Operads and Cochain Models in Algebraic Topology

Benoit Fresse

Laboratoire Paul Painlevé - Université de Lille

23 April 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

► The blackboard letter A denotes the associative operad (in sets, dg-modules, spaces, ...) and C denotes the commutative operad.

- ► The blackboard letter A denotes the associative operad (in sets, dg-modules, spaces, ...) and C denotes the commutative operad.
- An A_∞-operad: is an operad K together with an operad weak-equivalence K ~ A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► The blackboard letter A denotes the associative operad (in sets, dg-modules, spaces, ...) and C denotes the commutative operad.
- An A_∞-operad: is an operad K together with an operad weak-equivalence K ~ A.
- An E_∞-operad: is an operad E together with an operad weak-equivalence E ~→ C.

・ロト・日本・日本・日本・日本・今日・

- ► The blackboard letter A denotes the associative operad (in sets, dg-modules, spaces, ...) and C denotes the commutative operad.
- An A_∞-operad: is an operad K together with an operad weak-equivalence K ~→ A.
- An E_∞-operad: is an operad E together with an operad weak-equivalence E ~→ C.
- An E_n-operad E_n (1 ≤ n ≤ ∞) is a structure intermediate between A_∞-operads (n = 1) and E_∞-operads (n = ∞).

- ► The blackboard letter A denotes the associative operad (in sets, dg-modules, spaces, ...) and C denotes the commutative operad.
- An A_∞-operad: is an operad K together with an operad weak-equivalence K ~→ A.
- An E_∞-operad: is an operad E together with an operad weak-equivalence E ~→ C.
- An E_n-operad E_n (1 ≤ n ≤ ∞) is a structure intermediate between A_∞-operads (n = 1) and E_∞-operads (n = ∞). Most examples of E_n-operads come in nested sequences

$$\mathbb{E}_1 \hookrightarrow \mathbb{E}_2 \hookrightarrow \cdots \hookrightarrow \mathbb{E}_n \hookrightarrow \cdots \hookrightarrow \operatorname{colim}_n \mathbb{E}_n = \mathbb{E}_\infty$$

- ► The blackboard letter A denotes the associative operad (in sets, dg-modules, spaces, ...) and C denotes the commutative operad.
- An A_∞-operad: is an operad K together with an operad weak-equivalence K ~→ A.
- An E_∞-operad: is an operad E together with an operad weak-equivalence E ~→ C.
- An E_n-operad E_n (1 ≤ n ≤ ∞) is a structure intermediate between A_∞-operads (n = 1) and E_∞-operads (n = ∞). Most examples of E_n-operads come in nested sequences

$$\mathbb{E}_1 \hookrightarrow \mathbb{E}_2 \hookrightarrow \cdots \hookrightarrow \mathbb{E}_n \hookrightarrow \cdots \hookrightarrow \operatorname{colim}_n \mathbb{E}_n = \mathbb{E}_\infty$$

such that $\mathbb{E} = \mathbb{E}_{\infty}$ is an E_{∞} -operad,

- ► The blackboard letter A denotes the associative operad (in sets, dg-modules, spaces, ...) and C denotes the commutative operad.
- An A_∞-operad: is an operad K together with an operad weak-equivalence K ~→ A.
- An E_∞-operad: is an operad E together with an operad weak-equivalence E ~→ C.
- An E_n-operad E_n (1 ≤ n ≤ ∞) is a structure intermediate between A_∞-operads (n = 1) and E_∞-operads (n = ∞). Most examples of E_n-operads come in nested sequences

$$\mathbb{E}_1 \hookrightarrow \mathbb{E}_2 \hookrightarrow \cdots \hookrightarrow \mathbb{E}_n \hookrightarrow \cdots \hookrightarrow \operatorname{colim}_n \mathbb{E}_n = \mathbb{E}_{\infty}$$

such that $\mathbb{E} = \mathbb{E}_{\infty}$ is an E_{∞} -operad, but we have no simple intrinsic characterization of the notion of an E_n -operad when $1 < n < \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$ represents the associative operad in sets.

