Higher Algebra via Rewriting of Trees

Bruno Vallette (Université Nice Sophia-Antipolis)

Meeting in honor of Pierre-Louis Curien (Venezia, September 10, 2013)

Algebra+Homotopy=Higher structures

- Operadic homotopical algebra
- 3 Rewriting method

Algebra+Homotopy=Higher structures

Operadic homotopical algebra Rewriting method Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

2 Operadic homotopical algebra

3 Rewriting method

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

• Algebraic structure: an associative product on A

$$u: \mathcal{A}^{\otimes 2} o \mathcal{A}, \quad ext{s.t.} \quad
u(
u(a,b),c) =
u(a,
u(b,c)) \;.$$

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

Isomorphic vector space:

$$i p = i d_A, \quad p i = i d_H.$$

• Transported structure: $\mu_2 := p \nu i^{\otimes 2} : H^{\otimes 2} \to H$

Bruno Vallette (Université Nice Sophia-Antipolis)

Higher Algebra via Rewriting of Trees

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

Homotopy equivalent space:

Deformation retract of chain complexes

$$h \stackrel{\sim}{\frown} (A, d_A) \xrightarrow[i]{p} (H, d_H)$$

$$\mathrm{id}_{A}-ip=d_{A}h+hd_{A}$$
.

= algebraic version of topological deformation

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

$$h \underbrace{\frown}_{i} (A, d_{A}) \underbrace{\xrightarrow{p}}_{i} (H, d_{H})$$

$$\mathrm{id}_{A}-ip=d_{A}h+hd_{A}$$
 .

• Transferred structure: $\mu_2 := p \nu i^{\otimes 2} : H^{\otimes 2} \to H$

Bruno Vallette (Université Nice Sophia-Antipolis)

Higher Algebra via Rewriting of Trees

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

• Idea: Introduce μ_3

• In Hom $(H^{\otimes 3}, H)$, it satisfies

$$\partial(\psi) = \psi - \psi$$

 $\implies \mu_3$ is a homotopy for the associativity relation of μ_2 .

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

• **Higher up:** in Hom $(H^{\otimes n}, H)$, we consider

• In Hom $(H^{\otimes n}, H)$, it satisfies

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

Definition (A_{∞} -algebra, Stasheff '63)

An A_{∞} -algebra is a chain complex $(H, d_H, \mu_2, \mu_3, ...)$ endowed with a family of multinear maps of degree $|\mu_n| = n - 2$ satisfying

Associative algebras ⊂ A_∞-algebras

Associative algebra = A_{∞} -algebra s.t. $\mu_n = 0$, for $n \ge 3$.

Theorem (HTT for A_{∞} -algebras, Kadeshvili '82)

For any deformation retract

$$h \bigcap^{p} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \quad \text{id}_A - ip = d_A h + h d_A$$

and any associative algebra structure on A, there exists an A_{∞} -algebra structure on H which is "homotopy equivalent".

Application: $A = (C^{\bullet}_{Sing}(X), \cup)$, transferred A_{∞} -algebra on $H^{\bullet}_{Sing}(X)$ = lifting of the higher Massey products.

Borromean rings : non-trivial linking

Mixing Algebra and Homotopy A_{∞} -algebras Homotopy transfer theorem

• Next goals:

♦ Understand conceptually why the notion A_{∞} -algebra.
 ♦
 ♦ Generalise the HTT to other types of algebras.

Dperad Homotopy theory for operads Koszul duality theory

2 Operadic homotopical algebra

3 Rewriting method

Algebra+Homotopy=Higher structures Operadic homotopical algebra Rewriting method Koszul duality theory

• Idea: Consider all the iterated compositions of operations of type \mathcal{P} modulo their relations.

• Compositions:

Definition (Operad)

A collection of operations \mathcal{P} with compositions $\{\circ_i\}$ is an operad (="Operations+Mon<u>ad</u>").

Operad Homotopy theory for operads Koszul duality theory

Rings ~ Operads

• Free operad: answers the universal property

• Notions: Ideal, Quotient Operad, etc.

