and the initial
object is the empty set, ∅, in each dimension.

We next turn to representable presheaves. In our case, those are presheaves of the form Hom∆(−, [n]).
Proposition 2.5.2. The representable presheaf Hom∆(−, [n]) is isomorphic to the standard n-simplex ∆n.

Proof. This result can be shown directly. The increasing applications i j B : [k]→ [n] are in bijection
with the increasing sequences i0 6 · · · 6 ik of elements of [n] by posing i j B ψ( j) . This bijection
preserves faces and degeneracies well:

d j(ϕ) = ϕ ◦ δ j corresponds to i0 · · · î j · · · ik and s j(ϕ) = ϕ ◦ σ j corresponds to i0 · · · i ji j · · · ik .

�

This identification provides the collection of standard simplexes with a cosimplicial simplicial set
structure; no, there’s no mistake in that sentence, it means that there’s a functor ∆ → ∆Ens whose
image of [n] is ∆n. Indeed, for any increasing application ϕ : [n] → [m], consider the morphism of
simplicial sets

ϕ∗ : ∆n � Hom∆(−, [n]) −→ Hom∆(−, [m]) � ∆m .

For example, the cofaces
�
δ j

�
∗

: ∆n−1 → ∆n and co-degeneracies
�
σ j

�
∗

: ∆n+1 → ∆n are explicitly
given by �

δ j
�
∗
(i0 · · · ik) = δ j(i0) · · · δ j(ik) and

�
σ j

�
∗
(i0 · · · ik) = σ j(i0) · · ·σ j(ik) ,

for 0 6 j 6 n . (In the following, we will drop the notation ( )∗ as the context will allow). It’s a matter
of raising to the level of simplicial sets via geometric realization of the cosimplicial object structure
of standard ordered geometric simplexes |∆n | . A first application is given by the following lemma.

Lemma 2.5.3.
� The boundary ∂∆n of the standard n-simplex is the coequalizer∐

06i< j6n

∆
n−2

∐
06l6n

∆
n−1 ∂∆n,

where the top arrow sends the copy indexed by i < j onto the copy indexed by j via δi , and onto the
copy indexed by i via δ j−1; the arrow on the right sends the copy indexed by l to ∂∆n via δl .

� The k-th horn of dimension n, Λn
k
, is the coequalizer∐

06i< j6n

∆
n−2

∐
06l6n

l,k

∆
n−1

Λn
k
,

with the same face identi�cations.

Proof. In the other direction, consider the collection of applications fx : ∆n → X which send
01 · · · n ↔ id[n] on x and, in general terms ϕ ∈ Hom∆([k], [n]) � (∆n)k on X (ϕop) (x) . This is indeed
a morphism of simplicial sets. The application defined by x 7→ fx is the inverse of the application
in the statement. Naturalness on the right with respect to morphisms of simplicial sets is obvious.
Naturalness on the left comes from the fact that we have

( f ◦ ϕ∗) (01 · · ·m) = X (ϕop) (01 · · · n) ,
for any increasing application ϕ : [m]→ [n] and for any morphism f : ∆n → X of simplicial sets. �

Proposition 2.5.4 (Simplicial Yoneda lemma). The map

Hom∆Ens(∆n,X) � Xn , f 7→ fn(01 · · · n)
is a natural bijection in [n] ∈ ∆ and in the simplicial set X ∈ ∆Ens.
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Proof. In the other direction, consider the collection of applications fx : ∆n → X which send
01 · · · n ↔ id[n] on x and, in general terms ϕ ∈ Hom∆([k], [n]) � (∆n)k on X (ϕop) (x) . This is indeed
a morphism of simplicial sets. The application defined by x 7→ fx is the inverse of the application
in the statement. Naturalness on the right with respect to morphisms of simplicial sets is obvious.
Naturalness on the left comes from the fact that we have

( f ◦ ϕ∗) (01 · · ·m) = X (ϕop) (01 · · · n) ,
for any increasing application ϕ : [m]→ [n] and for any morphism f : ∆n → X of simplicial sets. �
This shows that we can think of ∆n as “the free simplicial set on a generator in dimension n”. More
formally, the forgetful functor ∆Ens → Ens that records just the set of n-simplices has a left adjoint
sending a single element to ∆n.

Remark. The naturality also implies fdi (x) = fxδi and fsi (x) = fxσi ; so a simplicial set can be seen
as a right module over the simplex category ∆.

Corollary 2.5.5.
� A map ∂∆n → X of simplicial sets is equivalent to a collection of n + 1 simplices x0, . . . , xn ∈ Xn−1

satisfying di(x j) = d j−1(xi) for all i < j .
� AmapΛn

k
→ X of simplicial sets is equivalent to a collection of n simplices x0, . . . , xk−1, xk+1, . . . , xn ∈

Xn−1 satisfying di(x j) = d j−1(xi) for all i < j di�erent from k .

Proof. Directly from Lemma 2.5.3 and the Yoneda lemma 2.5.4. �

Corollary 2.5.6. The simplex category ∆ embeds as a full subcategory of ∆Ens, the category of simplicial
sets, via the Yoneda embedding:

Y : ∆ ↪→ ∆Ens
[n] 7→ ∆n,

and this embedding is fully faithful.

Proof. Combine Proposition 2.5.2 with the Yoneda lemma 2.5.4:

Hom∆Ens
�
∆
n,∆m

�
�

�
∆
m

�
n
� Hom∆

�[n], [m]�.
�

Hence ∆Ens is the cocompletion of ∆: the smallest cocomplete category containing it.

Remark. This further justifies the name and notation “∆” for the simplex category.

We have seen that one of the aims of simplicial sets is to describe the combinatorics of triangulations
in a topological space. Now, every triangulation is obtained by gluing geometric simplexes together.
The question now is: can we do the same for simplicial sets themselves, i.e. can we write any
simplicial set as a certain colimit made of standard ∆n simplexes? The formula for the geometric
realization of simplicial sets prompts us to consider the following category.

De�nition 2.5.7 (Category of elements E(X) of a simplicial set). The category of elements E(X) of
a simplicial set X is the category whose objects are the simplices

∐
n∈N Xn, and whose morphisms

HomE(X)(x, y) are those ϕ : [n]→ [m] in ∆ such that X(ϕop)(y) = x.

This provides a functor E : ∆Ens → Cat from simplicial sets to (small) categories. We have the
canonical projection Π : E(X)→ ∆ sending x ∈ Xn to [n].
Theorem 2.5.8 (Density theorem for simplicial sets). Every simplicial set X is the following colimit:

X � colim
E(X)

YΠ.

Proof. The proof is automatic, but we do it because it reveals an essential formula. Let’s start by
describing the category Cocone(YΠ) of cocones on the functor functor YΠ. Each of its elements
consists in giving a simplicial set Y equipped with morphisms of simplicial sets g(x) : ∆n → Y, for
each simplex x ∈ Xn, such that for any increasing application ϕ : [n] → [m] verifying X(ϕop)(y) = x,
the following diagram is obtained

(∗)

Y

∆n ∆m

g(x)

ϕ∗

g(y)

62



is commutative. The theorem 2.2.4 asserting that the category of simplexes is generated by cofaces
and co-degeneracies shows that it is necessary and su�cient for the (∗) diagrams associated with
the latter to be commutative. The commutativity of (∗) for the cofaces δi : ∆n−1 → ∆n and for
co-degeneracies σi : ∆n → ∆n+1 are respectively equivalent to

(∗∗) g
(
dXi (x)

) (01 · · · n − 1) = dYi
�
g(x)(01 · · · n)� and g

(
sXi (x)

) (01 · · · n + 1) = sYi
�
g(x)(01 · · · n)� .

Let’s now show that we can equip the simplicial set X with an initial cocone structure on the functor
Y ◦Π . For any simplex x ∈ Xn, consider the canonical morphism fx : ∆n → X provided by Yoneda’s
lemma 2.5.4. The naturalness of the latter shows that fx morphisms verify the equations (∗∗). Finally,
for any other cocone (Y, {g(x)}), there exists a unique morphism G : X → Y of cocones: this is the
one given by G(x) = g(x)(01 · · · n) . �

Corollary 2.5.9. Every simplicial set X is the following coequalizer:∐
ϕ:[n]→[m]
ϕ∈{δi ,σi }

Xm × ∆
n

∐
n∈N

Xn × ∆
n

X.
X(ϕop)×id

id×ϕ∗

Proof. Apply the colimit description to the small category diagram from E(X), plus face and degen-
eracy relations. �

Hence we recover, from a category-theoretic viewpoint, the usual formula for the geometric realiza-
tion of simplicial sets.

Having understood the form that any simplicial set can take, we can now ask how to obtain functors
from or to simplicial sets. As it happens, we can characterize all functor pairs involving the category
of simplicial sets. All examples are obtained in the following way, see below and Section ??.

De�nition 2.5.10 (Representation by a cosimplicial object). Suppose C is a cosimplicial object in a
locally small category C, i.e., a functor C : ∆→ C. Then its associated simplicial representation is

RC : C→ ∆Ens, c 7→ HomC(C, c).
Theorem 2.5.11. Let C be a locally small and cocomplete category. Giving a pair of adjoint functors

L : ∆Ens C : R⊥

is equivalent to giving a cosimplicial object C : ∆→ C by restriction of L to Y : ∆ ↪→ ∆Ens:

C = L Y : ∆ ∆Ens C.Y L

In that case, the right adjoint is the associated simplicial representation RC , and the left adjoint is given by
the coequalizer

(7)

∐
ϕ:[n]→[m]
ϕ∈{δi ,σi }

Xm × Cn
∐
n∈N

Xn × Cn L(X),
X(ϕop)×id

id×ϕ∗

where Cn = C([n]) and Xn × Cn B
∐

Xn
Cn .

Proof. Let C be a cosimplicial object of C. Consider the simplicial representation functor RC : C→
∆Ens. In the other direction, we pose

L(X) B colim
E(X)

C Π .

Since E : ∆Ens → Cat is a functor, we see that L is also a functor. It remains to check that L is left
adjoint of RC :

HomC
�
L(X), c�

� Hom∆Ens
�
X,RC(c)� .

As L(X) = colimE(X) C Π, any morphism in C to c is equivalent to giving morphisms g(x) : Cn → c
of C, for any simplex xinXn, such that g(x) = g(y) ◦ C(ϕ) when X(ϕop)(y) = x. Such a datum is
equivalent to a morphism of simplicial sets X → RC(c) defined by x ∈ Xn 7→ g(x) ∈ HomC(Cn, c) .
It’s easy to see that this bijection is natural on both sides.