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$ represents the associative operad in sets. The associated category of algebras in sets is the category of associative monoids.

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$ represents the associative operad in sets. The associated category of algebras in sets is the category of associative monoids.

Identify a permutation $w \in \Sigma_r$ to a sequence $w = (w_1, \ldots, w_r)$.

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$ represents the associative operad in sets. The associated category of algebras in sets is the category of associative monoids.

Identify a permutation $w \in \Sigma_r$ to a sequence $w = (w_1, \ldots, w_r)$.

The symmetric group act by left translations, this amounts to:

$$s \cdot w = (s(w_1), \ldots, s(w_r)).$$

The composition structure

$$\Sigma_r \times \Sigma_s \xrightarrow{\circ_e} \Sigma_{r+s-1}$$

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$ represents the associative operad in sets. The associated category of algebras in sets is the category of associative monoids.

Identify a permutation $w \in \Sigma_r$ to a sequence $w = (w_1, \ldots, w_r)$.

The symmetric group act by left translations, this amounts to:

$$s \cdot w = (s(w_1), \ldots, s(w_r)).$$

The composition structure

$$\Sigma_r \times \Sigma_s \xrightarrow{\circ_e} \Sigma_{r+s-1}$$

is given by a natural substitution process:

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$ represents the associative operad in sets. The associated category of algebras in sets is the category of associative monoids.

Identify a permutation $w \in \Sigma_r$ to a sequence $w = (w_1, \ldots, w_r)$.

The symmetric group act by left translations, this amounts to:

$$s \cdot w = (s(w_1), \ldots, s(w_r)).$$

The composition structure

$$\Sigma_r \times \Sigma_s \xrightarrow{\circ_e} \Sigma_{r+s-1}$$

is given by a natural substitution process:

$$(u_1, \dots, \underbrace{u_i}_{=e}, \dots, u_s) \circ_e (v_1, \dots, v_t)$$
$$\mapsto (u_1, \dots, v_1, \dots, v_t, \dots, u_s)$$
$$+ \text{ index shift.}$$

The collection of symmetric groups $\{\Sigma_r\}_{r\in\mathbb{N}}$ represents the associative operad in sets. The associated category of algebras in sets is the category of associative monoids.

Identify a permutation $w \in \Sigma_r$ to a sequence $w = (w_1, \ldots, w_r)$.

The symmetric group act by left translations, this amounts to:

$$s \cdot w = (s(w_1), \ldots, s(w_r)).$$

The composition structure

$$\Sigma_r \times \Sigma_s \xrightarrow{\circ_e} \Sigma_{r+s-1}$$

is given by a natural substitution process:

$$(u_1, \dots, \underbrace{u_i}_{=e}, \dots, u_s) \circ_e (v_1, \dots, v_t)$$
$$\mapsto (u_1, \dots, v_1, \dots, v_t, \dots, u_s)$$
$$+ \text{ index shift.}$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

The simplicial Barratt-Eccles operad \mathbb{W} is formed by the simplicial sets $\mathbb{W}(r) = E\Sigma_r$

The simplicial Barratt-Eccles operad \mathbb{W} is formed by the simplicial sets $\mathbb{W}(r) = E\Sigma_r$ such that:

$$\mathbb{W}(r)_d = \{(w_0,\ldots,w_d), w_i \in \Sigma_r\}.$$

The simplicial Barratt-Eccles operad \mathbb{W} is formed by the simplicial sets $\mathbb{W}(r) = E\Sigma_r$ such that:

$$\mathbb{W}(r)_d = \{(w_0,\ldots,w_d), \ w_i \in \Sigma_r\}.$$

Faces d_i : W(r)_d → W(r)_{d-1} are given by the ommission of components

The simplicial Barratt-Eccles operad \mathbb{W} is formed by the simplicial sets $\mathbb{W}(r) = E\Sigma_r$ such that:

