The smash product of symmetric functions

Marcelo Aguiar Walter Ferrer Walter Moreira

Symmetric functions and related algebras

- Λ : Symmetric functions. dim $\Lambda_n = p(n)$ (partitions).
- Σ : Non-commutative symmetric functions. dim $\Sigma_n = 2^{n-1}$ (compositions).
- Q: Quasi-symmetric functions. dim $Q_n = 2^{n-1}$ (compositions).
- S: Algebra of Malvenuto and Reutenauer. dim $S_n = n!$ (permutations).

(All are graded Hopf algebras.)

Symmetric functions

Let $\Lambda_n := \text{Rep}_{\mathbb{Q}}(S_n)$ be the *Grothendieck ring* of S_n . Given $V \in \Lambda_n$ and $W \in \Lambda_n$, define

$$V \circ W := V \otimes W \in \Lambda_n$$
.

Let $\Lambda := \bigoplus_{n \geq 0} \Lambda_n$. Given $V \in \Lambda_p$ and $W \in \Lambda_q$, define

$$V * W := \operatorname{Ind}_{S_p \times S_q}^{S_p + q} (V \otimes W) \in \Lambda_{p+q}.$$

Theorem (Frobenius).

$$(\Lambda, *) \cong \varprojlim \mathbb{Q}[x_1, \dots, x_m]^{S_m}$$

via

$$V \mapsto \sum_{\lambda \vdash n} \frac{\chi_V(\lambda)}{z_\lambda} \sum_{i_1, \dots, i_k} x_{i_1}^{\ell_1} x_{i_2}^{\ell_2} \cdots x_{i_k}^{\ell_k},$$

 $\lambda = (\ell_1 \ge \ell_2 \ge \cdots \ge \ell_k)$ (partition of n).

Terminology:

 Λ = algebra of symmetric functions

* = external product

○ = internal product

Solomon's descent algebra I

The descent set of a permutation $\sigma \in S_n$ is

$$Des(\sigma) := \{i \in [n-1] \mid \sigma(i) > \sigma(i+1)\}.$$

For instance, $Des(31542) = \{1, 3, 4\}.$

Given
$$J \subseteq [n-1]$$
, let $X_J := \sum_{\mathsf{Des}(\sigma) \subseteq J} \sigma \in \mathbb{Q}S_n$.

Let
$$\Sigma_n := \operatorname{Span}\{X_J \mid J \subseteq [n-1]\}.$$

Theorem (Solomon, 1976).

 Σ_n is a subalgebra of the group algebra $\mathbb{Q}S_n$.

Subsets of $[n-1] \leftrightarrow$ compositions of n. For instance, if n = 9,

$$J = \{1, 3, 7\} \quad \leftrightarrow \quad \alpha = (1, 2, 4, 2).$$

Write X_{α} for X_{J} .

Solomon's descent algebra II

Theorem (Solomon, Garsia-Reutenauer).

 $X_{\alpha}\circ X_{\beta}=\sum_{\gamma\vdash n}c_{\alpha\beta}^{\gamma}X_{\gamma}$ where $c_{\alpha\beta}^{\gamma}$ is the number of matrices M with non-negative entries such that

$$\Sigma_{row}(M) = \alpha, \ \Sigma_{col}(M) = \beta, \ \|M\| = \gamma.$$

Example. $\alpha = (1, 1, 2), \beta = (3, 1).$

The matrices M are

Therefore,

$$X_{(1,1,2)} \circ X_{(3,1)} = 2X_{(1,2,1)} + X_{(1,1,1,1)}$$
.

Solomon's descent algebra III

Given $\alpha = (a_1, \ldots, a_k) \models n$, let

$$S_{\alpha} := S_{a_1} \times \cdots \times S_{a_k} \hookrightarrow S_n$$
.

Theorem (Solomon, 1976). The map

$$\phi_n: (\mathbf{\Sigma}_n, \circ) o (\mathbf{\Lambda}_n, \circ) \,, \quad X_{lpha} \mapsto \mathrm{Ind}_{S_{lpha}}^{S_n}(\mathbf{1})$$

is a surjective morphism of algebras.

