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Reminder
For a simplicial set
X ={Xn,di : Xo = Xo_1,5; 1 Xo = Xng1}

we form

Ng(X) = k{Xy}/degenerate simplices,
the normalized chain complex of X, and the dual complex

N*(X) = Homg i mod (Nx (X)), k).

For simplicial sets X and Y, we have a map

AW = N (X X Y) — No(X) @ No(Y)
defined by

AW(x x y) = x(0...m)®@y(m...n)
m=0
forany x x y € Xg X Yy.
Issue: this map AW is unital, associative, but not symmetric
though it becomes apparently symmetric in homology.
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