$$\mathbb{W}(r)_d = \{(w_0,\ldots,w_d), w_i \in \Sigma_r\}.$$

Faces d_i : W(r)_d → W(r)_{d-1} are given by the ommission of components

$$d_i(w_0,\ldots,w_d)=(w_0,\ldots,\widehat{w_i},\ldots,w_d).$$

The simplicial Barratt-Eccles operad \mathbb{W} is formed by the simplicial sets $\mathbb{W}(r) = E\Sigma_r$ such that:

$$\mathbb{W}(r)_d = \{(w_0,\ldots,w_d), w_i \in \Sigma_r\}.$$

Faces d_i : W(r)_d → W(r)_{d-1} are given by the ommission of components

$$d_i(w_0,\ldots,w_d)=(w_0,\ldots,\widehat{w_i},\ldots,w_d).$$

Degeneracies s_j : W(r)_d → W(r)_{d+1} are given by the repetition of components

The simplicial Barratt-Eccles operad \mathbb{W} is formed by the simplicial sets $\mathbb{W}(r) = E\Sigma_r$ such that:

$$\mathbb{W}(r)_d = \{(w_0,\ldots,w_d), w_i \in \Sigma_r\}.$$

Faces d_i : W(r)_d → W(r)_{d-1} are given by the ommission of components

$$d_i(w_0,\ldots,w_d)=(w_0,\ldots,\widehat{w_i},\ldots,w_d).$$

Degeneracies s_j : W(r)_d → W(r)_{d+1} are given by the repetition of components

$$s_j(w_0,\ldots,w_d) = (w_0,\ldots,w_j,w_j,\ldots,w_d).$$

• The symmetric group Σ_r operates diagonally on $\mathbb{W}(r)$:

• The symmetric group Σ_r operates diagonally on $\mathbb{W}(r)$:

$$s \cdot (w_0, \ldots, w_d) = (s \cdot w_0, \ldots, s \cdot w_d).$$

• The symmetric group Σ_r operates diagonally on $\mathbb{W}(r)$:

$$s \cdot (w_0, \ldots, w_d) = (s \cdot w_0, \ldots, s \cdot w_d).$$

The composition structure

$$\mathbb{W}(r) imes \mathbb{W}(s) \xrightarrow{\circ_e} \mathbb{W}(r+s-1)$$

• The symmetric group Σ_r operates diagonally on $\mathbb{W}(r)$:

$$s \cdot (w_0, \ldots, w_d) = (s \cdot w_0, \ldots, s \cdot w_d).$$

The composition structure

$$\mathbb{W}(r) \times \mathbb{W}(s) \xrightarrow{\circ_e} \mathbb{W}(r+s-1)$$

is the componentwise extension of the composition structure of permutations:

$$(u_0,\ldots,u_d)\circ_e(v_0,\ldots,v_d)=(u_0\circ_e v_0,\ldots,u_d\circ_e v_d).$$

• The symmetric group Σ_r operates diagonally on $\mathbb{W}(r)$:

$$s \cdot (w_0, \ldots, w_d) = (s \cdot w_0, \ldots, s \cdot w_d).$$

The composition structure

$$\mathbb{W}(r) \times \mathbb{W}(s) \xrightarrow{\circ_e} \mathbb{W}(r+s-1)$$

is the componentwise extension of the composition structure of permutations:

$$(u_0,\ldots,u_d)\circ_e(v_0,\ldots,v_d)=(u_0\circ_e v_0,\ldots,u_d\circ_e v_d).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The associative operad in sets is identified with the 0-skeleton of $\ensuremath{\mathbb{W}}$

• The symmetric group Σ_r operates diagonally on $\mathbb{W}(r)$:

$$s \cdot (w_0, \ldots, w_d) = (s \cdot w_0, \ldots, s \cdot w_d).$$

The composition structure

$$\mathbb{W}(r) \times \mathbb{W}(s) \xrightarrow{\circ_e} \mathbb{W}(r+s-1)$$

is the componentwise extension of the composition structure of permutations:

$$(u_0,\ldots,u_d)\circ_e(v_0,\ldots,v_d)=(u_0\circ_e v_0,\ldots,u_d\circ_e v_d).$$

The associative operad in sets is identified with the 0-skeleton of $\mathbb W$ so that $\mathbb W$ fits in a factorization

in the category of simplicial operads.