Let $\Sigma := \bigoplus_{n \geq 0} \Sigma_n$ and $\phi := \bigoplus_{n \geq 0} \phi_n$.

Given $(a_1, \ldots, a_k) \vDash p$ and $(b_1, \ldots, b_h) \vDash q$ define

$$X_{(a_1,\ldots,a_k)} * X_{(b_1,\ldots,b_h)} := X_{(a_1,\ldots,a_k,b_1,\ldots,b_h)}.$$

Then $\phi:(\Sigma,*) \to (\Lambda,*)$ is a morphism of algebras.

Terminology:

 $\Sigma =$ algebra of non-commutative symmetric functions

- * = external product

(Reutenauer, Gelfand–Krob–Lascoux–Leclerc–Retakh–Thibon)

The algebra of permutations

Let $S := \bigoplus_{n \geq 0} \mathbb{Q} S_n$. For p + q = n let

$$Sh(p,q) = \{ \zeta \in S_n : \zeta_1 < \dots < \zeta_p, \ \zeta_{p+1} < \dots < \zeta_{p+q} \}.$$

Given $\sigma \in \mathcal{S}_p$ and $\tau \in \mathcal{S}_q$ define

$$\sigma * \tau := \sum_{\zeta \in \mathsf{Sh}(p,q)} \zeta \circ (\sigma \times \tau).$$

Theorem (Malvenuto-Reutenauer, 1993). (S,*) is an algebra and $(\Sigma,*)$ is a subalgebra.

Internal and external products everywhere.

One more step: endomorphisms

Let V be a vector space and $T(V) = \bigoplus_{n \geq 0} V^{\otimes n}$ its tensor algebra.

 S_n acts on $V^{\otimes n}$ by permuting the tensor factors

$$\Rightarrow \mathbb{Q}S_n \hookrightarrow \operatorname{End}(V^{\otimes n}), \quad \mathcal{S} \hookrightarrow \operatorname{End}(T(V)).$$

Remark (Reutenauer).

Internal product in $S \leftrightarrow \text{composition}$ in End(T(V)). External product in $S \leftrightarrow \text{convolution}$ in End(T(V)).

Let H be a Hopf algebra. There are two products in End(H): composition and *convolution*:

$$H \xrightarrow{g} H \qquad H \otimes H \xrightarrow{f \otimes g} H \otimes H$$

$$H \xrightarrow{f \circ g} H \qquad H \xrightarrow{f * g} H$$

T(V) is a Hopf algebra with $\Delta(v) = 1 \otimes v + v \otimes 1$,

$$\Delta(v_1 \dots v_n) = \sum_{\substack{p+q=n\\ \zeta \in Sh(p,q)}} v_{\zeta(1)} \dots v_{\zeta(p)} \otimes v_{\zeta(p+1)} \dots v_{\zeta(p+q)}.$$

Going back: $\operatorname{End}(T(V)) \supset S \supset \Sigma$.

GL(V) acts on V and diagonally on $V^{\otimes n}$.

Theorem (Schur–Weyl duality).

$$\mathbb{Q}S_n = \operatorname{End}_{GL(V)}(V^{\otimes n}).$$

This implies that \mathcal{S} is closed under composition and convolution products.

Let L(V) be the smallest subspace of T(V) containing V and closed under [x,y] := xy - yx.

T(V) is the free associative algebra on V, L(V) is the free Lie algebra on V.

Theorem (Garsia-Reutenauer).

Let $\varphi \in \mathcal{S}$. Then $\varphi \in \Sigma$ if and only if for every $P_1, \dots, P_k \in L(V)$, the subspace

$$\mathsf{Span}\{P_{\tau(1)}\cdots P_{\tau(k)}: \tau \in S_k\}$$

is invariant under φ .

This implies Σ is closed under composition and convolution products.

