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Symmetric functions and related algebras

A 9

A\: Symmetric functions.
dim A, = p(n) (partitions).

> : Non-commutative symmetric functions.
dim X, = 27~ 1 (compositions).

Q: Quasi-symmetric functions.
dim @, = 2"~ 1 (compositions).

S: Algebra of Malvenuto and Reutenauer.
dim S, = n! (permutations).

(All are graded Hopf algebras.)



Symmetric functions

Let Ap 1= Repg(Sn) be the Grothendieck ring of Spy.
Given V € A\, and W € A\, define

VoW =VWe Ay.

Let A i=B,,>0Nn. Given V € Ap and W € Ay, define

S
VW i =Ind 1% (VOW) € Apyy.

Theorem (Frobenius).
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A= 1 >4y > -->¥) (partition of n).

Terminology:

A\ = algebra of symmetric functions
x — external product
o = internal product



Solomon’'s descent algebra I

The descent set of a permutation o € S,, IS

Des(o) :={ie[n—1] | 0(i) > (i + 1)}.
For instance, Des(31542) = {1, 3,4}.

Given J C [n—1], let X;:= Y o € QSy.
Des(o)CJ

Let >, :=Span{X; | J C [n—1]}.

Theorem (Solomon, 1976).
> n IS a subalgebra of the group algebra QS,,.

Subsets of [n—1] «— compositions of n.
For instance, if n =09,

J=4{1,3,7} < a=1(1,2,4,2).
Write X, for X ;.



Solomon's descent algebra II

Theorem (Solomon, Garsia-Reutenauer).
Xa o Xg = YyrnclgXy where ¢z is the number of
matrices M with non-negative entries such that

Zrow(M) — «, Zcol(]w) = B, ||M|| — -

Example. a=(1,1,2), 3= (3,1).
The matrices M are

1 0 2|3 O 1 2|3 1 1 1,3

O 1 0|1 1 0 0|1 and O 0 1|1

1 1 2 1 1 2 1 1 2
Therefore,

X(1,1,2) °X(3,1) =2X2,1) T X1,1,1,1)



Solomon’'s descent algebra III

Given a = (aq1,...,ar) Fn, let
Sa 1= Sqq X +++ X Sqp, — Sn.
Theorem (Solomon, 1976). The map
én 1 (Tn,0) = (An,0), Xa > Ind2 (1)

IS a surjective morphism of algebras.

Let 2 = @nzozn and ¢ .= @n20¢n
Given (a1,...,a;) Ep and (bq1,...,by) F g define

X (agensa) * A (b1sesbp) T K (@b 1seby)
Then ¢ : (X,%) - (A, *) is a morphism of algebras.

Terminology:

> — algebra of non-commutative symmetric functions
x — external product
o = internal product

(Reutenauer, Gelfand—Krob—Lascoux—Leclerc—Retakh—
Thibon)



The algebra of permutations

Let S .= ®,,>00QSn. For p+q=n let

Sh(p,Q):{CESn:Cl <"'<Cp7 Cp—l—l <"'<Cp—|—q}°
Given o € §p and T € §¢ define

ocxT:= Y (o(oxT).
¢esh(p,q)

Theorem (Malvenuto-Reutenauer, 1993).
(S, =) is an algebra and (X, %) is a subalgebra.

A\

Internal and external products
everywhere.




One more step: endomorphisms

Let V be a vector space and T(V) = &,V its
tensor algebra.

S, acts on V®" by permuting the tensor factors
= QS, — End(V®"), S — End(T(V)).
Remark (Reutenauer).

Internal product in S < composition in End(T'(V)).
External product in § «— convolution in End(T'(V)).

Let H be a Hopf algebra. There are two products
in End(H): composition and convolution:

JH HoH 2 Hon
AN Al |m
H—-H HoH

T (V) is a Hopf algebra with A(v) = 1v + v®1,

Alrvm) = 2 vy U@ o)
CESh(pa)



Going back: End(T(V)) DS D x.