For a pointed space X, we set:

$$S_*(\mathbb{W},X) = \prod_{r\geq 0} \mathbb{W}(r) imes X^{(r)} / \equiv,$$

For a pointed space X, we set:

$$S_*(\mathbb{W},X) = \prod_{r\geq 0} \mathbb{W}(r) \times X^{(r)} / \equiv,$$

where the coproduct is divided out by the action of permutations

$$(s \cdot \underline{w})(x_1, \ldots, x_r) = \underline{w}(x_{s(1)}, \ldots, x_{s(r)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

For a pointed space X, we set:

$$S_*(\mathbb{W},X) = \prod_{r\geq 0} \mathbb{W}(r) \times X^{(r)} / \equiv,$$

where the coproduct is divided out by the action of permutations

$$(s \cdot \underline{w})(x_1, \ldots, x_r) = \underline{w}(x_{s(1)}, \ldots, x_{s(r)})$$

and by reduction relations

$$\underline{w}(x_1,\ldots,*,\ldots,x_r) = (\underline{w} \circ_i *)(x_1,\ldots,\widehat{x_i},\ldots,x_r)$$

For a pointed space X, we set:

$$S_*(\mathbb{W},X) = \prod_{r\geq 0} \mathbb{W}(r) \times X^{(r)} / \equiv,$$

where the coproduct is divided out by the action of permutations

$$(s \cdot \underline{w})(x_1, \ldots, x_r) = \underline{w}(x_{s(1)}, \ldots, x_{s(r)})$$

and by reduction relations

$$\underline{w}(x_1,\ldots,*,\ldots,x_r) = (\underline{w} \circ_i *)(x_1,\ldots,\widehat{x_i},\ldots,x_r)$$

when we have $x_i = *$, the base point of X.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Theorem (Barratt-Eccles):

1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected,

Theorem (Barratt-Eccles):

1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected, to a group completion of $S_*(\mathbb{W}, X)$ in general.

Theorem (Barratt-Eccles):

1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected, to a group completion of $S_*(\mathbb{W}, X)$ in general.

2. Recognition: Any space X equipped with $\mathbb{W} \bigcirc X$ is weakly-equivalent to an infinite loop space $\Omega^{\infty} Y$

Theorem (Barratt-Eccles):

- 1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected, to a group completion of $S_*(\mathbb{W}, X)$ in general.
- 2. Recognition: Any space X equipped with $\mathbb{W} \circlearrowleft X$ is weakly-equivalent to an infinite loop space $\Omega^{\infty} Y$ up to group completion.

Theorem (Barratt-Eccles):

- 1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected, to a group completion of $S_*(\mathbb{W}, X)$ in general.
- 2. Recognition: Any space X equipped with $\mathbb{W} \circlearrowleft X$ is weakly-equivalent to an infinite loop space $\Omega^{\infty} Y$ up to group completion.

Applications:

1. For $X = S^0$,

Theorem (Barratt-Eccles):

- 1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected, to a group completion of $S_*(\mathbb{W}, X)$ in general.
- 2. Recognition: Any space X equipped with $\mathbb{W} \circlearrowleft X$ is weakly-equivalent to an infinite loop space $\Omega^{\infty} Y$ up to group completion.

Applications:

1. For $X = S^0$, the approximation theorem gives that $\Omega^{\infty}S^{\infty}$ is a group completion of $\prod_{r \in \mathbb{N}} B\Sigma_r$.

Theorem (Barratt-Eccles):

- 1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected, to a group completion of $S_*(\mathbb{W}, X)$ in general.
- 2. Recognition: Any space X equipped with $\mathbb{W} \circlearrowleft X$ is weakly-equivalent to an infinite loop space $\Omega^{\infty} Y$ up to group completion.

Applications:

1. For $X = S^0$, the approximation theorem gives that $\Omega^{\infty}S^{\infty}$ is a group completion of $\prod_{r \in \mathbb{N}} B\Sigma_r$.