In the other direction, the compound LY: ∆ → C defines a cosimplicial object C of C. Since the
functor L is left adjoint, it preserves colimites, so we have that it is of the form L(X) B colimE(X) C Π.
The arguments given above show that RC is its right-hand adjoint and is therefore equal to the functor
R.
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Since the functor L preserves colimites, we can also write it with the co-equalizer given in corol-
lary 2.5.9. �

This last formula has the same aroma as the geometric realization; this is no coincidence, as we’ll
see in proposition 2.6.5 that the latter can be obtained in this way.

Remark. In the language of appendix A.2, the left adjoint functor L is the left Kan extension of C
along the Yoneda fold:

∆ C

∆Ens .

C

Y L=LanYC

De�nition 2.5.12 (Product of simplicial sets). The product X × Y of two simplicial sets X and Y is
defined by

(X × Y)n = Xn × Yn

with face maps (dXi × dYi ) and degeneracy maps (sXi × sYi ).
Example (Prismatic decomposition). To understand the e�ect of the product of two simplicial
sets, we recommend the following exercise: show that the simplicial set ∆p ×∆q is generated by

�p+q
p

�

copies of ∆p+q indexed by increasing paths on a grid [p] × [q].

0 1 2 . . . p
0

1

...

q

1 2

3

4

5

.

.

.

p + q

or by (p, q)-battages, i.e. permutations σ ∈ Sp+q verifying σ(1) < cdots < σ(p) and sigma(p + 1) <
cdots < σ(p + q). In the example above, the (4, 3)-shu�e is σ = [1247356]. These standard (p + q)-
simplexes fit together as follows: for any ascending path with a diagonal that is its ith segment, the
images by δi of ∆p+q−1 in the copies of ∆p+q indexed by the same path but passing through the
top-left corner and the bottom-right corner of the diagonal square are equal.

0 1 2 . . . p
0

1

...

q

1 2

p + q

i

Finally, we obtain ∆p × ∆q as the following co-equalizer∐
∆
p+q−1

∐
∆
p+q

∆p × ∆q ,
δi

δi

where the second coproduct covers increasing paths and the first covers increasing paths with one
diagonal.

Proposition 2.5.13. The category (∆Ens,×, ∗) of simplicial sets equipped with their product is a symmetric
monoidal cartesian category, with unit the simplicial set constant at a single point.

Proof. Checks are automatic. Remember that “cartesian” means that the monoidal product is the
categorical product and the unit is the terminal object. �
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Let’s show that this symmetrical monoidal category is closed, i.e. it has an internal hom. Suppose
we have such a bifunctor Hom; it must then be equipped with a natural bijection

Hom∆Ens(Z × X,Y) � Hom∆Ens(Z,Hom(X,Y)) .
Considering the special case of the standard simplex Z = ∆n, Yoneda’s simplicial lemma imposes the
following form

Hom(X,Y)n � Hom∆Ens(∆n × X,Y) .
We have here a first example of the application of Definition 2.5.10: to any simplicial set X, we
associate the functor

X × ∆• : ∆ → ∆Ens
[n] 7→ X × ∆n ,

which is in fact the compound of the Yoneda plunge with the product with X. The simplicial repre-
sentation associated with this cosimplicial simplicial set X × ∆• is

RX×∆• : ∆Ens → ∆Ens
Y 7→ Hom∆Ens(X × ∆•,Y) .

This interpretation introduces the simplicial set we’re looking for.

De�nition 2.5.14 (Morphisms space). For any pair X,Y of simplicial sets, we call space of morphisms
from X to Y the simplicial set

Hom(X,Y) := Hom∆Ens(X × ∆•,Y) .
The 0-simplexes of the space of morphisms is the set of morphisms of simplicial sets:

Hom(X,Y)0 = Hom∆Ens(X × ∆0,Y) = Hom∆Ens(X,Y) .
The simplicial Yoneda lemma (Proposition refprop:FullYonedaEnsS) shows that the space of mor-
phisms from the “point” ∗ to a simplicial set Y is equal to Y as a whole:

Hom(∗,Y) = Y .

Remark. The space of morphisms is sometimes also called exponential object and denoted YX .

Proposition 2.5.15. This internal hom endows (∆Ens,×, ∗)with the structure of a closed symmetric monoidal
category.

Proof. The aim is to find a natural bijection of the form

Hom∆Ens(Z × X,Y) � Hom∆Ens(Z,Hom(X,Y)) .
To do this, consider the simplicial representation functor associated with X×∆• which gives RX×∆• (Y) =
hom(X,Y) . Theorem 2.5.11 provides a left adjoint functor L characterized by its values on standard
simplexes: L(∆n) = X × ∆n � ∆n × X . This functor L is therefore the functor “product with X”, i.e.
L(Y) = X × Y , since the latter preserves colimites. This concludes the demonstration. �

The counity of this adjunction provides a natural morphism of evaluation :

evX,Y : Hom(X,Y) × X → Y .

We define a composition at the level of morphism spaces

Hom(Y,Z) × Hom(X,Y)→ Hom(X,Z)
by considering the morphism of simplicial sets adjoint to the following double evaluation:

Hom(Y,Z) × Hom(X,Y) × X Hom(Y,Z) × Y Z .
evX,Y evY,Z

Corollary 2.5.16. The category of simplicial sets with the space of morphisms is enriched on itself.

Proof. With the general composition described above, any closed symmetrical monoidal category
is enriched on itself, see for example [?, Section 1.6]. �

Corollary 2.5.17. There is a natural bijection

Hom(X × Y,Z) � Hom(X,Hom(Y,Z)) .
Proof. This is a special case of the general theory of closed symmetric monoidal categories, see for
example [?, Section 1.5]. �
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2.6. Conceptual examples. We continue here in the same vein as that which motivated the defini-
tion of morphism spaces: all the examples of functors with values in simplicial sets given below are
of the form described in definition 2.5.10 and theorem 2.5.11.

2.6.1. Constant simplicial sets.

De�nition 2.6.1 (Constant simplicial set). For any set E, we can associate the constant simplicial set
c(E) defined by

Xn := E, di := idE, si := idE .

This first, particularly simple family of examples of simplicial sets is in the form of those obtained
by Theorem 2.5.11; for this, we need only consider the category C = Ens of sets and the constant
cosimplicial set C : [n] 7→ {∗} whose image is the one-element set. Using the notations of this
theorem, we have RC(E) = c(E).
Proposition 2.6.2. The construction of constant simplicial sets is a fully faithful functor Ens → ∆Ens,
whose image is the subcategory of dimension-0 simplicial sets.

Proof. Checks are automatic. �

Proposition 2.6.3. The “constant simplicial set” functor c has a right-hand adjoint given by the truncation
functor

T : ∆Ens→ Ens , X 7→ X0

and a left adjoint given by the truncation functor modulo the images of the �rst faces

T̃ : ∆Ens→ Ens , X 7→ X0/ ∼ ,

where d0(x) ∼ d1(x), for x ∈ X1.

c : Ens ∆Ens : T⊥ T̃ : ∆Ens Ens : c .⊥

Proof. Checks are automatic. Note, however, that the second case is produced by the theo-
rem reftheo:ExConc applied to the set cosimplicial constant C : [n] 7→ {∗} whose image is the
one-element set. �

The addition c a T provides the category equivalence between the category of sets and that of
simplicial sets of dimension 0 established at proposition 2.6.2.

2.6.2. Singular simplicial set. Let’s use Theorem 2.5.11 to functorially associate a simplicial set with
any topological space. We have already seen that the collection of standard geometric simplexes with
their cofaces and co-degeneracies form a cosimplicial topological space:

|∆• | : ∆ → Top
[n] 7→ |∆n | .

De�nition 2.6.4 (Singular simplicial set). The singular simplicial set of a topological space X is
defined by

Sing X := HomTop
�|∆• |, X

�
.

Its elements are continuous maps f : |∆n | → X , called singular simplices; the face and degeneracy
maps come from post-composition with δi and σi on |∆n |.
Proposition 2.6.5. The application that associates the singular simplicial set with a topological space is a
functor

Sing : Top → ∆Ens
X 7→ Sing X

whose left-hand adjoint is the geometric realization

| - |: ∆Ens Top : Sing .⊥

Proof. This result is a special case of the theorem 2.5.11 : the functor of singular simplicial sets
is represented by the cosimplicial topological space |∆• |. It admits a left adjoint given by the co-
equalizer ∐

ϕ:[n]→[m]
ϕ∈{δi ,σi }

Xm × |∆n |
∐
n∈N

Xn × |∆n | |X |
X(ϕop)×id

id×ϕ

which is the formula used to define the geometric realization. �
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This series of results therefore explains conceptually and retrospectively the formula chosen for the
geometric realization.

Proposition 2.6.6. Let X,Y be a pair of simplicial sets such that either both have a countable number of
simplexes or at least one of the two geometric realizations is locally �nite, i.e. any point is inside a simplicial
polyhedron. In this case, we have a homeomorphism

|X × Y| � |X | × |Y|.
Proof. We refer the reader to [?, Theorem 14.3]. �

Remark. The problem raised by the technical assumptions is always the same: it has to do with the
topology considered on the product spaces. The above-mentioned property is therefore true if we’re
working in the category of compactly generated, weakly Hausdor� topological spaces. Otherwise, it
su�ces to require that |X × Y| is a CW-complex, which is implied by the assumptions used here.

Note that this homeomorphism, seen from left to right, is not cellular. This is in fact positive: the
left-hand member provides a canonical triangulation for the product of topological spaces on the
right. In the case of ∆p × ∆q, we obtain the prismatic decomposition given by increasing paths or
(p, q)-beats. The drawing below shows the case of ∆2 × ∆1.

(0, 0) (2, 0)

(1, 0)

(0, 1) (2, 1)

(1, 1)

2.6.3. Nerve of a category. Consider the category Cat of small categories. The following functor pro-
vides a cosimplicial object in the category of categories:

C : ∆ → Cat
[n] 7→ Cat[n] := {0→ 1→ · · · → n} ,

where Cat[n] is the category associated with the totally ordered set [n].
De�nition 2.6.7 (Nerve of a category). The nerve of a small category C is the simplicial set

NC := HomCat(C,C).
Exercise. Show that the nerve of the category Cat[n] is the standard n-simplex: NCat[n] = ∆n .

