

Worksheet 2

HOMOTOPY THEORY OF TOPOLOGICAL SPACES II

Exercise 1 (Homotopy invariance).

- (1) Is the property of being a cofibration a homotopy invariant notion: if $i:A \rightarrow X$ is a cofibration and if $j:A \rightarrow X$ a map homotopy equivalent to i, is j a cofibration?
- (2) Is the property of being a fibration a homotopy invariant notion: if $p: E \rightarrow B$ is a fibration and if $q: E \rightarrow B$ a map homotopy equivalent to p, is q a fibration?

Exercise 2 (Fibrations and cofibrations).

- (1) Show that cofibrations are stable under composition: if $i:A \rightarrow B$ and $j:B \rightarrow C$ are two cofibrations then $ji:A \rightarrow C$ is a cofibration.
- (2) Show that cofibrations are stable under coproduct: if $i:A\rightarrowtail X$ and $j:B\rightarrowtail Y$ are two cofibrations then $i\sqcup j:A\sqcup B\rightarrowtail X\sqcup Y$ is a cofibration.
- (3) Show that cofibrations are stable under pushout: if $i:A \rightarrow X$ is a cofibration then

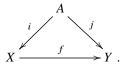
$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{i} & & \downarrow^{j} \\
X & \longrightarrow & X \sqcup B
\end{array}$$

- (4) Show the map $E \rightarrow \{*\}$ is a fibration.
- (5) Show that fibrations are stable under composition: if $p:C \twoheadrightarrow D$ and $q:D \twoheadrightarrow E$ are two fibrations then $qp:C \twoheadrightarrow E$ is a fibration.
- (6) Show that fibrations are stable under product: if $p:D \twoheadrightarrow A$ and $q:E \twoheadrightarrow B$ are two fibrations then $p \times q:D \times E \twoheadrightarrow A \times B$ is a fibration.
- (7) Show that fibrations are stable under pullback: if $p: E \rightarrow B$ is a fibration then

$$\begin{array}{cccc} X \times E & \longrightarrow & E \\ & \downarrow & & & \downarrow p \\ & \downarrow & & \downarrow & \downarrow \\ X & \stackrel{f}{\longrightarrow} & B \end{array}$$

the map $q: X \underset{f}{\times} E \twoheadrightarrow X$ is a fibration.

Exercise 3 (Uniqueness of factorisation). We work in the category Top^A of maps under A: its objects are maps $i:A\to X$ with domain A and its morphisms between two maps $i:A\to X$ and $j:A\to Y$ are maps $f:X\to Y$, such that fi=j:



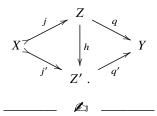
A homotopy $H: X \times I \to Y$ under A between two such maps $f \sim g$ is a homotopy such that every map H(-,t) lives in $\mathsf{Top}^A(i,j)$, for $t \in I$, i.e. H(-,t)i = j. This induces an equivalence relation called homotopy equivalence under A. We will admit the following (seminal) theorem.

THEOREM. Let $i: A \to X$ and $j: A \to Y$ be two cofibrations and let $f: X \to Y$ such that fi = j. If f is a homotopy equivalence, then f is a homotopy equivalence under A.

- (1) Show that if a map is a cofibration and a homotopy equivalence, then it is a deformation retract.
- (2) Show the following uniqueness statement for the factorisation of a map into the composite of a cofibration with a homotopy equivalence: let

$$X \rightarrow \xrightarrow{j} Z \xrightarrow{\sim q} Y$$
 and $X \rightarrow \xrightarrow{j'} Z' \xrightarrow{\sim q'} Y$

be two such factorisations, then there exists a homotopy equivalence $k:Z\stackrel{\sim}{\to} Z'$ such that the following diagram is commutative on the left-hand side and homotopy commutative on the right-hand side



Exercise 4 (Fibrations). Let $p: E \to B$ be a fibration with B path connected.

- (1) Show that p is surjective.
- (2) Show that two fibers $p^{-1}(b)$ and $p^{-1}(b')$, for $b, b' \in B$, are homotopy equivalent.

Exercise 5 (Hopf fibration).

- (1) Show that there exists a fiber bundle of the form $S^1 \longrightarrow S^{2n+1} \longrightarrow \mathbb{P}^n\mathbb{C}$.
- (2) What can you say about the homotopy groups $\pi_n(\mathbb{P}^n\mathbb{C})$, for $n \ge 0$, of the complex projective spaces?
- (3) Compute $\pi_2(S^2)$ and prove that $\pi_n(S^3) \cong \pi_n(S^2)$, for $n \ge 3$.

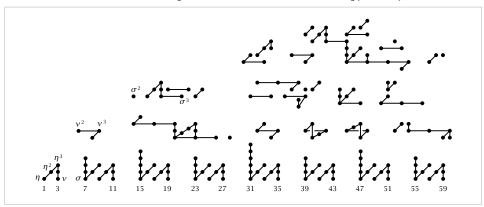
Exercise 6 (Real projective spaces).

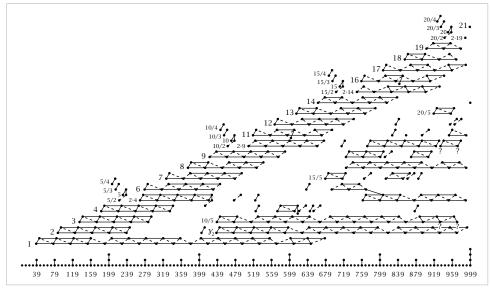
- (1) What can you say about $\pi_n(\mathbb{P}^1\mathbb{R})$, for $n \ge 0$?
- (2) Show that the embedding $\mathbb{P}^k \mathbb{R} \hookrightarrow \mathbb{P}^n \mathbb{R}$ does not admit a retraction when 0 < k < n.
- (3) Let $d \ge 2$. Compute the homotopy groups $\pi_n(\mathbb{P}^d\mathbb{R})$ for $0 \le n \le d$.
- (4) What can you say about $\pi_n(\mathbb{P}^d\mathbb{R})$, for $n \ge d+1$?

FIGURE 1. The first homotopy groups of spheres

		1, 5 1 1											
$\pi_i(S^n)$													
		i	→	_		_			0	0	10	11	10
		1	2	3	4	5	b	7	8	9	10	11	12
n	1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0
\downarrow	2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	4	0	0	0			\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2
	5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}
	6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}	\mathbb{Z}_2
	7	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0
	8	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0

FIGURE 2. Examples of tables in stable homotopy theory





Bruno Vallette: vallette@math.univ-paris13.fr .

Web page: www.math.univ-paris13.fr/~vallette/.