The smash product

Let H be a Hopf algebra. There is another associative product in End(H): the *smash* product.

Theorem (A.-Ferrer-Moreira, 2004).

The smash product of $\operatorname{End}(T(V))$ restricts to $\mathcal S$ and to Σ and descends to Λ :

The same holds for a fourth product in End(H), Drinfeld's product.

Proofs of closure of Σ under smash product

- Via characterization in terms of action on Lie monomials.
- Via description of descent classes as equivalence classes.
- 3. Via explicit matrix rule.
- 4. Via larger algebra of Solomon-Tits.

For the internal product of Σ_n (descent algebra), the corresponding proofs are due to:

- 1. Garsia-Reutenauer.
- 2. Blessenohl-Laue.
- 3. Solomon, Garsia-Reutenauer.
- 4. Bidigare, K. Brown.

Remarks on the smash product

Let G be a group acting by automorphisms on a group N. The semidirect product is $N\rtimes G:=N\times G$ with

$$(m,f)\cdot(n,g):=(m(f\cdot n),fg).$$

Let H be a Hopf algebra "acting by automorphisms" on an algebra A. The smash product is $A\#H:=A\otimes H$ with

$$(a \otimes f) \cdot (b \otimes g) := \sum a(f_1 \cdot b) \otimes f_2 g.$$

H acts on itself by translation and also by conjugation, hence also on H^* . Get two products on $H^* \otimes H$.

These products exist on (the larger space) End(H).

Translation smash product \rightarrow our smash product.

Conjugation smash product \rightarrow Drinfeld product (if H is cocommutative).

Interpolation

Let H be a graded connected Hopf algebra, $f \in \text{End}(H_p)$, $g \in \text{End}(H_q)$. Then

$$f \# g \in \bigoplus_{n=\max(p,q)}^{p+q} \operatorname{End}(H_n).$$

Moreover,

$$(f\#g)_{p+q} = f * g$$
 and, if $p = q$, $(f\#g)_p = g \circ f$.

Corollary. The smash product interpolates between the internal and external products of S, Σ and Λ .

Theorem. The smash product on S:

$$\sigma\#\tau = \sum_{\substack{\zeta \circ \left((\sigma \circ \eta) \times 1_{n-p}\right) \circ \beta_{2n-p-q,p+q-n} \circ (1_{n-q} \times \tau) \text{ .} \\ \max(p,q) \leq n \leq p+q \\ \zeta \in \mathsf{Sh}(p,n-p) \\ \eta \in \mathsf{Sh}(p+q-n,n-q)}$$

The smash product on Σ

Theorem.

Let
$$\alpha=(a_1,\dots,a_k)\vDash p$$
, $\beta=(b_1,\dots,b_h)\vDash q$. Then
$$X_\alpha\#X_\beta=\sum_{\substack{n\\\gamma\vDash n}}c_{\alpha\beta}^\gamma X_\gamma$$

where $c_{\alpha\beta}^{\gamma}$ is the number of matrices $M \in \mathcal{M}_{k+1,h+1}(\mathbb{N})$ such that:

0	$m_{ extsf{01}}\cdots$	m_{0k}	n-q
m_{10}	$m_{11}\cdots$	m_{1k}	b_1
:	:	:	:
$_m_{h0}$	$m_{h1}\cdots$	m_{hk}	b_h
n-p	$a_1 \cdots$	$\overline{a_k}$	

and
$$\gamma = (m_{01}, \dots, m_{0k}, \dots, m_{hk}).$$

Remark. When n=p=q this reduces to Garsia-Reutenauer rule for $X_{\alpha} \circ X_{\beta}$. When n=p+q this reduces to Reutenauer rule for $X_{\alpha} * X_{\beta}$.