Proposition 2.6.8. The n-simplices of NC are the composable chains of n morphisms in C:

NCn =

{
c0 c1 · · · cn

f1 f2 fn
}
,

with the convention that NC0 is made up of C objects. The faces are given by

di( f1, . . . , fn) = ( f1, . . . , f i+1 f i, . . . , fn), for 1 6 i 6 n − 1

and d0( f1, . . . , fn) = ( f2, . . . , fn), dn( f1, . . . , fn) = ( f1, . . . , fn−1) . The degenerations are given by
si( f1, . . . , fn) = ( f1, . . . , f i, id, f i+1, . . . , fn), for 0 6 i 6 n .

Proof. The checks are automatic. �

Example. The nerve BG of a group is the nerve of the associated single-object category. Explicitly, this
simplicial set is formed by the n-simplexes BGn = Gn, with BG0 = {1}, provided with the following
faces and degeneracies

di(g1, . . . , gn) =



(g2, . . . , gn) for i = 0 ,
(g1, . . . , gi+1gi, . . . , gn) pour 1 6 i 6 n − 1 ,
(g1, . . . , gn−1) for i = n ,
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si(g1, . . . , gn) = (g1, . . . , gi, 1, gi+1, . . . , gn) .
Its geometric realization |BG| is the classifying space of the group G.

A useful feature of this conceptual approach, rather than the explicit definition, is the full application
of Theorem 2.5.11, which shows that this construction is functorial and admits a computable left
adjoint.

De�nition 2.6.9 (Fundamental category τ1(X)). To any simplicial set X, we associate the fundamental
category τ1(X) whose objects are the 0-simplexes X0 and whose morphisms are given by the free graph
on arrows indexed by the 1-simplexes

d1(x) d0(x)x∈X1

quotient by the relations given by the 2-simplexes

•

• • .

d0(y)d2(y)

d1(y)

y∈X2

In this category, the images of the first degeneracy s0 : X0 → X1 give the identity morphisms. The
second two degeneracies s0 : X1 → X2 and s1 : X1 → X2 show respectively that right- and left-hand
compounding by these identities leaves the morphisms invariant.

Proposition 2.6.10. The assignment that sends a small category to its nerve de�nes a functor

Cat −→ ∆Ens
C 7−→ NC

which has as its left adjoint the fundamental-category functor τ1

τ1 : ∆Ens Cat : N .⊥

Proof. This follows directly from Theorem 2.5.11. One need only show that the fundamental cate-
gory τ1(X) is isomorphic to the coequalizer (7). We begin by noting that the fundamental category
associated to the standard simplex is the category associated to the poset [n], i.e. τ1(∆n) � Cat[n].
Then, (Proof details to be expanded.) �

Remark. Recall that a groupoid is a category in which all morphisms are invertible. The forgetful
functor from the category of small groupoids to that of small categories admits a left adjoint. Applying
that left adjoint to τ1(X) then produces a groupoid π1(X) called the fundamental groupoid of the
simplicial set X.

2.6.4. Dold–Kan correspondence. This example provides an opportunity to introduce some construc-
tions that link simplicial sets to chain complexes. We work here over Z, but one could equally have
worked over another base ring. Linear maps between free modules that arise from set maps will be
written with a straight roman font, for instance di .

De�nition 2.6.11 (Moore complex). The Moore complex CX of a simplicial set X has in degree n the
free module on the n-simplices, and its di�erential is the alternating sum of the faces:

d B
n∑
i=0

(−1)idi : ZXn −→ ZXn−1.

The simplicial relations (6) quickly show that the operator d is nilpotent (i.e., d2 = 0). One may
consider the sub-chain-complex DX of the Moore complex generated by the degenerate simplices.

De�nition 2.6.12 (Normalized complex). The normalized complex NX of a simplicial set X is the
quotient chain complex of the Moore complex by the degeneracy subcomplex:

NX :=
�
CX /DX , d

�
.

Proposition 2.6.13. For any simplicial set X, the canonical projection CX � NX is a homotopy equivalence.

Proof. The idea is to use degeneracies to define a contracting homotopy. It makes a good exercise,
hence we leave it to the reader. For more details, see [?, Theorem VIII.6.1]. �
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Hence, the normalized complex indeed has for basis the non-degenerate simplices. The Moore
complex and the normalized complex define functors from the category of simplicial sets.

Example. The normalized complex N∆n associated to the standard n-simplex has as basis the el-
ements of the form i0 · · · im of degree m, where i0 < · · · < im in [n], and its boundary is given
by

d(i0 · · · im) =
m∑
j=0

(−1)j i0 · · · î j · · · im .

Via the Yoneda embedding (Corollary 2.5.6), the cosimplicial structure on standard simplices yields
a cosimplicial chain-complex structure on these normalized complexes:

N∆ : ∆ → Ch.

Proposition 2.6.14. The normalized chain functor admits a right adjoint

N : ∆Ens Ch : RN∆⊥

given by

RN∆(C) �
⊕

06i0< · · ·<ik6n

Ck .

Proof. This is a direct corollary of Theorem 2.5.11. �

The normalized chain functor restricts to a functor N: sAb→ Ch>0 from simplicial abelian groups to
nonnegatively graded chain complexes by setting (NA)n := An. The other adjoint RN∆ : Ch>0 → sAb
is the corresponding restriction of RN∆.

Theorem 2.6.15 (Dold‚ÄìKan equivalence). The adjunction

N : sAb Ch>0 : RN∆⊥

is an equivalence between the category of simplicial abelian groups and that of nonnegatively graded chain
complexes.

Proof. The same formulas as in Proposition 2.6.14 define the adjunction in question. It then follows
automatically that the unit and counit of the adjunction are isomorphisms. �

2.7. Kan complexes and ∞-categories. We are now su�ciently equipped to uncover a simple and
powerful notion of higher category. The requirements demand that ordinary categories be among
its examples.

Lemma 2.7.1. The nerve functor N : Cat ↪→ ∆Ens is fully faithful.

Proof. We begin by noting that the counit εC : τ1NC
�
−→ C of the adjunction τ1 a N is a natural

isomorphism. Pulling back along it yields the desired natural bijection:

HomCat(C,D) � Hom∆Ens
�
τ1NC,D

�
� Hom∆Ens

�
NC,ND

�
.

�

Thus simplicial sets form a su�ciently large framework in which one may hope to define a notion
of higher category. Let us start by characterizing which simplicial sets are nerves of categories, i.e.
describing the essential image of the nerve functor.

The previous result uses the crucial fact that the counit of the fundamental-category‚Äìnerve adjunc-
tion is a natural isomorphism. The same is not true for the unit of the adjunction, υX : X → Nτ1(X).
This already fails for 1-simplices: any element x ∈ X1 yields a morphism d2(x) → d0(x), yet the
morphisms of Nτ1(X) are free composites of such morphisms. For the horn X = Λ2

1, the unit of
adjunction is the inclusion

υΛ2
1

: Λ2
1 ↪→ ∆

2 � N τ1
�
Λ

2
1

�
,

which is not an isomorphism: we are “missing” in Λ2
1 everything lying in ∆2 but outside that horn.

To see to which family of simplicial sets we must restrict, we continue and consider the 2-simplices
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x ∈ X2 whose image under the unit of the adjunction is υ(x) = (d2(x), d0(x)). Graphically, we keep
only the two “composable faces” of the 2-simplex:

•

• • .

d0(x)d2(x)
x∈X2

For the unit of adjunction to be an isomorphism, that lone piece of data must specify all of the
2-simplices of X. First, we note that this data corresponds to a simplicial map Λ2

1 → X. Next, it fully
determines the 2-simplex if and only if the following diagram admits a unique extension:

(*)

Λ2
1 X

∆2

∃!
.

In general, the unit of adjunction retains only the “longest composable chain of edges” of an n-simplex

•0

•
1

•
2

• 3

that is, more explicitly

υ(x) = �
dn−1

2 (x), dn−2
2 d0(x), . . . , d2dn−2

0 (x), dn−1
0 (x)�,

where x ∈ Xn (mildly abusing notation for the faces). For a 3-simplex x ∈ X3, we can uniquely
recover “the face 012,” namely d3(x), via (*), and likewise “the face 123,” namely d0(x), and finally
“the face 013,” namely d2(x). This corresponds to a simplicial map Λ3

1 → X. Consequently, we need
the following diagram to admit a unique extension:

(*)

Λ3
1 X

∆3

∃!
.

We could equally well have finished by using “the face 023,” i.e. d1(x), requiring a unique extension
from the horn Λ3

2 → X. In higher dimensions, one is led to the following definitions and conditions.

De�nition 2.7.2 (Internal and external horns). Internal horns are those of the form Λn
k
with 1 ≤ k ≤

n − 1. External horns are those of the form Λn
0 or Λn

n.

Proposition 2.7.3. The category of small categories is equivalent to the full subcategory of simplicial sets
whose objects satisfy the unique horn-�lling property for internal horns:

Λn
k

X

∆n

∃!
for n ≥ 2 and 1 ≤ k ≤ n − 1.

Proof. We note first that the nerve of any category satisfies that unique extension property along
internal horns. Then, using the arguments above by induction on n, we show that the unit of the
nerve “fundamental category” adjunction is a natural isomorphism precisely on those simplicial sets
with unique fillings of internal horns. �
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Remark. The nerve of a category generally does not satisfy a filling extension property for the
external horns. For instance, if one considers the external 2-horns

y

x x

g

idx

and

x

y y

f

idy

,

the extension property would imply the existence of left and right inverses respectively.

Exercise. Show that the category of small groupoids, i.e. small categories in which all morphisms
are invertible, is equivalent to the full subcategory of simplicial sets having unique extension of every
horn Λn

k
, for n ≥ 2 and 0 ≤ k ≤ n.

How could higher-dimensional morphisms naturally appear on a mathematical object? We already
considered this question in Section 1.1.3. One may also address it by trying to construct a fundamental
∞-groupoid attached to a topological space X . Recall that the fundamental groupoid of X is the
category whose objects are the points of X and whose morphisms are homotopy classes of paths
between two points. Because of the parameterization of paths, passing to the homotopy quotient
enforces that composition be associative. The problem is that such a construction does not see the
higher homotopy data. Hence we want to consider a fundamental ∞-groupoid of X whose objects
are the points, whose 1-morphisms are the paths between points, whose 2-morphisms are homotopies
between paths, whose 3-morphisms are homotopies between homotopies, and so on.

 

A first obstacle is that path-composition is then not strictly associative, but one can control the failure
of associativity with 2-morphisms. Moreover, Grothendieck homotopy hypothesis would have∞-groupoids
be “the same as” topological spaces, suitably interpreted. The version we alluded to above is the
globular version of a prospective fundamental ∞-groupoid. Instead, here we prefer the simplicial
model given by the singular simplicial set.

