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23 April 2009



Prologue: Conventions and Recollections

I The blackboard letter A denotes the associative operad (in
sets, dg-modules, spaces, . . . ) and C denotes the
commutative operad.

I An A∞-operad: is an operad K together with an operad
weak-equivalence K ∼−→ A.

I An E∞-operad: is an operad E together with an operad
weak-equivalence E ∼−→ C.

I An En-operad En (1 ≤ n ≤ ∞) is a structure intermediate
between A∞-operads (n = 1) and E∞-operads (n =∞).
Most examples of En-operads come in nested sequences

E1 ↪→ E2 ↪→ · · · ↪→ En ↪→ · · · ↪→ colim
n

En = E∞

such that E = E∞ is an E∞-operad, but we have no simple
intrinsic characterization of the notion of an En-operad when
1 < n <∞.
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Prologue: the Barratt-Eccles operad
a simplicial model for En-operads

The collection of symmetric groups {Σr}r∈N represents the
associative operad in sets. The associated category of algebras in
sets is the category of associative monoids.
Identify a permutation w ∈ Σr to a sequence w = (w1, . . . ,wr ).

I The symmetric group act by left translations, this amounts to:

s · w = (s(w1), . . . , s(wr )).

I The composition structure

Σr × Σs
◦e−→ Σr+s−1

is given by a natural substitution process:

(u1, . . . , ui︸︷︷︸
=e

, . . . , us) ◦e (v1, . . . , vt)

7→ (u1, . . . , v1, . . . , vt , . . . , us)

+ index shift.
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Prologue: the Barratt-Eccles operad

The simplicial Barratt-Eccles operad W is formed by the simplicial
sets W(r) = EΣr such that:

W(r)d = {(w0, . . . ,wd), wi ∈ Σr}.

I Faces di : W(r)d →W(r)d−1 are given by the ommission of
components

di (w0, . . . ,wd) = (w0, . . . , ŵi , . . . ,wd).

I Degeneracies sj : W(r)d →W(r)d+1 are given by the
repetition of components

sj(w0, . . . ,wd) = (w0, . . . ,wj ,wj , . . . ,wd).
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I Degeneracies sj : W(r)d →W(r)d+1 are given by the
repetition of components

sj(w0, . . . ,wd) = (w0, . . . ,wj ,wj , . . . ,wd).



Prologue: the Barratt-Eccles operad

The simplicial Barratt-Eccles operad W is formed by the simplicial
sets W(r) = EΣr such that:

W(r)d = {(w0, . . . ,wd), wi ∈ Σr}.

I Faces di : W(r)d →W(r)d−1 are given by the ommission of
components

di (w0, . . . ,wd) = (w0, . . . , ŵi , . . . ,wd).
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Prologue: the Barratt-Eccles operad
I The symmetric group Σr operates diagonally on W(r):

s · (w0, . . . ,wd) = (s · w0, . . . , s · wd).

I The composition structure

W(r)×W(s)
◦e−→W(r + s − 1)

is the componentwise extension of the composition structure
of permutations:

(u0, . . . , ud) ◦e (v0, . . . , vd) = (u0 ◦e v0, . . . , ud ◦e vd).

The associative operad in sets is identified with the 0-skeleton
of W so that W fits in a factorization

A

  

α // C

W
∼

>>

in the category of simplicial operads.
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Prologue: the Barratt-Eccles operad

For a pointed space X , we set:

S∗(W,X ) =
∐
r≥0

W(r)× X (r)/ ≡,

where the coproduct is divided out by the action of permutations

(s · w)(x1, . . . , xr ) = w(xs(1), . . . , xs(r))

and by reduction relations

w(x1, . . . , ∗, . . . , xr ) = (w ◦i ∗)(x1, . . . , x̂i , . . . , xr )

when we have xi = ∗, the base point of X .
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Prologue: the Barratt-Eccles operad

Theorem (Barratt-Eccles):

1. Approximation: The space Ω∞Σ∞X is weakly equivalent to
S∗(W,X ) when X is connected,

to a group completion of
S∗(W,X ) in general.

2. Recognition: Any space X equipped with W 	 X is
weakly-equivalent to an infinite loop space Ω∞Y up to group
completion.

Applications:

1. For X = S0, the approximation theorem gives that Ω∞S∞ is
a group completion of

∐
r∈N BΣr .

2. Let (M,⊗, 1) be a symmetric monoidal category. The
classifying space BM inherits an action of W and hence
forms an infinite loop space by the recognition theorem.
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Prologue: the Barratt-Eccles operad

Problem: This gives a simplicial model of an E∞-operad
W = W∞.

What about simplicial models of En-operads when
1 < n <∞?
Set (J.H. Smith)

Wn(r) = {w such that w |ij ∈ skn−1 W(2)}

For a permutation w ∈ Σr , the restriction w |ij is the permutation
of (i , j) formed by the occurences of (i , j) in w = (w1, . . . ,wr ).
For a simplex w ∈W(r), we have w |ij = (w0|ij , . . . ,wd |ij) and
w |ij ∈ skn−1 W(2) if the sequence (w0|ij , . . . ,wd |ij) has no more
than n − 1 variations.
From this definition, we see that the layer W1 is reduced to the
vertices of W, and we obtain a nested sequence such that:

W1 ↪→W2 ↪→ · · · ↪→Wn ↪→ · · · ↪→ colim
n

Wn = W .
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Prologue: the Barratt-Eccles operad

Define S∗(Wn,X ) by the same construction as S∗(W,X ).

For
n = 1, the functor S∗(W1,X ) is identified with the free monoid on
X , and:
Theorem (J. Milnor): The free group F (X ) = S∗(W1,X )∧gp is
weakly-equivalent to ΩΣX.
For n > 1:
Theorem (J.H. Smith): We have a chain of weak-equivalences

S∗(Wn,X )∧gp
∼←− · ∼−→ ΩS∗(Wn−1,ΣX )∧gp

and hence S∗(Wn,X )∧gp is weakly-equivalent to ΩnΣnX. Moreover,
the inclusions Wn−1 ↪→Wn induce morphisms
S∗(Wn−1,X )∧gp → S∗(Wn,X )∧gp that corresponds to the standard
map Ωn−1Σn−1X → ΩnΣnX.
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Prologue: the Barratt-Eccles operad

Observation: Each Wn forms a suboperad of W.

Theorem (C. Berger): When we take topological realizations, we
obtain a nested sequence of topological operads

|W1 | ↪→ |W2 | ↪→ · · · ↪→ |Wn | ↪→ · · ·

connected to the nested sequence of little cubes operads

C1 ↪→ C2 ↪→ · · · ↪→ Cn ↪→ · · ·

by a chain of weak-equivalences of operads.
Remark: P. May + C. Berger’ theorems imply J. Smith’s result.
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Prologue: the Barratt-Eccles operad

Goal: Explain that En-operads give a good device to understand
the degree of commutativity of a multiplicative structure in algebra.

Issue: Understand the structure of cofibrant models of
E∞-operads.
In the A∞ case, we have a good cofibrant model given by the
Stasheff operad. What about cases n = 2, 3, . . . ,∞?
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