The matrix rule

When n = p = q:

0	0 · · · 0	0
0	$m_{11}\cdots m_{1k}$	b_1
÷	i i	÷
0	$m_{h1}\cdots m_{hk}$	b_h
0	$a_1 \cdots a_k$	

When n = p + q:

0	$m_{01}\cdots m_{0k}$	p
$\overline{m_{10}}$	0 · · · 0	b_1
÷		:
m_{h0}	0 0	b_h
$\overline{}q$	$a_1 \cdots a_k$	

An example:

$$egin{array}{c|ccccc} 0 & m_{01} \cdots m_{0p} & n-q \ \hline m_{10} & m_{11} \cdots m_{1p} & 1 \ dots & dots & dots & dots \ m_{q0} & m_{q1} \cdots m_{qp} & 1 \ \hline n-p & 1 & \cdots & 1 \end{array}$$

$$X_{(1^p)} \# X_{(1^q)} = \sum_{n=\max(p,q)}^{p+q} {p \choose n-q} {q \choose n-p} (p+q-n)! X_{(1^n)}.$$

The smash product of representations

Let $\max(p,q) \le n \le p+q$. Define

$$\Delta_n(p,q) := S_{n-q} \times S_{p+q-n} \times S_{n-p}.$$

Two embeddings:

$$\Delta_n(p,q) \hookrightarrow S_p \times S_q, \quad (\sigma,\rho,\tau) \mapsto (\sigma \times \rho, \, \rho \times \tau),$$

 $\Delta_n(p,q) \hookrightarrow S_n, \quad (\sigma,\rho,\tau) \mapsto \sigma \times \rho \times \tau.$

When p = q = n:

When n = p + q:

$$S_{p+q}$$
 $S_{p} \times S_{q}$ $S_{p} \times S_{q}$

The smash product of representations II

Let
$$V \in \Lambda_p = \text{Rep}_{\mathbb{Q}}(S_p)$$
, $W \in \Lambda_q = \text{Rep}_{\mathbb{Q}}(S_q)$.

Then $V \otimes W \in \text{Rep}_{\mathbb{Q}}(S_p \times S_q)$.

Theorem.

$$V \# W = \sum_{n=\max(p,q)}^{p+q} \operatorname{Ind}_{\Delta_n(p,q)}^{S_n} \operatorname{Res}_{\Delta_n(p,q)}^{S_p \times S_q} (V \otimes W).$$

Remark. $\Delta_p(p,p) = S_p$ and we recover

$$V \circ W = \operatorname{Res}_{S_p}^{S_p \times S_p} (V \otimes W)$$
.

 $\Delta_{p+q}(p,q) = S_p \times S_q$ and we recover

$$V * W = \operatorname{Ind}_{S_p \times S_q}^{S_n}(V \otimes W)$$
.

Solomon-Tits algebra

Let Γ_n be the *Coxeter complex* of S_n .

- Γ_n is a simplicial complex
- Γ_n is a monoid under

 $F \circ G :=$ the face of Star(F) that is closest to G

• S_n acts on Γ_n and $\sigma(F \circ G) = \sigma(F) \circ \sigma(G)$.

Theorem (Bidigare, 1997). $\Sigma_n^{op} \cong (\mathbb{Q}\Gamma_n)^{S_n}$

The elements of Γ_n are set-compositions:

$$(A_1,\ldots,A_k)$$
 such that $\bigsqcup_{i=1}^k A_i = [n]$.

The embedding is

$$X_{(a_1,\ldots,a_k)} \mapsto \sum \{(A_1,\ldots,A_k) : |A_i| = a_i\}.$$

(See also recent work by K.Brown.)

The smash product on $\Gamma := \bigoplus_{n>0} \mathbb{Q}\Gamma_n$.

Theorem (A.-Mahajan, Bergeron et al, Hivert, Patras-Schocker).

The external product of Σ can be extended to Γ .

Theorem (A.-Ferrer-Moreira, 2004).

The smash product can be extended to Γ as well.

Let $\max(p,q) \leq n \leq p+q$. An n-quasishuffle of p and q is a map $\zeta: [p] \sqcup [q] \to [n]$ such that $\zeta|_{[p]}$ and $\zeta|_{[q]}$ are increasing and $\zeta([p]) \cup \zeta([q]) = [n]$.