Hence we want topological spaces, via their singular simplicial sets, to serve as examples for the
sought-after notion of higher category. We would thus redo the analysis above but with the singular
simplicial set functor in place of the nerve. However, the first result of the preceding part no longer
fully holds.

Lemma 2.7.4. The singular simplicial set functor is faithful but not full.

Proof. Let f : X → Y be a continuous map between topological spaces. The induced simplicial
map Sing( f ) : SingX → SingY sends a singular simplex ϕ : |∆n | → X to f ◦ ϕ. The set of 0-
singular simplices is in bijection with the points of the topological space, and under that identification,
Sing( f )0 : X → Y is exactly f . Therefore, Sing is faithful.
Next, consider a totally disconnected topological space, e.g. Q ⊂ R, and the discrete topological
space on the same underlying set, denoted Qdis. In both cases, the singular simplices are constant
maps, so the singular simplicial set is the constant simplicial set Q. But the identity simplicial map
SingQ→ SingQdis cannot come from the continuous identity id : Q→ Qdis, because that identity is
not continuous. �

It is in fact futile to try restricting the category of simplicial sets so as to make the adjunction between
singular simplicial sets and geometric realization into an equivalence of categories. Nevertheless, that
adjunction does induce an equivalence at the level of homotopy categories (see Theorem 2.8.19). In
this context, the simplicial notion “equivalent” to topological spaces is the following.
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De�nition 2.7.5 (Kan complex). A Kan complex is a simplicial set X satisfying the extension property
for all horns:

(8)

Λn
k

X

∆n

∃
for n ≥ 2 and 0 ≤ k ≤ n.

Remark. Observe the similarity with the homotopy extension property for fibrations in topology,
Definition 1.5.2.

Proposition 2.7.6. For any topological space X , its singular simplicial set SingX is a Kan complex.

Proof. From Proposition 2.6.5, we see that the Kan extension property (8) is equivalent to the analo-
gous property of topological extension

|Λn
k
| X

|∆n|
∃

which one proves by realizing the k-th horn |Λn
k
| as a retract of the standard geometric n-simplex

|∆n |. �

The horn-filling extension property for Kan complexes has a purely combinatorial description:

Lemma 2.7.7. A simplicial set X is a Kan complex if and only if, for all n ≥ 2 and 0 ≤ k ≤ n, any
collection of n simplices x0, . . . , xk−1, xk+1, . . . , xn ∈ Xn−1 satisfying di(x j) = d j−1(xi) for i < j, i , k ,
admits an n-simplex x ∈ Xn such that di(x) = xi for all 0 ≤ i ≤ n, i , k .

Proof. This follows directly from Corollary 2.5.5 and the Yoneda Lemma 2.5.4. �

Exercise.

� Show that the nerve of a group is a Kan complex and that, if the group is nontrivial, it cannot
be isomorphic to a singular simplicial set. Hence Kan complexes do not form the essential
image of the singular simplicial-set functor.

� Show that the simplicial set underlying a simplicial group is a Kan complex.
� Show that the standard n-simplices ∆n are not Kan complexes for n ≥ 2.

We have arrived at the crux: to obtain a good definition of higher category, one need only consider
those simplicial sets that satisfy a property shared by category nerves and singular simplicial sets:
the (not necessarily unique) extension property for internal horns.

De�nition 2.7.8 (∞-category). An∞-category is a simplicial set X that satisfies the extension property
along internal horns:

(9)

Λn
k

X

∆n

∃
for n ≥ 2 and 1 ≤ k ≤ n − 1.

This notion was introduced by Boardman–Vogt in their study of homotopical properties of algebraic
structures [?], under the name weak Kan complex. It was then intensively studied by Joyal [?] and by
Lurie [Lur09].

Retrospectively, one can interpret the 0-simplices of an ∞-category as its objects, the 1-simplices as
its morphisms, and so forth. The extension condition along the horn Λ2

1

•

• • .

gf

“g◦ f ”
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gives a candidate for the composite “g ◦ f ” of two composable morphisms, plus a “homotopy” from
(g, f ) to “g ◦ f ”. Hence composition is not unique nor strict. Far from being a defect, this extra
freedom is desirable and, in any case, di�erent choices are homotopically unique.

De�nition 2.7.9 (∞-groupoid). An ∞-groupoid is a simplicial set X that satisfies the extension prop-
erty along all horns Λn

k
for n ≥ 2 and 0 ≤ k ≤ n.

Remark. The definitions of ∞-category and ∞-groupoid above are given by a property: the existence
of fillers for horns. Sometimes one needs a more algebraic viewpoint, requiring the data of those
fillers. This yields the notions of algebraic ∞-category and algebraic ∞-groupoid, which are in fact
algebras over certain monads. Among other consequences, they automatically possess all limits
and colimits. A key application of the latter notion is given in [?], where formulas from Lie theory
(Baker–Campbell–Hausdor�) are recovered and extended by filling horns.

2.8. Simplicial homotopy. Simplicial homotopy is the first motivation for introducing simplicial
sets. It allows one to combinatorially encode the homotopical properties of topological spaces. One
must be careful, though, that the general theory applies only to those simplicial sets which are
“spaces,” i.e. Kan complexes.

De�nition 2.8.1 (Path). A path in a simplicial set X is a map of simplicial sets p : ∆1 → X.

Such data corresponds to

0 1
01

p
7−→ p(0) = d1(x) p(1) = d0(x)x

with p(01) = x ∈ X1.

De�nition 2.8.2 (Homotopic elements). Two 0-simplices a, b ∈ X0 of a simplicial set X are homotopic,
written a ∼ b, if there is a path p : ∆1 → X such that p(0) = a and p(1) = b, i.e. if there exists x ∈ X1

with d1(x) = a and d0(x) = b.

Equivalently, one says a and b lie in the same connected component.

Remark. This binary relation ∼ is not generally an equivalence relation. For example, in the 1-
simplex ∆1, 0 is homotopic to 1 but not vice versa.

That is precisely why one must consider Kan complexes:

Proposition 2.8.3. For a Kan complex X, the relation ∼ is an equivalence relation.

Proof.
Reflexivity: For any 0-simplex a ∈ X0, we have a ∼ a, witnessed by the path s0(a):

a = d1s0(a) d0s0(a) = a
s0(a) .

Transitivity: Let a ∼ b and b ∼ c have paths x and y respectively. Such a datum is equivalent
to the following 2-cornet of X:

b

a c

y
z

x

d1(z)

.

Kan’s extension property provides a 2-simplex z ∈ X2 such that d2(z) = x, d0(z) = y. The
1-simplex d1(z) is a path connecting a and c.

Symmetry: Let a ∼ b be connected by a path x ∈ X1. Consider the following 2-horn

b

a a

d0(z)
z

x

s0(a)
which admits a filling by Kan’s extension property. Then the 1-simplex d1(z) is a path con-
necting b to a.

�

Remark. We used all 2-horns, both internal and external.
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Henceforth in this section, we consider only Kan complexes, unless noted otherwise.

De�nition 2.8.4 (Connected components). For a Kan complex X, define

π0(X) := X0/∼

to be the set of its connected components.

We now apply this to the simplicial mapping space Hom(X,Y) between two simplicial sets. Recall its
0- and 1-simplices:

Hom(X,Y)0 = Hom∆Ens(X,Y) and Hom(X,Y)1 = Hom∆Ens
�
X × ∆1,Y

�
.

De�nition 2.8.5 (Homotopic morphisms). Two morphisms f , g : X → Y of simplicial sets are
homotopic if they are homotopic as 0-simplices of Hom(X,Y); i.e. there is a simplicial map H : X×∆1 →

Y with H(−, 0) = f and H(−, 1) = g.

The similarity with continuous homotopies is striking. The following theorem is the simplicial ana-
logue of endowing sets of continuous maps with the structure of a topological space:

Theorem 2.8.6. If Y is a Kan complex, then Hom(X,Y) is also a Kan complex for any simplicial set X.
Proof. A purely combinatorial proof is lengthy; see [?, Theorem 6.9]. A categorical proof uses “ano-
dyne extensions,” e.g. [?, Corollary I.5.3]. �

Corollary 2.8.7. For any simplicial set X and Kan complex Y, homotopy is an equivalence relation on
Hom∆Ens(X,Y).
Proof. Combine Proposition 2.8.3 with Theorem 2.8.6. �

Denote the set of homotopy classes of maps by [X,Y] B Hom(X,Y)/∼. One sees easily that if f ∼ g,
then f k ∼ gk and l f ∼ lg for any k : W → X and l : Y→ Z.

De�nition 2.8.8 (Homotopy equivalence). A homotopy equivalence is a map of simplicial sets f : X
∼
→

Y admitting g : Y → X such that g f ∼ idX and f g ∼ idY. Two Kan complexes X,Y are homotopy
equivalent if they are connected by a chain of such equivalences.

Proposition 2.8.9.

(1) The geometric realization functor |− | : ∆Ens → Top sends simplicial homotopies to topological
homotopies.

(2) Any topological homotopy H : X × I → Y between continuous maps f , g : X → Y induces a simplicial
homotopy between Sing( f ), Sing(g) : Sing(X)→ Sing(Y ) by

Sing(X) × ∆1 −→ Sing(X) × Sing(I) −→ Sing(X × I) Sing(H)
−−−−−−−→ Sing(Y ),

where the leftmost map is given by 01 7→ idI .

Hence the realization and singular simplicial set functors induce bijections between homotopy classes of X →
Sing(Y ) and homotopy classes of continuous maps |X | → Y :

� |X |,Y �
= HomTop

�|X |,Y �
/∼ � Hom∆Ens

�
X, Sing(Y )�/∼ = �

X, Sing(Y )�.
Proof.

(1) If H : X × ∆1 → Y is a simplicial homotopy between f , g : X → Y, then using local finiteness
of |∆1 | and Proposition 2.6.6, |H | is a continuous homotopy |X | × I → |Y| between | f |, |g|.

(2) This is exactly as stated.

�

One may extend this analogy with topological spaces further; we do not delve into details here, but
we briefly mention:

� A pair of simplicial sets (X,A) is a simplicial subset A ⊆ X.
� A pair of Kan complexes (X,A) is likewise a pair where both are Kan complexes. For instance,
if X is a Kan complex, then (X, ∗) is a Kan pair.