2. Let $(\mathcal{M},\otimes,1)$ be a symmetric monoidal category. The classifying space $B \mathcal{M}$

Theorem (Barratt-Eccles):

- 1. Approximation: The space $\Omega^{\infty}\Sigma^{\infty}X$ is weakly equivalent to $S_*(\mathbb{W}, X)$ when X is connected, to a group completion of $S_*(\mathbb{W}, X)$ in general.
- 2. Recognition: Any space X equipped with $\mathbb{W} \circlearrowleft X$ is weakly-equivalent to an infinite loop space $\Omega^{\infty} Y$ up to group completion.

Applications:

- 1. For $X = S^0$, the approximation theorem gives that $\Omega^{\infty}S^{\infty}$ is a group completion of $\prod_{r \in \mathbb{N}} B\Sigma_r$.
- 2. Let $(\mathcal{M}, \otimes, 1)$ be a symmetric monoidal category. The classifying space $B \mathcal{M}$ inherits an action of \mathbb{W} and hence forms an infinite loop space by the recognition theorem.

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$.

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$?

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$? Set (J.H. Smith)

$$\mathbb{W}_n(r) = \{\underline{w} \text{ such that } \underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2)\}$$

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$? Set (J.H. Smith)

$$\mathbb{W}_n(r) = \{ \underline{w} ext{ such that } \underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2) \}$$

For a permutation $w \in \Sigma_r$, the restriction $w|_{ij}$ is the permutation of (i, j) formed by the occurences of (i, j) in $w = (w_1, \ldots, w_r)$.

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$? Set (J.H. Smith)

$$\mathbb{W}_n(r) = \{ \underline{w} \text{ such that } \underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2) \}$$

For a permutation $w \in \Sigma_r$, the restriction $w|_{ij}$ is the permutation of (i,j) formed by the occurences of (i,j) in $w = (w_1, \ldots, w_r)$. For a simplex $\underline{w} \in \mathbb{W}(r)$, we have $\underline{w}|_{ij} = (w_0|_{ij}, \ldots, w_d|_{ij})$

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$? Set (J.H. Smith)

$$\mathbb{W}_n(r) = \{ \underline{w} \text{ such that } \underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2) \}$$

For a permutation $w \in \Sigma_r$, the restriction $w|_{ij}$ is the permutation of (i, j) formed by the occurences of (i, j) in $w = (w_1, \dots, w_r)$. For a simplex $\underline{w} \in \mathbb{W}(r)$, we have $\underline{w}|_{ij} = (w_0|_{ij}, \dots, w_d|_{ij})$ and $\underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2)$

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$? Set (J.H. Smith)

$$\mathbb{W}_n(r) = \{ \underline{w} \text{ such that } \underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2) \}$$

For a permutation $w \in \Sigma_r$, the restriction $w|_{ij}$ is the permutation of (i, j) formed by the occurences of (i, j) in $w = (w_1, \ldots, w_r)$. For a simplex $\underline{w} \in \mathbb{W}(r)$, we have $\underline{w}|_{ij} = (w_0|_{ij}, \ldots, w_d|_{ij})$ and $\underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2)$ if the sequence $(w_0|_{ij}, \ldots, w_d|_{ij})$ has no more than n-1 variations.

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$? Set (J.H. Smith)

$$\mathbb{W}_n(r) = \{ \underline{w} \text{ such that } \underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2) \}$$

For a permutation $w \in \Sigma_r$, the restriction $w|_{ij}$ is the permutation of (i, j) formed by the occurences of (i, j) in $w = (w_1, \ldots, w_r)$. For a simplex $\underline{w} \in \mathbb{W}(r)$, we have $\underline{w}|_{ij} = (w_0|_{ij}, \ldots, w_d|_{ij})$ and $\underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2)$ if the sequence $(w_0|_{ij}, \ldots, w_d|_{ij})$ has no more than n-1 variations.