Let $Sh_n(p,q)$ be the set of quasishuffles.

Given $\mathcal{A} = (A_1, \dots, A_k) \models [p]$, $\mathcal{B} = (B_1, \dots, B_h) \models [q]$, define

$$\mathcal{A}\#\mathcal{B} = p+q \\ \sum_{p=1}^{p+q} \left([n] \setminus \zeta([p]), \zeta(A_1), \dots, \zeta(A_k) \right) \circ \left([n] \setminus \zeta([q]), \zeta(B_1), \dots, \zeta(B_h) \right). \\ n=\max(p,q) \\ \zeta \in \mathsf{Sh}_n(p,q)$$

Smash coproduct

Internal and external coproducts everywhere.

Let $X = \{x_1, x_2, ...\}$ be a countable set. Recall $\Lambda \hookrightarrow \mathbb{Q}[[X]]$.

Theorem (Grothendieck, Lascoux-Schützenberger,...). The dual of the internal product on Λ is

$$\Delta_i(f(\mathbf{X})) = f(\mathbf{X} \times \mathbf{Y}).$$

The dual of the external product on Λ is

$$\Delta_e(f(\mathbf{X})) = f(\mathbf{X} + \mathbf{Y}).$$

The smash coproduct on quasi-symmetric functions

Let $X = \{x_1, x_2, \ldots\}$ be an *alphabet*.

For $\alpha = (a_1, \dots, a_k) \models n$ define

$$M_{\alpha}(\mathbf{X}) := \sum_{i_1 < \dots < i_k} x_{i_1}^{a_1} x_{i_2}^{a_2} \dots x_{i_k}^{a_k} \in \mathbb{Q}[[\mathbf{X}]],$$

$$Q_n := \operatorname{Span}\{M_\alpha \mid \alpha \vDash n\}, \ Q := \bigoplus_{n \geq 0} Q_n.$$

View $Q = \Sigma^*$ via $\langle M_{\alpha}, X_{\beta} \rangle = \delta_{\alpha,\beta}$.

Theorem (Gessel, Reutenauer, Thibon et al).

The dual of the internal product on Σ is

$$\Delta_i(f(\mathbf{X})) = f(\mathbf{X} \times \mathbf{Y}).$$

The dual of the external product on Σ is

$$\Delta_e(f(\mathbf{X})) = f(\mathbf{X} + \mathbf{Y}).$$

Theorem (A.-Ferrer-Moreira, Ram).

The dual of the smash product on Σ is

$$\Delta_s(f(\mathbf{X})) = f(\mathbf{X} + \mathbf{X}\mathbf{Y} + \mathbf{Y}).$$

Formal group laws for alphabets

Let $X = \{x_1, x_2, ...\}$, $Y = \{y_1, y_2, ...\}$ be alphabets. Define

- (1) $X + Y := X \sqcup Y$ with $x_i < y_j \ \forall i, j$;
- (2) $\mathbf{X} \times \mathbf{Y} := \{(x_i, y_j) \mid i, j \geq 1\}$ with reviex order;
- (3) $X + XY + Y := \{(x_i, y_j) \mid i, j \ge 0, (i, j) \ne (0, 0)\}$ with $x_0 < x_i$, $y_0 < y_j$, and review order.

Note $X + XY + Y = (1 + X) \times (1 + Y) - 1$.

The antipode of (Q, Δ_e) is

$$S_e(f(\mathbf{X})) = f(-\mathbf{X}),$$

where

$$M_{\alpha}(-\mathbf{X}) := (-1)^k \sum_{i_1 \ge \dots \ge i_k} x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k}.$$

Theorem The antipode of (Q, Δ_s) is

$$S_s(f(\mathbf{X})) = f(-\frac{\mathbf{X}}{1+\mathbf{X}}),$$

where

$$\frac{X}{1+X} := X - X^2 + X^3 - X^4 + \dots$$