� A relative homotopy f ∼ g rel A is a homotopy H between f , g : X → Y such that H(a, t) =
f (a) = g(a) for a ∈ A and t ∈ ∆1. In this case, we use the classic notation f ∼ g rel A.
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A pointed Kan complex is a Kan complex X with a simplicial map ∗ = ∆0 → X. Equivalently, it is
a Kan complex plus a chosen 0-simplex a ∈ X0. (By mild abuse, we denote this 0-simplex by ∗ in
each dimension n.) One defines its homotopy groups just like in topology: first look at the relative
homotopy classes

πn(X, ∗) B
[(∆n, ∂∆n), (X, ∗)] = �

f : ∆n → X
�

f |∂∆n : ∂∆n → ∗
	/
∼ rel ∂∆n .

Remark. Proposition 2.8.9 shows that πn(X, x) � πn
�
Sing(X), Sing(x)� for any topological space X

and x ∈ X .

To make the combinatorial data explicit, adopt the following notation for any n-simplex x ∈ Xn:

∂x B
�
d0(x), d1(x), . . . , dn−1(x), dn(x)�.

Lemma 2.8.10. Let (X, ∗) be a pointed Kan complex. A map f : (∆n, ∂∆n)→ (X, ∗) is equivalent to giving
an n-simplex x ∈ Xn such that ∂x = (∗, . . . , ∗). Under this identi�cation, two maps f , g are homotopic rel
∂∆n if and only if there is an (n + 1)-simplex w ∈ Xn+1 connecting the two corresponding n-simplices x, y,
namely ∂w = (∗, . . . , ∗, y, x).
Proof. The first part is a direct consequence of Yoneda’s lemma 2.5.4. The second part is longer. We
begin by considering, for any n > 1 and any 0 6 i 6 n, the following relation on the n-simplexes
x ∈ Xn verifying ∂x = (∗, . . . , ∗):

x ∼i y if it exists ∈ Xn+1 such that ∂w = (∗, . . . , ∗, y, x, ∗, . . . , ∗) ,
where y is in the ith place and x is in the (i+1)ith place. These are shown to be equivalence relations.
The proof is similar to that given in proposition 2.8.3; the calculations may seem complicated, but
they’re not if you’re drawing in dimension 3.

Reflexivity: Using the si degeneracy, we see that ∂si(x) = (∗, . . . , ∗, x, x, ∗, . . . , ∗) and therefore
x ∼i x .

Transitivity: Let x ∼i y and y ∼i z with respectively v,w ∈ Xn+1 such that ∂v = (∗, . . . , ∗, y, x,
∗, . . . , ∗) and ∂w = (∗, . . . , ∗, z, y, ∗, . . . , ∗) . We consider W B (∗, . . . , ∗,w,−, v, ∗, . . . , ∗) , where
w is at the ith place. The corollary 2.5.5 shows that this is a (i + 1)th horn of dimension
n + 1 of X. Since X is a Kan complex, this horn has a filling Z ∈ Xn+2, i.e. W ⊂ ∂Z . We
calculate ∂di+1(Z) = (∗, . . . , ∗, z, x, ∗, . . . , ∗) thanks to the corollary refcoro:ElemBordCornet.
This shows x ∼i z .

Symmetry: Let xsimiy with w ∈ Xn+1 such that ∂w = (∗, . . . , ∗, y, x, ∗, . . . , ∗). Consider W B
(∗, . . . , ∗,−, si(x),w, ∗, . . . , ∗) , where w is in the (i + 2)th place. This is a ith horn of di-
mension n + 1 de X, which admits a filling Z ∈ Xn+2: W ⊂ ∂Z . We calculate ∂di(Z) =
(∗, . . . , ∗, x, y, ∗, . . . , ∗) which shows y ∼i x .

We now show that all these equivalence relations are equivalent. Let 0 6 i 6 n − 1. In a way,
let’s give x ∼i+1 y with w ∈ Xn+1 such that ∂w = (∗, . . . , ∗, y, x, ∗, . . . , ∗), where y is at the (i + 1)th
position. We consider W B (∗, . . . , ∗,w, si+1(y), si(y),−, ∗, . . . , ∗) , where w is at the ith place. This
is a (i + 3)th horn of the dimension n + 1 of X which admits a filling Z ∈ Xn+2. We calculate
∂di+3(Z) = (∗, . . . , ∗, x, y, ∗, . . . , ∗) where x is at the ith place, which shows x ∼i y , since ∼i is reflexive.
In the other direction, we give ourselves x ∼i y with w ∈ Xn+1 such that ∂w = (∗, . . . , ∗, y, x, ∗, . . . , ∗),
where y is at the ith position. We consider W B (∗, . . . , ∗,−, si+1(x), si(x),w, ∗, . . . , ∗) , where w is at
the (i + 3)th position. It is a ith horn of dimension n+ 1 of X which admits a filling a filling Z ∈ Xn+2.
We calculate ∂di(Z) = (∗, . . . , ∗, x, y, ∗, . . . , ∗) where x is at the (i+1)th position, which shows x ∼i+1 y .

The proof of the statement is now automatic. Let f ∼ g rel ∂∆n and let x, y ∈ Xn the two n-simplexes
representing f and g respectively. Consider a morphism H : ∆n × ∆1 → X such that H(−, 0) = f ,
H(−, 1) = g and H(∂∆n,−) = ∗. The prismatic decomposition given in section 2.5 gives here the
co-equalizer ∐

16i6n

∆
n

∐
06j6n

∆
n+1

∆n × ∆1 ,
δi

δi

where the two morphisms on the left arrive respectively in the ith copy and the (i − 1)th copy.

0 1 i − 1 i. . . . . . n
0

1

1 2

i
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Yoneda’s Lemma 2.5.4 then shows that the given morphism H is equivalent to to giving n+1 simplexes
z0, z1, . . . , zn ∈ Xn+1 of dimension n + 1 satisfying ∂z0 =

�
y, d1(z1), ∗, . . . , ∗�, ∂zn =

�
∗, . . . , ∗, dn(zn), x

�

et ∂zi =
�
∗, . . . , ∗, di(zi), di+1(zi+1), ∗, . . . , ∗�, for all 1 6 i 6 n − 1. This means that

x ∼n dn(zn) ∼n−1 dn−1(zn−1) ∼n−2 · · · ∼1 d1(z1) ∼0 y .

By the above, this implies x ∼n y and therefore that there exists w ∈ Xn+1 such that ∂w = (∗, . . . , ∗, y, x) .
The other way around, let x ∼n y with w ∈ Xn+1 such that ∂w = (∗, . . . , ∗, y, x). Consider the n + 1
simplexes s0(y), s1(y), . . . , sn−1(y),w which define a morphism H : ∆n×∆1 → X such that H(−, 0) = f ,
H(−, 1) = g and H(∂∆n,−) = ∗. We therefore have f ∼ g rel ∂∆n. �

We denote by [x] the equivalence class of x ∈ Xn verifying ∂x = (∗, . . . , ∗) for the equivalence relation
of the lemma 2.8.10. Let x, y ∈ Xn be two n-simplices of X satisfying ∂x = ∂y = (∗, . . . , ∗). The data
w B (∗, . . . , ∗, x,−, y) defines an nth horn of dimension n + 1 of X by the corollary 2.5.5. Since X is
a Kan complex, this horn is filled by a (n + 1)-simplex W ∈ Xn+1. It quickly becomes apparent that
∂dn(W ) = (∗, . . . , ∗) and then we have

[x] · [y] B [dn(W )] .
1

0 2

x

W
y

[d1(W )]=[x]·[y]

Lemma 2.8.11. The product cdot is well de�ned.

Proof. Let’s already show that the definition does not depend on the (n + 1)-simplex W ∈ Xn+1. Let
W ′ ∈ Xn+1 an (n+1)-simplex such that ∂W ′ = (∗, . . . , ∗, x, dn(W ′), y). The horn (∗, . . . , ∗, sn(x),−,W,W ′)
admits a filler Z ∈ Xn+2 which can be verified as ∂dn(Z) = (∗, . . . , ∗, dn(W ), dn(W ′)). This implies
[dn(W )] = [dn(W ′)].
Let’s now show that the definition of the product · does not depend on the choice of class repre-
sentative for [x] and [y]. We will only deal explicitly with the case of [y], as the case of [x] is
similar. Let y′ ∈ Xn such that y ∼ y′, i.e. there are w ∈ Xn+1 satisfying ∂w = (∗, . . . , ∗, y′, y).
Let W ∈ Xn+1 filling (∗, . . . , ∗, x,−, y) and W ′ ∈ Xn+1 filling (∗, . . . , ∗, x,−, y′). We consider the horn
(∗, . . . , ∗, sn−1(x),W ′,−,w) that we fill with an (n + 2)-simplex Z ∈ Xn+2. This latter ones satisfies
∂dn+1(Z) = (∗, . . . , ∗, x, dn(W ′), y), which shows that [x] · [y] = [x] · [y′]. �

De�nition 2.8.12 (Homotopy groups of a Kan complex). For n ≥ 1, the n-th homotopy group of a
pointed Kan complex X is �

πn(X, ∗), · , [∗]�.
Theorem 2.8.13. Let (X, ∗) be a pointed Kan complex.

(1) For each n ≥ 1,
�
πn(X, ∗), ·, [∗]� is a group.

(2) For n ≥ 2, it is abelian.
(3) These homotopy groups are homotopy invariants.
(4) For all n ≥ 0, there is a natural isomorphism (a bijection when n = 0)

�
πn(X, ∗), ·, [∗]� �

�
πn(|X |, | ∗ |), ·, [cst]�.

Proof.

(1) Unit: For any xinXn satisfying ∂x = (∗, . . . , ∗), we have ∂sn(x) = (∗, . . . , ∗, x, x) and ∂sn−1(x) =
(∗, . . . , x, x, ∗), which show respectively that [∗] · [x] = [x] and [x] · [∗] = [x] .

Inverse: For any x ∈ Xn satisfying ∂x = (∗, . . . , ∗), we consider the (n + 1)th horn defined
by (∗, . . . , ∗, x, ∗,−) which is filled with a (n + 1)-simplex W ∈ Xn+1. This shows that
[x] · [dn+1(W )] = [∗]. Similarly, the (n − 1)th horn defined by (∗, . . . , ∗,−, ∗, x) is filled
with a (n + 1)-simplex Z ∈ Xn+1. This shows that [dn−1(Z)] · [x] = [∗] and concludes the
proof of the existence of an inverse.