From this definition, we see that the layer \mathbb{W}_1 is reduced to the vertices of $\mathbb{W},$

Problem: This gives a simplicial model of an E_{∞} -operad $\mathbb{W} = \mathbb{W}_{\infty}$. What about simplicial models of E_n -operads when $1 < n < \infty$? Set (J.H. Smith)

$$\mathbb{W}_n(r) = \{ \underline{w} \text{ such that } \underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2) \}$$

For a permutation $w \in \Sigma_r$, the restriction $w|_{ij}$ is the permutation of (i, j) formed by the occurences of (i, j) in $w = (w_1, \ldots, w_r)$. For a simplex $\underline{w} \in \mathbb{W}(r)$, we have $\underline{w}|_{ij} = (w_0|_{ij}, \ldots, w_d|_{ij})$ and $\underline{w}|_{ij} \in sk_{n-1} \mathbb{W}(2)$ if the sequence $(w_0|_{ij}, \ldots, w_d|_{ij})$ has no more than n-1 variations.

From this definition, we see that the layer \mathbb{W}_1 is reduced to the vertices of \mathbb{W} , and we obtain a nested sequence such that:

$$\mathbb{W}_1 \hookrightarrow \mathbb{W}_2 \hookrightarrow \cdots \hookrightarrow \mathbb{W}_n \hookrightarrow \cdots \hookrightarrow \operatorname{colim}_n \mathbb{W}_n = \mathbb{W}.$$

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$.

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor):

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor): The free group $F(X) = S_*(\mathbb{W}_1, X)_{gp}^{\wedge}$ is weakly-equivalent to $\Omega \Sigma X$.

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor): The free group $F(X) = S_*(\mathbb{W}_1, X)_{gp}^{\wedge}$ is weakly-equivalent to $\Omega \Sigma X$. For n > 1:

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor): The free group $F(X) = S_*(\mathbb{W}_1, X)_{gp}^{\wedge}$ is weakly-equivalent to $\Omega \Sigma X$. For n > 1:

Theorem (J.H. Smith): We have a chain of weak-equivalences

$$S_*(\mathbb{W}_n, X)^{\wedge}_{gp} \xleftarrow{\sim} \cdot \xrightarrow{\sim} \Omega S_*(\mathbb{W}_{n-1}, \Sigma X)^{\wedge}_{gp}$$

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor): The free group $F(X) = S_*(\mathbb{W}_1, X)^{\wedge}_{gp}$ is weakly-equivalent to $\Omega \Sigma X$. For n > 1:

Theorem (J.H. Smith): We have a chain of weak-equivalences

$$S_*(\mathbb{W}_n, X)_{gp}^{\wedge} \xleftarrow{\sim} \Omega S_*(\mathbb{W}_{n-1}, \Sigma X)_{gp}^{\wedge}$$

and hence $S_*(\mathbb{W}_n, X)_{gp}^{\wedge}$ is weakly-equivalent to $\Omega^n \Sigma^n X$.

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor): The free group $F(X) = S_*(\mathbb{W}_1, X)_{gp}^{\wedge}$ is weakly-equivalent to $\Omega \Sigma X$. For n > 1:

Theorem (J.H. Smith): We have a chain of weak-equivalences

$$S_*(\mathbb{W}_n, X)_{gp}^{\wedge} \xleftarrow{\sim} \Omega S_*(\mathbb{W}_{n-1}, \Sigma X)_{gp}^{\wedge}$$

and hence $S_*(\mathbb{W}_n, X)_{gp}^{\wedge}$ is weakly-equivalent to $\Omega^n \Sigma^n X$. Moreover, the inclusions $\mathbb{W}_{n-1} \hookrightarrow \mathbb{W}_n$

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor): The free group $F(X) = S_*(\mathbb{W}_1, X)^{\wedge}_{gp}$ is weakly-equivalent to $\Omega \Sigma X$. For n > 1:

Theorem (J.H. Smith): We have a chain of weak-equivalences

$$S_*(\mathbb{W}_n, X)_{gp}^{\wedge} \xleftarrow{\sim} \Omega S_*(\mathbb{W}_{n-1}, \Sigma X)_{gp}^{\wedge}$$

and hence $S_*(\mathbb{W}_n, X)^{\wedge}_{gp}$ is weakly-equivalent to $\Omega^n \Sigma^n X$. Moreover, the inclusions $\mathbb{W}_{n-1} \hookrightarrow \mathbb{W}_n$ induce morphisms $S_*(\mathbb{W}_{n-1}, X)^{\wedge}_{gp} \to S_*(\mathbb{W}_n, X)^{\wedge}_{gp}$

Define $S_*(\mathbb{W}_n, X)$ by the same construction as $S_*(\mathbb{W}, X)$. For n = 1, the functor $S_*(\mathbb{W}_1, X)$ is identified with the free monoid on X, and:

Theorem (J. Milnor): The free group $F(X) = S_*(\mathbb{W}_1, X)^{\wedge}_{gp}$ is weakly-equivalent to $\Omega \Sigma X$. For n > 1:

Theorem (J.H. Smith): We have a chain of weak-equivalences

$$S_*(\mathbb{W}_n, X)^{\wedge}_{gp} \xleftarrow{\sim} \cdot \xrightarrow{\sim} \Omega S_*(\mathbb{W}_{n-1}, \Sigma X)^{\wedge}_{gp}$$

and hence $S_*(\mathbb{W}_n, X)^{\wedge}_{gp}$ is weakly-equivalent to $\Omega^n \Sigma^n X$. Moreover, the inclusions $\mathbb{W}_{n-1} \hookrightarrow \mathbb{W}_n$ induce morphisms $S_*(\mathbb{W}_{n-1}, X)^{\wedge}_{gp} \to S_*(\mathbb{W}_n, X)^{\wedge}_{gp}$ that corresponds to the standard map $\Omega^{n-1}\Sigma^{n-1}X \to \Omega^n\Sigma^n X$.

Observation: Each \mathbb{W}_n forms a suboperad of \mathbb{W} .

Observation: Each W_n forms a suboperad of W. **Theorem (C. Berger):** When we take topological realizations, we obtain a nested sequence of topological operads

 $|\mathbb{W}_1| \hookrightarrow |\mathbb{W}_2| \hookrightarrow \cdots \hookrightarrow |\mathbb{W}_n| \hookrightarrow \cdots$

Observation: Each W_n forms a suboperad of W. **Theorem (C. Berger):** When we take topological realizations, we obtain a nested sequence of topological operads

$$|\mathbb{W}_1| \hookrightarrow |\mathbb{W}_2| \hookrightarrow \cdots \hookrightarrow |\mathbb{W}_n| \hookrightarrow \cdots$$

connected to the nested sequence of little cubes operads

$$\mathbb{C}_1 \hookrightarrow \mathbb{C}_2 \hookrightarrow \cdots \hookrightarrow \mathbb{C}_n \hookrightarrow \cdots$$

Observation: Each W_n forms a suboperad of W. **Theorem (C. Berger):** When we take topological realizations, we obtain a nested sequence of topological operads

 $|\mathbb{W}_1| \hookrightarrow |\mathbb{W}_2| \hookrightarrow \cdots \hookrightarrow |\mathbb{W}_n| \hookrightarrow \cdots$

connected to the nested sequence of little cubes operads

$$\mathbb{C}_1 \hookrightarrow \mathbb{C}_2 \hookrightarrow \cdots \hookrightarrow \mathbb{C}_n \hookrightarrow \cdots$$

by a chain of weak-equivalences of operads. Remark: P. May + C. Berger' theorems imply J. Smith's result.

Goal: Explain that E_n -operads give a good device to understand the degree of commutativity of a multiplicative structure in algebra.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Goal: Explain that E_n -operads give a good device to understand the degree of commutativity of a multiplicative structure in algebra. **Issue:** Understand the structure of cofibrant models of E_{∞} -operads.

Goal: Explain that E_n -operads give a good device to understand the degree of commutativity of a multiplicative structure in algebra. **Issue:** Understand the structure of cofibrant models of E_∞ -operads. In the A_∞ case, we have a good cofibrant model given by the

Stasheff operad. What about cases $n = 2, 3, \ldots, \infty$?