GL(V) acts on V and diagonally on V®n,

Theorem (Schur—Weyl duality).

This implies that S is closed under
composition and convolution products.

Let L(V) be the smallest subspace of T'(V)
containing V and closed under [x,y] := 2y — yx.

T(V) is the free associative algebra on V,
L(V) is the free Lie algebra on V.

Theorem (Garsia-Reutenauer).
Let ¢ € S. Then ¢ € 2 if and only if for every
Pi,...,P. € L(V), the subspace

Span{PT(l) . PT(k) . T € Sk}

IS invariant under .

This implies 2= is closed under
composition and convolution products.




The smash product

Let H be a Hopf algebra. There is another associa-
tive product in End(H): the smash product.

H®3 cyclic H®3

H®2 H®2
f®1 1®g
H®2 H®2
x /

H f#g9 H

Theorem (A.-Ferrer-Moreira, 2004).
The smash product of End(7T'(V')) restricts to § and
to 2 and descends to A:

> S¢ End(T(V))

A

The same holds for a fourth product in End(H),
Drinfeld’s product.
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Proofs of closure of > under smash product

1. Via characterization in terms of action on Lie
monomials.

2. Via description of descent classes as equivalence
classes.

3. Via explicit matrix rule.

4. Via larger algebra of Solomon-Tits.

For the internal product of >, (descent algebra),
the corresponding proofs are due to:

1. Garsia-Reutenauer.

2. Blessenohl-Laue.

3. Solomon, Garsia-Reutenauer.

4. Bidigare, K. Brown.
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Remarks on the smash product

Let G be a group acting by automorphisms on a
group N. The semidirect productis N xG = N X G
with

(m, f) - (n,g) == (m(f-n), fg).

Let H be a Hopf algebra *“acting by automorphisms”
on an algebra A. The smash product is A#H .=
A ® H with

(a®f) - (b®g) =D a(f1-b)® fag.

H acts on itself by translation and also by conjuga-
tion, hence also on H*. Get two products on H*®Q H .

These products exist on (the larger space) End(H).
Translation smash product — our smash product.
Conjugation smash product — Drinfeld product

(if H is cocommutative).
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Interpolation

Let H be a graded connected Hopf algebra,
f € End(Hp), g € End(Hyg). Then

p+q
f#9 € @D End(Hyn).
n=max(p,q)

Moreover,

(f#9)p+q=f*g and, if p=gq, (f#g)p=gof.

Corollary. The smash product interpolates between
the internal and external products of &, > and A.

Theorem. The smash product on S:

oHT= ) Co((aon)x 1n_p) 0B2n—p—q.p+q—n°(1n—gXT) .
max(p,q)<n<p+q

neSh(p+qg—n,n—q)
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The smash product on >

T heorem.
Let « = (a1,...,a) Ep, 8= (b1,...,by) Fq. Then

Xo#tXp =) c\pXn
JEn

where czéﬁ is the number of matrices M € My 1 p41(N)
such that:

O |mo1---mop|n—gq
mio | M11-- Mg | b1

mpo | Mp1cMpg | bp
n—p al...a'k

and v = (m01,...,m0k,...,mhk).
Remark. When n = p = ¢q this reduces to Garsia-

Reutenauer rule for Xq o Xg. When n = p 4 ¢ this
reduces to Reutenauer rule for X, * Xﬁ.
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The matrix rule

When n =p = q:

0 0---0 0
O|mi1---mik | b1
O | mp1---mpg | by
O a’l"'a’k

When n = p 4 q:

O |mop1---mog | P
m10 O ---0 b1
mho O A O bh

q aj---ag

An example:

O |mp1---mop | N—(q
mio | mi1---mip | 1

Mg | Mgl Mgp 1
n—p 1 ... 1
p+q
p q
Xan#Xan=_ 2 (7 ), ) et Xan.
n=max(p,q)
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The smash product of representations

Let max(p,q) <n <p-+ q. Define

Two embeddings:
An(p7Q)c_>SpXSCJ7 (O-ap77-)'_>(0-><pap><7-)7

An(p7Q)<_>Sn7 (O-apaT)'_)O-XpXT'

Sn Sp X Sq

N7

An(p,q)

When p = q = n:
Sn X Sn

\/

When n = p 4 q:

Sp+q Sp X Sq

N

Sp X Sq

16



The smash product of representations II

T heorem.
pt+q
_ Sh SpXSq
V#W = Z IndAn(p,q) ReSAn(p,q)(V dW).
n=max(p,q)

Remark. A,(p,p) = Sp and we recover
VoW =Resd (Vo W).