Associativity: Let x, y, z ∈ Xn satisfying ∂x = ∂y = ∂z = (∗, . . . , ∗). We consider a
(n + 1)-simplex Wn−1 ∈ Xn+1 filling the horn (∗, . . . , ∗, x,−, y), a (n + 1)-simplex Wn+2 ∈

Xn+1 filling the horn (∗, . . . , ∗, y,−, z) and a (n + 1)-simplex Wn+1 ∈ Xn+1 filling the
horn (∗, . . . , ∗, dn(Wn−1),−, z). There is a (n + 2)-simplex Z ∈ Xn+2 who fills the horn
(∗, . . . , ∗,Wn−1,−,Wn+1,Wn+2). The calculation ∂dn(Z) = �

∗, . . . , ∗, x, dn(Wn+1), dn(Wn+2)�
shows that [x] · ([y] · [z]) = ([x] · [y]) · [z] .
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(2) Abelian for n ≥ 2 can be shown purely combinatorially or by referencing [?, Proposition 4.4];
another proof uses the forthcoming Theorem 1.3.7.

(3) It is automatic from the definitions that homotopy groups define functors taking homotopy
equivalences to isomorphisms.

(4) See [?, Section 16].
�

De�nition 2.8.14 (Kan fibration). A map of simplicial sets p : E � B is a Kan �bration if it satisfies
the following extension property:

Λn
k

E

∆n B ,

p∃

for all n ≥ 2 and 0 ≤ k ≤ n.

We depict Kan fibrations with double-headed arrows. We call B the base, E the total space, and that
data p : E � B a �bered space.

Example. A simplicial set X is a Kan complex if and only if the terminal map X → ∗ is a Kan
fibration.

For each 0-simplex b of B, consider the simplicial subset generated by b (including all its degenerate
copies). Then the �ber F := p−1(b) is defined by Fn = p−1

n (b).
Lemma 2.8.15. If p : E � B is a Kan �bration and b ∈ B, then the �ber F over b is a Kan complex.

Proof. Immediate from the combinatorial characterization of Kan complexes (Lemma 2.7.7). �

For completeness, we can characterize Kan fibrations themselves combinatorially:

Lemma 2.8.16. A map of simplicial sets p : E � B is a Kan �bration i� for every n ≥ 2, 0 ≤ k ≤ n,
and any x0, . . . , xk−1, xk+1, . . . , xn ∈ En−1 with dEi (x j) = dEj−1(xi), i < j , k , and any y ∈ Bn with

dBi (y) = p(xi), there exists x ∈ En such that p(x) = y and dEi (x) = xi , i , k .

Proof. Again, it follows directly from Lemma 2.7.7 plus Yoneda 2.5.4. �

Exercise. As a good exercise, verify these two properties for a Kan fibration p : E � B:
� If E is a Kan complex and p is surjective in every degree, then B is a Kan complex.
� If B is a Kan complex, then E is a Kan complex.

For each 0-simplex f in the fiber, one obtains a map of pointed simplicial sets

(F, f ) −→ (E, f ) � (B, b).
Theorem 2.8.17. Any Kan �bration

(F, f ) i
−−→ (E, f ) p

� (B, b)
with F,E,B all Kan complexes induces a long exact homotopy sequence

· · · // π2(B, b) // π1(F, f ) // π1(E, f ) // π1(B, b) // π0(F) // π0(E) // π0(B) // {∗}.
Proof. One can give an ad hoc proof of about the same level of di�culty as the above arguments; see
[?, Theorem 7.6] for details. �

Remark. It is straightforward to check that Sing( f ) : Sing(X) � Sing(Y ) is a Kan fibration if and
only if f : X � Y is a Serre fibration. The “converse,” that |p| : |E | � |B| is a Serre fibration whenever
p : E � B is a Kan fibration, is also true but significantly harder (see [?]). That yields another proof
of the above exact sequence by passing to topological fibrations and using Theorem 1.6.3, plus the
isomorphism with the homotopy groups of realizations (Theorem 2.8.13).

De�nition 2.8.18 (Cofibration and weak equivalence). A map f : X → Y of simplicial sets is called
� a co�bration if each fn : Xn ↪→ Yn is injective for every n ∈ N,
� a weak equivalence if all the maps πn(| f |) : πn(|X |, x) � πn(|Y|, | f |(x)) are isomorphisms for

n ≥ 1 and a bijection for n = 0.

The next result directly connects the two halves of the story.
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Theorem 2.8.19 ([Qui67]). The adjunction between geometric realization and the singular simplicial set
induces the following equivalence of categories:

Top
�
we−1

�
w CW-cx / ∼ w Kan-cx / ∼ w ∆Ens

�
we−1

�
,

where the two middle categories are, respectively, CW complexes and Kan complexes modulo the homotopy
equivalence relation.

The beauty of this theorem is at least twofold: it establishes an equivalence between the homotopy
theories of topological spaces and simplicial sets, and it provides a straightforward localized category
structure (the two outermost categories). Its proof is too involved to present here; it will be the subject
of the next course by Grégory Ginot.
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Appendix A. Théorie des catégories

Le but de cet appendice est de rappeler des résultats un peu plus avancés de la théorie des catégories,
qui sont souvent mal connus mais dont nous nous servons à travers ce livre. On commence par la
notion de préfaisceau en se focalisant sur le plongement de Yoneda qui permet de voir toute catégorie
localement petite comme une sous-catégorie pleine de sa catégorie de préfaisceaux. Ce résultat ne
nécessite pas d’idée nouvelle, il su�t juste de connaitre les définitions de base pour le démontrer.
On traite ensuite des extensions de Kan, qui sont les objets les plus fondamentaux de la théorie des
catégories : Saunders MacLane a d’ailleurs intitulé une des sections de son livre [?] : “All concepts
are Kan extensions”. En e�et, (presque) toutes les notions de la théorie des catégories (adjonction,
limites, colimites, etc.) s’expriment en ces termes. Néanmoins la notion d’extensions de Kan est très
abordable et naturelle, quand elle est prise par le bon bout.

A.1. Préfaisceaux.

De�nition A.1.1 (Préfaisceau). Un préfaisceau sur la catégorie C est un foncteur contravariant de C
vers la catégorie des ensembles : Cop → Ens. La catégorie des préfaisceaux sur C est une catégorie
de foncteurs : elle admet pour morphismes les transformations naturelles. On la note Fon(Cop,Ens).
Example. Soit C une catégorie localement petite, c’est-à-dire que chaque classe de morphismes HomC
(b, a) est un ensemble, pour a, b dans C. À tout object a de C, on associe le foncteur représentable
suivant

Ya : Cop → Ens
b 7→ HomC(b, a)

qui est un préfaisceau sur C.

De�nition A.1.2 (Plongement de Yoneda). On appelle plongement de Yoneda le foncteur

Y : C → Fon(Cop,Ens)
a 7→ Ya .

Le fait que le plongement de Yoneda soit un foncteur signifie en particulier que tout morphisme
f : a → a′ dans la catégorie C induit une transformation naturelle f∗ : Ya ⇒ Ya′ , obtenue en
composant par f . Le théorème suivant montre notamment qu’il n’y en a pas d’autres.

Theorem A.1.3 (Lemme de Yoneda). Soit C une catégorie localement petite. Il existe une bijection

Nat(Ya, X) � X(a)
naturelle en a dans C et en X dans Fon(Cop,Ens).
Proof. Considérons une transformation naturelle ψ : Ya ⇒ X . Appliquée en a, elle donne une
application ensembliste ψa : HomC(a, a)→ X(a) qui envoie l’identité ida sur un élément xψ de X(a).
Cet élément caractérise complètement la transformation naturelle ψ :

ψb(g) = X(g)(xψ) ,
pour tout g ∈ HomC(b, a). Il reste à montrer que cette bijection est naturelle, ce qui est automatique
et donc laissé au lecteur-trice. �

Si on applique ce résultat au préfaisceau Ya′ , la bijection Nat(Ya,Ya′) � Ya′(a) = HomC(a, a′),
décrite dans cette démonstration, associe f ∗ 7→ f , pour tout morphisme f : a → a′ dans C. Ceci
montre que les seules transformations naturelles entre foncteurs représentables sont celles issues de
morphismes de la catégorie C par tirage en arrière. En d’autres termes, cela donne le résultat suivant.

Corollary A.1.4. Le plongement de Yoneda est plein et �dèle.

Proof. Cela signifie que l’application

HomC(a, a′) → Nat(Ya,Ya′)
f 7→ f ∗

est bijective, ce qui est une conséquence directe du lemme de Yoneda (Théorème A.1.3) par les
arguments donnés ci-dessus. �

Remark. Ce corollaire nous dit que deux préfaisceaux représentables Ya et Ya′ sont isomorphes si
et seulement si a et a′ sont isomorphes dans la catégorie C.
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Ce résultat est une forme de mise an abîme : tout catégorie localement petite est une sous-catégorie
pleine de sa catégorie de préfaisceaux. Plus précisément, elle est identifiée avec la sous-catégorie des
préfaisceaux représentables.

Proposition A.1.5. Pour toute catégorie C, sa catégorie des préfaisceaux Fon(Cop,Ens) est complète et co-
complète.

Proof. Les limites et colimites dans la catégorie des préfaisceaux sont données point-par-point par
celles de la catégorie des ensembles. Soit F : D→ Fon(Cop,Ens) un foncteur; on note

Fc : D → Ens
d 7→ F(d)(c)

le foncteur associé pour tout c dans C. La limite et la colimite du foncteur F sont données par(
lim
D

F
)
(c) = lim

D
Fc et

(
colim

D
F
)
(c) = colim

D
Fc .

�

Le plongement de Yoneda permet donc de voir une catégorie localement petite dans une catégorie
complète et cocomplète. La catégorie des préfaisceaux satisfait même la propriété universelle pour
cette dernière propriété : pour tout foncteur F : C → D vers une catégorie cocomplète, il existe
un foncteur G cocontinu, c’est-à-dire qui préserve les colimites, unique à unique isomorphisme qui
factorise F par Y:

C Fon(Cop,Ens)

D

Y

F
∃!G

On peut alors parler de “complétion cocomplète” de la catégorie initiale.

Exercise. Avec le lemme de Yoneda, montrer le théorème de Cayley : tout groupe fini est un sous-
groupe d’un groupe de permutations.

L’omniprésence des préfaisceaux représentables dans la catégorie des préfaisceaux est encore plus
forte que cela. Le résultat suivant montre qu’ils forment une sous-catégorie dense, c’est-à-dire que tout
préfaisceau peut s’écrire canoniquement comme une colimite de préfaisceaux représentables. Tout
l’enjeu est alors de trouver la catégorie qui indice cette colimite.