• Example:
$$As = \mathcal{T}(\Upsilon) / (\Upsilon - \Upsilon)$$

Operad Homotopy theory for operads Koszul duality theory

Method:

Example:

Operad Homotopy theory for operads Koszul duality theory

Example:

$$(\mathcal{T}(\ref{eq:constraints}), d) \xrightarrow{\sim} As = \mathcal{T}(\Upsilon) / (\Upsilon - \Upsilon) = \{\Upsilon, \Upsilon, \Upsilon, \Upsilon, \ldots\}$$

• Arity 2/Dimension 0:

• Arity 3/Dimension 1:

Operad Homotopy theory for operads Koszul duality theory

$$\implies \left(\mathcal{T}(\mathbf{Y},\mathbf{Y},???),\mathbf{d}\right) \xrightarrow{\sim} \mathbf{As}$$

• Arity 4/Dimension 2:

Operad Homotopy theory for operads Koszul duality theory

$$\implies \left(\mathcal{T}(\mathbf{Y},\mathbf{Y},\mathbf{Y},\mathbf{Y},???),\mathbf{d}\right) \xrightarrow{\sim} \mathbf{As}$$

• Arity 5/Dimension 3:

• Arity n/Dimension n-2: add one generator.

Operad Homotopy theory for operads Koszul duality theory

$$A_{\infty} = \left(\mathcal{T}\left(Y, Y, Y, \cdots\right), d\right) \xrightarrow{\sim} As$$

Theorem (Resolution A_{∞})

With the boundary map

the operad A_{∞} is a quasi-free resolution of As.

 Step-by-step resolution: "Koszul-Tate resolution" (=operadic syzygies).

Operad Homotopy theory for operads Koszul duality theory

Koszul Duality Theory

• Extra data: Presentation of the operad

$$\mathcal{P} = \mathcal{T}(V)/(R)$$

with generators V and relations R.

• **Upshot:** creates infinitely many higher operations under a universal property

$$\mathcal{P}^{\mathsf{i}} := \mathcal{C}(V, R)$$
.

• Koszul operad: when this gives a quasi-free resolution

$$(\mathcal{T}(\mathcal{P}^{\mathfrak{i}}), d) \xrightarrow{\sim} \mathcal{P}$$

Rewriting method State of Art Further directions

2 Operadic homotopical algebra

Rewriting method

Rewriting method

Computational method to prove $\mathcal{P} = \mathcal{T}(V)/(R)$ is Koszul.

• **Dimension 0:** add a total order on the generators.

Relations \implies Rewriting rules

Rewriting method State of Art Further directions

Dimension 2:

Theorem (Hoffbeck, Dotsenko–Khoroshkin '10)

 \forall critical pairs confluent $\implies \mathcal{P}$ Koszul.

Proof.

Diamond Lemma, Gröbner bases for operads.

Rewriting method State of Art Further directions

Oriented Jacobi identity:

• Diamond for the operad Lie:

 \iff Zamolodchikov tetrahedron equation (Lie 2-algebras).

Rewriting method State of Art Further directions

State of Art

Inhomogneous Koszul duality theory:

Confluence \implies minimality of generators and maximality of relations.

• Reduction by filtration method:

see the book "Algebraic Operads" [Loday–Vallette '12]. (free at http://math.unice.fr/~brunov/Operads.pdf)

• Koszul duality for properads (props): [Vallette '03]

Rewriting method State of Art Further directions

For the next 60 years

- Main issue for the rewriting method for properads: find a "good" order graphs of any genus. (???????)
- Most exciting example: The properad

$$\textit{Frob}:=\mathcal{G}\left(Y,\; \textbf{h};\; Y \; - \; Y,\; \textbf{h} \; - \; \textbf{h},\; \textbf{h} \; - \; \textbf{h} \; \textbf{h} \; - \; \textbf{h} \; \textbf{h} \; - \; \textbf{h} \; \textbf{h} \; \textbf{h} \; - \; \textbf{h} \;$$

of Frobenius (bi)algebras. \implies TQFT, Poincaré duality, String topology, Symplectic geometry, Floer homology, etc.

• Relation Properads–Clones: [Pierre-Louis Curien '06]

Rewriting method State of Art Further directions

Joyeux Anniversaire, Pierre-Louis !