Aptq(p,q) = Sp x Sqg and we recover

VW =1Indg, o (VW)
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Solomon-Tits algebra

Let I,, be the Coxeter complex of S,,.
e [, IS a simplicial complex
e [, IS a monoid under

F oG := the face of Star(F') that is closest to G
e S, actson Iy, and o(FoG) =o(F) oo(G).

Theorem (Bidigare, 1997). =% 2 (QI;,)"n

The elements of [,, are set-compositions:

k
(A1,...,Ag) such that | | 4; =[n].
i=1
The embedding is

Xag,..ap) = 2 ACAL - Ap) DAl = ai}

(See also recent work by K.Brown.)
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The smash product on "= @®,,>0Ql.

Theorem (A.-Mahajan, Bergeron et al, Hivert, Patras-
Schocker).
The external product of > can be extended to I.

Theorem (A.-Ferrer-Moreira, 2004).
The smash product can be extended to [ as well.

Let max(p,q) <n <p+4+gq. An n-quasishuffle of p and
g is a map ¢ : [p] U[gq] — [n] such that Clipy and g

are increasing and (([p]) U {(lq]) = [n].
Let Sh,(p,q) be the set of quasishuffles.

Given A = (A]_a"'?Ak) = [p]v B = (Bla"'th) = [Q]r
define

A#B =
ptq
> (Il <D, ¢(An), -, (A ) o (Il \ ¢(al), C(BL); -, C(B) ).

n=max(p,q)
¢eShn(p,q)
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Smash coproduct

A 9

Internal and external coproducts
everywhere.

Let X = {z1,xp,...} be a countable set.
Recall A — Q[[X]].

Theorem (Grothendieck, Lascoux-Schiitzenberger,. . .).
The dual of the internal product on A is

Aq(F(X)) = FX xY).

The dual of the external product on A is

A(f(X)) = f(X+Y).
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The smash coproduct on quasi-symmetric functions

Let X = {z1,xp,...} be an alphabet.

For a = (aq,...,a;) En define
Mo(X) = % 2l 2l € QIIXI],
i< <ip,

On = Span{My | aFn}, Q= @ Q.

n>0
View Q = > * via <Ma,X/3> = 5a,ﬁ'

Theorem (Gessel, Reutenauer, Thibon et al).
The dual of the internal product on > is

Aq(F(X)) = F(X xY).

The dual of the external product on X is

Ac(f(X)) = F(X+Y).

Theorem (A.-Ferrer-Moreira, Ram).
The dual of the smash product on > is

As(FX)) = F(X+XY+Y),
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Formal group laws for alphabets

Let X = {z1,22,...}, Y = {y1,y2,...} be alphabets.

Define
(1) X+Y :=XUY with z; <y, Vi,j,

(2) X xY :={(x;,y;5) | i, > 1} with revlex order,

(3) X+ XY +Y :={(z,y;) | 1,5 2 0, (¢,5) = (0,0)}

with zg < x;, yo < Yj and revlex order.

Note X+ XY4+Y=(101+X)x(14+Y)-1.

The antipode of (9, A¢) is
Se(f(X)) = F(=X),

where

Mq(—=X) = (—1)k Z zi1x%2 ... g0k

11 12 (2

112> 20
Theorem The antipode of (Q, Ag) is

X
(F(X) = f(-15 %)

where
X

=X - X2+ X3 _X*4 ...
T+ X + +
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