Soit X ∈ Fon(Cop,Ens) un préfaisceau. On cherche donc un catégorie E munie d’un foncteur Π : E→
C telle que la colimite de Y ◦ Π sur E donne le foncteur X . Comme le foncteur colimite est adjoint
à gauche du foncteur constant ∆, qui à tout préfaisceau Z associe le foncteur ∆Z : e ∈ E 7→ Z ∈
Fon(Cop,Ens), on doit avoir une bijection naturelle

Nat(X, Z) � Nat(Y ◦ Π,∆Z ) .
Une transformation naturelle α : X ⇒ Z est équivalente à la donnée d’un élément z(c,x) ∈ Z(c) pour
tout c ∈ C et tout x ∈ X(c) vérifiant Z( f op)(z(d,y)) = z(c,x) pour tout morphisme f : c → d de C et
tout y ∈ X(d) tel que X( f op)(y) = x. On est donc amené à considérer cette catégorie d’indices issue
du préfaisceau X .

De�nition A.1.6 (Catégorie des éléments d’un préfaisceau). La catégorie des éléments d’un préfaisceau
X admet pour objets les paires (c, x), avec c ∈ C et x ∈ X(c), et pour morphismes entre (c, x) et (d, y)
les morphismes f : c → d de la catégorie C qui vérifient X( f op)(y) = x. On la note E(X).
La catégorie des éléments d’un préfaisceau X est munie d’un foncteur oubli canonique

Π : E(X)→ C , (c, x) 7→ c .

Theorem A.1.7 (Théorème de densité). Tout préfaisceau X ∈ Fon(Cop,Ens) sur une catégorie C locale-
ment petite est la colimite de la composée du foncteur oubli avec le plongement de Yoneda sur la catégorie de ses
éléments :

X � colim
E(X)

Y ◦ Π .
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Proof. Reprenons l’analyse entamée ci-dessus. Le lemme de Yoneda (Théorème A.1.3) fournit une
transformation naturelle ψ(c,x) : Yc ⇒ Z associée à tout élément z(c,x). La condition de compatibilité
vérifiée par les z(c,x) est équivalente au fait que les ψ(c,x) forment une transformation naturelle ψ :
Y ◦ Π ⇒ ∆Z . L’application α 7→ ψ est bijective, par le lemme de Yoneda, et elle est naturelle en
Z ∈ Fon(Cop,Ens), ce qui conclut la démonstration. �

A.2. Extensions de Kan. L’idée à la base de la notion d’extensions de Kan est celle d’extension
des foncteurs. On sait que toute application ensembliste peut s’étendre à un domaine plus gros, mais
de façon non-canonique. Dans le contexte des catégories, la situation est di�érente : les extensions
de Kan montrent que l’on peut étendre les foncteurs à un autre domaine de façon canonique et op-
timale. Dans cette section, nous ne traiterons en détail que la notion d’extension de Kan à gauche,
la notion duale à droite étant l’exacte opposée. Dans le corps de ce texte, nous n’utilisons que les
extensions de Kan à gauche et la théorie des extensions de Kan à droite s’obtient automatiquement
en changeant le sens des transformations naturelles, en considérant des limites à la place des colim-
ites pour des limites, etc.

Soit Φ : C→ C′ un foncteur. En tirant en arrière par Φ, tout foncteur G : C′ → D induit un foncteur
Φ∗(G) = G ◦ Φ : C→ D. Cette construction induit un foncteur entre catégories de foncteurs :

Φ
∗ : Fon(C′,D)→ Fon(C,D) .

On se pose alors la question de l’existence d’un adjoint à gauche et à droite.

Proposition A.2.1. Le foncteur Φ∗ admet un adjoint à gauche si et seulement si, pour tout foncteur F :
C → D, il existe un foncteur L : C′ → D et une transformation naturelle α : F ⇒ L ◦ Φ telle que, pour
tout foncteur G : C′ → D équipé aussi d’une transformation naturelle β : F ⇒ G ◦ Φ, il existe une unique
transformation naturelle γ : L ⇒ G factorisant β, c’est-à-dire β = (γΦ) ◦ α.

C D

C′

α

F

Φ
∃γ

L

G

β

Dualement, le foncteur Φ∗ admet un adjoint à droite si et seulement s’il admet une caractérisation similaire
obtenue en changeant le sens des transformations naturelles.

Proof. Ce résultat est l’application à un cas particulier d’un théorème général sur les adjonctions.
Il se démontre néanmoins sans surprise de la manière suivante.
Pour montrer que la condition est nécessaire, on se donne un adjoint à gauche L : Fon(C,D) →
Fon(C′,D) et on pose

χF,G : Nat (L(F),G) � Nat (F,G ◦ Φ)
la bijection naturelle en F : C→ D et en G : C′ → D de cette adjonction. Pour G = L(F), on obtient
une transformation naturelle

α := χF,L(F)(1L(F)) : F ⇒ L(F) ◦ Φ ,

qui vérifie

(*) χF,G(γ) = (Φγ) ◦ α ,
pour toute transformation naturelle γ : L(F)⇒ G. Pour obtenir la condition nécessaire de l’énoncé,
il su�t de poser L := L(F) et de considérer la transformation naturelle α. Pour toute transformation
naturelle β : F ⇒ G◦Φ, il existe une unique transformation naturelle γ : L ⇒ G vérifiant β = (γΦ)◦α
par bijectivité de χF,G et l’équation (*).
La condition de l’énoncé est su�sante. Posons L(F) := L, pour tout foncteur F : C → D. Soit
ϕ : F ⇒ F ′ une transformation naturelle. La propriété universelle vérifiée par α implique qu’il existe
une unique transformation naturelle L(ϕ) : L(F) ⇒ L(F ′) telle que (L(ϕ)Φ) ◦ α = α′ ◦ ϕ. Cette
propriété universelle montre à nouveau que L définit bien un foncteur. On définit alors l’application
χF,G par la formule (*). Elle est naturelle par la condition définissant L(ϕ) et elle est bijective par
la propriété universelle vérifiée par les α. �
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Comme tout objet de la théorie des catégories, une paire (L, α) vérifiant la propriété universelle
énoncée dans la proposition précédente est unique à isomorphisme près; elle a donc le droit à un
petit nom.

De�nition A.2.2 (Extensions de Kan). On appelle extension de Kan à gauche du foncteur F le long
du foncteur Φ la paire (L, α) vérifiant la propriété universelle de la proposition A.2.1. On la note�
LanΦF, α

�
. La paire vérifiant la condition duale est appelée extension de Kan à droite du foncteur F le

long du foncteur Φ et notée
�
RanΦF, α

�
.

Les extensions de Kan ne factorisent en général pas le foncteur initial F (chose impossible à moins
que d’avoir une sous-catégorie par exemple), mais leur composée avec le foncteur Φ fournit est la
meilleure approximation de F. Les notions d’extensions de Kan sont omniprésentes en théorie des
catégories, elles supplantent par exemple celles de (co)limite et d’adjonction.

Example. Soit C′ = 1 la catégorie terminale à un seul objet ∗ (et un seul morphisme) et soit Π : C→ 1
l’unique foncteur de la catégorie C vers cette dernière. Dans ce cas, l’extension de Kan à gauche
d’un foncteur F : C→ D est équivalente à sa colimite

LanΠ(F)(∗) = colim
C

F

et son extension de Kan à droite est équivalente à sa limite

RanΠ(F)(∗) = lim
C

F .

Exercise.
(1) Montrer qu’un foncteur F : A → B admet un adjoint à droite si et seulement si le foncteur

1A : A → A admet une extension de Kan à gauche (LanF1A, α) le long de F vérifiant la
propriété que (F ◦LanF1A, Fα) est une extension de Kan à gauche de F le long de lui-même.

(2) Lorsque c’est le cas, Montrer que l’extension de Kan à gauche LanF1A est l’adjoint à droite
de F,

F a LanF1A

et que l’unité d’ajonction est donnée par Fα.
(3) Écrire le résultat dual pour l’existence d’adjoints à gauche en terme d’extensions de Kan à

droite.

Pour une nouvelle mise en abîme, rappelons que les notions d’extensions de Kan resolvent un prob-
lème d’existence d’adjonction : la proposition A.2.1 a�rme que le foncteur Φ∗ admet un adjoint à
gauche (respectivement à droite) si et seulement si tout foncteur F : C→ D admet une extension de
Kan à gauche (respectivement à droite). Dans ce cas de figure, on a

LanΦ a Φ
∗ a RanΦ .

Il reste donc à montrer que les extensions de Kan existent. Analysons le cas où le foncteurΦ : C ↪→ C′

est une inclusion d’une sous-catégorie pleine. Supposons que l’on dispose d’une extension L : C′ → D
de F, c’est-à-dire F = L ◦ Φ. le long d’un foncteur

C D

C′

F

Φ L

Soit x un object de C′ et cherchons à caractériser l’image de x par le foncteur L. Pour toute paire
(a, f : a → x) avec a un objet de C et f un morphisme de C′, on dispose d’un morphisme L( f ) :
L(a) = F(a)→ L(x) de la catégorie D. Tout triangle commutatif

a b

x ,

h

f g

où h est un morphisme de C, induit un triangle commutatif

F(a) F(b)

L(x) .

F(h)

L( f ) L(g)
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Il est alors naturel d’introduire la catégorie C ↓ x dont les objets sont les paires (a, f : a → x)
comme ci-dessus et dont les morphismes sont ceux de C qui forment un triangle commutatif. On
pose Π : C↓ x → C, (a, f ) 7→ a le foncteur de projection. En ces termes, l’image L(x) est un cocône
pour le foncteur F ◦ Π sur la catégorie C↓ x.

Dans le cas général, on considère la catégorie suivante pour tout objet x de C′.

De�nition A.2.3 (Catégorie Φ↓ x). Les objets de la catégorie Φ↓ x sont les paires (a, f : Φ(a)→ x),
où a un objet de C et f un morphisme de C′. Les morphismes de (a, f : Φ(a)→ x) vers (b, g : Φ(b)→
x) sont les morphismes h : a → b de la catégorie C vérifiant f = g ◦ Φ(h).
Exercise. Écrire la catégorie des éléments d’un préfaisceau X (Définition A.1.6) comme une caté-
gorie x↓X définie de manière similaire mais par des objets de la forme (a, f : x → X(a)).
On considère la composée F◦Π : Φ↓ x → D du foncteur F avec la projection canonique Π : Φ↓ x → C.
Les études faites ci-dessus des colimites comme extensions de Kan à gauche le long du foncteur C→ 1
et des extensions de foncteurs suggèrent que la colimite du foncteur F ◦ Π, cocône initial, doit être
intimement reliée à l’image de l’extension de Kan de l’objet x. Le théorème suivant va nous donner
raison.

