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Exercise 1 (Homotopy invariance).
(1) Is the property of being a cofibration a homotopy invariant notion: if i : A »» X is a
cofibration and if j : A — X a map homotopy equivalent to i, is j a cofibration?
(2) Is the property of being a fibration a homotopy invariant notion: if p : E - B is a fibration
and if ¢ : E — B a map homotopy equivalent to p, is ¢ a fibration?
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Exercise 2 (Fibrations and cofibrations).
(1) Show that cofibrations are stable under composition: if i : A >» B and j : B > C are two
cofibrations then ji : A > C is a cofibration.
(2) Show that cofibrations are stable under coproduct: if i : A > X and j : B »> Y are two
cofibrations then i Ll j : AU B » X LY is a cofibration.
(3) Show that cofibrations are stable under pushout: if i : A >» X is a cofibration then
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themap j: B> X ]uc B is a cofibration.

(4) Show the map E - {*} is a fibration.

(5) Show that fibrations are stable under composition: if p : C - D and g : D - E are two
fibrations then gp : C —» E is a fibration.

(6) Show that fibrations are stable under product: if p : D - A and g : E - B are two fibrations
then px g : DX E - A X B is a fibration.

(7) Show that fibrations are stable under pullback: if p : E - B is a fibration then
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the map g : X }( E —» X is a fibration.



Exercise 3 (Uniqueness of factorisation). We work in the category Top” of maps under A: its objects
are maps i : A — X with domain A and its morphisms between two mapsi: A— Xand j: A—>Y

are maps f : X — Y, such that fi = j:
A
f

X — =Y.

A homotopy H : X X I — Y under A between two such maps f ~ g is a homotopy such that every
map H(—,1?) lives in Top”(i, j), for t € I, i.e. H(—, )i = j. This induces an equivalence relation called
homotopy equivalence under A. We will admit the following (seminal) theorem.

THEOREM. Leti: A — X and j: A — Y be two cofibrations and let f : X — Y such that fi = j. If f isa
homotopy equivalence, then f is a homotopy equivalence under A.

(1) Show that if a map is a cofibration and a homotopy equivalence, then it is a deformation
retract.

(2) Show the following uniqueness statement for the factorisation of a map into the composite
of a cofibration with a homotopy equivalence: let

X>T>Z—;>Y and X>—,/>Z’;/>Y
q
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be two such factorisations, then there exists a homotopy equivalence k : Z — Z’ such that
the following diagram is commutative on the left-hand side and homotopy commutative on

the right-hand side
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Exercise 4 (Fibrations). Let p: E — B be a fibration with B path connected.

(1) Show that p is surjective.
(2) Show that two fibers p~1(b) and p~1(»’), for b, b’ € B, are homotopy equivalent.
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Exercise 5 (Hopf fibration).

(1) Show that there exists a fiber bundle of the form §! — §2"*1 — P C .

(2) What can you say about the homotopy groups 7,(P"C), for n > 0, of the complex projective
spaces?

(3) Compute 72(S?) and prove that 7,(S%) = 7, (S?), for n > 3.
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Exercise 6 (Real projective spaces).
(1) What can you say about m,(P'R), for n > 0?
(2) Show that the embedding P*R — PR does not admit a retraction when 0 < k < n.
(3) Let d > 2. Compute the homotopy groups 7,,(P“R) for 0 < n < d.
(4) What can you say about 1,(PIR), forn >d +17?
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FiGure 1. The first homotopy groups of spheres
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