Theorem A.2.4. Soient Φ : C→ C′ et F : C→ D deux foncteurs tels que, pour tout objet x de la catégorie
C′, le foncteur F ◦ Π : Φ↓ x → D admet une colimite dans la catégorie D. Dans ce cas, l’extension de Kan à
gauche du foncteur F le long du foncteur Φ existe et elle est donnée ponctuellement par cette colimite:

(LanΦF) (x) = colim
Φ↓x

F ◦ Π .

Proof. Les arguments sont automatiques une fois que l’on a bien compris la construction ci-dessus.
Pour plus de précision, nous noterons ici le foncteur de projection par Πx : Φ↓ x → C . Posons

L(x) := colim
Φ↓x

F ◦ Π ,

pour tout objet x de la catégorie C′.
Montrons d’abord que L définit bien un foncteur L : C′ → D. Soit k : x → y un morphisme de la
catégorie C′. Il induit un foncteur k∗ : Φ↓ x → Φ↓ y , (a, f ) 7→ (a, k ◦ f ) qui vérifie F ◦Πy = F ◦Πx ◦ k∗.
Ceci montre que L(y) est un cocône pour le foncteur F ◦ Πx sur la catégorie Φ↓ x. Comme L(x) est
la colimite de ce foncteur, on définit L(k) : L(x)→ L(y) par sa propriété universelle. En utilisant les
mêmes arguments, on voit facilement que toute paire de morphismes k : x → y et k : y → z de C′

vérifient L(l ◦ k) = L(l) ◦ L(k).
Définissons maintenant une transformation naturelle α : F ⇒ L ◦ Φ. Soit c un objet de la catégorie
C; on note λ f les morphismes de structures du cocône L(Φ(c)) :

F ◦ ΠΦ(c)(a, f ) = F(a) F(b) = F ◦ ΠΦ(c)(b, g)

L(Φ(c))

F(h)

λ f λg

On pose alors

α(c) := λid : F(c) = F ◦ ΠΦ(c)(a, id : Φ(c)→ Φ(c))→ L(Φ(c)) .
Pour montrer que cela définit bien une transformation naturelle, on considère le diagramme suivant
associé à tout morphisme i : c → d de la catégorie C :

F(c) F(d)

L(Φ(c)) L(Φ(d))

F(i)

α(c)=λid
µΦ(i)

α(d)=µid

L(Φ(i))

qui est commutatif : le triangle supérieur droit est commutatif par la définition de L(Φ(d)) comme
un cocône et le triangle inférieur gauche est commutatif par la définition de L(Φ(i)).
Il reste à montrer que la transformation naturelle α est universelle. Soit G : C′ → D un foncteur
muni d’une transformation naturelle β : F ⇒ G ◦ Φ. Soit x un objet de la catégorie C′. Pour tout
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morphisme h d’un objet (a, f : Φ(a) → x) vers un objet (b, g : Φ(b) → x) de la catégorie Φ ↓ x,
c’est-à-dire h : a → b morphisme de C vérifiant f = g ◦ Φ(h), le digramme suivant est commutatif :

F(a) = F ◦ Πx(a, f ) F ◦ Πx(b, g) = F(b)

G(Φ(a)) G(Φ(b))

G(x) .

F(h)

β(a) β(b)

G( f )

G(Φ(h))

G(g)

Le carré du haut l’est par définition de la transformation naturelle β et le triangle du bas l’est par
définition de h et du foncteur G. Ceci montre que G(x) est un cocône pour le foncteur F ◦ Πx sur
la catégorie Φ ↓ x; comme L(x) est la colimite de ce foncteur, on définit γ(x) : L(x) → G(x) par sa
propriété universelle.
Montrons maintenant que γ est une transformation naturelle. Soit k : x → y un morphisme de la
catégorie C′. Pour tout objet (a, f : Φ(a) → x) de la catégorie Φ ↓ x, on considère le diagramme
suivant :

F ◦ Πy(a, k f ) = F(a) = F ◦ Πx(a, f ) L(x) L(y)

G(Φ(a)) G(x) G(y) ,

µk f

λ f

β(a)

L(k)

γ(x) γ(y)

G( f )

G(k f )

G(k)

où λ et µ dénotent respectivement les morphismes de structure des cocônes L(x) et L(y). Le carré
de gauche est commutatif par définition de γ(x), le triangle du haut est commutatif par défintion
de L(k), celui du bas l’est par définition du foncteur G, enfin le carré extérieur est commutatif par
définition de L(y). Le carré de droite est donc toujours commutatif une fois précomposé par λ f , et
ce pour tout objet (a, f ) de la catégorie Φ↓ x. Par définition de L(x) comme colimite, on obtient que
ce carré est en fait commutatif.
Enfin, on montre l’universalité de la transformation naturelle γ. Par définition de α et de γ, on a
β(a) = γ(Φ(a))◦α(a). Il reste à établir l’unicité de la transformation naturelle γ. Soit donc γ′ : L ⇒ G
une transformation naturelle vérifiant β = (γ′Φ) ◦ α. Pour les autres éléments y de C′, on applique
le diagramme ci-dessus à x = Φ(a), f = idΦ(a) et k : Φ(a) → y morphisme de C′. On obtient alors
γ′(y) ◦ µk = γ(y) ◦ µk , ce qui implique γ′(y) = γ(y) par la propriété de colimite de L(y). �

Corollary A.2.5. Sous les hypothèses d’existence données au théorème A.2.4 et dans le cas où le foncteur Φ
est plein et �dèle, il existe une extension de Kan à gauche du foncteur F qui en soit une extension :

F = (LanΦF) ◦ Φ et α = id .

Proof. Lorsque le foncteur Φ est plein et fidèle, la catégorie Φ ↓Φ(c) est isomorphe à la catégorie
C↓c des objets au-dessus de c. Cette dernière admet pour objet terminal (c, idc) et donc la colimite
L(Φ(c)) est donnée simplement par F(c).

�

C’est par exemple le cas lorsque C est une sous-catégorie pleine de C′.

Plutôt que d’exiger l’existence point-par-point de certaines colimites, les conditions générales suiv-
antes assurent l’existence d’extensions de Kan.

Corollary A.2.6. Si la catégorie C est petite, la catégorie C′ localement petite et la catégorie D cocomplète,
alors tout foncteur F : C→ D admet une extension de Kan le long de tout foncteur Φ : C→ C′.
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Proof. On rappelle à toutes fins utiles qu’une catégorie est petite lorsque ses objets forment un
ensemble et que tous ses classes de morphismes forment un ensemble. Une catégorie est cocomplète
lorsque tout foncteur depuis une petite catégorie vers cette dernière admet une colimite. Lorsque la
catégorie C est petite et la catégorie C′ localement petite, alors toute catégorie Φ↓ x est petite, pour
x de C′. Et comme la catégorie D est cocomplète, la colimite du foncteur F ◦Π existe. On peut alors
appliquer le théorème A.2.4. �

Les conditions d’existence de ce corollaire ne sont pas très restrictives; elles sont toujours vérifiées
dans les exemples qui forment le corps de ce texte. Dans ce qui suit, on les suppose vérifiées. Par
contre, la colimite donnée au théorème A.2.4 peut être di�cile à calculer. Néanmoins, on peut cal-
culer plus e�cacement l’extension de Kan à gauche à l’aide d’un autre type de colimite.

Soient a, b deux objets de la catégorie C et soit x un objet de la catégorie C′. On considère l’ensemble
HomC′(Φ(b), x) puis le coproduit de l’objet constant F(a) indicé par ce dernier; on le note tradition-
nellement comme un tenseur :

HomC′ (Φ(b), x) · F(a) :=
∐

HomC′ (Φ(b),x)
F(a) .

Tout morphisme h : a → b de la catégorie C induit les deux morphismes suivants dans la catégorie
D :

HomC′ (Φ(b), x) · F(a)

HomC′ (Φ(a), x) · F(a) HomC′ (Φ(b), x) · F(b) .
Φ(h)∗ ·id id·F(h)

En considérant tous les morphismes de la catégorie C, on obtient ainsi un diagramme D de la
catégorie D.

De�nition A.2.7 (Cofin). On appelle bouquet pour le diagramme D tout élément d de D muni
d’applications λa : HomC′ (Φ(a), x) · F(a) → d qui rendent le diagramme associé commutatif, voir
ci-dessous. La co�n du diagramme D, notée∫ a

HomC′ (Φ(a), x) · F(a) ,
est son bouquet universel :

HomC′ (Φ(b), x) · F(a)

HomC′ (Φ(a), x) · F(a) HomC′ (Φ(b), x) · F(b)

∫ a
HomC′ (Φ(a), x) · F(a)

d .

Φ(h)∗ ·id id·F(h)

λa λb∃!

Remark. Même si elle en a la même saveur, la notion de bouquet n’est pas la notion de cocône; il
faudrait pour cela plus de morphismes de structure. Et donc la notion de cofin n’est pas la colimite
du diagramme D.

Proposition A.2.8. Soient C une petite catégorie, C′ une catégorie localement petite et D une catégorie
cocomplète. L’extension de Kan à gauche d’un foncteur F : C→ D le long d’un foncteur Φ : C→ C′ est donnée
ponctuellement par la co�n

(10) (LanΦF) (x) =
∫ a

HomC′ (Φ(a), x) · F(a) .
Proof. La démonstration de cette propriété ne recèle pas d’idée originale, mais utilise les propriétés
générales des cofins. Par soucis de concision, nous ne la reproduisons pas ici, mais nous renvoyons
à [?, Section X.4]. �
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Ce résultat montre que l’on peut écrire la cofin comme une colimite mais sur un diagramme di�érent.

Corollary A.2.9. Sous les hypothèses de la proposition A.2.8, l’extension de Kan à gauche est donnée
ponctuellement par le coégalisateur suivant∐

h:a→b
dans C

HomC′ (Φ(b), x) · F(a)
∐
a∈C

HomC′ (Φ(a), x) · F(a) ∫ a
HomC′ (Φ(a), x) · F(a) .Φ(h)∗

F(h)

Proof. La démonstration est immédiate. �

Remark. Lorsque la catégorie D est la catégorie Ens des ensembles, les extensions de Kan corre-
spondent à l’image directe et réciproque des préfaisceaux.
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